File size: 113,730 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
{
    "paper_id": "2019",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:29:55.837375Z"
    },
    "title": "A Multi-task Model for Multilingual Trigger Detection and Classification",
    "authors": [
        {
            "first": "Sovan",
            "middle": [],
            "last": "Kumar",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Saumajit",
            "middle": [],
            "last": "Saha",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Indian Institute of Technology Patna",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Asif",
            "middle": [],
            "last": "Ekbal",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Pushpak",
            "middle": [],
            "last": "Bhattacharyya",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this paper we present a deep multi-task learning framework for multilingual event and argument trigger detection and classification. In our current work, we identify detection and classification of both event and argument triggers as related tasks and follow a multi-tasking approach to solve them simultaneously in contrast to the previous works where these tasks were solved separately or learning some of the above mentioned tasks jointly. We evaluate the proposed approach with multiple low-resource Indian languages. As there were no datasets available for the Indian languages, we have annotated disaster related news data crawled from the online news portal for different lowresource Indian languages for our experiments. Our empirical evaluation shows that multitask model performs better than the single task model, and classification helps in trigger detection and vice-versa.",
    "pdf_parse": {
        "paper_id": "2019",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this paper we present a deep multi-task learning framework for multilingual event and argument trigger detection and classification. In our current work, we identify detection and classification of both event and argument triggers as related tasks and follow a multi-tasking approach to solve them simultaneously in contrast to the previous works where these tasks were solved separately or learning some of the above mentioned tasks jointly. We evaluate the proposed approach with multiple low-resource Indian languages. As there were no datasets available for the Indian languages, we have annotated disaster related news data crawled from the online news portal for different lowresource Indian languages for our experiments. Our empirical evaluation shows that multitask model performs better than the single task model, and classification helps in trigger detection and vice-versa.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Event Extraction is an important task in Natural Language Processing (NLP). An event can be an occurrence happening in certain place during a particular interval of time. In text, the word or phrase that describes an event is called event trigger. Argument of an event refers to the attributes such as the location, time of occurrence of the event, participants involved and so on. Therefore event trigger detection, event trigger classification, argument trigger detection and argument trigger classification are the four important sub-tasks of event extraction. In our current paper, we have solved all the four problems using a Multi-task architecture. Multi-task learning (MTL), which essentially means performing more than one related task simultaneously, has been proven to be effective for various NLP tasks in recent times (Ruder, 2017) . The key idea behind MTL is that the inductive transfer of knowledge, learned for a particular task, can help to improve the performance of another task by means of parameter sharing between tasks. According to Caruana (1997) , \"MTL improves generalization by leveraging the domainspecific information contained in the training signals of related tasks\". In our current work, we have identified detection and classification of both event and arguments as two related tasks. As both event and argument trigger detection are sequence labelling problems, we have merged those two sub-tasks into one and used a single loss function. For the same reason, we have merged event and argument trigger classification task into one task and used another loss function. Thus in our proposed architecture, even though we have two main tasks for learning shared representation, we have basically solved four sub-tasks viz. event trigger detection, event trigger classification, argument detection and argument classification. Our proposed architecture has two variants which are further discussed later in this paper. As we are working with low-resource languages which have data sparsity issue, we have proposed a multi-task, multi-lingual architecture which is trained on both Hindi and Bengali data. Due to unavailability of training data in these two languages, we have annotated disaster related news data crawled from online news portals for our experiments.",
                "cite_spans": [
                    {
                        "start": 831,
                        "end": 844,
                        "text": "(Ruder, 2017)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 1057,
                        "end": 1071,
                        "text": "Caruana (1997)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Being a very important problem in NLP, Event Extraction has already been explored by the research community for a long time. Some feature based approaches have decomposed the entire event extraction task into two sub-tasks and solved them separately (Ji and Grishman, 2008; Hong et al., 2011; Liao and Grishman, 2010) . But the main problem of this approach is error propagation which is dealt by Riedel and McCallum (2011a) , Riedel and McCallum (2011b) , Li et al. (2013) , Venugopal et al. (2014) using a joint event extraction algorithm. However both of the above approaches have used hand-designed feature. Nguyen and Grishman (2015) propose a Convolutional Neural Network (CNN) for automatic feature extraction. introduce a dynamic multi-pooling CNN which uses a dynamic multi-pooling layer according to event triggers and arguments in multi-event sentences, to capture more crucial information. In another work, Nguyen and Grishman (2016) propose a skip-gram based CNN model which allows nonconsecutive convolution. Ghaeini et al. (2016) propose a forward-backward Recurrent Neural Network (RNN) to detect event triggers which can be in the form of both words or phrases. propose a language independent neural network which uses both CNN and Bi-LSTM for Event detection. Liu et al. (2016) propose to improve the performance of event detection by using the events automatically detected from FrameNet. Though these neural based systems perform well, they still suffer from error propagation issue. To overcome this issue, Nguyen et al. (2016) propose a joint framework with bidirectional RNN. However Liu et al. (2017) observe that joint model achieves insignificant improvements on event detection task. They analyze the problem of joint models on the task of event detection, and propose to use the annotated argument information explicitly for this task. Yang and Mitchell (2016) also propose a joint model for event and entity extraction but in document level instead of sentence level in contrast to most of the previous works. In recent years Liu et al. (2018a) introduce a cross language attention model for event detection where they focus on English and Chinese. Liu et al. (2018b) propose a novel framework to jointly extract multiple event triggers and arguments. Sha et al. (2018) propose a novel dependency bridge RNN which includes syntactic dependency relationships. Dependency relationship is also used by Nguyen and Grishman (2018). They investigate a CNN based on dependency trees to perform event detection. Orr et al. (2018) present a Gated Recurrent Unit (GRU) based model that combines both temporal structure along with syntactic information through an attention mechanism. Event extraction task has also been addressed in specialized tracks dedicated in Text Analysis Conference (TAC). Event extraction in disaster domain in English language is reported in (Tanev et al., 2008; Yun, 2011; Klein et al., 2013; Dittrich and Lucas, 2014; Nugent et al., 2017; Burel et al., 2017) . However, significant attempt to build event extraction system in Indian languages is lacking. In recent times, some of the works are reported in (SharmilaDevi et al., 2017; Sristy et al., 2017; Kuila and Sarkar, 2017; Singh et al., 2017) . To the best of our knowledge, this is the first attempt to solve four important subtasks of event extraction viz. event trigger detection, event trigger classification, argument trigger detection and argument trigger classification simultaneously in a multi-task, multi-lingual setting.",
                "cite_spans": [
                    {
                        "start": 250,
                        "end": 273,
                        "text": "(Ji and Grishman, 2008;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 274,
                        "end": 292,
                        "text": "Hong et al., 2011;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 293,
                        "end": 317,
                        "text": "Liao and Grishman, 2010)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 397,
                        "end": 424,
                        "text": "Riedel and McCallum (2011a)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 427,
                        "end": 454,
                        "text": "Riedel and McCallum (2011b)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 457,
                        "end": 473,
                        "text": "Li et al. (2013)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 476,
                        "end": 499,
                        "text": "Venugopal et al. (2014)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 1023,
                        "end": 1044,
                        "text": "Ghaeini et al. (2016)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 1278,
                        "end": 1295,
                        "text": "Liu et al. (2016)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 1607,
                        "end": 1624,
                        "text": "Liu et al. (2017)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1864,
                        "end": 1888,
                        "text": "Yang and Mitchell (2016)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 2055,
                        "end": 2073,
                        "text": "Liu et al. (2018a)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 2178,
                        "end": 2196,
                        "text": "Liu et al. (2018b)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 2281,
                        "end": 2298,
                        "text": "Sha et al. (2018)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 2533,
                        "end": 2550,
                        "text": "Orr et al. (2018)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 2887,
                        "end": 2907,
                        "text": "(Tanev et al., 2008;",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 2908,
                        "end": 2918,
                        "text": "Yun, 2011;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 2919,
                        "end": 2938,
                        "text": "Klein et al., 2013;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 2939,
                        "end": 2964,
                        "text": "Dittrich and Lucas, 2014;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 2965,
                        "end": 2985,
                        "text": "Nugent et al., 2017;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 2986,
                        "end": 3005,
                        "text": "Burel et al., 2017)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 3153,
                        "end": 3180,
                        "text": "(SharmilaDevi et al., 2017;",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 3181,
                        "end": 3201,
                        "text": "Sristy et al., 2017;",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 3202,
                        "end": 3225,
                        "text": "Kuila and Sarkar, 2017;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 3226,
                        "end": 3245,
                        "text": "Singh et al., 2017)",
                        "ref_id": "BIBREF34"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Works",
                "sec_num": "2"
            },
            {
                "text": "In this paper, we propose a multi-task, multilingual trigger detection and classification method for Hindi and Bengali in Disaster related news data. For a given Hindi/Bengali sentence, we perform the following tasks simultaneously: (a) Event Trigger Detection: Word or phrase that describes an event is called event trigger. Detecting event triggers is a sequence labeling task. But we formulate our current approach as a multi-class classification task as in Ghaeini et al., 2016) . (b) Event Trigger Classification: Here the task is to classify each event trigger into predefined types. (c) Argument Detection: Arguments are entities, times or values related to an event. Here the task is to detect such trigger words or phrase. (d) Argument Classification: Classify each argument trigger into predefined argument roles. Argument detection is also a sequence labeling task. Like event detection, we also formulate this task as a multi-class classification problem. In most of the previous works, both event and argument detection are considered as two separate tasks. However in our current work, we combine both the tasks into a single task based on our observation. Detailed analysis of news articles reveal the fact that each type of event triggers along with its corresponding arguments follow a particular pattern in a sentence. In the first example, the sentence contains Place argument \u0926 \u0932\u0940 (Delhi) and Time argument \u0936\u093e\u092e 6 \u092c\u091c\u0947 (6pm). Each type of argument is followed by a type specific post-position ('\u092e ' for Place argument and '\u0915\u0947 ' for Time argument). In second example the sentence contains event specific argument like Magnitude (7.2) of earthquake along with Place argument \u0907\u0902 \u0921\u094b \u0928\u0936\u092f\u093e (Indonesia). This type of patterns are often seen in news documents. So it is intuitive to consider both event and argument trigger detection as a single task. For classification also, we merge both the event trigger classification and argument trigger classification as a single task. In this way, we learn all the four above mentioned tasks simultaneously using two loss functions. We perform our experiments using both Hindi and Bengali news datasets in mono-lingual as well as multi-lingual settings. We compare our multi-task learning (MTL) results with single-task learning (STL) results for the above mentioned mono-lingual and multi-lingual settings. For most of the cases we are getting 2% to 7% performance improvement in detection task. However for classification task, we see that the performance improves for some of the classes and for the remaining classes, the model does not perform at par with the other classes. Two contributions of our paper are \u2022 A multi-task, multi-lingual approach for event extraction in Hindi and Bengali for disaster domain. Our proposed system has two variants -(a) The classification output helping in detection (MT1). (b) The detection output helping in classification (MT2). Both the architectures are discussed in methodology section.",
                "cite_spans": [
                    {
                        "start": 461,
                        "end": 482,
                        "text": "Ghaeini et al., 2016)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description and Contributions",
                "sec_num": "3"
            },
            {
                "text": "\u2022 Provide a benchmark setup for event extraction in Hindi language.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description and Contributions",
                "sec_num": "3"
            },
            {
                "text": "The following examples show that each type of event and argument trigger is followed by semantically similar kind of words in a sentence. We highlight the event trigger and different types of argument triggers using different colour codes for better readability. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description and Contributions",
                "sec_num": "3"
            },
            {
                "text": "Our proposed models take sentence of the form [w 0 ,w 1 ,...,w n ] as input. It produces two outputs for two main tasks namely detection (both event and argument) and classification (both event and argument). The detection task predicts the event or argument label (l i ) for each word (w i ) where l i \u2208 I,O,B 1 . As we formulate detection as a multiclass classification task even though it being a sequence labeling task, we use softmax classifier at the final layer. For classification task also, we use softmax classifier at the final layer to classify event and argument trigger into their predefined types. We employ a hard parameter sharing strategy (Caruana, 1993) . We use a shared Bidirectional Long Short-Time Memory (Bi-LSTM) (Schuster and Paliwal, 1997) to capture the contextual information of each word. Figure 1a illustrates the design of first variant of our proposed architecture. Here the classification output of each word is concatenated with the corresponding representation resulting from the shared Bi-LSTM and fed as input to the final detection layer of that word. This is done with the intuition of improving the detection results with the help of classification output. For example if a word is classified as 'None' then it has higher chance of being outside event or argument trigger boundaries. In subsequent sections, we call this architecture as MT1. Figure 1b illustrates the design of second variant of our proposed architecture. Here the detection output of each word is concatenated with the corresponding representation of the shared Bi-LSTM and fed as input to the final classification layer. This is done with the intuition of improving the classification results with the help of detection output.",
                "cite_spans": [
                    {
                        "start": 657,
                        "end": 672,
                        "text": "(Caruana, 1993)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 738,
                        "end": 766,
                        "text": "(Schuster and Paliwal, 1997)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 819,
                        "end": 828,
                        "text": "Figure 1a",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 1383,
                        "end": 1392,
                        "text": "Figure 1b",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "4"
            },
            {
                "text": "Each word of the input instance is converted to a numeric representation with the help of fast-Text (Grave et al., 2018) word embeddings having dimension 300 (d e ). The pre-trained word vectors are downloaded from fastText website 2 . To learn a mapping between mono-lingual word embeddings and obtain cross-lingual embeddings in order to bridge the language gap between two languages, we use the existing alignment matrices 3 which align monolingual vectors from two lan-2 https://fasttext.cc 3 https://github.com/Babylonpartners/ fastText_multilingual guages in a single vector space (Smith et al., 2017) .",
                "cite_spans": [
                    {
                        "start": 100,
                        "end": 120,
                        "text": "(Grave et al., 2018)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 587,
                        "end": 607,
                        "text": "(Smith et al., 2017)",
                        "ref_id": "BIBREF35"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Embedding",
                "sec_num": "4.1"
            },
            {
                "text": "In order to handle Out-of-Vocabulary (OOV) words in the monolingual setting, we obtain their word embedding vectors from fastText's .bin file. Separate vocabularies for OOV words are created for Hindi and Bengali respectively. We create separate .vec file for the two OOV vocabularies. We similarly transform these vectors of two different languages in a shared space using the existing alignment matrices 3 . It is seen that the performance has significantly improved using crosslingual embeddings for OOV words compared to the method of using zero vectors for representing them. Since there is a lack of annotated data for our task, we create the datasets by crawling online Hindi and Bengali news articles and then annotate them following the TAC KBP 4 guidelines. For annotation, three annotators were employed. We estimate the inter-annotator agreement ratio by ask-ing all the three annotators to annotate 5% of total documents. The multi-rater Kappa (Fleiss, 1971) agreement ratio of 0.82 and 0.85 was observed for Hindi and Bengali news documents respectively.",
                "cite_spans": [
                    {
                        "start": 957,
                        "end": 971,
                        "text": "(Fleiss, 1971)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Embedding",
                "sec_num": "4.1"
            },
            {
                "text": "For both the languages, news documents are crawled from online news portal. Every sentence of news documents was pre-processed for four sub-tasks of event extraction viz. event trigger detection, event trigger classification, argument detection and argument classification. Table 2 presents an example of sample annotation. For detection, we use IOB2 1 format (Ramshaw and Marcus, 1999). Our proposed Hindi dataset has two types of disaster events namely natural disaster and man-made disaster which are further classified into twenty seven sub-types. Each event trigger belongs to one of the twenty seven classes, which can be found in Table 8 . Every event has multiple arguments of different roles. Hindi dataset contains eleven types of arguments excluding Type argument type. Bengali dataset also contains eleven type of arguments excluding argument type Intensity. Table 5 contains all the argument types. Some of the argument types common to both Hindi and Bengali, irrespective of the event types, are Place, Time, Casualties and After-effect. Some of the arguments are specific to some particular event types. For example, Magnitude and Epicentre are event specific arguments related to Earthquake. Table 1 presents the dataset statistics for training and the test set of Hindi and Bengali, respectively.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 274,
                        "end": 281,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 637,
                        "end": 644,
                        "text": "Table 8",
                        "ref_id": "TABREF10"
                    },
                    {
                        "start": 871,
                        "end": 878,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 1208,
                        "end": 1215,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Datasets and Experiments",
                "sec_num": "5"
            },
            {
                "text": "Optimizer Adam For implementing the deep learning models Python based library Keras (Chollet et al., 2015) with Tensorflow (Abadi et al., 2015) backend is used. All the models are trained for 300 epochs. Training is done using a learning rate of 0.001 and 'Adam' optimizer is used for fast convergence. The data is fed to the neural network in batches of 32. 'Checkpoints' are used to save the best weights of the model based on training accuracy. Table 3 shows the hyper-parameter settings used in the implementation of both the variants of our proposed model. For evaluation precision, recall and F1score are used as the metrics. However in result tables (refer Table 4, Table 5, Table 6, Table 7 and  Table 8 ) only F1-score is reported. Table 4, Table 5 and Table 8 show the experimental results for event and argument trigger detection, argument role classification and event trigger classification respectively, where ST denotes Single task, MT1 denotes Multi-task 1, MT2 denotes Multi-task 2 and SP denotes support count. Table 4 shows that multi-task model 1 (MT1) performs well as compared to single task (ST) model for all language settings. For each language setting, performance improvement is maximum in case of I_Event tag. We find that it is 7.3% for Hindi, for Bengali it is 11.5% and for multi-lingual setting it shows improvement of 6.5%. Analyzing the predictions of all the variants of our system reveal that words are usually miss-classified more between the Beginning (B) and Inside (I) tag type of either event or argument instead of events getting miss-classified as argument triggers. Thus we can conclude that the system produces near correct prediction of event and argument trigger in most of the cases, only issue being that it sometimes fail to determine the correct trigger boundary. Figure 2a and Figure 2b show the confusion matrix obtained by MT1 in trigger detection and trigger classification in the multilingual setting.",
                "cite_spans": [
                    {
                        "start": 84,
                        "end": 106,
                        "text": "(Chollet et al., 2015)",
                        "ref_id": null
                    },
                    {
                        "start": 123,
                        "end": 143,
                        "text": "(Abadi et al., 2015)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 448,
                        "end": 455,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 664,
                        "end": 711,
                        "text": "Table 4, Table 5, Table 6, Table 7 and  Table 8",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 741,
                        "end": 769,
                        "text": "Table 4, Table 5 and Table 8",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 1029,
                        "end": 1036,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 1815,
                        "end": 1824,
                        "text": "Figure 2a",
                        "ref_id": "FIGREF3"
                    },
                    {
                        "start": 1829,
                        "end": 1838,
                        "text": "Figure 2b",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Loss function for Classification categorical_crossentropy",
                "sec_num": null
            },
            {
                "text": "We also perform separate experiments to evaluate our proposed approach with the earlier proposed approaches of separately detecting event and argument triggers from sentences. Table 6 shows the F1-score achieved in event trigger detection and Table 7 shows the F1-score obtained in argument trigger detection for both the Hindi and Bengali datasets. The evaluation shows that there is not any significant loss in performance in simultaneous detection of event and argument triggers compared to individual trigger detection even though there is a marginal improvement in detection of the tag I_Event for Bengali in the argument detection model compared to the model which per- forms simultaneous detection of both triggers.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 176,
                        "end": 183,
                        "text": "Table 6",
                        "ref_id": "TABREF8"
                    },
                    {
                        "start": 243,
                        "end": 250,
                        "text": "Table 7",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison With Separate Event and Argument Trigger Detection System",
                "sec_num": "6.1"
            },
            {
                "text": "In the following Input Example 1, \u0935\u093e\u0932\u093e\u092e\u0941 \u0916\u0940 \u0935 \u092b\u094b\u091f (jvaalaamukhee visphot\\volcanic erup-tions) is a multi-word event trigger. The tags assigned for this trigger are B_Event and I_Event respectively. In Input Example 2, the event trigger \u0935 \u092b\u094b\u091f (visphot\\eruptions) is tagged as B_Event.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "6.2"
            },
            {
                "text": "For the first case, all the variants of the sys-tem predict the event trigger correctly but for the later case, our single task detection system (ST) and multi-task system 2 (MT2) predict it as outside event and argument trigger boundary (O) but multi-task system 1 (MT1) predicts it as inside event trigger (I_Event) rather than beginning of event trigger (B_Event). Thus we can see that all the variants miss-classify the trigger tag with MT1 being able to produce partially correct prediction as it, at least, classifies it to be of event type. However the classification result of the said event trigger in example 2 is correctly predicted by MT1 but it is wrongly predicted by MT2. Here we can see that the classification task is helping in detection task. We provide below a detailed error analysis of the results achieved in classification task (refer to Table 5 and Table 8 ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 862,
                        "end": 881,
                        "text": "Table 5 and Table 8",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "6.2"
            },
            {
                "text": "1. In the classification task (refer to Table 5), error analysis reveals that the performance is affected mainly due to two cases : (a) when the Support count of a trigger type is less, (b) when each trigger mention in a sentence is long, i.e. it consists of numerous words. For example, Participant, Time, Place, Casualties and Intensity have better F1-score as the trigger mentions corresponding to these types are in the form of short phrases as well as these types have larger support count. However, roles like After Effect and Reason have comparatively lower performance as these trigger mentions appear in sentences in the form of long phrases. Even though Magnitude has less support count, performance is better compared to the other roles as the trigger mention is in the form of a single word comprising of a numeric figure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "6.2"
            },
            {
                "text": "In Table 8 , we observe the following drawbacks which can possibly lead to erroneous output.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 10,
                        "text": "Table 8",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "6.2"
            },
            {
                "text": "1. We find that performance decreases for similar types of events. For example, types like Fire, Forest Fire and Industrial Accident are of similar type. We see that the performance of these types is low in Hindi as all of them are present in the dataset, thereby getting missclassified. However in Bengali dataset, we find Fire performs relatively better as there does not exist any sentence having event trigger of type Forest Fire and Industrial Accident.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "6.2"
            },
            {
                "text": "2. In Hindi dataset, we find that type Transport Hazard is seen to be misclassified with type Train Collision and type Vehicular Collision, therby leading to poor performance. For Bengali dataset, there hardly exists any trigger of type Train Collision and event trigger of type Vehicular Collision exists in small number. Thus Bengali dataset performs much better for Transport Hazard.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "6.2"
            },
            {
                "text": "In this paper, we present a multi-tasking, multilingual architecture for simultaneous detection and classification of event and argument triggers. We have proposed two variants where in each one of them, one task is helping another related task. Our results show that related tasks can definitely share information between them. We also compare our approach with separate models which can be employed for event and argument trigger detection respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Works",
                "sec_num": "7"
            },
            {
                "text": "Other future works include developing an endto-end system which will consist of a multi-tasking system such that given a sentence as input, event and argument triggers will be extracted from it and if there exists any link between the extracted event and argument, then the output of the system will be positive and otherwise negative.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Works",
                "sec_num": "7"
            },
            {
                "text": "The work reported in this paper is supported by the project titled \"A Platform for Cross-lingual and Multi-lingual Event Monitoring in Indian Languages\", sponsored by IMPRINT-1, Ministry of Human Resource and Development, Government of India. Sovan Kumar Sahoo gratefully acknowledges \"Visvesvaraya PhD Scheme for Electronics and IT\", under the Ministry of Electronics and Information Technology, Government of India.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgement",
                "sec_num": "8"
            },
            {
                "text": "The encoding scheme is according to IOB2, where I indicates the tokens that appear within trigger, B denotes the beginning of a trigger and O denotes the outside of an event trigger. The B is used only when two events of the same type appear in consecutive sequence(Ramshaw and Marcus, 1999)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://www.nist.gov/tac/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org",
                "authors": [
                    {
                        "first": "Mart\u00edn",
                        "middle": [],
                        "last": "Abadi",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Agarwal",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Barham",
                        "suffix": ""
                    },
                    {
                        "first": "Eugene",
                        "middle": [],
                        "last": "Brevdo",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifeng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Craig",
                        "middle": [],
                        "last": "Citro",
                        "suffix": ""
                    },
                    {
                        "first": "Greg",
                        "middle": [
                            "S"
                        ],
                        "last": "Corrado",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Davis",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    },
                    {
                        "first": "Matthieu",
                        "middle": [],
                        "last": "Devin",
                        "suffix": ""
                    },
                    {
                        "first": "Sanjay",
                        "middle": [],
                        "last": "Ghemawat",
                        "suffix": ""
                    },
                    {
                        "first": "Ian",
                        "middle": [],
                        "last": "Goodfellow",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Harp",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [],
                        "last": "Irving",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Isard",
                        "suffix": ""
                    },
                    {
                        "first": "Yangqing",
                        "middle": [],
                        "last": "Jia",
                        "suffix": ""
                    },
                    {
                        "first": "Rafal",
                        "middle": [],
                        "last": "Jozefowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Lukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Manjunath",
                        "middle": [],
                        "last": "Kudlur",
                        "suffix": ""
                    },
                    {
                        "first": "Josh",
                        "middle": [],
                        "last": "Levenberg",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mart\u00edn Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor- rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Man\u00e9, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schus- ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vi\u00e9gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "On semantics and deep learning for event detection in crisis situations",
                "authors": [
                    {
                        "first": "Gr\u00e9goire",
                        "middle": [],
                        "last": "Burel",
                        "suffix": ""
                    },
                    {
                        "first": "Hassan",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "Miriam",
                        "middle": [],
                        "last": "Fernandez",
                        "suffix": ""
                    },
                    {
                        "first": "Harith",
                        "middle": [],
                        "last": "Alani",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Workshop on Semantic Deep Learning (SemDeep)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gr\u00e9goire Burel, Hassan Saif, Miriam Fernandez, and Harith Alani. 2017. On semantics and deep learning for event detection in crisis situations. Workshop on Semantic Deep Learning (SemDeep), at ESWC 2017, 29 May 2017, Portoroz, Slovenia.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Multitask learning. Machine learning",
                "authors": [
                    {
                        "first": "Rich",
                        "middle": [],
                        "last": "Caruana",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "28",
                "issue": "",
                "pages": "41--75",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rich Caruana. 1997. Multitask learning. Machine learning, 28(1):41-75.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Multitask learning: A knowledge-based source of inductive bias",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Caruana",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Proceedings of the Tenth International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "41--48",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Caruana. 1993. Multitask learning: A knowledge-based source of inductive bias. In Pro- ceedings of the Tenth International Conference on Machine Learning, pages 41-48. Morgan Kauf- mann.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Event extraction via dynamic multipooling convolutional neural networks",
                "authors": [
                    {
                        "first": "Yubo",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Liheng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Daojian",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "167--176",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event extraction via dynamic multi- pooling convolutional neural networks. In Proceed- ings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna- tional Joint Conference on Natural Language Pro- cessing (Volume 1: Long Papers), volume 1, pages 167-176.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Is this twitter event a disaster?",
                "authors": [
                    {
                        "first": "Andr\u00e9",
                        "middle": [],
                        "last": "Dittrich",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Lucas",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andr\u00e9 Dittrich and Christian Lucas. 2014. Is this twitter event a disaster? AGILE Digital Editions.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "A language-independent neural network for event detection",
                "authors": [
                    {
                        "first": "Xiaocheng",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Science China Information Sciences",
                "volume": "61",
                "issue": "9",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaocheng Feng, Bing Qin, and Ting Liu. 2018. A language-independent neural network for event detection. Science China Information Sciences, 61(9):092106.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Measuring nominal scale agreement among many raters",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Joseph",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Fleiss",
                        "suffix": ""
                    }
                ],
                "year": 1971,
                "venue": "Psychological bulletin",
                "volume": "76",
                "issue": "5",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joseph L Fleiss. 1971. Measuring nominal scale agree- ment among many raters. Psychological bulletin, 76(5):378.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Event nugget detection with forward-backward recurrent neural networks",
                "authors": [
                    {
                        "first": "Reza",
                        "middle": [],
                        "last": "Ghaeini",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoli",
                        "middle": [],
                        "last": "Fern",
                        "suffix": ""
                    },
                    {
                        "first": "Liang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Prasad",
                        "middle": [],
                        "last": "Tadepalli",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "369--373",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Reza Ghaeini, Xiaoli Fern, Liang Huang, and Prasad Tadepalli. 2016. Event nugget detection with forward-backward recurrent neural networks. In Proceedings of the 54th Annual Meeting of the As- sociation for Computational Linguistics (Volume 2: Short Papers), volume 2, pages 369-373.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Learning Word Vectors for 157 Languages",
                "authors": [
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "Prakhar",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018)",
                "volume": "",
                "issue": "",
                "pages": "3483--3487",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar- mand Joulin, and Tomas Mikolov. 2018. Learning Word Vectors for 157 Languages. In Proceedings of the International Conference on Language Re- sources and Evaluation (LREC 2018), pages 3483- 3487.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Using cross-entity inference to improve event extraction",
                "authors": [
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Hong",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Bin",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Jianmin",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Guodong",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Qiaoming",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1127--1136",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao, Guodong Zhou, and Qiaoming Zhu. 2011. Us- ing cross-entity inference to improve event extrac- tion. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Hu- man Language Technologies-Volume 1, pages 1127- 1136. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Refining event extraction through cross-document inference",
                "authors": [
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of ACL-08: HLT",
                "volume": "",
                "issue": "",
                "pages": "254--262",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Heng Ji and Ralph Grishman. 2008. Refining event extraction through cross-document inference. Pro- ceedings of ACL-08: HLT, pages 254-262.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Emergency event detection in twitter streams based on natural language processing",
                "authors": [
                    {
                        "first": "Bernhard",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    },
                    {
                        "first": "Federico",
                        "middle": [],
                        "last": "Castanedo",
                        "suffix": ""
                    },
                    {
                        "first": "Inigo",
                        "middle": [],
                        "last": "Elejalde",
                        "suffix": ""
                    },
                    {
                        "first": "Diego",
                        "middle": [],
                        "last": "L\u00f3pez-De Ipina",
                        "suffix": ""
                    },
                    {
                        "first": "Alejandro",
                        "middle": [
                            "Prada"
                        ],
                        "last": "Nespral",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "International Conference on Ubiquitous Computing and Ambient Intelligence",
                "volume": "",
                "issue": "",
                "pages": "239--246",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bernhard Klein, Federico Castanedo, Inigo Elejalde, Diego L\u00f3pez-de Ipina, and Alejandro Prada Nespral. 2013. Emergency event detection in twitter streams based on natural language processing. In Inter- national Conference on Ubiquitous Computing and Ambient Intelligence, pages 239-246. Springer.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "An event extraction system via neural networks. FIRE (Working Notes)",
                "authors": [
                    {
                        "first": "Alapan",
                        "middle": [],
                        "last": "Kuila",
                        "suffix": ""
                    },
                    {
                        "first": "Sudeshna",
                        "middle": [],
                        "last": "Sarkar",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "136--139",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alapan Kuila and Sudeshna Sarkar. 2017. An event ex- traction system via neural networks. FIRE (Working Notes), pages 136-139.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Joint event extraction via structured prediction with global features",
                "authors": [
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Ji",
                        "middle": [],
                        "last": "Heng",
                        "suffix": ""
                    },
                    {
                        "first": "Liang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "73--82",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Qi Li, Heng Ji, and Liang Huang. 2013. Joint event extraction via structured prediction with global fea- tures. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), volume 1, pages 73-82.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Using document level cross-event inference to improve event extraction",
                "authors": [
                    {
                        "first": "Shasha",
                        "middle": [],
                        "last": "Liao",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "789--797",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shasha Liao and Ralph Grishman. 2010. Using doc- ument level cross-event inference to improve event extraction. In Proceedings of the 48th Annual Meet- ing of the Association for Computational Linguistics, pages 789-797. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Event detection via gated multilingual attention mechanism",
                "authors": [
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yubo",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2018a. Event detection via gated multilingual attention mechanism. In Thirty-Second AAAI Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Leveraging framenet to improve automatic event detection",
                "authors": [
                    {
                        "first": "Shulin",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yubo",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Shizhu",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "2134--2143",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shulin Liu, Yubo Chen, Shizhu He, Kang Liu, and Jun Zhao. 2016. Leveraging framenet to improve automatic event detection. In Proceedings of the 54th Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), vol- ume 1, pages 2134-2143.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Exploiting argument information to improve event detection via supervised attention mechanisms",
                "authors": [
                    {
                        "first": "Shulin",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yubo",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shulin Liu, Yubo Chen, Kang Liu, Jun Zhao, et al. 2017. Exploiting argument information to improve event detection via supervised attention mechanisms.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Jointly multiple events extraction via attention-based graph information aggregation",
                "authors": [
                    {
                        "first": "Xiao",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Zhunchen",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "Heyan",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1247--1256",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018b. Jointly multiple events extraction via attention-based graph information aggregation. In Proceedings of the 2018 Conference on Empirical Methods in Nat- ural Language Processing, pages 1247-1256.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Joint event extraction via recurrent neural networks",
                "authors": [
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Thien Huu Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "300--309",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish- man. 2016. Joint event extraction via recurrent neu- ral networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, pages 300-309.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Event detection and domain adaptation with convolutional neural networks",
                "authors": [
                    {
                        "first": "Huu",
                        "middle": [],
                        "last": "Thien",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "2",
                "issue": "",
                "pages": "365--371",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thien Huu Nguyen and Ralph Grishman. 2015. Event detection and domain adaptation with convolutional neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin- guistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), volume 2, pages 365-371.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Modeling skip-grams for event detection with convolutional neural networks",
                "authors": [
                    {
                        "first": "Huu",
                        "middle": [],
                        "last": "Thien",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "886--891",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thien Huu Nguyen and Ralph Grishman. 2016. Mod- eling skip-grams for event detection with convolu- tional neural networks. In Proceedings of the 2016 Conference on Empirical Methods in Natural Lan- guage Processing, pages 886-891.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Graph convolutional networks with argument-aware pooling for event detection",
                "authors": [
                    {
                        "first": "Huu",
                        "middle": [],
                        "last": "Thien",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thien Huu Nguyen and Ralph Grishman. 2018. Graph convolutional networks with argument-aware pool- ing for event detection. In Thirty-Second AAAI Con- ference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "A comparison of classification models for natural disaster and critical event detection from news",
                "authors": [
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Nugent",
                        "suffix": ""
                    },
                    {
                        "first": "Fabio",
                        "middle": [],
                        "last": "Petroni",
                        "suffix": ""
                    },
                    {
                        "first": "Natraj",
                        "middle": [],
                        "last": "Raman",
                        "suffix": ""
                    },
                    {
                        "first": "Lucas",
                        "middle": [],
                        "last": "Carstens",
                        "suffix": ""
                    },
                    {
                        "first": "Jochen L",
                        "middle": [],
                        "last": "Leidner",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "2017 IEEE International Conference on",
                "volume": "",
                "issue": "",
                "pages": "3750--3759",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tim Nugent, Fabio Petroni, Natraj Raman, Lucas Carstens, and Jochen L Leidner. 2017. A compar- ison of classification models for natural disaster and critical event detection from news. In Big Data (Big Data), 2017 IEEE International Conference on, pages 3750-3759. IEEE.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Event detection with neural networks: A rigorous empirical evaluation",
                "authors": [
                    {
                        "first": "Walker",
                        "middle": [],
                        "last": "Orr",
                        "suffix": ""
                    },
                    {
                        "first": "Prasad",
                        "middle": [],
                        "last": "Tadepalli",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoli",
                        "middle": [],
                        "last": "Fern",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "999--1004",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Walker Orr, Prasad Tadepalli, and Xiaoli Fern. 2018. Event detection with neural networks: A rigorous empirical evaluation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Lan- guage Processing, pages 999-1004.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Text chunking using transformation-based learning",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Lance",
                        "suffix": ""
                    },
                    {
                        "first": "Mitchell P",
                        "middle": [],
                        "last": "Ramshaw",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Marcus",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Natural language processing using very large corpora",
                "volume": "",
                "issue": "",
                "pages": "157--176",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lance A Ramshaw and Mitchell P Marcus. 1999. Text chunking using transformation-based learning. In Natural language processing using very large cor- pora, pages 157-176. Springer.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Fast and robust joint models for biomedical event extraction",
                "authors": [
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Riedel",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1--12",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sebastian Riedel and Andrew McCallum. 2011a. Fast and robust joint models for biomedical event extrac- tion. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1- 12. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Robust biomedical event extraction with dual decomposition and minimal domain adaptation",
                "authors": [
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Riedel",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the BioNLP Shared Task 2011 Workshop",
                "volume": "",
                "issue": "",
                "pages": "46--50",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sebastian Riedel and Andrew McCallum. 2011b. Ro- bust biomedical event extraction with dual decom- position and minimal domain adaptation. In Pro- ceedings of the BioNLP Shared Task 2011 Workshop, pages 46-50. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "An overview of multi-task learning in",
                "authors": [
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Ruder",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "deep neural networks",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1706.05098"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sebastian Ruder. 2017. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Bidirectional recurrent neural networks",
                "authors": [
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Schuster",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Kuldip",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Paliwal",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "IEEE Transactions on Signal Processing",
                "volume": "45",
                "issue": "11",
                "pages": "2673--2681",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mike Schuster and Kuldip K Paliwal. 1997. Bidirec- tional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11):2673-2681.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Jointly extracting event triggers and arguments by dependency-bridge rnn and tensor-based argument interaction",
                "authors": [
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Sha",
                        "suffix": ""
                    },
                    {
                        "first": "Feng",
                        "middle": [],
                        "last": "Qian",
                        "suffix": ""
                    },
                    {
                        "first": "Baobao",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifang",
                        "middle": [],
                        "last": "Sui",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui. 2018. Jointly extracting event triggers and argu- ments by dependency-bridge rnn and tensor-based argument interaction. In Thirty-Second AAAI Con- ference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Kce_dalab@ eventxtract-il-fire2017: Event extraction using support vector machines. FIRE (Working Notes)",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Sharmiladevi",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Kannimuthu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Safeeq",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "144--146",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "V SharmilaDevi, S Kannimuthu, and G Safeeq. 2017. Kce_dalab@ eventxtract-il-fire2017: Event extrac- tion using support vector machines. FIRE (Working Notes), pages 144-146.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Event classification and location prediction from tweets during disasters",
                "authors": [
                    {
                        "first": "Jyoti",
                        "middle": [
                            "Prakash"
                        ],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Yogesh",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dwivedi",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Nripendra",
                        "suffix": ""
                    },
                    {
                        "first": "Abhinav",
                        "middle": [],
                        "last": "Rana",
                        "suffix": ""
                    },
                    {
                        "first": "Kawaljeet Kaur",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kapoor",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Annals of Operations Research",
                "volume": "",
                "issue": "",
                "pages": "1--21",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jyoti Prakash Singh, Yogesh K Dwivedi, Nripendra P Rana, Abhinav Kumar, and Kawaljeet Kaur Kapoor. 2017. Event classification and location prediction from tweets during disasters. Annals of Operations Research, pages 1-21.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Offline bilingual word vectors, orthogonal transformations and the inverted softmax",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Samuel",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [
                            "P"
                        ],
                        "last": "David",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Turban",
                        "suffix": ""
                    },
                    {
                        "first": "Nils",
                        "middle": [
                            "Y"
                        ],
                        "last": "Hamblin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hammerla",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1702.03859"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Samuel L Smith, David HP Turban, Steven Hamblin, and Nils Y Hammerla. 2017. Offline bilingual word vectors, orthogonal transformations and the inverted softmax. arXiv preprint arXiv:1702.03859.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Event extraction from social media text using conditional random fields",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nagesh Bhattu Sristy",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Satya Krishna",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Durvasula",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Somayajulu",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "FIRE (Working Notes)",
                "volume": "",
                "issue": "",
                "pages": "140--143",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nagesh Bhattu Sristy, N Satya Krishna, and Durva- sula VLN Somayajulu. 2017. Event extraction from social media text using conditional random fields. In FIRE (Working Notes), pages 140-143.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Real-time news event extraction for global crisis monitoring",
                "authors": [
                    {
                        "first": "Hristo",
                        "middle": [],
                        "last": "Tanev",
                        "suffix": ""
                    },
                    {
                        "first": "Jakub",
                        "middle": [],
                        "last": "Piskorski",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Atkinson",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "International Conference on Application of Natural Language to Information Systems",
                "volume": "",
                "issue": "",
                "pages": "207--218",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hristo Tanev, Jakub Piskorski, and Martin Atkinson. 2008. Real-time news event extraction for global crisis monitoring. In International Conference on Application of Natural Language to Information Sys- tems, pages 207-218. Springer.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Relieving the computational bottleneck: Joint inference for event extraction with high-dimensional features",
                "authors": [
                    {
                        "first": "Deepak",
                        "middle": [],
                        "last": "Venugopal",
                        "suffix": ""
                    },
                    {
                        "first": "Chen",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Vibhav",
                        "middle": [],
                        "last": "Gogate",
                        "suffix": ""
                    },
                    {
                        "first": "Vincent",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "831--843",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Deepak Venugopal, Chen Chen, Vibhav Gogate, and Vincent Ng. 2014. Relieving the computational bot- tleneck: Joint inference for event extraction with high-dimensional features. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 831-843.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Joint extraction of events and entities within a document context",
                "authors": [
                    {
                        "first": "Bishan",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1609.03632"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bishan Yang and Tom Mitchell. 2016. Joint extrac- tion of events and entities within a document context. arXiv preprint arXiv:1609.03632.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Disaster events detection using twitter data",
                "authors": [
                    {
                        "first": "Hong-Won",
                        "middle": [],
                        "last": "Yun",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Journal of information and communication convergence engineering",
                "volume": "9",
                "issue": "1",
                "pages": "69--73",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hong-Won Yun. 2011. Disaster events detection using twitter data. Journal of information and communi- cation convergence engineering, 9(1):69-73.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "Architecture of Our Proposed Models",
                "uris": null,
                "num": null
            },
            "FIGREF3": {
                "type_str": "figure",
                "text": "Confusion Matrix : MT1 in Multilingual Setting.",
                "uris": null,
                "num": null
            },
            "TABREF2": {
                "type_str": "table",
                "html": null,
                "text": "Dataset Statistics",
                "content": "<table/>",
                "num": null
            },
            "TABREF4": {
                "type_str": "table",
                "html": null,
                "text": "Sample annotation for the sentence given in Example-2 in Task Description and Contribution Section",
                "content": "<table/>",
                "num": null
            },
            "TABREF5": {
                "type_str": "table",
                "html": null,
                "text": "Hyper-parameter Settings",
                "content": "<table/>",
                "num": null
            },
            "TABREF6": {
                "type_str": "table",
                "html": null,
                "text": "Trigger Detection (Events and Arguments) Results",
                "content": "<table><tr><td/><td/><td colspan=\"2\">Hindi</td><td/><td/><td colspan=\"2\">Bengali</td><td/><td/><td colspan=\"2\">Multi-Lingual</td></tr><tr><td/><td colspan=\"3\">ST MT1 MT2</td><td>SP</td><td colspan=\"3\">ST MT1 MT2</td><td>SP</td><td colspan=\"3\">ST MT1 MT2</td><td>SP</td></tr><tr><td colspan=\"4\">Participant 0.35 0.42 0.38</td><td colspan=\"4\">539 0.43 0.43 0.41</td><td colspan=\"4\">816 0.36 0.41 0.36 1355</td></tr><tr><td>Epicentre</td><td colspan=\"3\">0.59 0.46 0.29</td><td>22</td><td colspan=\"3\">0.48 0.27 0.46</td><td>49</td><td>0.4</td><td>0.2</td><td>0.35</td><td>71</td></tr><tr><td colspan=\"2\">After Effect 0.3</td><td colspan=\"10\">0.35 0.31 2828 0.36 0.36 0.35 1648 0.32 0.31 0.33 4476</td></tr><tr><td>Reason</td><td>0.14</td><td>0.1</td><td>0.12</td><td colspan=\"4\">354 0.26 0.21 0.20</td><td colspan=\"4\">280 0.16 0.16 0.18</td><td>634</td></tr><tr><td colspan=\"2\">Magnitude 0.56</td><td>0.6</td><td>0.62</td><td>40</td><td colspan=\"3\">0.52 0.51 0.44</td><td>25</td><td colspan=\"3\">0.47 0.56 0.54</td><td>65</td></tr><tr><td>Place</td><td colspan=\"11\">0.57 0.58 0.56 2369 0.61 0.59 0.61 1588 0.58 0.57 0.56 3957</td></tr><tr><td colspan=\"12\">Casualties 0.58 0.59 0.58 1969 0.73 0.73 0.72 2578 0.65 0.66 0.65 4547</td></tr><tr><td>Name</td><td colspan=\"3\">0.26 0.32 0.27</td><td>67</td><td>0</td><td>0</td><td>0</td><td>9</td><td>0.25</td><td>0.3</td><td>0.23</td><td>76</td></tr><tr><td>Type</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.20 0.20 0.24</td><td>29</td><td colspan=\"3\">0.19 0.11 0.37</td><td>29</td></tr><tr><td>Intensity</td><td colspan=\"2\">0.54 0.44</td><td>0.4</td><td>191</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.45 0.33 0.27</td><td>191</td></tr><tr><td>Time</td><td colspan=\"3\">0.65 0.66 0.63</td><td colspan=\"8\">804 0.84 0.85 0.84 2029 0.79 0.77 0.78 2833</td></tr><tr><td>Speed</td><td colspan=\"2\">0.18 0.11</td><td>0</td><td>17</td><td colspan=\"3\">0.36 0.31 0.46</td><td>4</td><td colspan=\"3\">0.19 0.36 0.27</td><td>21</td></tr></table>",
                "num": null
            },
            "TABREF7": {
                "type_str": "table",
                "html": null,
                "text": "",
                "content": "<table/>",
                "num": null
            },
            "TABREF8": {
                "type_str": "table",
                "html": null,
                "text": "Result of Event Trigger Detection as Only Task.",
                "content": "<table><tr><td/><td colspan=\"2\">Hindi Bengali</td></tr><tr><td colspan=\"2\">B-Arg 0.49</td><td>0.57</td></tr><tr><td>I-Arg</td><td>0.49</td><td>0.64</td></tr></table>",
                "num": null
            },
            "TABREF9": {
                "type_str": "table",
                "html": null,
                "text": "Result of Argument Detection as Only Task.",
                "content": "<table><tr><td/><td/><td colspan=\"2\">Hindi</td><td/><td/><td colspan=\"2\">Bengali</td><td/><td/><td colspan=\"2\">Multi-Lingual</td></tr><tr><td/><td colspan=\"4\">ST MT1 MT2 SP</td><td colspan=\"4\">ST MT1 MT2 SP</td><td colspan=\"4\">ST MT1 MT2 SP</td></tr><tr><td>Armed Conflicts</td><td>0.2</td><td>0.4</td><td>0.31</td><td>7</td><td colspan=\"8\">0.22 0.16 0.22 126 0.21 0.19 0.24 133</td></tr><tr><td colspan=\"4\">Avalanches 0.57 0.61 0.62</td><td>30</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.51 0.57 0.57</td><td>30</td></tr><tr><td>Aviation Hazard</td><td colspan=\"3\">0.35 0.43 0.46</td><td colspan=\"4\">43 0.56 0.47 0.34</td><td colspan=\"4\">34 0.48 0.34 0.41</td><td>77</td></tr><tr><td>Blizzard</td><td>0.49</td><td>0.6</td><td>0.51</td><td>19</td><td>0</td><td>0</td><td>0</td><td>7</td><td colspan=\"2\">0.44 0.41</td><td>0.6</td><td>26</td></tr><tr><td colspan=\"4\">Cold Wave 0.53 0.48 0.53</td><td colspan=\"4\">26 0.50 0.50 0.50</td><td>4</td><td colspan=\"3\">0.52 0.45 0.49</td><td>30</td></tr><tr><td>Cyclone</td><td>0.4</td><td colspan=\"2\">0.49 0.36</td><td>20</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.51 0.45 0.45</td><td>20</td></tr><tr><td colspan=\"8\">Earthquake 0.69 0.73 0.66 115 0.75 0.74 0.68</td><td colspan=\"5\">87 0.71 0.63 0.71 202</td></tr><tr><td>Epidemic</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.33 0.33 0.33</td><td colspan=\"2\">61 0.34</td><td>0.3</td><td>0.3</td><td>61</td></tr><tr><td>Fire</td><td colspan=\"12\">0.27 0.26 0.25 114 0.68 0.68 0.66 120 0.44 0.45 0.48 234</td></tr><tr><td>Floods</td><td>0.56</td><td>0.6</td><td>0.7</td><td colspan=\"4\">27 0.40 0.67 0.50</td><td>1</td><td colspan=\"3\">0.64 0.77 0.66</td><td>28</td></tr><tr><td colspan=\"4\">Forest Fire 0.32 0.31 0.29</td><td>63</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.33</td><td>0.3</td><td>0.24</td><td>63</td></tr><tr><td colspan=\"4\">Hail Storms 0.41 0.46 0.39</td><td>41</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.45 0.52 0.46</td><td>41</td></tr><tr><td colspan=\"4\">Heat Wave 0.39 0.48 0.39</td><td colspan=\"4\">66 0.33 0.24 0.43</td><td>9</td><td colspan=\"3\">0.36 0.37 0.41</td><td>75</td></tr><tr><td colspan=\"2\">Hurricane 0.53</td><td>0.6</td><td>0.38</td><td>35</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.48 0.47 0.45</td><td>35</td></tr><tr><td>Industrial Accident</td><td colspan=\"4\">0.21 0.21 0.17 113</td><td>0</td><td>0.25</td><td>0</td><td>3</td><td colspan=\"4\">0.17 0.18 0.15 116</td></tr><tr><td>Landslide</td><td colspan=\"3\">0.43 0.38 0.44</td><td colspan=\"4\">69 0.74 0.71 0.59</td><td>9</td><td>0.47</td><td>0.5</td><td>0.46</td><td>78</td></tr><tr><td>Normal Bombing</td><td>0.18</td><td>0.2</td><td>0.22</td><td>9</td><td colspan=\"8\">0.61 0.62 0.58 292 0.57 0.55 0.56 301</td></tr><tr><td>Pandemic</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.26 0.23 0.25</td><td colspan=\"4\">87 0.17 0.29 0.32</td><td>87</td></tr><tr><td>Riots</td><td colspan=\"3\">0.29 0.38 0.31</td><td colspan=\"4\">32 0.26 0.31 0.23</td><td colspan=\"2\">44 0.28</td><td>0.2</td><td>0.24</td><td>76</td></tr><tr><td>Shootout</td><td colspan=\"10\">0.49 0.49 0.44 110 0.56 0.54 0.52 177 0.51 0.52</td><td>0.5</td><td>287</td></tr><tr><td>Storm</td><td>0.2</td><td colspan=\"2\">0.22 0.29</td><td colspan=\"4\">24 0.45 0.42 0.42</td><td colspan=\"4\">26 0.43 0.32 0.34</td><td>50</td></tr><tr><td>Suicide Attack</td><td colspan=\"9\">0.64 0.64 0.68 154 0.57 0.62 0.56 123 0.6</td><td colspan=\"3\">0.59 0.58 277</td></tr><tr><td>Surgical Strikes</td><td>0</td><td>0</td><td>0</td><td>2</td><td colspan=\"3\">0.40 0.36 0.44</td><td colspan=\"4\">64 0.41 0.38 0.36</td><td>66</td></tr><tr><td>Terrorist Attack</td><td colspan=\"3\">0.61 0.61 0.62</td><td colspan=\"9\">95 0.32 0.37 0.34 147 0.47 0.48 0.49 242</td></tr><tr><td>Tornado</td><td colspan=\"3\">0.43 0.49 0.35</td><td colspan=\"2\">32 0.57</td><td>0.4</td><td>0.57</td><td>4</td><td colspan=\"3\">0.43 0.38 0.43</td><td>36</td></tr><tr><td>Train Collision</td><td colspan=\"3\">0.52 0.44 0.53</td><td>72</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0.46</td><td>0.4</td><td>0.5</td><td>73</td></tr><tr><td>Transport Hazards</td><td colspan=\"3\">0.13 0.18 0.18</td><td colspan=\"6\">79 0.49 0.47 0.43 127 0.4</td><td colspan=\"3\">0.36 0.37 206</td></tr><tr><td>Tsunami</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.17 0.17 0.17</td><td colspan=\"5\">10 0.32 0.13 0.12 0.32</td></tr><tr><td>Vehicular Collision</td><td colspan=\"3\">0.56 0.52 0.49</td><td colspan=\"4\">93 0.43 0.45 0.48</td><td colspan=\"5\">39 0.44 0.48 0.46 132</td></tr><tr><td>Volcano</td><td>0.5</td><td colspan=\"2\">0.42 0.52</td><td>33</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">0.48 0.45 0.43</td><td>33</td></tr></table>",
                "num": null
            },
            "TABREF10": {
                "type_str": "table",
                "html": null,
                "text": "Event Trigger Classification Results",
                "content": "<table/>",
                "num": null
            }
        }
    }
}