File size: 113,730 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 |
{
"paper_id": "2019",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:29:55.837375Z"
},
"title": "A Multi-task Model for Multilingual Trigger Detection and Classification",
"authors": [
{
"first": "Sovan",
"middle": [],
"last": "Kumar",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Saumajit",
"middle": [],
"last": "Saha",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Indian Institute of Technology Patna",
"location": {}
},
"email": ""
},
{
"first": "Asif",
"middle": [],
"last": "Ekbal",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Pushpak",
"middle": [],
"last": "Bhattacharyya",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "In this paper we present a deep multi-task learning framework for multilingual event and argument trigger detection and classification. In our current work, we identify detection and classification of both event and argument triggers as related tasks and follow a multi-tasking approach to solve them simultaneously in contrast to the previous works where these tasks were solved separately or learning some of the above mentioned tasks jointly. We evaluate the proposed approach with multiple low-resource Indian languages. As there were no datasets available for the Indian languages, we have annotated disaster related news data crawled from the online news portal for different lowresource Indian languages for our experiments. Our empirical evaluation shows that multitask model performs better than the single task model, and classification helps in trigger detection and vice-versa.",
"pdf_parse": {
"paper_id": "2019",
"_pdf_hash": "",
"abstract": [
{
"text": "In this paper we present a deep multi-task learning framework for multilingual event and argument trigger detection and classification. In our current work, we identify detection and classification of both event and argument triggers as related tasks and follow a multi-tasking approach to solve them simultaneously in contrast to the previous works where these tasks were solved separately or learning some of the above mentioned tasks jointly. We evaluate the proposed approach with multiple low-resource Indian languages. As there were no datasets available for the Indian languages, we have annotated disaster related news data crawled from the online news portal for different lowresource Indian languages for our experiments. Our empirical evaluation shows that multitask model performs better than the single task model, and classification helps in trigger detection and vice-versa.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Event Extraction is an important task in Natural Language Processing (NLP). An event can be an occurrence happening in certain place during a particular interval of time. In text, the word or phrase that describes an event is called event trigger. Argument of an event refers to the attributes such as the location, time of occurrence of the event, participants involved and so on. Therefore event trigger detection, event trigger classification, argument trigger detection and argument trigger classification are the four important sub-tasks of event extraction. In our current paper, we have solved all the four problems using a Multi-task architecture. Multi-task learning (MTL), which essentially means performing more than one related task simultaneously, has been proven to be effective for various NLP tasks in recent times (Ruder, 2017) . The key idea behind MTL is that the inductive transfer of knowledge, learned for a particular task, can help to improve the performance of another task by means of parameter sharing between tasks. According to Caruana (1997) , \"MTL improves generalization by leveraging the domainspecific information contained in the training signals of related tasks\". In our current work, we have identified detection and classification of both event and arguments as two related tasks. As both event and argument trigger detection are sequence labelling problems, we have merged those two sub-tasks into one and used a single loss function. For the same reason, we have merged event and argument trigger classification task into one task and used another loss function. Thus in our proposed architecture, even though we have two main tasks for learning shared representation, we have basically solved four sub-tasks viz. event trigger detection, event trigger classification, argument detection and argument classification. Our proposed architecture has two variants which are further discussed later in this paper. As we are working with low-resource languages which have data sparsity issue, we have proposed a multi-task, multi-lingual architecture which is trained on both Hindi and Bengali data. Due to unavailability of training data in these two languages, we have annotated disaster related news data crawled from online news portals for our experiments.",
"cite_spans": [
{
"start": 831,
"end": 844,
"text": "(Ruder, 2017)",
"ref_id": "BIBREF30"
},
{
"start": 1057,
"end": 1071,
"text": "Caruana (1997)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Being a very important problem in NLP, Event Extraction has already been explored by the research community for a long time. Some feature based approaches have decomposed the entire event extraction task into two sub-tasks and solved them separately (Ji and Grishman, 2008; Hong et al., 2011; Liao and Grishman, 2010) . But the main problem of this approach is error propagation which is dealt by Riedel and McCallum (2011a) , Riedel and McCallum (2011b) , Li et al. (2013) , Venugopal et al. (2014) using a joint event extraction algorithm. However both of the above approaches have used hand-designed feature. Nguyen and Grishman (2015) propose a Convolutional Neural Network (CNN) for automatic feature extraction. introduce a dynamic multi-pooling CNN which uses a dynamic multi-pooling layer according to event triggers and arguments in multi-event sentences, to capture more crucial information. In another work, Nguyen and Grishman (2016) propose a skip-gram based CNN model which allows nonconsecutive convolution. Ghaeini et al. (2016) propose a forward-backward Recurrent Neural Network (RNN) to detect event triggers which can be in the form of both words or phrases. propose a language independent neural network which uses both CNN and Bi-LSTM for Event detection. Liu et al. (2016) propose to improve the performance of event detection by using the events automatically detected from FrameNet. Though these neural based systems perform well, they still suffer from error propagation issue. To overcome this issue, Nguyen et al. (2016) propose a joint framework with bidirectional RNN. However Liu et al. (2017) observe that joint model achieves insignificant improvements on event detection task. They analyze the problem of joint models on the task of event detection, and propose to use the annotated argument information explicitly for this task. Yang and Mitchell (2016) also propose a joint model for event and entity extraction but in document level instead of sentence level in contrast to most of the previous works. In recent years Liu et al. (2018a) introduce a cross language attention model for event detection where they focus on English and Chinese. Liu et al. (2018b) propose a novel framework to jointly extract multiple event triggers and arguments. Sha et al. (2018) propose a novel dependency bridge RNN which includes syntactic dependency relationships. Dependency relationship is also used by Nguyen and Grishman (2018). They investigate a CNN based on dependency trees to perform event detection. Orr et al. (2018) present a Gated Recurrent Unit (GRU) based model that combines both temporal structure along with syntactic information through an attention mechanism. Event extraction task has also been addressed in specialized tracks dedicated in Text Analysis Conference (TAC). Event extraction in disaster domain in English language is reported in (Tanev et al., 2008; Yun, 2011; Klein et al., 2013; Dittrich and Lucas, 2014; Nugent et al., 2017; Burel et al., 2017) . However, significant attempt to build event extraction system in Indian languages is lacking. In recent times, some of the works are reported in (SharmilaDevi et al., 2017; Sristy et al., 2017; Kuila and Sarkar, 2017; Singh et al., 2017) . To the best of our knowledge, this is the first attempt to solve four important subtasks of event extraction viz. event trigger detection, event trigger classification, argument trigger detection and argument trigger classification simultaneously in a multi-task, multi-lingual setting.",
"cite_spans": [
{
"start": 250,
"end": 273,
"text": "(Ji and Grishman, 2008;",
"ref_id": "BIBREF12"
},
{
"start": 274,
"end": 292,
"text": "Hong et al., 2011;",
"ref_id": "BIBREF40"
},
{
"start": 293,
"end": 317,
"text": "Liao and Grishman, 2010)",
"ref_id": "BIBREF16"
},
{
"start": 397,
"end": 424,
"text": "Riedel and McCallum (2011a)",
"ref_id": "BIBREF28"
},
{
"start": 427,
"end": 454,
"text": "Riedel and McCallum (2011b)",
"ref_id": "BIBREF29"
},
{
"start": 457,
"end": 473,
"text": "Li et al. (2013)",
"ref_id": "BIBREF15"
},
{
"start": 476,
"end": 499,
"text": "Venugopal et al. (2014)",
"ref_id": "BIBREF38"
},
{
"start": 1023,
"end": 1044,
"text": "Ghaeini et al. (2016)",
"ref_id": "BIBREF9"
},
{
"start": 1278,
"end": 1295,
"text": "Liu et al. (2016)",
"ref_id": "BIBREF18"
},
{
"start": 1607,
"end": 1624,
"text": "Liu et al. (2017)",
"ref_id": "BIBREF19"
},
{
"start": 1864,
"end": 1888,
"text": "Yang and Mitchell (2016)",
"ref_id": "BIBREF39"
},
{
"start": 2055,
"end": 2073,
"text": "Liu et al. (2018a)",
"ref_id": "BIBREF17"
},
{
"start": 2178,
"end": 2196,
"text": "Liu et al. (2018b)",
"ref_id": "BIBREF20"
},
{
"start": 2281,
"end": 2298,
"text": "Sha et al. (2018)",
"ref_id": "BIBREF32"
},
{
"start": 2533,
"end": 2550,
"text": "Orr et al. (2018)",
"ref_id": "BIBREF26"
},
{
"start": 2887,
"end": 2907,
"text": "(Tanev et al., 2008;",
"ref_id": "BIBREF37"
},
{
"start": 2908,
"end": 2918,
"text": "Yun, 2011;",
"ref_id": "BIBREF40"
},
{
"start": 2919,
"end": 2938,
"text": "Klein et al., 2013;",
"ref_id": "BIBREF13"
},
{
"start": 2939,
"end": 2964,
"text": "Dittrich and Lucas, 2014;",
"ref_id": "BIBREF6"
},
{
"start": 2965,
"end": 2985,
"text": "Nugent et al., 2017;",
"ref_id": "BIBREF25"
},
{
"start": 2986,
"end": 3005,
"text": "Burel et al., 2017)",
"ref_id": "BIBREF1"
},
{
"start": 3153,
"end": 3180,
"text": "(SharmilaDevi et al., 2017;",
"ref_id": "BIBREF33"
},
{
"start": 3181,
"end": 3201,
"text": "Sristy et al., 2017;",
"ref_id": "BIBREF36"
},
{
"start": 3202,
"end": 3225,
"text": "Kuila and Sarkar, 2017;",
"ref_id": "BIBREF14"
},
{
"start": 3226,
"end": 3245,
"text": "Singh et al., 2017)",
"ref_id": "BIBREF34"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Works",
"sec_num": "2"
},
{
"text": "In this paper, we propose a multi-task, multilingual trigger detection and classification method for Hindi and Bengali in Disaster related news data. For a given Hindi/Bengali sentence, we perform the following tasks simultaneously: (a) Event Trigger Detection: Word or phrase that describes an event is called event trigger. Detecting event triggers is a sequence labeling task. But we formulate our current approach as a multi-class classification task as in Ghaeini et al., 2016) . (b) Event Trigger Classification: Here the task is to classify each event trigger into predefined types. (c) Argument Detection: Arguments are entities, times or values related to an event. Here the task is to detect such trigger words or phrase. (d) Argument Classification: Classify each argument trigger into predefined argument roles. Argument detection is also a sequence labeling task. Like event detection, we also formulate this task as a multi-class classification problem. In most of the previous works, both event and argument detection are considered as two separate tasks. However in our current work, we combine both the tasks into a single task based on our observation. Detailed analysis of news articles reveal the fact that each type of event triggers along with its corresponding arguments follow a particular pattern in a sentence. In the first example, the sentence contains Place argument \u0926 \u0932\u0940 (Delhi) and Time argument \u0936\u093e\u092e 6 \u092c\u091c\u0947 (6pm). Each type of argument is followed by a type specific post-position ('\u092e ' for Place argument and '\u0915\u0947 ' for Time argument). In second example the sentence contains event specific argument like Magnitude (7.2) of earthquake along with Place argument \u0907\u0902 \u0921\u094b \u0928\u0936\u092f\u093e (Indonesia). This type of patterns are often seen in news documents. So it is intuitive to consider both event and argument trigger detection as a single task. For classification also, we merge both the event trigger classification and argument trigger classification as a single task. In this way, we learn all the four above mentioned tasks simultaneously using two loss functions. We perform our experiments using both Hindi and Bengali news datasets in mono-lingual as well as multi-lingual settings. We compare our multi-task learning (MTL) results with single-task learning (STL) results for the above mentioned mono-lingual and multi-lingual settings. For most of the cases we are getting 2% to 7% performance improvement in detection task. However for classification task, we see that the performance improves for some of the classes and for the remaining classes, the model does not perform at par with the other classes. Two contributions of our paper are \u2022 A multi-task, multi-lingual approach for event extraction in Hindi and Bengali for disaster domain. Our proposed system has two variants -(a) The classification output helping in detection (MT1). (b) The detection output helping in classification (MT2). Both the architectures are discussed in methodology section.",
"cite_spans": [
{
"start": 461,
"end": 482,
"text": "Ghaeini et al., 2016)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Task Description and Contributions",
"sec_num": "3"
},
{
"text": "\u2022 Provide a benchmark setup for event extraction in Hindi language.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Task Description and Contributions",
"sec_num": "3"
},
{
"text": "The following examples show that each type of event and argument trigger is followed by semantically similar kind of words in a sentence. We highlight the event trigger and different types of argument triggers using different colour codes for better readability. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Task Description and Contributions",
"sec_num": "3"
},
{
"text": "Our proposed models take sentence of the form [w 0 ,w 1 ,...,w n ] as input. It produces two outputs for two main tasks namely detection (both event and argument) and classification (both event and argument). The detection task predicts the event or argument label (l i ) for each word (w i ) where l i \u2208 I,O,B 1 . As we formulate detection as a multiclass classification task even though it being a sequence labeling task, we use softmax classifier at the final layer. For classification task also, we use softmax classifier at the final layer to classify event and argument trigger into their predefined types. We employ a hard parameter sharing strategy (Caruana, 1993) . We use a shared Bidirectional Long Short-Time Memory (Bi-LSTM) (Schuster and Paliwal, 1997) to capture the contextual information of each word. Figure 1a illustrates the design of first variant of our proposed architecture. Here the classification output of each word is concatenated with the corresponding representation resulting from the shared Bi-LSTM and fed as input to the final detection layer of that word. This is done with the intuition of improving the detection results with the help of classification output. For example if a word is classified as 'None' then it has higher chance of being outside event or argument trigger boundaries. In subsequent sections, we call this architecture as MT1. Figure 1b illustrates the design of second variant of our proposed architecture. Here the detection output of each word is concatenated with the corresponding representation of the shared Bi-LSTM and fed as input to the final classification layer. This is done with the intuition of improving the classification results with the help of detection output.",
"cite_spans": [
{
"start": 657,
"end": 672,
"text": "(Caruana, 1993)",
"ref_id": "BIBREF3"
},
{
"start": 738,
"end": 766,
"text": "(Schuster and Paliwal, 1997)",
"ref_id": "BIBREF31"
}
],
"ref_spans": [
{
"start": 819,
"end": 828,
"text": "Figure 1a",
"ref_id": "FIGREF0"
},
{
"start": 1383,
"end": 1392,
"text": "Figure 1b",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Methodology",
"sec_num": "4"
},
{
"text": "Each word of the input instance is converted to a numeric representation with the help of fast-Text (Grave et al., 2018) word embeddings having dimension 300 (d e ). The pre-trained word vectors are downloaded from fastText website 2 . To learn a mapping between mono-lingual word embeddings and obtain cross-lingual embeddings in order to bridge the language gap between two languages, we use the existing alignment matrices 3 which align monolingual vectors from two lan-2 https://fasttext.cc 3 https://github.com/Babylonpartners/ fastText_multilingual guages in a single vector space (Smith et al., 2017) .",
"cite_spans": [
{
"start": 100,
"end": 120,
"text": "(Grave et al., 2018)",
"ref_id": "BIBREF10"
},
{
"start": 587,
"end": 607,
"text": "(Smith et al., 2017)",
"ref_id": "BIBREF35"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Embedding",
"sec_num": "4.1"
},
{
"text": "In order to handle Out-of-Vocabulary (OOV) words in the monolingual setting, we obtain their word embedding vectors from fastText's .bin file. Separate vocabularies for OOV words are created for Hindi and Bengali respectively. We create separate .vec file for the two OOV vocabularies. We similarly transform these vectors of two different languages in a shared space using the existing alignment matrices 3 . It is seen that the performance has significantly improved using crosslingual embeddings for OOV words compared to the method of using zero vectors for representing them. Since there is a lack of annotated data for our task, we create the datasets by crawling online Hindi and Bengali news articles and then annotate them following the TAC KBP 4 guidelines. For annotation, three annotators were employed. We estimate the inter-annotator agreement ratio by ask-ing all the three annotators to annotate 5% of total documents. The multi-rater Kappa (Fleiss, 1971) agreement ratio of 0.82 and 0.85 was observed for Hindi and Bengali news documents respectively.",
"cite_spans": [
{
"start": 957,
"end": 971,
"text": "(Fleiss, 1971)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Embedding",
"sec_num": "4.1"
},
{
"text": "For both the languages, news documents are crawled from online news portal. Every sentence of news documents was pre-processed for four sub-tasks of event extraction viz. event trigger detection, event trigger classification, argument detection and argument classification. Table 2 presents an example of sample annotation. For detection, we use IOB2 1 format (Ramshaw and Marcus, 1999). Our proposed Hindi dataset has two types of disaster events namely natural disaster and man-made disaster which are further classified into twenty seven sub-types. Each event trigger belongs to one of the twenty seven classes, which can be found in Table 8 . Every event has multiple arguments of different roles. Hindi dataset contains eleven types of arguments excluding Type argument type. Bengali dataset also contains eleven type of arguments excluding argument type Intensity. Table 5 contains all the argument types. Some of the argument types common to both Hindi and Bengali, irrespective of the event types, are Place, Time, Casualties and After-effect. Some of the arguments are specific to some particular event types. For example, Magnitude and Epicentre are event specific arguments related to Earthquake. Table 1 presents the dataset statistics for training and the test set of Hindi and Bengali, respectively.",
"cite_spans": [],
"ref_spans": [
{
"start": 274,
"end": 281,
"text": "Table 2",
"ref_id": "TABREF4"
},
{
"start": 637,
"end": 644,
"text": "Table 8",
"ref_id": "TABREF10"
},
{
"start": 871,
"end": 878,
"text": "Table 5",
"ref_id": "TABREF7"
},
{
"start": 1208,
"end": 1215,
"text": "Table 1",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Datasets and Experiments",
"sec_num": "5"
},
{
"text": "Optimizer Adam For implementing the deep learning models Python based library Keras (Chollet et al., 2015) with Tensorflow (Abadi et al., 2015) backend is used. All the models are trained for 300 epochs. Training is done using a learning rate of 0.001 and 'Adam' optimizer is used for fast convergence. The data is fed to the neural network in batches of 32. 'Checkpoints' are used to save the best weights of the model based on training accuracy. Table 3 shows the hyper-parameter settings used in the implementation of both the variants of our proposed model. For evaluation precision, recall and F1score are used as the metrics. However in result tables (refer Table 4, Table 5, Table 6, Table 7 and Table 8 ) only F1-score is reported. Table 4, Table 5 and Table 8 show the experimental results for event and argument trigger detection, argument role classification and event trigger classification respectively, where ST denotes Single task, MT1 denotes Multi-task 1, MT2 denotes Multi-task 2 and SP denotes support count. Table 4 shows that multi-task model 1 (MT1) performs well as compared to single task (ST) model for all language settings. For each language setting, performance improvement is maximum in case of I_Event tag. We find that it is 7.3% for Hindi, for Bengali it is 11.5% and for multi-lingual setting it shows improvement of 6.5%. Analyzing the predictions of all the variants of our system reveal that words are usually miss-classified more between the Beginning (B) and Inside (I) tag type of either event or argument instead of events getting miss-classified as argument triggers. Thus we can conclude that the system produces near correct prediction of event and argument trigger in most of the cases, only issue being that it sometimes fail to determine the correct trigger boundary. Figure 2a and Figure 2b show the confusion matrix obtained by MT1 in trigger detection and trigger classification in the multilingual setting.",
"cite_spans": [
{
"start": 84,
"end": 106,
"text": "(Chollet et al., 2015)",
"ref_id": null
},
{
"start": 123,
"end": 143,
"text": "(Abadi et al., 2015)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [
{
"start": 448,
"end": 455,
"text": "Table 3",
"ref_id": "TABREF5"
},
{
"start": 664,
"end": 711,
"text": "Table 4, Table 5, Table 6, Table 7 and Table 8",
"ref_id": "TABREF6"
},
{
"start": 741,
"end": 769,
"text": "Table 4, Table 5 and Table 8",
"ref_id": "TABREF6"
},
{
"start": 1029,
"end": 1036,
"text": "Table 4",
"ref_id": "TABREF6"
},
{
"start": 1815,
"end": 1824,
"text": "Figure 2a",
"ref_id": "FIGREF3"
},
{
"start": 1829,
"end": 1838,
"text": "Figure 2b",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "Loss function for Classification categorical_crossentropy",
"sec_num": null
},
{
"text": "We also perform separate experiments to evaluate our proposed approach with the earlier proposed approaches of separately detecting event and argument triggers from sentences. Table 6 shows the F1-score achieved in event trigger detection and Table 7 shows the F1-score obtained in argument trigger detection for both the Hindi and Bengali datasets. The evaluation shows that there is not any significant loss in performance in simultaneous detection of event and argument triggers compared to individual trigger detection even though there is a marginal improvement in detection of the tag I_Event for Bengali in the argument detection model compared to the model which per- forms simultaneous detection of both triggers.",
"cite_spans": [],
"ref_spans": [
{
"start": 176,
"end": 183,
"text": "Table 6",
"ref_id": "TABREF8"
},
{
"start": 243,
"end": 250,
"text": "Table 7",
"ref_id": "TABREF9"
}
],
"eq_spans": [],
"section": "Comparison With Separate Event and Argument Trigger Detection System",
"sec_num": "6.1"
},
{
"text": "In the following Input Example 1, \u0935\u093e\u0932\u093e\u092e\u0941 \u0916\u0940 \u0935 \u092b\u094b\u091f (jvaalaamukhee visphot\\volcanic erup-tions) is a multi-word event trigger. The tags assigned for this trigger are B_Event and I_Event respectively. In Input Example 2, the event trigger \u0935 \u092b\u094b\u091f (visphot\\eruptions) is tagged as B_Event.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "6.2"
},
{
"text": "For the first case, all the variants of the sys-tem predict the event trigger correctly but for the later case, our single task detection system (ST) and multi-task system 2 (MT2) predict it as outside event and argument trigger boundary (O) but multi-task system 1 (MT1) predicts it as inside event trigger (I_Event) rather than beginning of event trigger (B_Event). Thus we can see that all the variants miss-classify the trigger tag with MT1 being able to produce partially correct prediction as it, at least, classifies it to be of event type. However the classification result of the said event trigger in example 2 is correctly predicted by MT1 but it is wrongly predicted by MT2. Here we can see that the classification task is helping in detection task. We provide below a detailed error analysis of the results achieved in classification task (refer to Table 5 and Table 8 ).",
"cite_spans": [],
"ref_spans": [
{
"start": 862,
"end": 881,
"text": "Table 5 and Table 8",
"ref_id": "TABREF7"
}
],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "6.2"
},
{
"text": "1. In the classification task (refer to Table 5), error analysis reveals that the performance is affected mainly due to two cases : (a) when the Support count of a trigger type is less, (b) when each trigger mention in a sentence is long, i.e. it consists of numerous words. For example, Participant, Time, Place, Casualties and Intensity have better F1-score as the trigger mentions corresponding to these types are in the form of short phrases as well as these types have larger support count. However, roles like After Effect and Reason have comparatively lower performance as these trigger mentions appear in sentences in the form of long phrases. Even though Magnitude has less support count, performance is better compared to the other roles as the trigger mention is in the form of a single word comprising of a numeric figure.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "6.2"
},
{
"text": "In Table 8 , we observe the following drawbacks which can possibly lead to erroneous output.",
"cite_spans": [],
"ref_spans": [
{
"start": 3,
"end": 10,
"text": "Table 8",
"ref_id": "TABREF10"
}
],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "6.2"
},
{
"text": "1. We find that performance decreases for similar types of events. For example, types like Fire, Forest Fire and Industrial Accident are of similar type. We see that the performance of these types is low in Hindi as all of them are present in the dataset, thereby getting missclassified. However in Bengali dataset, we find Fire performs relatively better as there does not exist any sentence having event trigger of type Forest Fire and Industrial Accident.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "6.2"
},
{
"text": "2. In Hindi dataset, we find that type Transport Hazard is seen to be misclassified with type Train Collision and type Vehicular Collision, therby leading to poor performance. For Bengali dataset, there hardly exists any trigger of type Train Collision and event trigger of type Vehicular Collision exists in small number. Thus Bengali dataset performs much better for Transport Hazard.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "6.2"
},
{
"text": "In this paper, we present a multi-tasking, multilingual architecture for simultaneous detection and classification of event and argument triggers. We have proposed two variants where in each one of them, one task is helping another related task. Our results show that related tasks can definitely share information between them. We also compare our approach with separate models which can be employed for event and argument trigger detection respectively.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Works",
"sec_num": "7"
},
{
"text": "Other future works include developing an endto-end system which will consist of a multi-tasking system such that given a sentence as input, event and argument triggers will be extracted from it and if there exists any link between the extracted event and argument, then the output of the system will be positive and otherwise negative.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Works",
"sec_num": "7"
},
{
"text": "The work reported in this paper is supported by the project titled \"A Platform for Cross-lingual and Multi-lingual Event Monitoring in Indian Languages\", sponsored by IMPRINT-1, Ministry of Human Resource and Development, Government of India. Sovan Kumar Sahoo gratefully acknowledges \"Visvesvaraya PhD Scheme for Electronics and IT\", under the Ministry of Electronics and Information Technology, Government of India.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgement",
"sec_num": "8"
},
{
"text": "The encoding scheme is according to IOB2, where I indicates the tokens that appear within trigger, B denotes the beginning of a trigger and O denotes the outside of an event trigger. The B is used only when two events of the same type appear in consecutive sequence(Ramshaw and Marcus, 1999)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://www.nist.gov/tac/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org",
"authors": [
{
"first": "Mart\u00edn",
"middle": [],
"last": "Abadi",
"suffix": ""
},
{
"first": "Ashish",
"middle": [],
"last": "Agarwal",
"suffix": ""
},
{
"first": "Paul",
"middle": [],
"last": "Barham",
"suffix": ""
},
{
"first": "Eugene",
"middle": [],
"last": "Brevdo",
"suffix": ""
},
{
"first": "Zhifeng",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Craig",
"middle": [],
"last": "Citro",
"suffix": ""
},
{
"first": "Greg",
"middle": [
"S"
],
"last": "Corrado",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Davis",
"suffix": ""
},
{
"first": "Jeffrey",
"middle": [],
"last": "Dean",
"suffix": ""
},
{
"first": "Matthieu",
"middle": [],
"last": "Devin",
"suffix": ""
},
{
"first": "Sanjay",
"middle": [],
"last": "Ghemawat",
"suffix": ""
},
{
"first": "Ian",
"middle": [],
"last": "Goodfellow",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Harp",
"suffix": ""
},
{
"first": "Geoffrey",
"middle": [],
"last": "Irving",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Isard",
"suffix": ""
},
{
"first": "Yangqing",
"middle": [],
"last": "Jia",
"suffix": ""
},
{
"first": "Rafal",
"middle": [],
"last": "Jozefowicz",
"suffix": ""
},
{
"first": "Lukasz",
"middle": [],
"last": "Kaiser",
"suffix": ""
},
{
"first": "Manjunath",
"middle": [],
"last": "Kudlur",
"suffix": ""
},
{
"first": "Josh",
"middle": [],
"last": "Levenberg",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mart\u00edn Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor- rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Man\u00e9, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schus- ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vi\u00e9gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "On semantics and deep learning for event detection in crisis situations",
"authors": [
{
"first": "Gr\u00e9goire",
"middle": [],
"last": "Burel",
"suffix": ""
},
{
"first": "Hassan",
"middle": [],
"last": "Saif",
"suffix": ""
},
{
"first": "Miriam",
"middle": [],
"last": "Fernandez",
"suffix": ""
},
{
"first": "Harith",
"middle": [],
"last": "Alani",
"suffix": ""
}
],
"year": 2017,
"venue": "Workshop on Semantic Deep Learning (SemDeep)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gr\u00e9goire Burel, Hassan Saif, Miriam Fernandez, and Harith Alani. 2017. On semantics and deep learning for event detection in crisis situations. Workshop on Semantic Deep Learning (SemDeep), at ESWC 2017, 29 May 2017, Portoroz, Slovenia.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Multitask learning. Machine learning",
"authors": [
{
"first": "Rich",
"middle": [],
"last": "Caruana",
"suffix": ""
}
],
"year": 1997,
"venue": "",
"volume": "28",
"issue": "",
"pages": "41--75",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rich Caruana. 1997. Multitask learning. Machine learning, 28(1):41-75.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Multitask learning: A knowledge-based source of inductive bias",
"authors": [
{
"first": "Richard",
"middle": [],
"last": "Caruana",
"suffix": ""
}
],
"year": 1993,
"venue": "Proceedings of the Tenth International Conference on Machine Learning",
"volume": "",
"issue": "",
"pages": "41--48",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Richard Caruana. 1993. Multitask learning: A knowledge-based source of inductive bias. In Pro- ceedings of the Tenth International Conference on Machine Learning, pages 41-48. Morgan Kauf- mann.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Event extraction via dynamic multipooling convolutional neural networks",
"authors": [
{
"first": "Yubo",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Liheng",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Daojian",
"middle": [],
"last": "Zeng",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "1",
"issue": "",
"pages": "167--176",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event extraction via dynamic multi- pooling convolutional neural networks. In Proceed- ings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna- tional Joint Conference on Natural Language Pro- cessing (Volume 1: Long Papers), volume 1, pages 167-176.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Is this twitter event a disaster?",
"authors": [
{
"first": "Andr\u00e9",
"middle": [],
"last": "Dittrich",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Lucas",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Andr\u00e9 Dittrich and Christian Lucas. 2014. Is this twitter event a disaster? AGILE Digital Editions.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "A language-independent neural network for event detection",
"authors": [
{
"first": "Xiaocheng",
"middle": [],
"last": "Feng",
"suffix": ""
},
{
"first": "Bing",
"middle": [],
"last": "Qin",
"suffix": ""
},
{
"first": "Ting",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2018,
"venue": "Science China Information Sciences",
"volume": "61",
"issue": "9",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiaocheng Feng, Bing Qin, and Ting Liu. 2018. A language-independent neural network for event detection. Science China Information Sciences, 61(9):092106.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Measuring nominal scale agreement among many raters",
"authors": [
{
"first": "L",
"middle": [],
"last": "Joseph",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Fleiss",
"suffix": ""
}
],
"year": 1971,
"venue": "Psychological bulletin",
"volume": "76",
"issue": "5",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joseph L Fleiss. 1971. Measuring nominal scale agree- ment among many raters. Psychological bulletin, 76(5):378.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Event nugget detection with forward-backward recurrent neural networks",
"authors": [
{
"first": "Reza",
"middle": [],
"last": "Ghaeini",
"suffix": ""
},
{
"first": "Xiaoli",
"middle": [],
"last": "Fern",
"suffix": ""
},
{
"first": "Liang",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Prasad",
"middle": [],
"last": "Tadepalli",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "369--373",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Reza Ghaeini, Xiaoli Fern, Liang Huang, and Prasad Tadepalli. 2016. Event nugget detection with forward-backward recurrent neural networks. In Proceedings of the 54th Annual Meeting of the As- sociation for Computational Linguistics (Volume 2: Short Papers), volume 2, pages 369-373.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Learning Word Vectors for 157 Languages",
"authors": [
{
"first": "Edouard",
"middle": [],
"last": "Grave",
"suffix": ""
},
{
"first": "Piotr",
"middle": [],
"last": "Bojanowski",
"suffix": ""
},
{
"first": "Prakhar",
"middle": [],
"last": "Gupta",
"suffix": ""
},
{
"first": "Armand",
"middle": [],
"last": "Joulin",
"suffix": ""
},
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018)",
"volume": "",
"issue": "",
"pages": "3483--3487",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar- mand Joulin, and Tomas Mikolov. 2018. Learning Word Vectors for 157 Languages. In Proceedings of the International Conference on Language Re- sources and Evaluation (LREC 2018), pages 3483- 3487.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Using cross-entity inference to improve event extraction",
"authors": [
{
"first": "Yu",
"middle": [],
"last": "Hong",
"suffix": ""
},
{
"first": "Jianfeng",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Bin",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Jianmin",
"middle": [],
"last": "Yao",
"suffix": ""
},
{
"first": "Guodong",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Qiaoming",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "1127--1136",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao, Guodong Zhou, and Qiaoming Zhu. 2011. Us- ing cross-entity inference to improve event extrac- tion. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Hu- man Language Technologies-Volume 1, pages 1127- 1136. Association for Computational Linguistics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Refining event extraction through cross-document inference",
"authors": [
{
"first": "Heng",
"middle": [],
"last": "Ji",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Grishman",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of ACL-08: HLT",
"volume": "",
"issue": "",
"pages": "254--262",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Heng Ji and Ralph Grishman. 2008. Refining event extraction through cross-document inference. Pro- ceedings of ACL-08: HLT, pages 254-262.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Emergency event detection in twitter streams based on natural language processing",
"authors": [
{
"first": "Bernhard",
"middle": [],
"last": "Klein",
"suffix": ""
},
{
"first": "Federico",
"middle": [],
"last": "Castanedo",
"suffix": ""
},
{
"first": "Inigo",
"middle": [],
"last": "Elejalde",
"suffix": ""
},
{
"first": "Diego",
"middle": [],
"last": "L\u00f3pez-De Ipina",
"suffix": ""
},
{
"first": "Alejandro",
"middle": [
"Prada"
],
"last": "Nespral",
"suffix": ""
}
],
"year": 2013,
"venue": "International Conference on Ubiquitous Computing and Ambient Intelligence",
"volume": "",
"issue": "",
"pages": "239--246",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bernhard Klein, Federico Castanedo, Inigo Elejalde, Diego L\u00f3pez-de Ipina, and Alejandro Prada Nespral. 2013. Emergency event detection in twitter streams based on natural language processing. In Inter- national Conference on Ubiquitous Computing and Ambient Intelligence, pages 239-246. Springer.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "An event extraction system via neural networks. FIRE (Working Notes)",
"authors": [
{
"first": "Alapan",
"middle": [],
"last": "Kuila",
"suffix": ""
},
{
"first": "Sudeshna",
"middle": [],
"last": "Sarkar",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "136--139",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alapan Kuila and Sudeshna Sarkar. 2017. An event ex- traction system via neural networks. FIRE (Working Notes), pages 136-139.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Joint event extraction via structured prediction with global features",
"authors": [
{
"first": "Qi",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Ji",
"middle": [],
"last": "Heng",
"suffix": ""
},
{
"first": "Liang",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "73--82",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Qi Li, Heng Ji, and Liang Huang. 2013. Joint event extraction via structured prediction with global fea- tures. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), volume 1, pages 73-82.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Using document level cross-event inference to improve event extraction",
"authors": [
{
"first": "Shasha",
"middle": [],
"last": "Liao",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Grishman",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "789--797",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shasha Liao and Ralph Grishman. 2010. Using doc- ument level cross-event inference to improve event extraction. In Proceedings of the 48th Annual Meet- ing of the Association for Computational Linguistics, pages 789-797. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Event detection via gated multilingual attention mechanism",
"authors": [
{
"first": "Jian",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Yubo",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2018,
"venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2018a. Event detection via gated multilingual attention mechanism. In Thirty-Second AAAI Conference on Artificial Intelligence.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Leveraging framenet to improve automatic event detection",
"authors": [
{
"first": "Shulin",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Yubo",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Shizhu",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "2134--2143",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shulin Liu, Yubo Chen, Shizhu He, Kang Liu, and Jun Zhao. 2016. Leveraging framenet to improve automatic event detection. In Proceedings of the 54th Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), vol- ume 1, pages 2134-2143.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Exploiting argument information to improve event detection via supervised attention mechanisms",
"authors": [
{
"first": "Shulin",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Yubo",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shulin Liu, Yubo Chen, Kang Liu, Jun Zhao, et al. 2017. Exploiting argument information to improve event detection via supervised attention mechanisms.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Jointly multiple events extraction via attention-based graph information aggregation",
"authors": [
{
"first": "Xiao",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Zhunchen",
"middle": [],
"last": "Luo",
"suffix": ""
},
{
"first": "Heyan",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1247--1256",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018b. Jointly multiple events extraction via attention-based graph information aggregation. In Proceedings of the 2018 Conference on Empirical Methods in Nat- ural Language Processing, pages 1247-1256.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Joint event extraction via recurrent neural networks",
"authors": [
{
"first": "Kyunghyun",
"middle": [],
"last": "Thien Huu Nguyen",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Cho",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Grishman",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "300--309",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish- man. 2016. Joint event extraction via recurrent neu- ral networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, pages 300-309.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Event detection and domain adaptation with convolutional neural networks",
"authors": [
{
"first": "Huu",
"middle": [],
"last": "Thien",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Grishman",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "2",
"issue": "",
"pages": "365--371",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thien Huu Nguyen and Ralph Grishman. 2015. Event detection and domain adaptation with convolutional neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin- guistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), volume 2, pages 365-371.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Modeling skip-grams for event detection with convolutional neural networks",
"authors": [
{
"first": "Huu",
"middle": [],
"last": "Thien",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Grishman",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "886--891",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thien Huu Nguyen and Ralph Grishman. 2016. Mod- eling skip-grams for event detection with convolu- tional neural networks. In Proceedings of the 2016 Conference on Empirical Methods in Natural Lan- guage Processing, pages 886-891.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Graph convolutional networks with argument-aware pooling for event detection",
"authors": [
{
"first": "Huu",
"middle": [],
"last": "Thien",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Grishman",
"suffix": ""
}
],
"year": 2018,
"venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thien Huu Nguyen and Ralph Grishman. 2018. Graph convolutional networks with argument-aware pool- ing for event detection. In Thirty-Second AAAI Con- ference on Artificial Intelligence.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "A comparison of classification models for natural disaster and critical event detection from news",
"authors": [
{
"first": "Tim",
"middle": [],
"last": "Nugent",
"suffix": ""
},
{
"first": "Fabio",
"middle": [],
"last": "Petroni",
"suffix": ""
},
{
"first": "Natraj",
"middle": [],
"last": "Raman",
"suffix": ""
},
{
"first": "Lucas",
"middle": [],
"last": "Carstens",
"suffix": ""
},
{
"first": "Jochen L",
"middle": [],
"last": "Leidner",
"suffix": ""
}
],
"year": 2017,
"venue": "2017 IEEE International Conference on",
"volume": "",
"issue": "",
"pages": "3750--3759",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tim Nugent, Fabio Petroni, Natraj Raman, Lucas Carstens, and Jochen L Leidner. 2017. A compar- ison of classification models for natural disaster and critical event detection from news. In Big Data (Big Data), 2017 IEEE International Conference on, pages 3750-3759. IEEE.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Event detection with neural networks: A rigorous empirical evaluation",
"authors": [
{
"first": "Walker",
"middle": [],
"last": "Orr",
"suffix": ""
},
{
"first": "Prasad",
"middle": [],
"last": "Tadepalli",
"suffix": ""
},
{
"first": "Xiaoli",
"middle": [],
"last": "Fern",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "999--1004",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Walker Orr, Prasad Tadepalli, and Xiaoli Fern. 2018. Event detection with neural networks: A rigorous empirical evaluation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Lan- guage Processing, pages 999-1004.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Text chunking using transformation-based learning",
"authors": [
{
"first": "A",
"middle": [],
"last": "Lance",
"suffix": ""
},
{
"first": "Mitchell P",
"middle": [],
"last": "Ramshaw",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Marcus",
"suffix": ""
}
],
"year": 1999,
"venue": "Natural language processing using very large corpora",
"volume": "",
"issue": "",
"pages": "157--176",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lance A Ramshaw and Mitchell P Marcus. 1999. Text chunking using transformation-based learning. In Natural language processing using very large cor- pora, pages 157-176. Springer.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Fast and robust joint models for biomedical event extraction",
"authors": [
{
"first": "Sebastian",
"middle": [],
"last": "Riedel",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Mccallum",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1--12",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sebastian Riedel and Andrew McCallum. 2011a. Fast and robust joint models for biomedical event extrac- tion. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1- 12. Association for Computational Linguistics.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Robust biomedical event extraction with dual decomposition and minimal domain adaptation",
"authors": [
{
"first": "Sebastian",
"middle": [],
"last": "Riedel",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Mccallum",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the BioNLP Shared Task 2011 Workshop",
"volume": "",
"issue": "",
"pages": "46--50",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sebastian Riedel and Andrew McCallum. 2011b. Ro- bust biomedical event extraction with dual decom- position and minimal domain adaptation. In Pro- ceedings of the BioNLP Shared Task 2011 Workshop, pages 46-50. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "An overview of multi-task learning in",
"authors": [
{
"first": "Sebastian",
"middle": [],
"last": "Ruder",
"suffix": ""
}
],
"year": 2017,
"venue": "deep neural networks",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1706.05098"
]
},
"num": null,
"urls": [],
"raw_text": "Sebastian Ruder. 2017. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Bidirectional recurrent neural networks",
"authors": [
{
"first": "Mike",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Kuldip",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Paliwal",
"suffix": ""
}
],
"year": 1997,
"venue": "IEEE Transactions on Signal Processing",
"volume": "45",
"issue": "11",
"pages": "2673--2681",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mike Schuster and Kuldip K Paliwal. 1997. Bidirec- tional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11):2673-2681.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Jointly extracting event triggers and arguments by dependency-bridge rnn and tensor-based argument interaction",
"authors": [
{
"first": "Lei",
"middle": [],
"last": "Sha",
"suffix": ""
},
{
"first": "Feng",
"middle": [],
"last": "Qian",
"suffix": ""
},
{
"first": "Baobao",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Zhifang",
"middle": [],
"last": "Sui",
"suffix": ""
}
],
"year": 2018,
"venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui. 2018. Jointly extracting event triggers and argu- ments by dependency-bridge rnn and tensor-based argument interaction. In Thirty-Second AAAI Con- ference on Artificial Intelligence.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Kce_dalab@ eventxtract-il-fire2017: Event extraction using support vector machines. FIRE (Working Notes)",
"authors": [
{
"first": "V",
"middle": [],
"last": "Sharmiladevi",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Kannimuthu",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Safeeq",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "144--146",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "V SharmilaDevi, S Kannimuthu, and G Safeeq. 2017. Kce_dalab@ eventxtract-il-fire2017: Event extrac- tion using support vector machines. FIRE (Working Notes), pages 144-146.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Event classification and location prediction from tweets during disasters",
"authors": [
{
"first": "Jyoti",
"middle": [
"Prakash"
],
"last": "Singh",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Yogesh",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Dwivedi",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Nripendra",
"suffix": ""
},
{
"first": "Abhinav",
"middle": [],
"last": "Rana",
"suffix": ""
},
{
"first": "Kawaljeet Kaur",
"middle": [],
"last": "Kumar",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kapoor",
"suffix": ""
}
],
"year": 2017,
"venue": "Annals of Operations Research",
"volume": "",
"issue": "",
"pages": "1--21",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jyoti Prakash Singh, Yogesh K Dwivedi, Nripendra P Rana, Abhinav Kumar, and Kawaljeet Kaur Kapoor. 2017. Event classification and location prediction from tweets during disasters. Annals of Operations Research, pages 1-21.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Offline bilingual word vectors, orthogonal transformations and the inverted softmax",
"authors": [
{
"first": "L",
"middle": [],
"last": "Samuel",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Smith",
"suffix": ""
},
{
"first": "H",
"middle": [
"P"
],
"last": "David",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Turban",
"suffix": ""
},
{
"first": "Nils",
"middle": [
"Y"
],
"last": "Hamblin",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hammerla",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1702.03859"
]
},
"num": null,
"urls": [],
"raw_text": "Samuel L Smith, David HP Turban, Steven Hamblin, and Nils Y Hammerla. 2017. Offline bilingual word vectors, orthogonal transformations and the inverted softmax. arXiv preprint arXiv:1702.03859.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Event extraction from social media text using conditional random fields",
"authors": [
{
"first": "",
"middle": [],
"last": "Nagesh Bhattu Sristy",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Satya Krishna",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Durvasula",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Somayajulu",
"suffix": ""
}
],
"year": 2017,
"venue": "FIRE (Working Notes)",
"volume": "",
"issue": "",
"pages": "140--143",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nagesh Bhattu Sristy, N Satya Krishna, and Durva- sula VLN Somayajulu. 2017. Event extraction from social media text using conditional random fields. In FIRE (Working Notes), pages 140-143.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Real-time news event extraction for global crisis monitoring",
"authors": [
{
"first": "Hristo",
"middle": [],
"last": "Tanev",
"suffix": ""
},
{
"first": "Jakub",
"middle": [],
"last": "Piskorski",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Atkinson",
"suffix": ""
}
],
"year": 2008,
"venue": "International Conference on Application of Natural Language to Information Systems",
"volume": "",
"issue": "",
"pages": "207--218",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hristo Tanev, Jakub Piskorski, and Martin Atkinson. 2008. Real-time news event extraction for global crisis monitoring. In International Conference on Application of Natural Language to Information Sys- tems, pages 207-218. Springer.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Relieving the computational bottleneck: Joint inference for event extraction with high-dimensional features",
"authors": [
{
"first": "Deepak",
"middle": [],
"last": "Venugopal",
"suffix": ""
},
{
"first": "Chen",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Vibhav",
"middle": [],
"last": "Gogate",
"suffix": ""
},
{
"first": "Vincent",
"middle": [],
"last": "Ng",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "831--843",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Deepak Venugopal, Chen Chen, Vibhav Gogate, and Vincent Ng. 2014. Relieving the computational bot- tleneck: Joint inference for event extraction with high-dimensional features. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 831-843.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Joint extraction of events and entities within a document context",
"authors": [
{
"first": "Bishan",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Tom",
"middle": [],
"last": "Mitchell",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1609.03632"
]
},
"num": null,
"urls": [],
"raw_text": "Bishan Yang and Tom Mitchell. 2016. Joint extrac- tion of events and entities within a document context. arXiv preprint arXiv:1609.03632.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Disaster events detection using twitter data",
"authors": [
{
"first": "Hong-Won",
"middle": [],
"last": "Yun",
"suffix": ""
}
],
"year": 2011,
"venue": "Journal of information and communication convergence engineering",
"volume": "9",
"issue": "1",
"pages": "69--73",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hong-Won Yun. 2011. Disaster events detection using twitter data. Journal of information and communi- cation convergence engineering, 9(1):69-73.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"text": "Architecture of Our Proposed Models",
"uris": null,
"num": null
},
"FIGREF3": {
"type_str": "figure",
"text": "Confusion Matrix : MT1 in Multilingual Setting.",
"uris": null,
"num": null
},
"TABREF2": {
"type_str": "table",
"html": null,
"text": "Dataset Statistics",
"content": "<table/>",
"num": null
},
"TABREF4": {
"type_str": "table",
"html": null,
"text": "Sample annotation for the sentence given in Example-2 in Task Description and Contribution Section",
"content": "<table/>",
"num": null
},
"TABREF5": {
"type_str": "table",
"html": null,
"text": "Hyper-parameter Settings",
"content": "<table/>",
"num": null
},
"TABREF6": {
"type_str": "table",
"html": null,
"text": "Trigger Detection (Events and Arguments) Results",
"content": "<table><tr><td/><td/><td colspan=\"2\">Hindi</td><td/><td/><td colspan=\"2\">Bengali</td><td/><td/><td colspan=\"2\">Multi-Lingual</td></tr><tr><td/><td colspan=\"3\">ST MT1 MT2</td><td>SP</td><td colspan=\"3\">ST MT1 MT2</td><td>SP</td><td colspan=\"3\">ST MT1 MT2</td><td>SP</td></tr><tr><td colspan=\"4\">Participant 0.35 0.42 0.38</td><td colspan=\"4\">539 0.43 0.43 0.41</td><td colspan=\"4\">816 0.36 0.41 0.36 1355</td></tr><tr><td>Epicentre</td><td colspan=\"3\">0.59 0.46 0.29</td><td>22</td><td colspan=\"3\">0.48 0.27 0.46</td><td>49</td><td>0.4</td><td>0.2</td><td>0.35</td><td>71</td></tr><tr><td colspan=\"2\">After Effect 0.3</td><td colspan=\"10\">0.35 0.31 2828 0.36 0.36 0.35 1648 0.32 0.31 0.33 4476</td></tr><tr><td>Reason</td><td>0.14</td><td>0.1</td><td>0.12</td><td colspan=\"4\">354 0.26 0.21 0.20</td><td colspan=\"4\">280 0.16 0.16 0.18</td><td>634</td></tr><tr><td colspan=\"2\">Magnitude 0.56</td><td>0.6</td><td>0.62</td><td>40</td><td colspan=\"3\">0.52 0.51 0.44</td><td>25</td><td colspan=\"3\">0.47 0.56 0.54</td><td>65</td></tr><tr><td>Place</td><td colspan=\"11\">0.57 0.58 0.56 2369 0.61 0.59 0.61 1588 0.58 0.57 0.56 3957</td></tr><tr><td colspan=\"12\">Casualties 0.58 0.59 0.58 1969 0.73 0.73 0.72 2578 0.65 0.66 0.65 4547</td></tr><tr><td>Name</td><td colspan=\"3\">0.26 0.32 0.27</td><td>67</td><td>0</td><td>0</td><td>0</td><td>9</td><td>0.25</td><td>0.3</td><td>0.23</td><td>76</td></tr><tr><td>Type</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.20 0.20 0.24</td><td>29</td><td colspan=\"3\">0.19 0.11 0.37</td><td>29</td></tr><tr><td>Intensity</td><td colspan=\"2\">0.54 0.44</td><td>0.4</td><td>191</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.45 0.33 0.27</td><td>191</td></tr><tr><td>Time</td><td colspan=\"3\">0.65 0.66 0.63</td><td colspan=\"8\">804 0.84 0.85 0.84 2029 0.79 0.77 0.78 2833</td></tr><tr><td>Speed</td><td colspan=\"2\">0.18 0.11</td><td>0</td><td>17</td><td colspan=\"3\">0.36 0.31 0.46</td><td>4</td><td colspan=\"3\">0.19 0.36 0.27</td><td>21</td></tr></table>",
"num": null
},
"TABREF7": {
"type_str": "table",
"html": null,
"text": "",
"content": "<table/>",
"num": null
},
"TABREF8": {
"type_str": "table",
"html": null,
"text": "Result of Event Trigger Detection as Only Task.",
"content": "<table><tr><td/><td colspan=\"2\">Hindi Bengali</td></tr><tr><td colspan=\"2\">B-Arg 0.49</td><td>0.57</td></tr><tr><td>I-Arg</td><td>0.49</td><td>0.64</td></tr></table>",
"num": null
},
"TABREF9": {
"type_str": "table",
"html": null,
"text": "Result of Argument Detection as Only Task.",
"content": "<table><tr><td/><td/><td colspan=\"2\">Hindi</td><td/><td/><td colspan=\"2\">Bengali</td><td/><td/><td colspan=\"2\">Multi-Lingual</td></tr><tr><td/><td colspan=\"4\">ST MT1 MT2 SP</td><td colspan=\"4\">ST MT1 MT2 SP</td><td colspan=\"4\">ST MT1 MT2 SP</td></tr><tr><td>Armed Conflicts</td><td>0.2</td><td>0.4</td><td>0.31</td><td>7</td><td colspan=\"8\">0.22 0.16 0.22 126 0.21 0.19 0.24 133</td></tr><tr><td colspan=\"4\">Avalanches 0.57 0.61 0.62</td><td>30</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.51 0.57 0.57</td><td>30</td></tr><tr><td>Aviation Hazard</td><td colspan=\"3\">0.35 0.43 0.46</td><td colspan=\"4\">43 0.56 0.47 0.34</td><td colspan=\"4\">34 0.48 0.34 0.41</td><td>77</td></tr><tr><td>Blizzard</td><td>0.49</td><td>0.6</td><td>0.51</td><td>19</td><td>0</td><td>0</td><td>0</td><td>7</td><td colspan=\"2\">0.44 0.41</td><td>0.6</td><td>26</td></tr><tr><td colspan=\"4\">Cold Wave 0.53 0.48 0.53</td><td colspan=\"4\">26 0.50 0.50 0.50</td><td>4</td><td colspan=\"3\">0.52 0.45 0.49</td><td>30</td></tr><tr><td>Cyclone</td><td>0.4</td><td colspan=\"2\">0.49 0.36</td><td>20</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.51 0.45 0.45</td><td>20</td></tr><tr><td colspan=\"8\">Earthquake 0.69 0.73 0.66 115 0.75 0.74 0.68</td><td colspan=\"5\">87 0.71 0.63 0.71 202</td></tr><tr><td>Epidemic</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.33 0.33 0.33</td><td colspan=\"2\">61 0.34</td><td>0.3</td><td>0.3</td><td>61</td></tr><tr><td>Fire</td><td colspan=\"12\">0.27 0.26 0.25 114 0.68 0.68 0.66 120 0.44 0.45 0.48 234</td></tr><tr><td>Floods</td><td>0.56</td><td>0.6</td><td>0.7</td><td colspan=\"4\">27 0.40 0.67 0.50</td><td>1</td><td colspan=\"3\">0.64 0.77 0.66</td><td>28</td></tr><tr><td colspan=\"4\">Forest Fire 0.32 0.31 0.29</td><td>63</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.33</td><td>0.3</td><td>0.24</td><td>63</td></tr><tr><td colspan=\"4\">Hail Storms 0.41 0.46 0.39</td><td>41</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.45 0.52 0.46</td><td>41</td></tr><tr><td colspan=\"4\">Heat Wave 0.39 0.48 0.39</td><td colspan=\"4\">66 0.33 0.24 0.43</td><td>9</td><td colspan=\"3\">0.36 0.37 0.41</td><td>75</td></tr><tr><td colspan=\"2\">Hurricane 0.53</td><td>0.6</td><td>0.38</td><td>35</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.48 0.47 0.45</td><td>35</td></tr><tr><td>Industrial Accident</td><td colspan=\"4\">0.21 0.21 0.17 113</td><td>0</td><td>0.25</td><td>0</td><td>3</td><td colspan=\"4\">0.17 0.18 0.15 116</td></tr><tr><td>Landslide</td><td colspan=\"3\">0.43 0.38 0.44</td><td colspan=\"4\">69 0.74 0.71 0.59</td><td>9</td><td>0.47</td><td>0.5</td><td>0.46</td><td>78</td></tr><tr><td>Normal Bombing</td><td>0.18</td><td>0.2</td><td>0.22</td><td>9</td><td colspan=\"8\">0.61 0.62 0.58 292 0.57 0.55 0.56 301</td></tr><tr><td>Pandemic</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.26 0.23 0.25</td><td colspan=\"4\">87 0.17 0.29 0.32</td><td>87</td></tr><tr><td>Riots</td><td colspan=\"3\">0.29 0.38 0.31</td><td colspan=\"4\">32 0.26 0.31 0.23</td><td colspan=\"2\">44 0.28</td><td>0.2</td><td>0.24</td><td>76</td></tr><tr><td>Shootout</td><td colspan=\"10\">0.49 0.49 0.44 110 0.56 0.54 0.52 177 0.51 0.52</td><td>0.5</td><td>287</td></tr><tr><td>Storm</td><td>0.2</td><td colspan=\"2\">0.22 0.29</td><td colspan=\"4\">24 0.45 0.42 0.42</td><td colspan=\"4\">26 0.43 0.32 0.34</td><td>50</td></tr><tr><td>Suicide Attack</td><td colspan=\"9\">0.64 0.64 0.68 154 0.57 0.62 0.56 123 0.6</td><td colspan=\"3\">0.59 0.58 277</td></tr><tr><td>Surgical Strikes</td><td>0</td><td>0</td><td>0</td><td>2</td><td colspan=\"3\">0.40 0.36 0.44</td><td colspan=\"4\">64 0.41 0.38 0.36</td><td>66</td></tr><tr><td>Terrorist Attack</td><td colspan=\"3\">0.61 0.61 0.62</td><td colspan=\"9\">95 0.32 0.37 0.34 147 0.47 0.48 0.49 242</td></tr><tr><td>Tornado</td><td colspan=\"3\">0.43 0.49 0.35</td><td colspan=\"2\">32 0.57</td><td>0.4</td><td>0.57</td><td>4</td><td colspan=\"3\">0.43 0.38 0.43</td><td>36</td></tr><tr><td>Train Collision</td><td colspan=\"3\">0.52 0.44 0.53</td><td>72</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0.46</td><td>0.4</td><td>0.5</td><td>73</td></tr><tr><td>Transport Hazards</td><td colspan=\"3\">0.13 0.18 0.18</td><td colspan=\"6\">79 0.49 0.47 0.43 127 0.4</td><td colspan=\"3\">0.36 0.37 206</td></tr><tr><td>Tsunami</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.17 0.17 0.17</td><td colspan=\"5\">10 0.32 0.13 0.12 0.32</td></tr><tr><td>Vehicular Collision</td><td colspan=\"3\">0.56 0.52 0.49</td><td colspan=\"4\">93 0.43 0.45 0.48</td><td colspan=\"5\">39 0.44 0.48 0.46 132</td></tr><tr><td>Volcano</td><td>0.5</td><td colspan=\"2\">0.42 0.52</td><td>33</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.48 0.45 0.43</td><td>33</td></tr></table>",
"num": null
},
"TABREF10": {
"type_str": "table",
"html": null,
"text": "Event Trigger Classification Results",
"content": "<table/>",
"num": null
}
}
}
} |