File size: 114,204 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 |
{
"paper_id": "2019",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:30:26.993410Z"
},
"title": "Integrating Lexical Knowledge in Word Embeddings using Sprinkling and Retrofitting",
"authors": [
{
"first": "Aakash",
"middle": [],
"last": "Srinivasan",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of California",
"location": {
"settlement": "Los Angeles"
}
},
"email": ""
},
{
"first": "Harshavardhan",
"middle": [],
"last": "Kamarthi",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Indian Institute of Technology Madras",
"location": {}
},
"email": "harshavardhan864.hk@gmail.com"
},
{
"first": "Devi",
"middle": [],
"last": "Ganesan",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Indian Institute of Technology Madras",
"location": {}
},
"email": ""
},
{
"first": "Sutanu",
"middle": [],
"last": "Chakraborti",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Indian Institute of Technology Madras",
"location": {}
},
"email": "sutanuc@cse.iitm"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Neural network based word embeddings, such as Word2Vec and GloVe, are purely data driven in that they capture the distributional information about words from the training corpus. Past works have attempted to improve these embeddings by incorporating semantic knowledge from lexical resources like Word-Net. Some techniques like retrofitting modify word embeddings in the post-processing stage while some others use a joint learning approach by modifying the objective function of neural networks. In this paper, we discuss two novel approaches for incorporating semantic knowledge into word embeddings. In the first approach, we take advantage of Levy et al's work which showed that using SVD based methods on co-occurrence matrix provide similar performance to neural network based embeddings. We propose a sprinkling technique to add semantic relations to the co-occurrence matrix directly before factorization. In the second approach, WordNet similarity scores are used to improve the retrofitting method. We evaluate the proposed methods in both intrinsic and extrinsic tasks and observe significant improvements over the baselines in many of the datasets.",
"pdf_parse": {
"paper_id": "2019",
"_pdf_hash": "",
"abstract": [
{
"text": "Neural network based word embeddings, such as Word2Vec and GloVe, are purely data driven in that they capture the distributional information about words from the training corpus. Past works have attempted to improve these embeddings by incorporating semantic knowledge from lexical resources like Word-Net. Some techniques like retrofitting modify word embeddings in the post-processing stage while some others use a joint learning approach by modifying the objective function of neural networks. In this paper, we discuss two novel approaches for incorporating semantic knowledge into word embeddings. In the first approach, we take advantage of Levy et al's work which showed that using SVD based methods on co-occurrence matrix provide similar performance to neural network based embeddings. We propose a sprinkling technique to add semantic relations to the co-occurrence matrix directly before factorization. In the second approach, WordNet similarity scores are used to improve the retrofitting method. We evaluate the proposed methods in both intrinsic and extrinsic tasks and observe significant improvements over the baselines in many of the datasets.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Neural Network based models (Mikolov et al., 2013a; Pennington et al., 2014) have been hugely successful in generating useful vector representation for words which preserve their distributional properties in a given corpora. Improving the quality of word embeddings have led to better performance in many downstream language tasks. Considering the widespread uses of word embeddings, there have been a lot of interest in improving the quality of these embeddings by leveraging lexical knowledge such as synonymy, hyper-nymy, hyponymy, troponymy and paraphrase relations. This is accompanied by the availability of large scale lexical knowledge available in WordNet (Miller, 1995) and Paraphrase Database (PPDB) (Ganitkevitch et al., 2013) .",
"cite_spans": [
{
"start": 28,
"end": 51,
"text": "(Mikolov et al., 2013a;",
"ref_id": "BIBREF20"
},
{
"start": 52,
"end": 76,
"text": "Pennington et al., 2014)",
"ref_id": "BIBREF24"
},
{
"start": 665,
"end": 679,
"text": "(Miller, 1995)",
"ref_id": "BIBREF22"
},
{
"start": 711,
"end": 738,
"text": "(Ganitkevitch et al., 2013)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, we propose two simple yet powerful approaches to incorporate lexical knowledge into the word embeddings. First, we propose a matrix factorization based approach which uses the idea of 'sprinkling' (Chakraborti et al., 2006 (Chakraborti et al., , 2007 semantic knowledge into the word cooccurrence matrix. Second, we identify the weaknesses of the retrofitting model (Faruqui et al., 2014) and propose a few modifications that improves the performance. We demonstrate the strength of the proposed models by showing significant improvements in two commonly used intrinsic language tasks -word similarity and analogy, and two extrinsic tasks -named entity recognition (NER) and part of speech tagging (POS).",
"cite_spans": [
{
"start": 212,
"end": 237,
"text": "(Chakraborti et al., 2006",
"ref_id": "BIBREF2"
},
{
"start": 238,
"end": 265,
"text": "(Chakraborti et al., , 2007",
"ref_id": "BIBREF3"
},
{
"start": 381,
"end": 403,
"text": "(Faruqui et al., 2014)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Learning of word embeddings that capture distributional information has been vital to many NLP tasks. Prediction-based methods such as skipgram (Mikolov et al., 2013a) and CBOW (Bengio et al., 2003) use neural language modelling for predicting a given word given its context words (or vice-versa) and extract the learned weight vectors as word embeddings. On the other hand, countbased methods derive a co-occurrence matrix of words in the corpus and use matrix factorization techniques like SVD to extract word representations (Levy and Goldberg, 2014) . GloVe (Pennington et al., 2014) uses co-occurrence matrix to train word embeddings such that the dot product between any two words is proportional to the log probability of their co-occurrence.",
"cite_spans": [
{
"start": 144,
"end": 167,
"text": "(Mikolov et al., 2013a)",
"ref_id": "BIBREF20"
},
{
"start": 177,
"end": 198,
"text": "(Bengio et al., 2003)",
"ref_id": "BIBREF0"
},
{
"start": 281,
"end": 296,
"text": "(or vice-versa)",
"ref_id": null
},
{
"start": 528,
"end": 553,
"text": "(Levy and Goldberg, 2014)",
"ref_id": "BIBREF14"
},
{
"start": 562,
"end": 587,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Works",
"sec_num": "2"
},
{
"text": "The models that incorporate lexical knowledge into the word embeddings can be broadly classified into two categories, namely post processing and joint learning. Post processing methods such as (Faruqui et al., 2014; Mrk\u0161i\u0107 et al., 2016) take the pre-trained word embeddings and modify them by injecting semantic knowledge. The retrofitting method (Faruqui et al., 2014) derives similarity constraints from WordNet and other resources to pull similar words closer together. Whereas, the counterfitting approach, (Mrk\u0161i\u0107 et al., 2016 ) also tries to push the antonymous words away from each other. These approaches consider only onehop neighbours' relations. We improve upon this by considering multi-hop neighbours as well as use structural and information-based similarity scores to determine their relative importance in imposing similarty contraints to the word embeddings. Joint learning approaches like (Yu and Dredze, 2014; Fried and Duh, 2014; Vashishth et al., 2018) learn word embeddings by jointly optimizing distributional and relational information. For instance, in Yu and Dredze (2014) , the objective function consists of both the original skip-gram objective as well as prior knowledge from semantic resources to learn improved lexical semantic embeddings. The recent work by Vashishth et al. (2018) uses Graph Convolutional Networks (GCNs) to learn relations between words and outperforms the previous methods in many language tasks.",
"cite_spans": [
{
"start": 193,
"end": 215,
"text": "(Faruqui et al., 2014;",
"ref_id": "BIBREF5"
},
{
"start": 216,
"end": 236,
"text": "Mrk\u0161i\u0107 et al., 2016)",
"ref_id": "BIBREF23"
},
{
"start": 347,
"end": 369,
"text": "(Faruqui et al., 2014)",
"ref_id": "BIBREF5"
},
{
"start": 511,
"end": 531,
"text": "(Mrk\u0161i\u0107 et al., 2016",
"ref_id": "BIBREF23"
},
{
"start": 907,
"end": 928,
"text": "(Yu and Dredze, 2014;",
"ref_id": "BIBREF34"
},
{
"start": 929,
"end": 949,
"text": "Fried and Duh, 2014;",
"ref_id": "BIBREF7"
},
{
"start": 950,
"end": 973,
"text": "Vashishth et al., 2018)",
"ref_id": "BIBREF31"
},
{
"start": 1078,
"end": 1098,
"text": "Yu and Dredze (2014)",
"ref_id": "BIBREF34"
},
{
"start": 1291,
"end": 1314,
"text": "Vashishth et al. (2018)",
"ref_id": "BIBREF31"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Works",
"sec_num": "2"
},
{
"text": "Sprinkling: Latent Semantic Indexing (LSI), also known as Latent Semantic Analysis (LSA), learns a distributional representation for words by performing Singular Value Decomposition (SVD) on the term-document matrix. However, the dimensions obtained from LSI are not optimal in a classification setting because it is agnostic to class label information of the training data. The sprinkling method introduced by Chakraborti et al., (2006) improves LSI by appending the class labels as extra features (terms) to the corresponding training documents. When LSI is carried out on this augmented term-document matrix, terms pertaining to the same class are pulled closer to each other. An extension of this method, called adaptive sprinkling (Chakraborti et al., 2007) , allows to control the importance of specific class labels by appending them multiple times to the termdocument matrix. For instance, in case of double sprinkling, we append the class labels twice to the matrix thus improving the weakly supervised constraints imposed by class labels.",
"cite_spans": [
{
"start": 411,
"end": 437,
"text": "Chakraborti et al., (2006)",
"ref_id": "BIBREF2"
},
{
"start": 736,
"end": 762,
"text": "(Chakraborti et al., 2007)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Works",
"sec_num": "2"
},
{
"text": "In this section, we discuss the proposed models to incorporate semantic knowledge into word embeddings.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proposed Models",
"sec_num": "3"
},
{
"text": "In this approach, we take advantage of Levy and Goldberg's work (2014) in which the authors have shown that the objective function used in Word2vec (Mikolov et al., 2013a) implicitly factorizes a Shifted PPMI (SPPMI) matrix. While there are many methods that attempt to inject semantic knowledge into neural word embeddings, to the best of our knowledge, we have not come across any work that tries to inject semantic knowledge into the SPPMI matrix. In its original form, the SPPMI matrix captures only distributional information. Hence, we are interested in analysing the impact of injecting semantic knowledge into the SPPMI matrix and the effectiveness of the resulting word embeddings.",
"cite_spans": [
{
"start": 39,
"end": 70,
"text": "Levy and Goldberg's work (2014)",
"ref_id": null
},
{
"start": 148,
"end": 171,
"text": "(Mikolov et al., 2013a)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SS-PPMI & DSS-PPMI",
"sec_num": "3.1"
},
{
"text": "Inspired from (Chakraborti et al., 2006 (Chakraborti et al., , 2007 , which exploits the class knowledge of the documents by 'sprinkling' label terms into the termdocument matrix before matrix factorization, we modify the SPPMI matrix by adding reachability information from lexical knowledge bases such as WordNet and PPDB. In the lexical graphs obtained from these knowledge bases, words are connected by edges representing relations such as synonymy, hypernymy, etc. We say that a word v is reachable from another word u if and only if there exists a path between them in the lexical graph. More formally, let n be the size of the vocabulary. We define the reachability matrix L k \u2208 {0, 1} n\u00d7n to be a zero-one square matrix with each element L k (u, v) indicating if word v is reachable from word u within k hops in the lexical knowledge graph.",
"cite_spans": [
{
"start": 14,
"end": 39,
"text": "(Chakraborti et al., 2006",
"ref_id": "BIBREF2"
},
{
"start": 40,
"end": 67,
"text": "(Chakraborti et al., , 2007",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SS-PPMI & DSS-PPMI",
"sec_num": "3.1"
},
{
"text": "We concatenate the reachability matrix with the SPPMI matrix to obtain Sprinkled Shifted -Positive PMI (SS-PPMI). We then perform SVD on this augmented matrix to obtain the enriched word embeddings.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "SS-PPMI & DSS-PPMI",
"sec_num": "3.1"
},
{
"text": "SPPMI = max(P M I \u2212 log(neg), 0) (1) SS-PPMI = SPPMI \u2022 L k (2) SS-PPMI \u2248 U x \u03a3 x V T x (3) Embeddings = U x \u03a3 p x (4)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "SS-PPMI & DSS-PPMI",
"sec_num": "3.1"
},
{
"text": "where \u2022 denotes the matrix concatenation operation, neg denotes the number of negative samples and x denotes the lower rank approximation of the SS-PPMI matrix. SS-PPMI matrix is of dimensions n \u00d7 2n. Following the work of Levy et al., (2014) , we have used p as 0.5 to obtain the word embeddings.",
"cite_spans": [
{
"start": 223,
"end": 242,
"text": "Levy et al., (2014)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SS-PPMI & DSS-PPMI",
"sec_num": "3.1"
},
{
"text": "The original motivation for sprinkling technique (Chakraborti et al., 2006) was that documents of same class are brought closer by appending the class labels to term-document matrix. Likewise, words which have strong syntactic relations such as synonymy or antonymy have similar neighbourhood in graphs like WordNet. This translates to these word pairs having similar columns in the reachability matrix. Thus, appending reachability matrix to SPPMI matrix would bring such words closer.",
"cite_spans": [
{
"start": 49,
"end": 75,
"text": "(Chakraborti et al., 2006)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SS-PPMI & DSS-PPMI",
"sec_num": "3.1"
},
{
"text": "We can further strengthen these constraint by adding the reachability matrix multiple times as done in adaptive sprinkling (Chakraborti et al., 2007) . We performed experiments adding reachability matrix twice and we call the resulting matrix as Doubly Sprinkled Shifted -Positive PMI (DSS-PPMI), which will be of dimensions n \u00d7 3n.",
"cite_spans": [
{
"start": 123,
"end": 149,
"text": "(Chakraborti et al., 2007)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SS-PPMI & DSS-PPMI",
"sec_num": "3.1"
},
{
"text": "Retrofitting was introduced by Faruqui et al., (2014) and is a method to add semantic information to pre-trained word vectors. The postprocessing step modifies the word embeddings such that the embeddings of words with semantic relations between them are pulled towards each other. Formally, given the pre-trained vectorsQ =",
"cite_spans": [
{
"start": 31,
"end": 53,
"text": "Faruqui et al., (2014)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "3.2"
},
{
"text": "(q 1 ,q 2 \u2022 \u2022 \u2022q n )",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "3.2"
},
{
"text": ", and a knowledge base represented by the adjacency matrix A, we need to learn new vectors",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "Q = (q 1 , q 2 \u2022 \u2022 \u2022 q n ) such that following ob- jective \u03c8(Q) is minimized: \u03c8(Q) = i=n i=1 (\u03b1 i q i \u2212q i 2 + j=n j=1 \u03b2 ij A ij q i \u2212 q j 2 )",
"eq_num": "(5)"
}
],
"section": "W-Retrofitting",
"sec_num": "3.2"
},
{
"text": "The objective is a convex function and we can find the solution using the efficient iterative update method used in Faruqui et al., (2014) :",
"cite_spans": [
{
"start": 116,
"end": 138,
"text": "Faruqui et al., (2014)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "3.2"
},
{
"text": "q i = j=n j=1 A ij \u03b2 ij q j + \u03b1 i q i j=n j=1 A ij \u03b2 ij + \u03b1 i (6)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "3.2"
},
{
"text": "The \u03b2 ij term is usually assigned as degree(i) \u22121 . This choice of assigning weights Table 1 : The characterization of scores given by different word similarity datasets can be done in a better way by learning from semantic knowledge sourcea such as WordNet.",
"cite_spans": [],
"ref_spans": [
{
"start": 85,
"end": 92,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "3.2"
},
{
"text": "We propose a modification to the retrofitting methods called W-Retrofitting (weighted retrofitting), where we use WordNet-based similarity scores to obtain a better setting of \u03b2 ij . For two words w i and w j with WordNet similarity score Sim(i, j), \u03b2 ij is obtained by normalizing the similarity scores across neighbors and is given as:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "3.2"
},
{
"text": "\u03b2 ij = Sim(i,j)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "3.2"
},
{
"text": "j Sim(i,j ) . Since a word can have multiple synsets, the similarity score is the maximum of the similarity scores of all possible pairs of synsets, taking one each from the two words. For information based similarity measures like Lin similarity we compute mutual information from a random subset of Wikipedia corpus containing 100,000 articles. Further, we extend our method to consider nodes which are atmost 2 hops from given node when computing weights.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "3.2"
},
{
"text": "We evaluate the proposed models on word similarity and analogy tasks. Word similarity: We use MEN (Bruni et al., 2014) , MTunk (Radinsky et al., 2011) , RG65 (Rubenstein and Goodenough, 1965) , Rare Words(RW) (Luong et al., 2013) , SimLex999 (Hill et al., 2015) , TR9856 (Levy et al., 2015b) , WS353 (Finkelstein et al., 2002) , WS353S (Similarity), WS353R (Relatedness). Spearman correlation is used as evaluation metric. Analogy: We evaluated analogy task with Google Analogy (Mikolov et al., 2013a) , MSR Analogy (Mikolov et al., 2013b) and Semeval2012 datasets. We follow the standardized setup as explained in (Jastrzebski et al., 2017) .",
"cite_spans": [
{
"start": 98,
"end": 118,
"text": "(Bruni et al., 2014)",
"ref_id": "BIBREF1"
},
{
"start": 127,
"end": 150,
"text": "(Radinsky et al., 2011)",
"ref_id": "BIBREF26"
},
{
"start": 158,
"end": 191,
"text": "(Rubenstein and Goodenough, 1965)",
"ref_id": "BIBREF28"
},
{
"start": 209,
"end": 229,
"text": "(Luong et al., 2013)",
"ref_id": "BIBREF18"
},
{
"start": 242,
"end": 261,
"text": "(Hill et al., 2015)",
"ref_id": "BIBREF9"
},
{
"start": 271,
"end": 291,
"text": "(Levy et al., 2015b)",
"ref_id": "BIBREF16"
},
{
"start": 300,
"end": 326,
"text": "(Finkelstein et al., 2002)",
"ref_id": "BIBREF6"
},
{
"start": 478,
"end": 501,
"text": "(Mikolov et al., 2013a)",
"ref_id": "BIBREF20"
},
{
"start": 516,
"end": 539,
"text": "(Mikolov et al., 2013b)",
"ref_id": "BIBREF21"
},
{
"start": 615,
"end": 641,
"text": "(Jastrzebski et al., 2017)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Intrinsic Evaluation",
"sec_num": "4.1"
},
{
"text": "We used two sources of semantic knowledge: WordNet (Miller, 1995) and PPDB (Ganitkevitch et al., 2013) . We used the same PPDB knowledge source used in Faruqui et al., (2014) . We used WordNet source knowledge from V. Batagelj (2004) . The relations considered are synonymy, hypernymy, meronymy and verb entailment. PPDB has 84467 nodes and 169703 edges, WordNet source we used has 82313 nodes and 98678 edges.",
"cite_spans": [
{
"start": 51,
"end": 65,
"text": "(Miller, 1995)",
"ref_id": "BIBREF22"
},
{
"start": 75,
"end": 102,
"text": "(Ganitkevitch et al., 2013)",
"ref_id": "BIBREF8"
},
{
"start": 152,
"end": 174,
"text": "Faruqui et al., (2014)",
"ref_id": "BIBREF5"
},
{
"start": 227,
"end": 233,
"text": "(2004)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Sources of Knowledge",
"sec_num": "4.2"
},
{
"text": "We used the latest Wikipedia dump 1 containing 6 Billion wikipedia articles to generate the SPPMI matrix. We followed the same procedure as given in Levy et al., (2015a) and chose the number of negative samples to be default value of 5. In all of our experiments, we chose embedding dimension as 300, which is commonly used in the literature.",
"cite_spans": [
{
"start": 149,
"end": 169,
"text": "Levy et al., (2015a)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Sources of Knowledge",
"sec_num": "4.2"
},
{
"text": "We use the following baselines for comparison 1. GloVe: Our first baseline is the GloVe embeddings (Pennington et al., 2014) trained on the Wikipedia corpus retrieved from Stanford NLP group website 2 .",
"cite_spans": [
{
"start": 99,
"end": 124,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Baselines",
"sec_num": "4.3"
},
{
"text": "We apply the retrofitting technique (Faruqui et al., 2014) on the GloVe embeddings where Wordnet or PPDB was as the source of word relations.",
"cite_spans": [
{
"start": 36,
"end": 58,
"text": "(Faruqui et al., 2014)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Retrofit:",
"sec_num": "2."
},
{
"text": "We perform SVD on the Shifted PPMI matrix (as mentioned in Section 3) without sprinkling.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "SPPMI:",
"sec_num": "3."
},
{
"text": "4. SynGCN (Vashishth et al., 2018) : This work uses Graph-convolution based methods to impart relational information between words and have shown state-of-art results in many benchmarks. We directly report the available results from the original paper which uses same evaluation benchmarks.",
"cite_spans": [
{
"start": 10,
"end": 34,
"text": "(Vashishth et al., 2018)",
"ref_id": "BIBREF31"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SPPMI:",
"sec_num": "3."
},
{
"text": "To further test the effectiveness of the different methods in grounding word meanings, we utilize the embeddings in following tasks. The neural network architectures used for each of the tasks are same as that used in Vashishth et al., (2018) .",
"cite_spans": [
{
"start": 218,
"end": 242,
"text": "Vashishth et al., (2018)",
"ref_id": "BIBREF31"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Extrinsic Evaluation",
"sec_num": "4.4"
},
{
"text": "1. Part-of-speech tagging (POS): This task classifies each word of given sentence as one of the part-of-speech tags. We use the LSTM based neural architecture discussed in 1 https://dumps.wikimedia.org/enwiki/latest/ 2 https://nlp.stanford.edu/projects/GloVe/ Reimers and Gurevych (2017) on the Penn treebank dataset (Marcus et al., 1994) .",
"cite_spans": [
{
"start": 260,
"end": 287,
"text": "Reimers and Gurevych (2017)",
"ref_id": "BIBREF27"
},
{
"start": 317,
"end": 338,
"text": "(Marcus et al., 1994)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Extrinsic Evaluation",
"sec_num": "4.4"
},
{
"text": "2. Named-entity recognition (NER): The goal of this task is to extract and classify named entities in the sentences as person, organisation, location or miscellaneous. We use the model proposed in on CoNLL-2003 dataset (Sang and Meulder, 2003) .",
"cite_spans": [
{
"start": 200,
"end": 228,
"text": "CoNLL-2003 dataset (Sang and",
"ref_id": null
},
{
"start": 229,
"end": 243,
"text": "Meulder, 2003)",
"ref_id": "BIBREF29"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Extrinsic Evaluation",
"sec_num": "4.4"
},
{
"text": "5 Results and Analysis",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Extrinsic Evaluation",
"sec_num": "4.4"
},
{
"text": "Reachability Matrix is powerful in capturing semantic information: We proposed a simple sprinkling approach in which a zero-one matrix captures the k-hop reachability information between words in a lexical knowledge graph. In order to see how effectively the reachability matrix captures the lexical knowledge, we performed SVD on the reachability matrix and obtained the word embeddings. Table 2 shows the performance of the obtained embeddings on word similarity task, The dimension of embedding used is 300. Interestingly, we clearly observe that the embeddings obtained from the reachability matrix only (without SPPMI matrix) compete strongly with 300 dimensional pretrained GloVe embeddings on the similarity based datasets. The best performing model gives a Spearman correlation which is 0.19 more than GloVe in Simlex999. Similarly, in RG65 and WS353S, the reachability based embeddings compete well with GloVe. Between the choice of PPDB or WordNet as the lexical knowledge sources, PPDB seems to be more helpful. In general, the performance of reachability-based embeddings increases with increasing the number of hops on the similarity datasets. In the case of relatedness datasets, the model competes poorly with the baseline-GloVe. This is quite expected as the reachability matrix doesn't capture any information about the word cooccurrence. These observations have been foundational to our proposed SS-PPMI and DSS-PPMI methods. SS-PPMI and DSS-PPMI provide significant improvements in word similarity and analogy: Table 3 provides the results with SS-PPMI and DSS-PPMI approaches on word similarity task with embedding dimension as 300. We clearly observe that the proposed models defeat the baseline in all the datasets. The margin of improvement is quite high in case of similarity datasets. We see close to 0.21 increase in spearman correlation for Simlex999, 0.04 increase in RG65. This is somewhat expected as we already saw that reachability matrix contains lexical information. Interestingly, we also saw improvements in relatedness datasets where the sprinkling approaches perform narrowly better than SPPMI based approach. In other datasets like WS353, MEN we see improvements of about 0.02 and 0.03 in spearman correlation respectively. Overall, sprinkling significantly improves the performance on word similarity task. Overall, we observe that Double Sprinkling method (DSS-PPMI) works better than SPPMI in word similarity task. Increasing the number of hops (k) in the reachability matrix improves the performance in word similarity , in general. Table 4 shows improvements provided by the sprinkling methods on analogy datasets. We observe marginal improvements over baseline in google and SemEval2012.",
"cite_spans": [],
"ref_spans": [
{
"start": 389,
"end": 396,
"text": "Table 2",
"ref_id": "TABREF2"
},
{
"start": 1530,
"end": 1537,
"text": "Table 3",
"ref_id": "TABREF3"
},
{
"start": 2576,
"end": 2583,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "SS-PPMI",
"sec_num": "5.1"
},
{
"text": "We apply our W-retrofitting model to GloVe (Pennington et al., 2014) embeddings trained on Wikipedia corpus. We experimented with one hop and two hop neighbors and several methods for similarity estimation: inverse path similarity, Jaing-Conrath Similarity (Jiang and Conrath, 1997), Wu - Table 4 : Analogy results using proposed SS-PPMI and DSS-PPMI approaches 1994), Leacock-Chowdorov Similarity (Leacock and Chodorow, 1998) and Lin Similarity (Lin et al., 1998) . The neighbourhood information for estimating similarity was obtained from either WordNet or PPDB graphs. We found that Jaing-Conrath Similarity works best for WordNet, inverse path similarity for PPDB. So, we report results for these similarity measures only.",
"cite_spans": [
{
"start": 43,
"end": 68,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF24"
},
{
"start": 284,
"end": 288,
"text": "Wu -",
"ref_id": null
},
{
"start": 398,
"end": 426,
"text": "(Leacock and Chodorow, 1998)",
"ref_id": "BIBREF12"
},
{
"start": 446,
"end": 464,
"text": "(Lin et al., 1998)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [
{
"start": 289,
"end": 296,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "5.2"
},
{
"text": "Word Similarity: The performances of all our models are either comparable or superior to baselines as seen in table 5. We see that using PPDB knowledge source and path based similarity as weights in the retrofit objective functions gives the best performance and outperforms the baselines in most benchmarks.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "5.2"
},
{
"text": "Analogy: Some of our models outperform retrofitting baselines in Google analogy. In Se-mEval task, we mostly outperform GloVe but ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "W-Retrofitting",
"sec_num": "5.2"
},
{
"text": "In order to make fair and direct comparison between Sprinkling and Retrofitting, we applied retrofitting and W-retrofitting (using inverse-path similarity over PPDB graph) on the 300 dimensional SPPMI vectors. Table 7 provides the best results of the models on each of the word similarity and analogy datasets. We make the following observations. W-Retrofitting does much better Using only the Reachability Matrix provides very good scores in similarity based datasets, but doesn't capture relatedness information at all. Using sprinkling approach, we manage to obtain embeddings that have optimal combination of similarity and relatedness information and this makes it perform better than all the other baselines in similarity, relatedness and analogy tasks.",
"cite_spans": [],
"ref_spans": [
{
"start": 210,
"end": 217,
"text": "Table 7",
"ref_id": "TABREF8"
}
],
"eq_spans": [],
"section": "Overall Comparison on Word Similarity",
"sec_num": "5.3"
},
{
"text": "The results on extrinsic tasks (discussed in Section 4.4) are given in Tables 8 and 9. In the case of sprinkling methods, we see that there is a clear in-crease in scores for both the extrinsic tasks from using the proposed SS-PPMI matrix over using only the SPPMI matrix. We also see that models using PPDB perform better. One reason why we do not compare scores of sprinkling based methods with that of GloVe and Retrofitting based ones is that the vocabulary size(number of nodes) in PPDB or Wordnet graphs are lower than that for GloVe. We also didn't consider punctuation symbols in SPPMI unlike GloVe.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation on Extrinsic tasks",
"sec_num": "5.4"
},
{
"text": "In the case of W-retrofitting, scores from the proposed W-Retrofitting model using jcn weights on wordnet graph are very similar to SynGCN model inspite of SynGCN being a more complex model with a lot of hyperparameters. We also see that the other methods of W-retrofitting have comparable performance to SynGCN. We observe improved performance by considering upto 2 hop neighbours over methods considering just 1 hop neighbours. It is quite interesting to see that the proposed light-weight retrofitting model competes strongly with the more complex SynGCN method as shown by the results in Table 9 .",
"cite_spans": [],
"ref_spans": [
{
"start": 592,
"end": 599,
"text": "Table 9",
"ref_id": "TABREF11"
}
],
"eq_spans": [],
"section": "Evaluation on Extrinsic tasks",
"sec_num": "5.4"
},
{
"text": "In this paper, we proposed two simple yet powerful approaches to incorporate lexical knowledge into word embeddings. The first approach is a matrix factorization method that 'sprinkles' higher order graph information into the word cooccurrence and we show that it significantly improves the quality of the word embeddings. Second, we proposed a simple modification to the retrofitting method that improves it performance visibly. We showed the improvements of the proposed models over baselines in a variety of word similarity and analogy tasks, and across two popular lexical knowledge bases.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "6"
},
{
"text": "For extrinsic tasks, W-retrofitting showed comparable performance to the state-of-art SynGCN model, (Vashishth et al., 2018) inspite of Syn-GCN being a more sophisticated model with lots of parameters that constitute the weights of Graph Convolutional layers and linear layers of neural network used as well as many hyperparameters needed for training the neural network (such as number of GCN layers and their dimensions, learning rate, number of epochs, etc.).",
"cite_spans": [
{
"start": 100,
"end": 124,
"text": "(Vashishth et al., 2018)",
"ref_id": "BIBREF31"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "6"
},
{
"text": "In our sprinkling approach, we didn't consider any importance weighting for different relations. One promising direction that can be experimented in future is to use wordnet similarity scores or a combination of co-occurrence and lexical information as importance values in the reachability matrix. We could also use 'adaptive sprinkling' (Chakraborti et al., 2007) to give more importance to relations of specific sets of words.",
"cite_spans": [
{
"start": 339,
"end": 365,
"text": "(Chakraborti et al., 2007)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "6"
},
{
"text": "The more recent methods that achieve the stateof-art results in a variety of language tasks utilize pre-trained models such as Elmo (Peters et al., 2018) , BERT (Devlin et al., 2018) and XLNet (Yang et al., 2019) . These models that learn context dependent word embeddings are pre-trained for different language tasks and are later finetuned for specific tasks. Another direction of research we would like to explore is to study the improvements gained by using our proposed models to initialize the word embeddings before pretraining these models.",
"cite_spans": [
{
"start": 132,
"end": 153,
"text": "(Peters et al., 2018)",
"ref_id": "BIBREF25"
},
{
"start": 161,
"end": 182,
"text": "(Devlin et al., 2018)",
"ref_id": "BIBREF4"
},
{
"start": 193,
"end": 212,
"text": "(Yang et al., 2019)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "6"
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "A neural probabilistic language model",
"authors": [
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
},
{
"first": "R\u00e9jean",
"middle": [],
"last": "Ducharme",
"suffix": ""
},
{
"first": "Pascal",
"middle": [],
"last": "Vincent",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Jauvin",
"suffix": ""
}
],
"year": 2003,
"venue": "Journal of machine learning research",
"volume": "3",
"issue": "",
"pages": "1137--1155",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yoshua Bengio, R\u00e9jean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic lan- guage model. Journal of machine learning research, 3(Feb):1137-1155.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Multimodal distributional semantics",
"authors": [
{
"first": "Elia",
"middle": [],
"last": "Bruni",
"suffix": ""
},
{
"first": "Nam-Khanh",
"middle": [],
"last": "Tran",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Baroni",
"suffix": ""
}
],
"year": 2014,
"venue": "Journal of Artificial Intelligence Research",
"volume": "49",
"issue": "",
"pages": "1--47",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014. Multimodal distributional semantics. Journal of Ar- tificial Intelligence Research, 49:1-47.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Sprinkling: supervised latent semantic indexing",
"authors": [
{
"first": "Sutanu",
"middle": [],
"last": "Chakraborti",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Lothian",
"suffix": ""
},
{
"first": "Nirmalie",
"middle": [],
"last": "Wiratunga",
"suffix": ""
},
{
"first": "Stuart",
"middle": [],
"last": "Watt",
"suffix": ""
}
],
"year": 2006,
"venue": "European Conference on Information Retrieval",
"volume": "",
"issue": "",
"pages": "510--514",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sutanu Chakraborti, Robert Lothian, Nirmalie Wiratunga, and Stuart Watt. 2006. Sprinkling: supervised latent semantic indexing. In Euro- pean Conference on Information Retrieval, pages 510-514. Springer.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Supervised latent semantic indexing using adaptive sprinkling",
"authors": [
{
"first": "Sutanu",
"middle": [],
"last": "Chakraborti",
"suffix": ""
},
{
"first": "Rahman",
"middle": [],
"last": "Mukras",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Lothian",
"suffix": ""
},
{
"first": "Nirmalie",
"middle": [],
"last": "Wiratunga",
"suffix": ""
},
{
"first": "N",
"middle": [
"K"
],
"last": "Stuart",
"suffix": ""
},
{
"first": "David J",
"middle": [],
"last": "Watt",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Harper",
"suffix": ""
}
],
"year": 2007,
"venue": "IJCAI",
"volume": "7",
"issue": "",
"pages": "1582--1587",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sutanu Chakraborti, Rahman Mukras, Robert Lothian, Nirmalie Wiratunga, Stuart NK Watt, and David J Harper. 2007. Supervised latent semantic index- ing using adaptive sprinkling. In IJCAI, volume 7, pages 1582-1587.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2018,
"venue": "NAACL-HLT",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understand- ing. In NAACL-HLT.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Retrofitting word vectors to semantic lexicons",
"authors": [
{
"first": "Manaal",
"middle": [],
"last": "Faruqui",
"suffix": ""
},
{
"first": "Jesse",
"middle": [],
"last": "Dodge",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Sujay",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Jauhar",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Noah A",
"middle": [],
"last": "Hovy",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Smith",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1411.4166"
]
},
"num": null,
"urls": [],
"raw_text": "Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy, and Noah A Smith. 2014. Retrofitting word vectors to semantic lexicons. arXiv preprint arXiv:1411.4166.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Placing search in context: The concept revisited",
"authors": [
{
"first": "Lev",
"middle": [],
"last": "Finkelstein",
"suffix": ""
},
{
"first": "Evgeniy",
"middle": [],
"last": "Gabrilovich",
"suffix": ""
},
{
"first": "Yossi",
"middle": [],
"last": "Matias",
"suffix": ""
},
{
"first": "Ehud",
"middle": [],
"last": "Rivlin",
"suffix": ""
},
{
"first": "Zach",
"middle": [],
"last": "Solan",
"suffix": ""
},
{
"first": "Gadi",
"middle": [],
"last": "Wolfman",
"suffix": ""
},
{
"first": "Eytan",
"middle": [],
"last": "Ruppin",
"suffix": ""
}
],
"year": 2002,
"venue": "ACM Transactions on information systems",
"volume": "20",
"issue": "1",
"pages": "116--131",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey- tan Ruppin. 2002. Placing search in context: The concept revisited. ACM Transactions on informa- tion systems, 20(1):116-131.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Incorporating both distributional and relational semantics in word representations",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Fried",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Duh",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1412.4369"
]
},
"num": null,
"urls": [],
"raw_text": "Daniel Fried and Kevin Duh. 2014. Incorporating both distributional and relational semantics in word rep- resentations. arXiv preprint arXiv:1412.4369.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Ppdb: The paraphrase database",
"authors": [
{
"first": "Juri",
"middle": [],
"last": "Ganitkevitch",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Van Durme",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Callison-Burch",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "758--764",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2013. Ppdb: The paraphrase database. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, pages 758-764.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Simlex-999: Evaluating semantic models with (genuine) similarity estimation",
"authors": [
{
"first": "Felix",
"middle": [],
"last": "Hill",
"suffix": ""
},
{
"first": "Roi",
"middle": [],
"last": "Reichart",
"suffix": ""
},
{
"first": "Anna",
"middle": [],
"last": "Korhonen",
"suffix": ""
}
],
"year": 2015,
"venue": "Computational Linguistics",
"volume": "41",
"issue": "4",
"pages": "665--695",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Felix Hill, Roi Reichart, and Anna Korhonen. 2015. Simlex-999: Evaluating semantic models with (gen- uine) similarity estimation. Computational Linguis- tics, 41(4):665-695.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "How to evaluate word embeddings? on importance of data efficiency and simple supervised tasks",
"authors": [
{
"first": "Stanis\u0142aw",
"middle": [],
"last": "Jastrzebski",
"suffix": ""
},
{
"first": "Damian",
"middle": [],
"last": "Le\u015bniak",
"suffix": ""
},
{
"first": "Wojciech",
"middle": [
"Marian"
],
"last": "Czarnecki",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1702.02170"
]
},
"num": null,
"urls": [],
"raw_text": "Stanis\u0142aw Jastrzebski, Damian Le\u015bniak, and Woj- ciech Marian Czarnecki. 2017. How to evaluate word embeddings? on importance of data effi- ciency and simple supervised tasks. arXiv preprint arXiv:1702.02170.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Semantic similarity based on corpus statistics and lexical taxonomy",
"authors": [
{
"first": "J",
"middle": [],
"last": "Jay",
"suffix": ""
},
{
"first": "David",
"middle": [
"W"
],
"last": "Jiang",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Conrath",
"suffix": ""
}
],
"year": 1997,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jay J Jiang and David W Conrath. 1997. Semantic sim- ilarity based on corpus statistics and lexical taxon- omy. arXiv preprint cmp-lg/9709008.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Combining local context and wordnet similarity for word sense identification. WordNet: An electronic lexical database",
"authors": [
{
"first": "Claudia",
"middle": [],
"last": "Leacock",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Chodorow",
"suffix": ""
}
],
"year": 1998,
"venue": "",
"volume": "49",
"issue": "",
"pages": "265--283",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Claudia Leacock and Martin Chodorow. 1998. Com- bining local context and wordnet similarity for word sense identification. WordNet: An electronic lexical database, 49(2):265-283.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Higher-order coreference resolution with coarse-to-fine inference",
"authors": [
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Luheng",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Luke",
"middle": [
"S"
],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2018,
"venue": "NAACL-HLT",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kenton Lee, Luheng He, and Luke S. Zettlemoyer. 2018. Higher-order coreference resolution with coarse-to-fine inference. In NAACL-HLT.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Neural word embedding as implicit matrix factorization",
"authors": [
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
}
],
"year": 2014,
"venue": "Advances in neural information processing systems",
"volume": "",
"issue": "",
"pages": "2177--2185",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix factorization. In Ad- vances in neural information processing systems, pages 2177-2185.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Improving distributional similarity with lessons learned from word embeddings",
"authors": [
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
},
{
"first": "Ido",
"middle": [],
"last": "Dagan",
"suffix": ""
}
],
"year": 2015,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "3",
"issue": "",
"pages": "211--225",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Omer Levy, Yoav Goldberg, and Ido Dagan. 2015a. Improving distributional similarity with lessons learned from word embeddings. Transactions of the Association for Computational Linguistics, 3:211- 225.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Tr9856: A multi-word term relatedness benchmark",
"authors": [
{
"first": "Ran",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Liat",
"middle": [],
"last": "Ein-Dor",
"suffix": ""
},
{
"first": "Shay",
"middle": [],
"last": "Hummel",
"suffix": ""
},
{
"first": "Ruty",
"middle": [],
"last": "Rinott",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Slonim",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "2",
"issue": "",
"pages": "419--424",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ran Levy, Liat Ein-Dor, Shay Hummel, Ruty Rinott, and Noam Slonim. 2015b. Tr9856: A multi-word term relatedness benchmark. In Proceedings of the 53rd Annual Meeting of the Association for Compu- tational Linguistics and the 7th International Joint Conference on Natural Language Processing (Vol- ume 2: Short Papers), volume 2, pages 419-424.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "An information-theoretic definition of similarity",
"authors": [
{
"first": "Dekang",
"middle": [],
"last": "Lin",
"suffix": ""
}
],
"year": 1998,
"venue": "Icml",
"volume": "98",
"issue": "",
"pages": "296--304",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dekang Lin et al. 1998. An information-theoretic defi- nition of similarity. In Icml, volume 98, pages 296- 304. Citeseer.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Better word representations with recursive neural networks for morphology",
"authors": [
{
"first": "Thang",
"middle": [],
"last": "Luong",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
"volume": "",
"issue": "",
"pages": "104--113",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thang Luong, Richard Socher, and Christopher Man- ning. 2013. Better word representations with recur- sive neural networks for morphology. In Proceed- ings of the Seventeenth Conference on Computa- tional Natural Language Learning, pages 104-113.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "The penn treebank: Annotating predicate argument structure",
"authors": [
{
"first": "Mitchell",
"middle": [
"P"
],
"last": "Marcus",
"suffix": ""
},
{
"first": "Grace",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "Mary",
"middle": [
"Ann"
],
"last": "Marcinkiewicz",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Macintyre",
"suffix": ""
},
{
"first": "Ann",
"middle": [],
"last": "Bies",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Ferguson",
"suffix": ""
},
{
"first": "Karen",
"middle": [],
"last": "Katz",
"suffix": ""
},
{
"first": "Britta",
"middle": [],
"last": "Schasberger",
"suffix": ""
}
],
"year": 1994,
"venue": "HLT",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mitchell P. Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Ferguson, Karen Katz, and Britta Schas- berger. 1994. The penn treebank: Annotating predicate argument structure. In HLT.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Efficient estimation of word representations in vector space",
"authors": [
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
},
{
"first": "Kai",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Greg",
"middle": [],
"last": "Corrado",
"suffix": ""
},
{
"first": "Jeffrey",
"middle": [],
"last": "Dean",
"suffix": ""
}
],
"year": 2013,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1301.3781"
]
},
"num": null,
"urls": [],
"raw_text": "Tomas Mikolov, Kai Chen, Greg Corrado, and Jef- frey Dean. 2013a. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Linguistic regularities in continuous space word representations",
"authors": [
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
},
{
"first": "Yih",
"middle": [],
"last": "Wen-Tau",
"suffix": ""
},
{
"first": "Geoffrey",
"middle": [],
"last": "Zweig",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "746--751",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013b. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746-751.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Wordnet: a lexical database for english",
"authors": [
{
"first": "A",
"middle": [],
"last": "George",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Miller",
"suffix": ""
}
],
"year": 1995,
"venue": "Communications of the ACM",
"volume": "38",
"issue": "11",
"pages": "39--41",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "George A Miller. 1995. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39- 41.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Counter-fitting word vectors to linguistic constraints",
"authors": [
{
"first": "Nikola",
"middle": [],
"last": "Mrk\u0161i\u0107",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Diarmuid",
"suffix": ""
},
{
"first": "Blaise",
"middle": [],
"last": "S\u00e9aghdha",
"suffix": ""
},
{
"first": "Milica",
"middle": [],
"last": "Thomson",
"suffix": ""
},
{
"first": "Lina",
"middle": [],
"last": "Ga\u0161i\u0107",
"suffix": ""
},
{
"first": "Pei-Hao",
"middle": [],
"last": "Rojas-Barahona",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Su",
"suffix": ""
},
{
"first": "Tsung-Hsien",
"middle": [],
"last": "Vandyke",
"suffix": ""
},
{
"first": "Steve",
"middle": [],
"last": "Wen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Young",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1603.00892"
]
},
"num": null,
"urls": [],
"raw_text": "Nikola Mrk\u0161i\u0107, Diarmuid O S\u00e9aghdha, Blaise Thom- son, Milica Ga\u0161i\u0107, Lina Rojas-Barahona, Pei- Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve Young. 2016. Counter-fitting word vec- tors to linguistic constraints. arXiv preprint arXiv:1603.00892.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Glove: Global vectors for word representation",
"authors": [
{
"first": "Jeffrey",
"middle": [],
"last": "Pennington",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "1532--1543",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 confer- ence on empirical methods in natural language pro- cessing (EMNLP), pages 1532-1543.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Deep contextualized word representations",
"authors": [
{
"first": "E",
"middle": [],
"last": "Matthew",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Peters",
"suffix": ""
},
{
"first": "Mohit",
"middle": [],
"last": "Neumann",
"suffix": ""
},
{
"first": "Matt",
"middle": [],
"last": "Iyyer",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Gardner",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1802.05365"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word rep- resentations. arXiv preprint arXiv:1802.05365.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "A word at a time: computing word relatedness using temporal semantic analysis",
"authors": [
{
"first": "Kira",
"middle": [],
"last": "Radinsky",
"suffix": ""
},
{
"first": "Eugene",
"middle": [],
"last": "Agichtein",
"suffix": ""
},
{
"first": "Evgeniy",
"middle": [],
"last": "Gabrilovich",
"suffix": ""
},
{
"first": "Shaul",
"middle": [],
"last": "Markovitch",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the 20th international conference on World wide web",
"volume": "",
"issue": "",
"pages": "337--346",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. 2011. A word at a time: computing word relatedness using temporal semantic analysis. In Proceedings of the 20th international conference on World wide web, pages 337-346. ACM.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Reporting score distributions makes a difference: Performance study of lstm-networks for sequence tagging",
"authors": [
{
"first": "Nils",
"middle": [],
"last": "Reimers",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2017,
"venue": "EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nils Reimers and Iryna Gurevych. 2017. Reporting score distributions makes a difference: Performance study of lstm-networks for sequence tagging. In EMNLP.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Contextual correlates of synonymy",
"authors": [
{
"first": "Herbert",
"middle": [],
"last": "Rubenstein",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "John",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Goodenough",
"suffix": ""
}
],
"year": 1965,
"venue": "Communications of the ACM",
"volume": "8",
"issue": "10",
"pages": "627--633",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Herbert Rubenstein and John B Goodenough. 1965. Contextual correlates of synonymy. Communica- tions of the ACM, 8(10):627-633.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Introduction to the conll-2003 shared task: Language-independent named entity recognition",
"authors": [
{
"first": "Erik",
"middle": [
"F"
],
"last": "Tjong",
"suffix": ""
},
{
"first": "Kim",
"middle": [],
"last": "Sang",
"suffix": ""
},
{
"first": "Fien",
"middle": [],
"last": "De Meulder",
"suffix": ""
}
],
"year": 2003,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the conll-2003 shared task: Language-independent named entity recognition. ArXiv, cs.CL/0306050.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Wordnet transformed in pajek format",
"authors": [
{
"first": "A",
"middle": [],
"last": "Mrvar",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Batagelj",
"suffix": ""
}
],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Mrvar V. Batagelj. 2004. Wordnet trans- formed in pajek format, http://vlado.fmf.uni- lj.si/pub/networks/data./dic/wordnet/wordnet.htm, accessed on 10 april, 2019.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Incorporating syntactic and semantic information in word embeddings using graph convolutional networks",
"authors": [
{
"first": "Shikhar",
"middle": [],
"last": "Vashishth",
"suffix": ""
},
{
"first": "Manik",
"middle": [],
"last": "Bhandari",
"suffix": ""
},
{
"first": "Prateek",
"middle": [],
"last": "Yadav",
"suffix": ""
},
{
"first": "Piyush",
"middle": [],
"last": "Rai",
"suffix": ""
},
{
"first": "Chiranjib",
"middle": [],
"last": "Bhattacharyya",
"suffix": ""
},
{
"first": "Partha",
"middle": [
"Pratim"
],
"last": "Talukdar",
"suffix": ""
}
],
"year": 2018,
"venue": "ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shikhar Vashishth, Manik Bhandari, Prateek Ya- dav, Piyush Rai, Chiranjib Bhattacharyya, and Partha Pratim Talukdar. 2018. Incorporating syn- tactic and semantic information in word embeddings using graph convolutional networks. In ACL.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Verbs semantics and lexical selection",
"authors": [
{
"first": "Zhibiao",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 1994,
"venue": "Proceedings of the 32nd annual meeting on Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "133--138",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhibiao Wu and Martha Palmer. 1994. Verbs semantics and lexical selection. In Proceedings of the 32nd an- nual meeting on Association for Computational Lin- guistics, pages 133-138. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Xlnet: Generalized autoregressive pretraining for language understanding",
"authors": [
{
"first": "Zhilin",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Zihang",
"middle": [],
"last": "Dai",
"suffix": ""
},
{
"first": "Yiming",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Jaime",
"middle": [
"G"
],
"last": "Carbonell",
"suffix": ""
},
{
"first": "Ruslan",
"middle": [],
"last": "Salakhutdinov",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Le",
"suffix": ""
}
],
"year": 2019,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. ArXiv, abs/1906.08237.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Improving lexical embeddings with semantic knowledge",
"authors": [
{
"first": "Mo",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Dredze",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "545--550",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mo Yu and Mark Dredze. 2014. Improving lexical embeddings with semantic knowledge. In Proceed- ings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Pa- pers), volume 2, pages 545-550.",
"links": null
}
},
"ref_entries": {
"TABREF2": {
"type_str": "table",
"html": null,
"text": "Performance of the reachability-based embeddings on similarity datasets. Reported numbers are the Spearman correlation coefficients.",
"num": null,
"content": "<table><tr><td/><td/><td/><td/><td>Similarity</td><td/><td colspan=\"2\">Relatedness</td><td/><td colspan=\"2\">No Distinction</td><td/></tr><tr><td>Method</td><td colspan=\"11\">Lexical Knowledge hops SimLex999 WS353S RG65 WS353R TR9856 WS353 MEN MTurk RW</td></tr><tr><td>SPPMI</td><td>-</td><td>-</td><td>0.385</td><td>0.728</td><td>0.783</td><td>0.603</td><td>0.625</td><td colspan=\"4\">0.663 0.742 0.599 0.516</td></tr><tr><td>SynGCN</td><td>-</td><td>-</td><td>0.455</td><td>0.732</td><td>-</td><td>0.457</td><td>-</td><td>0.601</td><td>-</td><td>-</td><td>0.337</td></tr><tr><td>SS-PPMI</td><td>PPDB</td><td>1 2</td><td>0.386 0.398</td><td>0.728 0.733</td><td>0.782 0.775</td><td>0.604 0.619</td><td>0.625 0.628</td><td colspan=\"4\">0.663 0.742 0.599 0.516 0.669 0.743 0.610 0.521</td></tr><tr><td>DSS-PPMI</td><td>PPDB</td><td>1 2</td><td>0.386 0.420</td><td>0.728 0.733</td><td>0.782 0.780</td><td>0.604 0.620</td><td>0.625 0.629</td><td colspan=\"4\">0.663 0.742 0.599 0.516 0.668 0.743 0.607 0.528</td></tr><tr><td>SS-PPMI</td><td>WordNet</td><td>1 2</td><td>0.393 0.394</td><td>0.724 0.733</td><td>0.792 0.793</td><td>0.627 0.629</td><td>0.597 0.601</td><td colspan=\"4\">0.667 0.769 0.611 0.464 0.671 0.770 0.616 0.435</td></tr><tr><td>DSS-PPMI</td><td>WordNet</td><td>1 2</td><td>0.393 0.394</td><td>0.724 0.739</td><td>0.792 0.804</td><td>0.627 0.638</td><td>0.597 0.599</td><td colspan=\"4\">0.667 0.769 0.611 0.463 0.677 0.771 0.619 0.414</td></tr></table>"
},
"TABREF3": {
"type_str": "table",
"html": null,
"text": "",
"num": null,
"content": "<table/>"
},
"TABREF6": {
"type_str": "table",
"html": null,
"text": "",
"num": null,
"content": "<table><tr><td/><td/><td/><td colspan=\"2\">: Word Similarity results for W-Retrofitting approach</td></tr><tr><td colspan=\"5\">retrofitting baseline on WordNet gives the best</td></tr><tr><td colspan=\"5\">score. The results are summarised in table 6</td></tr><tr><td>Similarity</td><td>Graph</td><td colspan=\"3\">Hops Google SemEval</td></tr><tr><td>GloVe</td><td/><td>0</td><td>0.717</td><td>0.164</td></tr><tr><td>SynGCN</td><td/><td/><td>-</td><td>0.234</td></tr><tr><td>Retrofit-baseline</td><td/><td>1</td><td>0.451</td><td>0.171</td></tr><tr><td>path</td><td>PPDB</td><td>1 2</td><td>0.448 0.248</td><td>0.167 0.151</td></tr><tr><td>Retrofit-baseline</td><td/><td>1</td><td>0.603</td><td>0.184</td></tr><tr><td>jcn</td><td>WordNet</td><td>1 2</td><td>0.701 0.693</td><td>0.161 0.155</td></tr></table>"
},
"TABREF7": {
"type_str": "table",
"html": null,
"text": "",
"num": null,
"content": "<table><tr><td colspan=\"4\">: Analogy results for W-Retrofitting</td></tr><tr><td>Model</td><td colspan=\"3\">SimLex999 WS353S RG65</td></tr><tr><td>SPPMI</td><td>0.276</td><td>0.624</td><td>0.671</td></tr><tr><td>Retrofitting</td><td>0.336</td><td>0.624</td><td>0.752</td></tr><tr><td>W-Retrofitting</td><td>0.429</td><td>0.656</td><td>0.747</td></tr><tr><td>Reachability Matrix</td><td>0.561</td><td>0.567</td><td>0.664</td></tr><tr><td>Sprinkling</td><td>0.591</td><td>0.748</td><td>0.821</td></tr><tr><td>Model</td><td>WS353R</td><td colspan=\"2\">TR9856 MTurk</td></tr><tr><td>SPPMI</td><td>0.509</td><td>0.527</td><td>0.626</td></tr><tr><td>Retrofitting</td><td>0.479</td><td>0.534</td><td>0.623</td></tr><tr><td>W-Retrofitting</td><td>0.521</td><td>0.548</td><td>0.631</td></tr><tr><td>Reachability Matrix</td><td>0.194</td><td>0.325</td><td>0.283</td></tr><tr><td>Sprinkling</td><td>0.638</td><td>0.629</td><td>0.619</td></tr><tr><td>Model</td><td>WS353</td><td>MEN</td><td>RW</td></tr><tr><td>SPPMI</td><td>0.562</td><td>0.691</td><td>0.359</td></tr><tr><td>Retrofitting</td><td>0.545</td><td>0.708</td><td>0.350</td></tr><tr><td>W-Retrofitting</td><td>0.595</td><td>0.726</td><td>0.384</td></tr><tr><td>Reachability Matrix</td><td>0.376</td><td>0.325</td><td>0.506</td></tr><tr><td>Sprinkling</td><td>0.682</td><td>0.771</td><td>0.560</td></tr></table>"
},
"TABREF8": {
"type_str": "table",
"html": null,
"text": "Comparison with various baselines for word similarity and relatedness.",
"num": null,
"content": "<table/>"
},
"TABREF10": {
"type_str": "table",
"html": null,
"text": "",
"num": null,
"content": "<table><tr><td colspan=\"4\">: Results on Extrinsic Evaluation tasks using</td></tr><tr><td colspan=\"3\">SS-PPMI and DSS-PPMI embeddings</td><td/></tr><tr><td>Method</td><td>Graph</td><td colspan=\"2\">Hops NER POS</td></tr><tr><td>GloVe</td><td>-</td><td/><td>89.1 94.6</td></tr><tr><td>SynGCN</td><td>-</td><td/><td>89.5 95.4</td></tr><tr><td>Retrofit-baseline</td><td/><td>1</td><td>88.8 94.8</td></tr><tr><td>path</td><td>PPDB</td><td>1 2</td><td>88.7 95 89.2 95.1</td></tr><tr><td>Retrofit-baseline</td><td/><td>1</td><td>88.2 94.5</td></tr><tr><td>jcn</td><td>Wordnet</td><td>1 2</td><td>88.9 95 89.4 95.3</td></tr></table>"
},
"TABREF11": {
"type_str": "table",
"html": null,
"text": "",
"num": null,
"content": "<table><tr><td>: Results on Extrinsic Evaluation tasks using</td></tr><tr><td>W-Retrofitting</td></tr><tr><td>than Retrofitting in similarity datasets, as what we</td></tr><tr><td>saw with GloVe embeddings. The source of the</td></tr><tr><td>improvement comes comes from two things: in-</td></tr><tr><td>clusion of two-hop neighbor information and the</td></tr><tr><td>intelligent choice of weights from WordNet in W-</td></tr><tr><td>Retrofitting.</td></tr></table>"
}
}
}
} |