File size: 94,086 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
{
    "paper_id": "2019",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:30:12.966452Z"
    },
    "title": "Multi-linguality Helps: Event-Argument Extraction for Disaster Domain in Cross-lingual and Multi-lingual Setting",
    "authors": [
        {
            "first": "Zishan",
            "middle": [],
            "last": "Ahmad",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Indian Institute of Technology",
                "location": {
                    "addrLine": "Patna {1821cs18, 1821cs13"
                }
            },
            "email": ""
        },
        {
            "first": "Deeksha",
            "middle": [],
            "last": "Varshney",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Indian Institute of Technology",
                "location": {
                    "addrLine": "Patna {1821cs18, 1821cs13"
                }
            },
            "email": ""
        },
        {
            "first": "Asif",
            "middle": [],
            "last": "Ekbal",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Indian Institute of Technology",
                "location": {
                    "addrLine": "Patna {1821cs18, 1821cs13"
                }
            },
            "email": ""
        },
        {
            "first": "Pushpak",
            "middle": [],
            "last": "Bhattacharyya",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Indian Institute of Technology",
                "location": {
                    "addrLine": "Patna {1821cs18, 1821cs13"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Automatic extraction of disaster-related events and their arguments from natural language text is vital for building a decision support system for crisis management. Event extraction from various news sources is a well-explored area for this objective. However, extracting events alone, without any context provides only partial help for this purpose. Extracting related arguments like Time, Place, Casualties, etc., provides a complete picture of the disaster event. In this paper, we create a disaster domain dataset in Hindi by annotating disasterrelated event and arguments. We also obtain equivalent datasets for Bengali and English from a collaboration. We build a multilingual deep learning model for argument extraction in all the three languages. We also compare our multilingual system with a similar baseline monolingual system trained for each language separately. It is observed that a single multilingual system is able to compensate for lack of training data, by using joint training of dataset from different languages in shared space, thus giving a better overall result.",
    "pdf_parse": {
        "paper_id": "2019",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Automatic extraction of disaster-related events and their arguments from natural language text is vital for building a decision support system for crisis management. Event extraction from various news sources is a well-explored area for this objective. However, extracting events alone, without any context provides only partial help for this purpose. Extracting related arguments like Time, Place, Casualties, etc., provides a complete picture of the disaster event. In this paper, we create a disaster domain dataset in Hindi by annotating disasterrelated event and arguments. We also obtain equivalent datasets for Bengali and English from a collaboration. We build a multilingual deep learning model for argument extraction in all the three languages. We also compare our multilingual system with a similar baseline monolingual system trained for each language separately. It is observed that a single multilingual system is able to compensate for lack of training data, by using joint training of dataset from different languages in shared space, thus giving a better overall result.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The ability to extract real time news of disaster events automatically, can potentially help in better decision-making for planning and coordination of disaster relief efforts. Event extraction from text entails the extraction of particular types of events along with their arguments. Information obtained from extracted event mentions provides a more structured and clear picture when augmented with related arguments like Time, Place, Participant, Casualty etc. In a language rich world where each event is documented in multiple languages, argument extraction in multi-lingual setting stands as a crucial task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Extraction of events from news is a well explored area in Natural Language Processing. Com-petitions such as ACE2005 (Doddington et al., 2004) and TAC-KBP2015 (Mitamura et al., 2015) have investigated the area and provided a large body of literature on event extraction from news articles. Event extraction was done on ACE2005 dataset by Ji and Grishman (2008) by combining global evidence from related documents with local decisions. Hou et al. (2012) introduced a method of event argument extraction based on CRFs model for ACE 2005 Chinese event corpus. Event and its arguments were extracted by Petroni et al. (2018) , for the purpose of extracting breaking news. Although extraction of events is quite well examined, there is a scarcity of work in extraction of detailed arguments for disaster domain like casualties, reason, after-effects etc. In this paper we create and publish a dataset annotated for events in disaster domain, for three different languages, i). Hindi, ii). Bengali and iii). English. This dataset is annotated for the task of argument extraction by expert annotators. We build a 'mono-lingual' deep learning system, based on CNN (Convolutional Neural Network) and Bi-LSTM (Bi-Directional Long Short Term Memory) for the task of argument extraction. In order to leverage the information from all the languages while training, and improve the performance of the system, we build a 'multi-lingual' argument extraction system. This is done by adding separate language layers for each language to our 'mono-lingual' system. To bring the datasets of all the languages to the same vector space, we make use of 'multi-lingual' word embeddings. We show that by training our model in this way we are able to utilize the dataset of all the three languages and improve the performance of our system for most arguments in the three languages. We also investigate how the syntactic difference of the languages is handled by our system. Through analysis, we show that 'multi-lingual' training is espe-cially helpful in improving the performance when some argument is under-represented in the 'monolingual' training data.",
                "cite_spans": [
                    {
                        "start": 117,
                        "end": 142,
                        "text": "(Doddington et al., 2004)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 159,
                        "end": 182,
                        "text": "(Mitamura et al., 2015)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 338,
                        "end": 360,
                        "text": "Ji and Grishman (2008)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 435,
                        "end": 452,
                        "text": "Hou et al. (2012)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 599,
                        "end": 620,
                        "text": "Petroni et al. (2018)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 823,
                        "end": 849,
                        "text": "reason, after-effects etc.",
                        "ref_id": null
                    },
                    {
                        "start": 1152,
                        "end": 1186,
                        "text": "CNN (Convolutional Neural Network)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Argument extraction entails classifying each word in the sentence into some argument or not argument. Therefore, it has been formulated as a sequence labelling task. Given a sentence of form w 1 , w 2 , ..., w n , the task is to predict the sequence of event-arguments, of the form l 1 , l 2 , ..., l n . Six different types of arguments were annotated in the dataset: i). Place, ii). Time, iii). Reason, iv). Casualties, v). Participant and vi). After-effects. To label multi-word event-arguments, IOB-style encoding is used where B, I and O denote the beginning, intermediate and outside token of an event.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Definition",
                "sec_num": "1.1"
            },
            {
                "text": "\u2022 Input Hindi Sentence: \u0917\u0943 \u0939 \u092e\u0902 \u093e\u0932\u092f \u092e\u0941 \u0902 \u092c\u0908 \u0915\u0947 \u092c\u092e \u0935\u094d \u092b\u094b\u091f \u0915\u0947 \u092e \u0947 \u0928\u091c\u0930 \u0907\u0938 \u092c\u093e\u0924 \u0915 \u0935\u0936\u0947 \u0937 \u0924\u094c\u0930 \u092a\u0930 \u091c\u093e\u0902 \u091a \u0915\u0930 \u0930\u0939\u093e \u0939\u0948 \u0915 \u0905 \u0930\u0927\u093e\u092e \u092e\u0902 \u0926\u0930 \u0914\u0930 \u0967\u096f\u096f\u0969 \u0915\u0947 \u092e\u0941 \u0902 \u092c\u0908 \u092c\u092e \u0935-\u092b\u094b\u091f \u0915\u0947 \u092b\u0938\u0932 \u0915 \u0924 \u092f\u093e \u0915\u0947 \u092a \u092e \u0924\u094b \u092f\u0939 \u0939\u092e\u0932\u0947 \u0928\u0939 \u090f",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Definition",
                "sec_num": "1.1"
            },
            {
                "text": "\u2022 Translation: In view of the Mumbai bomb blasts, the Home Ministry is specially investigating the fact that these attacks did not take place as response to the Akshardham Temple and the 1993 Bombay bomb blasts",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Definition",
                "sec_num": "1.1"
            },
            {
                "text": "\u2022 Output: O O I_Place O O O O O O O O O O O O O O O O I_Place I_Place O I_Time O I_Place O O O O O O O O O O O O O O",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Definition",
                "sec_num": "1.1"
            },
            {
                "text": "A major task in information extraction is detection of event triggers, event classification and event argument extraction. Recent works on event trigger detection and classification discuss efficient feature representation techniques which can help in event extraction. Nguyen and Grishman (2015) proposed a convolutional neural network for event extraction which automatically learns features from text. Chen et al. (2015) Previously, in event argument extraction researchers have experimented with pattern based methods (Patwardhan and Riloff, 2007; Chambers and Jurafsky, 2011) and machine learning based methods (Patwardhan and Riloff, 2009; Lu and Roth, 2012) most of which utilise the various kinds of features obtained from the context of a sentence. Higher level representations such as crosssentence or cross-event information were also explored by Hong et al. (2011) and Huang and Riloff (2011) . Maximum Entropy based classifiers were applied for event and argument labeling by Ahn (2006) ; Chen and Ji (2009) ; Zhao et al. (2008) . The disadvantage with ME classifier is that it gets stuck in local optima and fails to fully capture the context features. To overcome this Hou et al. 2012proposes a event argument extraction system based on Conditional Random Fields (CRF) model that can select any features and normalizing these features in overall situation helps in obtaining optimal results. While, these models can get affected by the error propagated from upstream tasks, a joint model can help us utilise the close interaction between one or more similar tasks. Li et al. (2013) presented a joint model for Chinese Corpus which identifies arguments and determines their roles for event extraction using various kinds of discourse-level information. On ACE2005 dataset Sha et al. (2018) proposed a dependency bridge recurrent neural network (dbRNN) built upon LSTM units for event extraction. They use dependency bridges over Bi-LSTM to join syntactically similar words. A tensor layer is applied to get the various argument-argument interactions. Event triggers and arguments are then jointly extracted utilising a max-margin criterion. Nguyen et al. (2016) presented a GRU model to jointly predict events and its arguments.",
                "cite_spans": [
                    {
                        "start": 405,
                        "end": 423,
                        "text": "Chen et al. (2015)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 522,
                        "end": 551,
                        "text": "(Patwardhan and Riloff, 2007;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 552,
                        "end": 580,
                        "text": "Chambers and Jurafsky, 2011)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 616,
                        "end": 645,
                        "text": "(Patwardhan and Riloff, 2009;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 646,
                        "end": 664,
                        "text": "Lu and Roth, 2012)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 858,
                        "end": 876,
                        "text": "Hong et al. (2011)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 881,
                        "end": 904,
                        "text": "Huang and Riloff (2011)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 989,
                        "end": 999,
                        "text": "Ahn (2006)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 1002,
                        "end": 1020,
                        "text": "Chen and Ji (2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1023,
                        "end": 1041,
                        "text": "Zhao et al. (2008)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 1580,
                        "end": 1596,
                        "text": "Li et al. (2013)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1786,
                        "end": 1803,
                        "text": "Sha et al. (2018)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Works",
                "sec_num": "2"
            },
            {
                "text": "We introduce two systems for the task of event argument extraction. First is our monolingual system built using CNN (Convolutional Neural Network) and Bi-LSTM (Bi-Directional Long Short Term Memory). To exploit the information from related languages, we develop a second system that can use information from all the languages for training. This multi-lingual system is built by using shared vector space of embeddings while training, and by using separate language layers for each language to accommodate for diversity in syntax of the languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Works",
                "sec_num": "2"
            },
            {
                "text": "In this paper, we propose that joint training of IE system on different language datasets, using 'multi-lingual' word embeddings and language layers helps in better extraction of arguments. This is particularly true when the dataset is limited in size. To corroborate our claim, we device two different systems, i). monolingual baseline system, and ii). multi-lingual system. The 'monolingual baseline' system only takes input data (sentence wise) from one language and extracts the arguments. For word representation, it uses monolingual word embeddings. The 'multi-lingual' argument extraction system uses separate language layers and multi-lingual word embeddings for joint training on all the three languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "The monolingual word-embeddings that are used in our experiments are also known as fastText 1 . It was proposed by Bojanowski et al. (2017) , and is based on the skipgram model. However instead of using one-hot vector encoding for each word while training, a vector representation of a word that considers character n-grams occurring in the word is formed. To get this representation, the n-grams from all the words for 'n' greater than 2 and smaller than 7 are extracted. After this, a dictionary of all the extracted n-grams is created. A given word w, can now be denoted by \u0393 w \u2282 {1, ...., G} i.e the set of n-grams appearing in the word; where G is the size of the n-gram dictionary. With each n-gram in G, a vector representation z g is associated. A word represention is obtained by summing up all the n-grams, as described in Equation 1:",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 139,
                        "text": "Bojanowski et al. (2017)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Monolingual Word Embedding",
                "sec_num": "3.0.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "V w = \u2211 g\u2208Gw z g",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Monolingual Word Embedding",
                "sec_num": "3.0.1"
            },
            {
                "text": "The continuous skip-gram model used these word vectors V w , to obtain word-embedding representa-tions of words. The main advantage of this technique is that, even in the absence of some word in the training corpus, some representations of the word is still obtained as the n-gram representation of words is considered. This skip-gram model is trained using Wikipedia data dump of each language. The dimension of the word vector to is set to 300.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Monolingual Word Embedding",
                "sec_num": "3.0.1"
            },
            {
                "text": "Multi-lingual embeddings are obtained by learning a mapping matrix W , between source embeddings X = {x 1 , x 2 , x 3 ..., x n } and target embeddings Y = {y 1 , y 2 , y 3 , ..., y n } without crosslingual supervision.Adversarial training was used in this method proposed by Conneau et al. (2017) . A discriminator is trained to discriminate between a randomly sampled element from W X = {W x 1 , ..., W x n } and Y . At the same time W is trained to prevent the discriminator from making correct prediction. Thus making it a two-player game, where the discriminator tries to maximize its capability of identifying the origins of an embedding, and W aims to prevent the discriminator from doing so by making W X and Y as indistinguishable as possible. The W matrix is trained with near orthogonality constraint, to ensure that while transforming the source vector to the target vector space, the angles and distances between words in the embeddings are not distorted during transformation. To achieve this near orthogonality constraint, weight updation for W is done using Equation 2.",
                "cite_spans": [
                    {
                        "start": 275,
                        "end": 296,
                        "text": "Conneau et al. (2017)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Multi-lingual Word Embedding",
                "sec_num": "3.0.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "W \u2190 (1 + \u03b2)W \u2212 \u03b2(W W T )W",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Multi-lingual Word Embedding",
                "sec_num": "3.0.2"
            },
            {
                "text": "Here, \u03b2 was set to 0.01 for the transformation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Multi-lingual Word Embedding",
                "sec_num": "3.0.2"
            },
            {
                "text": "For our experiments we trained mapping matrices W hindi and W bengali that map the Hindi and Bengali word embeddings to the vector space of English embeddings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Multi-lingual Word Embedding",
                "sec_num": "3.0.2"
            },
            {
                "text": "The 'monolingual baseline' model (c.f Figure 1 ) is based on Bi-Directional Long Short Term Memory (Bi-LSTM) (Hochreiter and Schmidhuber, 1997; Schuster and Paliwal, 1997) and Convolutional Neural Networks (CNN) (Kim, 2014) . The input to the model is a sentence, represented by a sequence of monolingual word embeddings. Since Bi-LSTM and CNN take sequences of equal lengths, the shorter sequences are padded by zero vectors. This sequence is passed through Bi-LSTM and CNN having filter size 2 and 3. The Bi-LSTM gives contextual representation of each word, while the CNN extracts the 'bi-gram' and 'tri-gram' features for the sequence. These features are concatenated and passed through a fully connected layer. This layer gives shared representation for the task of argument extraction. Since the arguments in the dataset are not mutually exclusive (E.g: Place or Participant argument can also be a part of Reason or After-effect argument), we have different layers to predict different arguments independently. We have 6 different fullyconnected layers in parallel, each of them specialized for detection of one of the 6 arguments. 'Softmax' is used after each of the final layers to classify the representation into I, O or B of an argument.",
                "cite_spans": [
                    {
                        "start": 109,
                        "end": 143,
                        "text": "(Hochreiter and Schmidhuber, 1997;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 144,
                        "end": 171,
                        "text": "Schuster and Paliwal, 1997)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 212,
                        "end": 223,
                        "text": "(Kim, 2014)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 38,
                        "end": 46,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Monolingual Baseline Model",
                "sec_num": "3.1"
            },
            {
                "text": "For multi-lingual system, we build a model based on the baseline model, by adding separate language layers (L 1 , L 2 and L 3 ) for each language (c.f Figure 2) . A layer L i and its subsequent layers are only trained when input data is also of language L i . We represent the input sentence as a sequence of multi-lingual word embeddings, and padding with zero vectors is used to make the sequence equal in length. Similar to the 'monolingual baseline' model, Bi-LSTM, CNN and a fully connected layer is used. This fully connected layer ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 151,
                        "end": 160,
                        "text": "Figure 2)",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Multi-lingual Model",
                "sec_num": "3.2"
            },
            {
                "text": "In this section, we describe the dataset used and the experiments conducted.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset and Experiments",
                "sec_num": "4"
            },
            {
                "text": "To create the dataset, we crawled news articles in disaster domain from popular news websites in Hindi. These news articles were annotated by three annotators, with good language abilities and having satisfactory knowledge in the relevant area. The guidelines for annotation used were similar to the guidelines given by TAC KBP 2017 Event Sequence Annotation Guidelines 2 . We recorded that the annotators had Kappa agreement score of 0.85 Time  3,953  11,042  822  Place  12,410 10,576  3,018  Reason  1,573  1,744  544  Casualties  12,171 15,870  4,823  Participant  2,264  4,311  639  After-effects 13,355 9,731 274 ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 440,
                        "end": 608,
                        "text": "Time  3,953  11,042  822  Place  12,410 10,576  3,018  Reason  1,573  1,744  544  Casualties  12,171 15,870  4,823  Participant  2,264  4,311  639  After-effects 13,355",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "4.1"
            },
            {
                "text": "We conduct two separate experiments to show that dataset from different languages (L 1 and L 2 ) can be leveraged to improve the performance of argument extraction system of a different language (L 3 ). First we conduct experiment to obtain baseline results on 'mono-lingual' setup. Next, we perform experiment using the combined dataset of all the three languages using 'multi-lingual' argument extraction model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4.2"
            },
            {
                "text": "This experiment is conducted separately on each dataset using the 'monolingual baseline model' (c.f. Figure 1 ) and monolingual fastText embeddings. The results of this experiment is used as a baseline, against which the results of the other experiment is compared. The following set-up is used for the experiment: i). learning rate: 1 \u00d7 10 \u22122 , ii). batch size: 32, iii). optimizer: Adam (Kingma and Ba, 2014), iv). loss function: Binary cross-entropy. The best model based on validation-set accuracy was saved after 100 epochs.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 101,
                        "end": 109,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Monolingual Experiment",
                "sec_num": "4.2.1"
            },
            {
                "text": "This experiment is conducted on the combined dataset of three languages, using the 'multi-lingual model' (c.f Figure 2 ). Multi-lingual word embeddings (described in Section 3.2) were used for word representation in all the three languages, in this experiment. The same experimental set-up used for the 'monolingual baseline' experiment, is also used for this experiment. The training of multilingual system was done batch wise, i.e. each language branch was trained for one batch alternatively. The number of steps per epochs was decided by the number of batches needed to complete one epoch of the largest training set, among the different language datasets.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 110,
                        "end": 118,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Multi-lingual Experiment",
                "sec_num": "4.2.2"
            },
            {
                "text": "In this section, we discuss the results obtained for the two experiments described in Section 4.2. We also provide analysis of the results. F1-Score is used as an evaluation metric, and all the results reported are 5-Fold cross-validated. The results for both, 'monolingual' and 'cross-lingual' experiments are reported in Table 2 . From the results, it can be observed that F1-score for Hindi and English datasets improve for most arguments (5 out of 6 arguments), while the results for Bengali dataset improves for three out of the six arguments.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 323,
                        "end": 330,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "We also test the statistical significance of each increment in F1-Score for argument extraction. The 'p-values' obtained after 't-test' are shown in Table 3 . It can be seen that most improvements in F1-score are statistically significant.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 149,
                        "end": 156,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "It is observed that multi-word Time arguments are better captured by 'multi-lingual' model than by the 'monolingual baseline' model. An example of this can be seen in the following sentence:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Hindi Text: \u090f\u0938\u090f\u0938\u092a\u0940 \u0938\u0902 \u0924\u094b\u0937 \u0915\u0941 \u092e\u093e\u0930 \u0938 \u0939 \u0928\u0947 \u092c\u0924\u093e\u092f\u093e \u0915 \u0930 \u0935\u0935\u093e\u0930 \u0930\u093e\u0924 \u0915\u094b \u091c\u0932\u093e\u0932\u092a\u0941 \u0930 \u092a\u0930 \u0924\u0948 \u0928\u093e\u0924 \u092a\u0941 \u0932\u0938\u0915 \u092e \u092f \u0928\u0947 \u092c\u093e\u0907\u0915 \u092a\u0930 \u0938\u0935\u093e\u0930 \u0926\u094b \u092f\u0941 \u0935\u0915 \u0915\u094b \u0930\u094b\u0915\u0928\u0947 \u0915 \u0915\u094b \u0936\u0936 \u0915",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Transliteration: esesapee santosh kumaar sinh ne bataaya ki ravivaar raat ko jalaalapur par tainaat pulisakarmiyon ne baik par savaar do yuvakon ko rokane kee koshish kee",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Translation: SSP Santosh Kumar Singh said that on Sunday night, policemen stationed at Jalalpur tried to stop two youths riding on bikes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "In the aforementioned sentence the actual phrase denoting time is '\u0930 \u0935\u0935\u093e\u0930 \u0930\u093e\u0924' (Sunday night). However the 'monolingual' model only detects '\u0930 \u0935\u0935\u093e\u0930' (Sunday) as the Time argument. However, after multi-lingual training the entire time phrase is correctly detected. This is because the lack of training data for multi-word time arguments in Hindi, is supplemented by training data from Bengali and English.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "Another interesting observation is that, for Casualty argument of English dataset, the 'monolingual' system often confuses people as casualties, even when they are not. An example of such observation is as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Actual: Over 200000 people in 36 villages located 6 miles (10 km) from the volcano were advised to evacuate immediately.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Monolingual Prediction: Over 200000 people in 36 villages located 6 miles (10 km) from the volcano were advised to evacuate immediately.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Multi-lingual Prediction: Over 200000 people in 36 villages located 6 miles (10 km) from the volcano were advised to evacuate immediately.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "In the above example the phrase '200000 people' does not denote casualty, however the 'monolingual' model confuses it as casualty. This is due to the lack of training data in English to learn the difference between some count of people and actual casualty. However, after 'multi-lingual' train-ing the model is able to make this distinction correctly.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "The F1-score for Place arguments for all the datasets, is better for the 'monolingual baseline' model. This is because Place argument is present in good numbers for all the datasets, therefore there are enough instances for proper training of deep learning model, even in monolingual setting. Using 'multi-lingual model' for such cases is of little help. Furthermore, the syntactic difference between languages confuses the system, thus degrading the performance of the 'multi-lingual' system. A good example of this phenomenon is show below:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Actual: Three youths lost their lives when the car they were travelling in collided with a truck near Gaddoli village of Naraingarh in Ambala.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Monolingual Prediction: Three youths lost their lives when the car they were travelling in collided with a truck near Gaddoli village of Naraingarh in Ambala.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Multi-lingual Prediction: Three youths lost their lives when the car they were travelling in collided with a truck near Gaddoli village of Naraingarh in Ambala.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "It can be observed that the 'monolingual baseline' model predicts the entire phrase describing the Place argument correctly. However the prediction by 'multi-lingual model' misses the preposition 'in', which is present between 'Naraingarh' and 'Ambala'. The same sentence can be written in Bengali as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Bengali Transliteration: Amb\u0101l\u0101ra n\u0101r\u0101y\u0227naga\u1e5b\u0113ra g\u0101ddali gr\u0101m\u0113ra k\u0101ch\u0113 \u0113ka\u1e6di \u1e6dr\u0101k\u0113ra s\u0101th\u0113 \u1e6dr\u0113n\u0113ra mukh\u014dmukhi sa\u1e45ghar\u1e63\u0113 tinajana yubaka pr\u0101\u1e47a h\u0101r\u0101y\u0227.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "The phrase 'in Ambala' is represented by a single word 'Amb\u0101l\u0101ra', in Bengali. This difference in syntax between languages, makes the 'multilingual' system miss the word 'in' thus degrading the performance of the system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "The best improvement in F1-score is observed for the arguments Reason and After-effects for the English language. This is because these two arguments have least support in the dataset, and thus multi-lingual training helps by mitigating the scarcity in training examples. The same phenomenon can also be observed for Reason argument which has a low support in Hindi dataset. Thus through our analysis we can conclude that, 'multi-lingual' training can help in improving the performance of the system for low support classes. However, it can also cause confusion and deteriorate the performance for high support classes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "In this paper we create a dataset for argument extraction for disaster domain, for three languages Hindi, Bengali and English. We then build a deep learning model for extraction of these argument in each language separately. Since the data is limited in size, we build another model that leverages data from all the languages. To make use of different language datasets, we first bring the word embeddings of all the three languages to the same vector space. We also use separate language layers to accommodate divergence in syntax of the languages. Through our experiments we show that training in shared vector space by using 'multi-lingual' system helps in improving the performance of low support arguments. We also show that the for high support arguments, the syntactic difference in language can sometimes overcome the benefit of 'multi-lingual' training and cost in performance of our proposed 'multi-lingual' system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "In future we would like to explore how to handle these syntactic differences so that the performance can be further improved. It would also be interesting to explore the range of languages that can be trained successfully in a multi-lingual setting.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "https://github.com/facebookresearch/ fastText",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://cairo.lti.cs.cmu.edu/kbp/2017/ event/TAC_KBP_2017_Event_Coreference_and_ Sequence_Annotation_Guidelines_v1.1.pdf",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The research reported in this paper is an outcome of the project titled \"A Platform for Cross-lingual and Multi-lingual Event Monitoring in Indian Languages\", supported by IMPRINT-1, MHRD, Govt. of India, and MeiTY, Govt. of India.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgement",
                "sec_num": "7"
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "The stages of event extraction",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Ahn",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Workshop on Annotating and Reasoning about Time and Events",
                "volume": "",
                "issue": "",
                "pages": "1--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Ahn. 2006. The stages of event extraction. In Proceedings of the Workshop on Annotating and Reasoning about Time and Events, pages 1-8.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Enriching word vectors with subword information",
                "authors": [
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "5",
                "issue": "",
                "pages": "135--146",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Associa- tion for Computational Linguistics, 5:135-146.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Template-based information extraction without the templates",
                "authors": [
                    {
                        "first": "Nathanael",
                        "middle": [],
                        "last": "Chambers",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "976--986",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nathanael Chambers and Dan Jurafsky. 2011. Template-based information extraction without the templates. In Proceedings of the 49th Annual Meeting of the Association for Computational Lin- guistics: Human Language Technologies-Volume 1, pages 976-986. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Event extraction via dynamic multipooling convolutional neural networks",
                "authors": [
                    {
                        "first": "Yubo",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Liheng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Daojian",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "167--176",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event extraction via dynamic multi- pooling convolutional neural networks. In Proceed- ings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna- tional Joint Conference on Natural Language Pro- cessing (Volume 1: Long Papers), pages 167-176.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Language specific issue and feature exploration in chinese event extraction",
                "authors": [
                    {
                        "first": "Zheng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers",
                "volume": "",
                "issue": "",
                "pages": "209--212",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zheng Chen and Heng Ji. 2009. Language specific issue and feature exploration in chinese event ex- traction. In Proceedings of Human Language Tech- nologies: The 2009 Annual Conference of the North American Chapter of the Association for Computa- tional Linguistics, Companion Volume: Short Pa- pers, pages 209-212.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Word translation without parallel data",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Lample",
                        "suffix": ""
                    },
                    {
                        "first": "Marc'aurelio",
                        "middle": [],
                        "last": "Ranzato",
                        "suffix": ""
                    },
                    {
                        "first": "Ludovic",
                        "middle": [],
                        "last": "Denoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Herv\u00e9",
                        "middle": [],
                        "last": "J\u00e9gou",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1710.04087"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, and Herv\u00e9 J\u00e9gou. 2017. Word translation without parallel data. arXiv preprint arXiv:1710.04087.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "The automatic content extraction (ace) program-tasks, data, and evaluation",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "George R Doddington",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mark",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Przybocki",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Lance",
                        "suffix": ""
                    },
                    {
                        "first": "Stephanie",
                        "middle": [
                            "M"
                        ],
                        "last": "Ramshaw",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [
                            "M"
                        ],
                        "last": "Strassel",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Weischedel",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "LREC",
                "volume": "2",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George R Doddington, Alexis Mitchell, Mark A Przy- bocki, Lance A Ramshaw, Stephanie M Strassel, and Ralph M Weischedel. 2004. The automatic content extraction (ace) program-tasks, data, and evaluation. In LREC, volume 2, page 1.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "A language-independent neural network for event detection",
                "authors": [
                    {
                        "first": "Xiaocheng",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Science China Information Sciences",
                "volume": "61",
                "issue": "9",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaocheng Feng, Bing Qin, and Ting Liu. 2018. A language-independent neural network for event detection. Science China Information Sciences, 61(9):092106.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Long short-term memory",
                "authors": [
                    {
                        "first": "Sepp",
                        "middle": [],
                        "last": "Hochreiter",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00fcrgen",
                        "middle": [],
                        "last": "Schmidhuber",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Neural computation",
                "volume": "9",
                "issue": "8",
                "pages": "1735--1780",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735-1780.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Using cross-entity inference to improve event extraction",
                "authors": [
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Hong",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Bin",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Jianmin",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Guodong",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Qiaoming",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1127--1136",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao, Guodong Zhou, and Qiaoming Zhu. 2011. Us- ing cross-entity inference to improve event extrac- tion. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Hu- man Language Technologies-Volume 1, pages 1127- 1136. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Event argument extraction based on crf",
                "authors": [
                    {
                        "first": "Libin",
                        "middle": [],
                        "last": "Hou",
                        "suffix": ""
                    },
                    {
                        "first": "Peifeng",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Qiaoming",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Workshop on Chinese Lexical Semantics",
                "volume": "",
                "issue": "",
                "pages": "32--39",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Libin Hou, Peifeng Li, Qiaoming Zhu, and Yuan Cao. 2012. Event argument extraction based on crf. In Workshop on Chinese Lexical Semantics, pages 32- 39. Springer.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Peeling back the layers: detecting event role fillers in secondary contexts",
                "authors": [
                    {
                        "first": "Ruihong",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Ellen",
                        "middle": [],
                        "last": "Riloff",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1137--1147",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruihong Huang and Ellen Riloff. 2011. Peeling back the layers: detecting event role fillers in secondary contexts. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pages 1137-1147. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Refining event extraction through cross-document inference",
                "authors": [
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of ACL-08: HLT",
                "volume": "",
                "issue": "",
                "pages": "254--262",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Heng Ji and Ralph Grishman. 2008. Refining event extraction through cross-document inference. Pro- ceedings of ACL-08: HLT, pages 254-262.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Convolutional neural networks for sentence classification",
                "authors": [
                    {
                        "first": "Yoon",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1408.5882"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Adam: A method for stochastic optimization",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1412.6980"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Joint modeling of argument identification and role determination in chinese event extraction with discourse-level information",
                "authors": [
                    {
                        "first": "Peifeng",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Qiaoming",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Guodong",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Twenty-Third International Joint Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peifeng Li, Qiaoming Zhu, and Guodong Zhou. 2013. Joint modeling of argument identification and role determination in chinese event extraction with discourse-level information. In Twenty-Third Inter- national Joint Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "A multi-lingual multi-task architecture for low-resource sequence labeling",
                "authors": [
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Shengqi",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    },
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "799--809",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ying Lin, Shengqi Yang, Veselin Stoyanov, and Heng Ji. 2018. A multi-lingual multi-task architecture for low-resource sequence labeling. In Proceed- ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 799-809.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Event detection via gated multilingual attention mechanism",
                "authors": [
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yubo",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2018. Event detection via gated multilingual attention mechanism. In Thirty-Second AAAI Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Automatic event extraction with structured preference modeling",
                "authors": [
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers",
                "volume": "1",
                "issue": "",
                "pages": "835--844",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wei Lu and Dan Roth. 2012. Automatic event extrac- tion with structured preference modeling. In Pro- ceedings of the 50th Annual Meeting of the Associ- ation for Computational Linguistics: Long Papers- Volume 1, pages 835-844. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Overview of tac kbp 2015 event nugget track",
                "authors": [
                    {
                        "first": "Teruko",
                        "middle": [],
                        "last": "Mitamura",
                        "suffix": ""
                    },
                    {
                        "first": "Zhengzhong",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [
                            "H"
                        ],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Teruko Mitamura, Zhengzhong Liu, and Eduard H Hovy. 2015. Overview of tac kbp 2015 event nugget track. In TAC.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Joint event extraction via recurrent neural networks",
                "authors": [
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Thien Huu Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "300--309",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish- man. 2016. Joint event extraction via recurrent neu- ral networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, pages 300-309.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Event detection and domain adaptation with convolutional neural networks",
                "authors": [
                    {
                        "first": "Huu",
                        "middle": [],
                        "last": "Thien",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "2",
                "issue": "",
                "pages": "365--371",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thien Huu Nguyen and Ralph Grishman. 2015. Event detection and domain adaptation with convolutional neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin- guistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 365-371.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Modeling skip-grams for event detection with convolutional neural networks",
                "authors": [
                    {
                        "first": "Huu",
                        "middle": [],
                        "last": "Thien",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "886--891",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thien Huu Nguyen and Ralph Grishman. 2016. Mod- eling skip-grams for event detection with convolu- tional neural networks. In Proceedings of the 2016 Conference on Empirical Methods in Natural Lan- guage Processing, pages 886-891.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Graph convolutional networks with argument-aware pooling for event detection",
                "authors": [
                    {
                        "first": "Huu",
                        "middle": [],
                        "last": "Thien",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thien Huu Nguyen and Ralph Grishman. 2018. Graph convolutional networks with argument-aware pool- ing for event detection. In Thirty-Second AAAI Con- ference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Effective information extraction with semantic affinity patterns and relevant regions",
                "authors": [
                    {
                        "first": "Siddharth",
                        "middle": [],
                        "last": "Patwardhan",
                        "suffix": ""
                    },
                    {
                        "first": "Ellen",
                        "middle": [],
                        "last": "Riloff",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)",
                "volume": "",
                "issue": "",
                "pages": "717--727",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Siddharth Patwardhan and Ellen Riloff. 2007. Effective information extraction with semantic affinity pat- terns and relevant regions. In Proceedings of the 2007 Joint Conference on Empirical Methods in Nat- ural Language Processing and Computational Nat- ural Language Learning (EMNLP-CoNLL), pages 717-727.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "A unified model of phrasal and sentential evidence for information extraction",
                "authors": [
                    {
                        "first": "Siddharth",
                        "middle": [],
                        "last": "Patwardhan",
                        "suffix": ""
                    },
                    {
                        "first": "Ellen",
                        "middle": [],
                        "last": "Riloff",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "151--160",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Siddharth Patwardhan and Ellen Riloff. 2009. A uni- fied model of phrasal and sentential evidence for in- formation extraction. In Proceedings of the 2009 Conference on Empirical Methods in Natural Lan- guage Processing: Volume 1-Volume 1, pages 151- 160. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "An extensible event extraction system with cross-media event resolution",
                "authors": [
                    {
                        "first": "Fabio",
                        "middle": [],
                        "last": "Petroni",
                        "suffix": ""
                    },
                    {
                        "first": "Natraj",
                        "middle": [],
                        "last": "Raman",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Nugent",
                        "suffix": ""
                    },
                    {
                        "first": "Armineh",
                        "middle": [],
                        "last": "Nourbakhsh",
                        "suffix": ""
                    },
                    {
                        "first": "\u017darko",
                        "middle": [],
                        "last": "Pani\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Sameena",
                        "middle": [],
                        "last": "Shah",
                        "suffix": ""
                    },
                    {
                        "first": "Jochen L",
                        "middle": [],
                        "last": "Leidner",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining",
                "volume": "",
                "issue": "",
                "pages": "626--635",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fabio Petroni, Natraj Raman, Tim Nugent, Armineh Nourbakhsh, \u017darko Pani\u0107, Sameena Shah, and Jochen L Leidner. 2018. An extensible event ex- traction system with cross-media event resolution. In Proceedings of the 24th ACM SIGKDD Interna- tional Conference on Knowledge Discovery & Data Mining, pages 626-635. ACM.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Bidirectional recurrent neural networks",
                "authors": [
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Schuster",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Kuldip",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Paliwal",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "IEEE Transactions on Signal Processing",
                "volume": "45",
                "issue": "11",
                "pages": "2673--2681",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mike Schuster and Kuldip K Paliwal. 1997. Bidirec- tional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11):2673-2681.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Jointly extracting event triggers and arguments by dependency-bridge rnn and tensor-based argument interaction",
                "authors": [
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Sha",
                        "suffix": ""
                    },
                    {
                        "first": "Feng",
                        "middle": [],
                        "last": "Qian",
                        "suffix": ""
                    },
                    {
                        "first": "Baobao",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifang",
                        "middle": [],
                        "last": "Sui",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui. 2018. Jointly extracting event triggers and argu- ments by dependency-bridge rnn and tensor-based argument interaction. In Thirty-Second AAAI Con- ference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Research on chinese event extraction",
                "authors": [
                    {
                        "first": "Yan-Yan",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Che",
                        "middle": [],
                        "last": "Wan-Xiang",
                        "suffix": ""
                    },
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Journal of Chinese Information Processing",
                "volume": "22",
                "issue": "1",
                "pages": "3--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yan-yan Zhao, Bing Qin, Wan-xiang Che, and Ting Liu. 2008. Research on chinese event extraction. Journal of Chinese Information Processing, 22(1):3-8.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "monolingual baseline model for argument extraction",
                "uris": null,
                "num": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "text": "Multi-lingual baseline model for argument extraction produces shared language and task representation as output. Three separate language layers for the languages Hindi, Bengali and English are used in parallel. These language layers decode the language specific representation from shared representation. After each language layer we have 6 fully connected layers for each of the 6 arguments. 'Softmax' classifier is used to classify the representation into I, O or B of an argument.",
                "uris": null,
                "num": null
            },
            "TABREF1": {
                "type_str": "table",
                "html": null,
                "text": "",
                "content": "<table><tr><td>: Distribution of number of arguments in Hindi,</td></tr><tr><td>Bengali and English datasets</td></tr><tr><td>on average. We also obtained equivalent dataset</td></tr><tr><td>in Bengali and English language from a collabora-</td></tr><tr><td>tion. The total dataset is comprised of 2,191 doc-</td></tr><tr><td>uments (Hindi: 922, Bengali: 999 and English:</td></tr><tr><td>270). It contains 44,615 sentences (Hindi: 17,116,</td></tr><tr><td>Bengali: 25,717 and English: 1,782). The six ar-</td></tr><tr><td>guments in the dataset and their distribution in the</td></tr><tr><td>three languages are detailed in the Table 1.</td></tr></table>",
                "num": null
            },
            "TABREF3": {
                "type_str": "table",
                "html": null,
                "text": "",
                "content": "<table><tr><td colspan=\"4\">: Results (F1-Scores) for 'mono-lingual' and 'multi-lingual' experiments on Hindi, Bengali and English</td></tr><tr><td colspan=\"2\">datasets: 5-Fold cross-validated</td><td/><td/></tr><tr><td>Argument</td><td colspan=\"3\">Hindi Bengali English</td></tr><tr><td>Time</td><td>0.46</td><td>n/a</td><td>0.03</td></tr><tr><td>Place</td><td>n/a</td><td>n/a</td><td>n/a</td></tr><tr><td>Reason</td><td>0.03</td><td>0.18</td><td>0.04</td></tr><tr><td>Casualties</td><td>0.39</td><td>n/a</td><td>0.10</td></tr><tr><td>Participant</td><td>0.01</td><td>0.11</td><td>0.54</td></tr><tr><td colspan=\"2\">After-effects 0.04</td><td>0.09</td><td>0.01</td></tr></table>",
                "num": null
            },
            "TABREF4": {
                "type_str": "table",
                "html": null,
                "text": "",
                "content": "<table><tr><td>: The 'p-values' obtained for each improvement</td></tr><tr><td>in results from the baseline 'mono-lingual' to 'multi-</td></tr><tr><td>lingual' experiment (n/a is used for instances where no</td></tr><tr><td>improvement was observed)</td></tr></table>",
                "num": null
            }
        }
    }
}