File size: 130,934 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
{
    "paper_id": "2019",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:30:14.810510Z"
    },
    "title": "Non-native Accent Partitioning for Speakers of Indian Regional Languages",
    "authors": [
        {
            "first": "G",
            "middle": [],
            "last": "Radha Krishna",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "VNRVJIET Hyderabad",
                "location": {
                    "country": "India"
                }
            },
            "email": ""
        },
        {
            "first": "R",
            "middle": [],
            "last": "Krishnan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Amritha University Coimbattore",
                "location": {
                    "country": "India"
                }
            },
            "email": ""
        },
        {
            "first": "V",
            "middle": [
                "K"
            ],
            "last": "Mittal",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "K L University",
                "location": {
                    "settlement": "Vijayawada",
                    "country": "India"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Acoustic features extracted from the speech signal can help in identifying speaker related multiple information such as geographical origin, regional accent and nativity. In this paper, classification of native speakers of South Indian languages is carried out based upon the accent of their non-native language, i.e., English. Four South Indian languages: Kannada, Malayalam, Tamil, and Telugu are examined. A database of English speech from the native speakers of these languages, along with the native language speech data was collected, from a non-overlapping set of speakers. Segment level acoustic features Mel-frequency cepstral coefficients (MFCCs) and F 0 are used. Accent partitioning of non-native English speech data is carried out using multiple classifiers: k-nearest neighbour (KNN), linear discriminant analysis (LDA) and support vector machine (SVM), for validation and comparison of results. Classification accuracies of 86.6% are observed using KNN, and 89.2% or more than 90% using SVM classifier. A study of acoustic feature F 0 contour, related to L 2 intonation, showed that native speakers of Kannada language are quite distinct as compared to those of Tamil or Telugu languages. It is also observed that identification of Malayalam and Kannada speakers from their English speech accent is relatively easier than Telugu or Tamil speakers.",
    "pdf_parse": {
        "paper_id": "2019",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Acoustic features extracted from the speech signal can help in identifying speaker related multiple information such as geographical origin, regional accent and nativity. In this paper, classification of native speakers of South Indian languages is carried out based upon the accent of their non-native language, i.e., English. Four South Indian languages: Kannada, Malayalam, Tamil, and Telugu are examined. A database of English speech from the native speakers of these languages, along with the native language speech data was collected, from a non-overlapping set of speakers. Segment level acoustic features Mel-frequency cepstral coefficients (MFCCs) and F 0 are used. Accent partitioning of non-native English speech data is carried out using multiple classifiers: k-nearest neighbour (KNN), linear discriminant analysis (LDA) and support vector machine (SVM), for validation and comparison of results. Classification accuracies of 86.6% are observed using KNN, and 89.2% or more than 90% using SVM classifier. A study of acoustic feature F 0 contour, related to L 2 intonation, showed that native speakers of Kannada language are quite distinct as compared to those of Tamil or Telugu languages. It is also observed that identification of Malayalam and Kannada speakers from their English speech accent is relatively easier than Telugu or Tamil speakers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Identification of speakers, classification of their dialectal zones is important in a multilingual country like India (Bhattacharjee and Sarmah, 2012) . Speaker uniqueness is manifested in both anatomical and learned traits. When the context is constrained, speaker characteristics can be used reliably to identify individuals (Arslan and Hansen, 1996) . The accent is one of the glaring indications of linguistic and social background of a speaker. Studying the characteristics of dialect on a phonetic or phonemic level belongs to accent recognition . Earlier studies have concluded that native language (L 1 ) affects the speaker's traits of their second language (L 2 ) (Ghorbani et al., 2018; Graham and Post, 2018) . Analysis and classification of utterances that belong to specific groups of learners is the main objective of Native Language Identification (NLI) (Nisioi, 2015) . However, there is very little research on the question of accuracy with which accent features can be used to identify a speaker's regional or ethnic origin (Harper and Maxwell, 2008) . A solution to the problem of regional accent classification across English speaking South Indians is attempted in the present research, using a specifically developed corpus.",
                "cite_spans": [
                    {
                        "start": 118,
                        "end": 150,
                        "text": "(Bhattacharjee and Sarmah, 2012)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 327,
                        "end": 352,
                        "text": "(Arslan and Hansen, 1996)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 674,
                        "end": 697,
                        "text": "(Ghorbani et al., 2018;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 698,
                        "end": 720,
                        "text": "Graham and Post, 2018)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 870,
                        "end": 884,
                        "text": "(Nisioi, 2015)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 1043,
                        "end": 1069,
                        "text": "(Harper and Maxwell, 2008)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Discriminative classifiers based on characterizing acoustic differences across foreign accents can be employed to direct an accent dependent recognition system (Omar and Pelecanos, 2010; Ikeno and Hansen, 2006) . Systems with an automatic evaluation of non-native speech, which includes characteristics of the mother tongue will have better performance over similar algorithms that depend upon target languages (Qian et al., 2017) . This is particularly true when the text uttered is unknown. Native listeners are mostly aware of the speaker's regional accent and also the social or geographical subgroup within the region (Hanani et al., 2013) . Automatic speaker characterization is vital in real-world applications and the advantages are widely open (Zampieri et al., 2017; Krishna and Krishnan, 2014) .",
                "cite_spans": [
                    {
                        "start": 160,
                        "end": 186,
                        "text": "(Omar and Pelecanos, 2010;",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 187,
                        "end": 210,
                        "text": "Ikeno and Hansen, 2006)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 411,
                        "end": 430,
                        "text": "(Qian et al., 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 623,
                        "end": 644,
                        "text": "(Hanani et al., 2013)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 753,
                        "end": 776,
                        "text": "(Zampieri et al., 2017;",
                        "ref_id": null
                    },
                    {
                        "start": 777,
                        "end": 804,
                        "text": "Krishna and Krishnan, 2014)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Pattern recognition approach of collecting data, extracting suitable features, and training classification module using machine learning is a powerful tool in applications like Computer-Assisted-Pronunciation-Training (CAPT) programs. Acoustic descriptors are critical in tasks such as sound Classification (Day and Nandi, 2007) . State-of-the-art Accent Identification (AID) systems widely rely on spectral acoustic distribution for modeling the pronunciation. In applications like accent recognition, features distinguishing different phonemes of a language will be useful . Languagespecific differences in phonological development might be related to differences in phoneme and phoneme sequence frequency across languages (Ikeno and Hansen, 2006) . Such variations are also represented by the intonation patterns of individuals (Mary and Yegnanarayana, 2008; Li et al., 2017) . Apart from cepstral features that capture underlying acoustic characteristics, information from higher-level prosodic traits (Doddington, 2001; MALMASI and DRAS, 2017) were examined in the present study.",
                "cite_spans": [
                    {
                        "start": 307,
                        "end": 328,
                        "text": "(Day and Nandi, 2007)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 725,
                        "end": 749,
                        "text": "(Ikeno and Hansen, 2006)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 831,
                        "end": 861,
                        "text": "(Mary and Yegnanarayana, 2008;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 862,
                        "end": 878,
                        "text": "Li et al., 2017)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 1006,
                        "end": 1024,
                        "text": "(Doddington, 2001;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1025,
                        "end": 1048,
                        "text": "MALMASI and DRAS, 2017)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "English is the most widely spoken second language in India and elsewhere in the world (Saha and Mandal, 2015; Guntur et al., 2018) . Indian English has several varieties with their specific accents and phonological features and often a distinct lexicon. Research on spoken English of Indian speakers is urgently needed from a multidisciplinary perspective (Cheng et al., 2013; Krishna et al., 2019) . Present work is aimed at comparing the acoustic properties that are likely to differ between English accents different groups of South Indian language of speakers. The nonnative prosodic traits are a hindrance to proficiency in a second language (L 2 ), and also to the mutual understanding. Present work also examines the local prosodic changes in the non-native English speech, without incorporating any phonol-ogy of the specific languages. The ability to compensate against prosodic deviation during English production can be improved by identifying the articulatory gestures that emphasize the non-native speaker accent. The paper is organized as follows: Section 2 presents the details of the database, including the recording methodology. Section 3 describes acoustic and prosodic features used in foreign accent recognition. Section 4 describes the classification procedures employed in the NLI experiments. Section 5 gives the details of the experiments and results. Analysis of results of regional accent classification is given in section 6. Section 7 describes the key outcome and contributions. Conclusions drawn are given in Section 8.",
                "cite_spans": [
                    {
                        "start": 86,
                        "end": 109,
                        "text": "(Saha and Mandal, 2015;",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 110,
                        "end": 130,
                        "text": "Guntur et al., 2018)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 356,
                        "end": 376,
                        "text": "(Cheng et al., 2013;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 377,
                        "end": 398,
                        "text": "Krishna et al., 2019)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The main focus of current research work is on differentiating the regional non-native English accents of speakers, and also describing foreign accent in terms of a common set of fundamental speech attributes. A database has been specifically developed (G.Radha with native and non-native speech samples containing utterance by the speakers belonging to language groups Kannada (KAN), Malayalam (MAL), Tamil (TAM), and Telugu (TEL). Table 2 shows the template of file naming process.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 432,
                        "end": 439,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Data Sets of 4 Indian Regional Languages",
                "sec_num": "2"
            },
            {
                "text": "Among more than six thousand languages in the world, less than 10% of the languages are spoken by more than 90% of the people. Speakers and learners of the English language constitute a large proportion in countries like India, South Africa, and much of the developing world. India has distinct linguistic communities, each of which shares a common language and culture. English, Hindi and dominant local languages are spoken nonnatively by a large number of Indians. In South Indian cities, many people speak at least two second languages. It would be beneficial if speech based systems can store models of all known languages and carry out the task of NLI automatically. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Selection of Regional Languages",
                "sec_num": "2.1"
            },
            {
                "text": "The details of speech corpus developed for each of the languages is shown in Table 1 . Native speech utterances of 20 speakers from each of the native language groups KAN, TAM, and TEL, each with a duration of 300 seconds formed the training set. English test samples for a duration of 60 seconds were collected from 25 speakers belonging to each of the four groups KAN, MAL, TAM, and TEL. As the sufficient number of native speakers of MAL are not readily available, it is included in the testing set only. The test utterances were recorded under identical conditions as training speech samples and there is no overlap between training and testing sets with respect to speakers and sentences. Each of the test samples is recorded for a duration of 60 seconds. The nonnative English speech samples are collected from a set of speakers with nearly uniform geographical distribution within a region with an educational background of at least graduation, but who do not use English routinely.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 77,
                        "end": 84,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Speech Corpus Recording Methodology",
                "sec_num": "2.2"
            },
            {
                "text": "Recordings of speakers were made in quiet office room conditions using Logitech h110 microphone and waveforms are sampled at a rate of 16 kHz. The recordings were made in a laboratory environment with written text, with negligible re- Attitudinal, Accentual, Discourse, Grammatical verberation. The participants were asked to read aloud passages of a text from general topics. For applications like screening of non-native speech, read data can be used for both training and testing (Schuller et al., 2013) . It is ensured that Gender weightages are equally distributed in training as well as testing data sets. The speakers in the training set are considered representative of the regional languages KAN, TAM and TEL. However, for testing set speakers of Malayalam were also included. These speakers are so chosen from language heartlands. The speakers in the test set are considered potential users of future systems augmented with automatic Accent Identification (AID) capability.",
                "cite_spans": [
                    {
                        "start": 483,
                        "end": 506,
                        "text": "(Schuller et al., 2013)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speech Corpus Recording Methodology",
                "sec_num": "2.2"
            },
            {
                "text": "Understanding similar variations in foreign accents is a crucial factor for the development of an NLI system. The dominant articulatory traits of different languages are different (Koreman, 2018) . In applications like accent recognition, features distinguishing different phonemes of a language will be useful (Li et al., 2013) . The acoustic signature or the voice individuality of the speech signal are available as differences in transformations occurring at semantic, linguistic articulatory, and acoustic levels. Out of all the factors affecting speech, accent is a week factor in the sense that speech variation is not as evident as that due to speaker/gender. Language-specific differences in phonological development might be related to differences in phoneme and phoneme sequence frequency across languages (Graham and Post, 2018) . Speakers of the second language (SL) are expected to import certain patterns from their native language (NL) Figure 1 : Front end signal processing for feature extraction which are audible in SL. The influence of the surrounding speech prosody on new-born cry melody has been shown (Monnin and Loevenbruck, 2010) . The non-native speech detection is thus very challenging .",
                "cite_spans": [
                    {
                        "start": 180,
                        "end": 195,
                        "text": "(Koreman, 2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 311,
                        "end": 328,
                        "text": "(Li et al., 2013)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 817,
                        "end": 840,
                        "text": "(Graham and Post, 2018)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1125,
                        "end": 1155,
                        "text": "(Monnin and Loevenbruck, 2010)",
                        "ref_id": "BIBREF35"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 952,
                        "end": 960,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Features for Non-native Accent Partitioning",
                "sec_num": "3"
            },
            {
                "text": "Characterization of a foreign accent is mostly based on either auditory analysis or manual transcriptions of deviations. The auditory spectrum is consistent with several phenomena observed in speech perception and is useful in automatic speaker independent speech recognition. Features used for nonnativeness detection include cepstral vectors, phone strings and a variety of prosodic features, but when used alone, systems based on acoustic features perform better (Shriberg et al., 2005) . We can consider acoustic features, which are proxy of phonetic reproduction as acousticphonetic features (Li et al., 2013) .",
                "cite_spans": [
                    {
                        "start": 466,
                        "end": 489,
                        "text": "(Shriberg et al., 2005)",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 597,
                        "end": 614,
                        "text": "(Li et al., 2013)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features for Non-native Accent Partitioning",
                "sec_num": "3"
            },
            {
                "text": "Earlier investigations on text-independent nonnative speech tied to underlying native language structure are based on (i) Global acoustic distribution of phonemes (which requires no language knowledge) (ii) Different intonations corresponding to uniqueness in the manner in which articulators are manipulated. The shape of the vocal tract is manifested in the envelope of the shorttime power spectrum (Reynolds and Rose, 1995) . The attributes that contain speaker identifiability for machine as well as for humans are of interest (Zheng et al., 2007; .",
                "cite_spans": [
                    {
                        "start": 401,
                        "end": 426,
                        "text": "(Reynolds and Rose, 1995)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 531,
                        "end": 551,
                        "text": "(Zheng et al., 2007;",
                        "ref_id": "BIBREF50"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acoustic Features",
                "sec_num": "3.1"
            },
            {
                "text": "In this study, acoustic features used for phonetic modeling of the accent differences consists of the cepstral features: Perceptive Linear Prediction Coefficients (PLPs), Linear Predictive Cepstral Coefficients (LPCCs), and MFCCs (Hermansky, 1990; Luengo et al., 2008; Mittal and Yegnanarayana, 2013) . The steps followed are shown in Figure   Figure 2 : Waveform and Pitch contour of non-native English speech by female Kannada speaker 1. Given all the alternative spectral features based on LPC -cepstrum and FFT cepstrum for speaker recognition, MFCCs, give a highly compact representation of the spectral envelope of a sound (L\u00f3pez, 2014) . The LPCCs are known to capture extra information from a speech that discriminates different languages. The PLPs which take advantage of psychoacoustic principles are robust against noise. A hierarchy of speech characteristics, related speaker traits, and possible speech features are listed in Table 3 .",
                "cite_spans": [
                    {
                        "start": 230,
                        "end": 247,
                        "text": "(Hermansky, 1990;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 248,
                        "end": 268,
                        "text": "Luengo et al., 2008;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 269,
                        "end": 300,
                        "text": "Mittal and Yegnanarayana, 2013)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 629,
                        "end": 642,
                        "text": "(L\u00f3pez, 2014)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 335,
                        "end": 352,
                        "text": "Figure   Figure 2",
                        "ref_id": null
                    },
                    {
                        "start": 939,
                        "end": 946,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Acoustic Features",
                "sec_num": "3.1"
            },
            {
                "text": "The prosodic structure is a critical aspect of language contact and gives important information related to the speaking habit of a person (Kinnunen and Li, 2010; Farr\u00fas et al., 2010) . The goal is to capture prosodic idiosyncrasies of speakers belonging to different native languages. Prosodic cues Stress, Rhythm, and Intonation are each complex entities expressed using (i) Pitch (ii) Energy (iii) Duration. Major text-independent features used in prosodic analysis are given in Table 4 .",
                "cite_spans": [
                    {
                        "start": 138,
                        "end": 161,
                        "text": "(Kinnunen and Li, 2010;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 162,
                        "end": 182,
                        "text": "Farr\u00fas et al., 2010)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 481,
                        "end": 488,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Prosodic Features",
                "sec_num": "3.2"
            },
            {
                "text": "In this study Prosodic statistics were obtained by performing different measurements of pitch, which are derived supra segmentally. The power of accent in voice identification is investigated as explained below. A Generative model of pronunciation describes what is acceptable, and Discriminative model both acceptable and unacceptable pronunciation, and the pronunciation score is the direct output of the classification module.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prosodic Features",
                "sec_num": "3.2"
            },
            {
                "text": "Non-native prosodic traits limit proficiency in a second language (L 2 ). Prosodic phenomena located on word level and above, help listeners to structure the speech signal and to process the linguistic content successfully. Table 4 shows some of the features useful for detecting non-native speech without annotation of prosodic events. The Figure 3 : Distribution of MFCC Coefficients as a Scatter plot of C 0 versus C 1 for native ENGLISH speakers Figure 4 : Distribution of MFCC Coefficients C 0 versus C 1 for English speech by KANNADA speakers experiment by Rosenberg to foil a Speaker Verification system says that even an identical twin was unable to imitate the enrolled sibling well enough to get accepted by the system, tells the need to look at learned speaking behaviour.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 224,
                        "end": 231,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 341,
                        "end": 349,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 450,
                        "end": 458,
                        "text": "Figure 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Prosodic Features",
                "sec_num": "3.2"
            },
            {
                "text": "Speaker Classification can be conveniently defined as a grouping of speakers speaking in a similar manner, on the basis of acoustic characteristics (Chen et al., 2014) . Classification of foreign accents directly from the acoustic features is at- Figure 5 : Distribution of MFCC Coefficients C 0 versus C 1 for English speech by MALAYALAM speakers Figure 6 : Distribution of MFCC Coefficients C 0 versus C 1 for English speech by TAMIL speakers Figure 7 : Distribution of MFCC Coefficients C 0 versus C 1 for English speech by TELUGU speakers tempted by using a test data set described in Table 1. The role of accent in voice identification is investigated as explained below. There exists a significant overlap between NLI approaches and computational methods for dialect and language identification (LID), and Support Vector Machine (SVM) classifiers are a very good fit for NLI (Zampieri et al., 2017) .",
                "cite_spans": [
                    {
                        "start": 148,
                        "end": 167,
                        "text": "(Chen et al., 2014)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 881,
                        "end": 904,
                        "text": "(Zampieri et al., 2017)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 247,
                        "end": 255,
                        "text": "Figure 5",
                        "ref_id": null
                    },
                    {
                        "start": 348,
                        "end": 356,
                        "text": "Figure 6",
                        "ref_id": null
                    },
                    {
                        "start": 445,
                        "end": 453,
                        "text": "Figure 7",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Classification for Non-native Accent Partitioning",
                "sec_num": "4"
            },
            {
                "text": "SVM is one of the most popular supervised classifiers on a wide range of data sets, which looks for a maximum-margin hyper plane for data separation (Wu et al., 2010; Bahari et al., 2013; Campbell et al., 2006) . Accuracies of non-native accent classification were studied for the present problem by using the SVM classifier. The speech signal is first processed to extract attributes relevant to the foreign accent (Moustroufas and Digalakis, 2007) . The most representative acoustic features, the LPCC, the PLP (Li et al., 2013) have been tested but were found to be less efficient. The input to the system is a 13 dimensional MFCC vector consisting of 12 cepstral coefficients and one energy coefficient. Thus the front end for the proposed classification system consisted of only 13 dimensional MFCC vector including C 0 . ",
                "cite_spans": [
                    {
                        "start": 149,
                        "end": 166,
                        "text": "(Wu et al., 2010;",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 167,
                        "end": 187,
                        "text": "Bahari et al., 2013;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 188,
                        "end": 210,
                        "text": "Campbell et al., 2006)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 416,
                        "end": 449,
                        "text": "(Moustroufas and Digalakis, 2007)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 513,
                        "end": 530,
                        "text": "(Li et al., 2013)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Accent Partitioning using SVM Classifier",
                "sec_num": "4.1"
            },
            {
                "text": "Native traits located at a word and sentence levels help listeners structure the speech signal. In many approaches that apply prosody to either Language Identification (LID) or Speaker Recognition, extracted features are based on statistics of pitch / energy contour segments or piecewise linear stylization of pitch / energy contours. Intonation is a key expressive factor which can covey the intent of a speaker, contains a lot more information than words and utterance (Ward et al., 2017) . Intonation is more used than energy and duration features in the context of prosody. Listeners can discern a speaker's regional accent from intonation alone (Eady and Cooper, 1986; Tepperman and Narayanan, 2008) .",
                "cite_spans": [
                    {
                        "start": 472,
                        "end": 491,
                        "text": "(Ward et al., 2017)",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 651,
                        "end": 674,
                        "text": "(Eady and Cooper, 1986;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 675,
                        "end": 705,
                        "text": "Tepperman and Narayanan, 2008)",
                        "ref_id": "BIBREF46"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Intonation Analysis",
                "sec_num": "4.2"
            },
            {
                "text": "Dynamics of F 0 contour corresponding to a sound is influenced by several factors such as the identity of the sound unit, its context, the speaking style of the speaker, intonation rules of the language, type of the sentence, etc. (Arias et al., 2010) . The focus was mainly on the pitch since it is one of the most important characteristics of prosody and helps in predicting human intonation rating. These suprasegmental parameters can be used to model non-native English prosody (H\u00f6nig et al., 2012) . In the present study, the main aim is to ascertain the influence of linguistic background on F 0 across regional varieties of English, future studies are planned to include the aperiodic components of excitation of expressive voices like Noh voice (Mittal and Yegnanarayana, 2015) ",
                "cite_spans": [
                    {
                        "start": 231,
                        "end": 251,
                        "text": "(Arias et al., 2010)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 482,
                        "end": 502,
                        "text": "(H\u00f6nig et al., 2012)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 753,
                        "end": 785,
                        "text": "(Mittal and Yegnanarayana, 2015)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Intonation Analysis",
                "sec_num": "4.2"
            },
            {
                "text": "To validate the hypothesis that the accent of the mother tongue is separable, experiments were performed to understand and to calibrate idiolectal differences in the non-native speech samples of the language groups KAN, MAL, TAM and TEL. The corpus is sampled at 16000 samples per second and the bit rate was 32 bits per sample. Silence removal has been implemented using a VAD algorithm (Kinnunen and Li, 2010) . The feature vectors are computed over 20 msec windowed frames every 10 msec. Fourier spectra were computed for sequential frames 160 points apart by using a 320 point Hamming window. Finally Cepstral Mean Normalization (CMN) is applied by subtracting the mean value of each feature over the entire utterance. MFCCs are generated by windowing the signal, application of DFT, taking the log of the magnitude and warping the frequencies on Mel scale and finally application of DCT.",
                "cite_spans": [
                    {
                        "start": 388,
                        "end": 411,
                        "text": "(Kinnunen and Li, 2010)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "5"
            },
            {
                "text": "Experiments were performed to establish the differences in the distribution of acoustic features in the non-native speech samples of four language groups KAN, MAL,TAM, and TEL. Graphical il- lustration of accent partitioning on test data is shown in Figures 3,4 ,5,6,7, and 8. It indicates that the high classification accuracies are possible in the present task. Classification of foreign accents directly from the acoustic features is attempted, by using data set described in Table 1 . Figure 9 shows the confusion matrix for best performing SVM classifier for the five class classification. Figure 11 shows the confusion matrix for the three class classification.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 250,
                        "end": 261,
                        "text": "Figures 3,4",
                        "ref_id": null
                    },
                    {
                        "start": 479,
                        "end": 486,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 489,
                        "end": 497,
                        "text": "Figure 9",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 595,
                        "end": 604,
                        "text": "Figure 11",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Non-native Accent Classification based upon Acoustic Features",
                "sec_num": "5.1"
            },
            {
                "text": "The confusion matrix indicates that the identification rates for Kannada and Tamil language speakers from their non-native English speech can be high compared to that of Telugu native speakers . The Receiver Operating Point Curve (ROC) shown in Figure 10 is a plot of true positive rate as a function of false positive rate, which is very close to the upper left hand corner, indicates that the classifiers can achieve good overall accuracies.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 245,
                        "end": 254,
                        "text": "Figure 10",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Non-native Accent Classification based upon Acoustic Features",
                "sec_num": "5.1"
            },
            {
                "text": "Verification of accent partitioning of non-native speech using a series of classification techniques: k-nearest neighbourhood, and Linear Discriminant Analysis was also implemented. English speech samples of the native speakers of KAN, MAL, TAM, and TEL are tested against standard English speech corpus using TIMIT corpus. The resulting accuracies are 86.6% when a KNN clssifier is used, 82.5% when Discrimination classifier is used, and 89.2% using SVM classifier is used. These results are consolidated in Table 5 . Figure  4 , and 6 shows the corresponding confusion matrices, obtained during SVM classification. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 509,
                        "end": 516,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 519,
                        "end": 528,
                        "text": "Figure  4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Non-native Accent Classification based upon Acoustic Features",
                "sec_num": "5.1"
            },
            {
                "text": "Experiments were conducted on native and nonnative speech samples of bilingual and multilingual speakers. The pitch frequency was extracted using the \"pitch contour\" function of the Wave Surfer software, and F 0 data was extracted. Typical waveform showing the non-native speech by a female Kannada speaker and the pitch contour were shown in Figure 2 . The speakers in this study were asked to speak in their mother tongue or in English, and 20 exemplars were analysed from each group KAN, TAM, and TEL. In few cases the same speakers have spoken in other Indian language of the neighbouring state.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 343,
                        "end": 351,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Foreign Accent Discrimination based upon Prosodic Features",
                "sec_num": "5.2"
            },
            {
                "text": "The difference in F 0 contour between native and non-native speech for speakers from each group has been tested. These results shown in Table  6 clearly indicate that the mean value of nonnative pitch is markedly high in the case nonnative speakers in all the three groups. The percentage deviation from native language to English speech for a group of 20 speakers in each of the three languages has been estimated and is presented in Table 7 . It is evident from the scores presented in Table 7 that the dynamic variation of pitch is the least at 3.7% for the regional variant of KAN speakers, which is significantly less when compared to 9.5%,and 27% corresponding to native TAM and TEL speakers respectively. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 136,
                        "end": 144,
                        "text": "Table  6",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 435,
                        "end": 442,
                        "text": "Table 7",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 488,
                        "end": 495,
                        "text": "Table 7",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Foreign Accent Discrimination based upon Prosodic Features",
                "sec_num": "5.2"
            },
            {
                "text": "\u2022 Figures 3,4 ,5, and 8 reveal that the English spoken by native Kannada and Malayalam speakers is distinct than native Tamil or Telugu speakers, when compared to standard English.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 2,
                        "end": 13,
                        "text": "Figures 3,4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Analysis of Results",
                "sec_num": "6"
            },
            {
                "text": "\u2022 Accent partitioning experiments from a short utterance of 60 seconds of test data, indicates the suitability of the SVM classifier, as can be seen from accuracies shown in Table 5 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 174,
                        "end": 181,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Analysis of Results",
                "sec_num": "6"
            },
            {
                "text": "\u2022 Figure 1 reveals that the English spoken by Telugu native speakers are marginally closer to standard English, compared to that of Kannada and Malayalam language speakers.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 2,
                        "end": 10,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Analysis of Results",
                "sec_num": "6"
            },
            {
                "text": "\u2022 Higher mean values of the non-native pitch shown in Table 6 indicates the accommodation of speakers of all native languages to suit different social groups.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 54,
                        "end": 61,
                        "text": "Table 6",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis of Results",
                "sec_num": "6"
            },
            {
                "text": "\u2022 Table 7 shows that English speakers of Tamil and Telugu would produce statistically significant higher pitch contour deviations than KAN speakers.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 2,
                        "end": 9,
                        "text": "Table 7",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis of Results",
                "sec_num": "6"
            },
            {
                "text": "\u2022 A framework to handle the deviations of L 2 influenced by closely related L 1 s and to achieve better performance for a given NLI task, even with fewer features is proposed",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Outcome and Contributions",
                "sec_num": "7"
            },
            {
                "text": "\u2022 Current study is significant when the target languages are linguistically close, and large resources of spoken English are not available",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Outcome and Contributions",
                "sec_num": "7"
            },
            {
                "text": "\u2022 Prosodic differences across the South Indian English accents has been experimentally illustrated, which is useful in automatic intonation classification for L 2 speech acquisition. Language group Male Female Average Kannada 0.9 6.5 3.7 Tamil 9 10 9.5 Telugu 33 21 27",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Outcome and Contributions",
                "sec_num": "7"
            },
            {
                "text": "\u2022 Present work helps in accurate recognition of regional accent, that can improve the speech and speaker recognition system performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Outcome and Contributions",
                "sec_num": "7"
            },
            {
                "text": "\u2022 Distinct pitch pattern variations in non-native English speech by Malayalam, and Kannada speakers compared to that of Tamil and Telugu varieties can help in distinguishing them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Outcome and Contributions",
                "sec_num": "7"
            },
            {
                "text": "It can be concluded that the regional native language classification has been achieved with an accuracy of nearly 90%, by using the acoustic distribution of cepstral features on the four types of non-native South Indian English speech. It is known that systems make more mistakes among regionally close languages. Accent differences among the non-native speakers are reflected as the deviation of L 2 influenced by L 1 on prosodic level. Studies carried out based on intonation distribution indicates that English speaking South Indian groups corresponding to Kannada, Malayalam, Tamil, and Telugu are clearly divided as per their native languages. Prosodic differences in the native and English speech by South Indian speakers were detected without annotation. Present method can potentially be applied to other languages like Hindi, and in addressing the important question of finding a universal feature set for identifying the non-native speech. Present research is useful in applications such as voice based wireless services like mobile health care, agriculture. Automatic accent characterization can also be applied to fields such as sociolinguistics and speech pathology. Future work can employ different speech styles, and characteristics of speaker population to be carefully scrutinized, and also by including multi-disciplinary information. Further, the results can be extended to separating language families and also for rating L 2 proficiency.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Automatic intonation assessment for computer aided language learning",
                "authors": [
                    {
                        "first": "Juan",
                        "middle": [
                            "Pablo"
                        ],
                        "last": "Arias",
                        "suffix": ""
                    },
                    {
                        "first": "Nestor",
                        "middle": [],
                        "last": "Becerra Yoma",
                        "suffix": ""
                    },
                    {
                        "first": "Hiram",
                        "middle": [],
                        "last": "Vivanco",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Speech Communication",
                "volume": "52",
                "issue": "3",
                "pages": "254--267",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.specom.2009.11.001"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Juan Pablo Arias, Nestor Becerra Yoma, and Hiram Vi- vanco. 2010. Automatic intonation assessment for computer aided language learning. Speech Commu- nication, 52(3):254-267.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Language accent classification in American English",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Levent",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Arslan",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [
                            "L"
                        ],
                        "last": "John",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hansen",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Speech Communication",
                "volume": "18",
                "issue": "4",
                "pages": "353--367",
                "other_ids": {
                    "DOI": [
                        "10.1016/0167-6393(96)00024-6"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Levent M. Arslan and John H.L. Hansen. 1996. Lan- guage accent classification in American English. Speech Communication, 18(4):353-367.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Accent Recognition Using I-vector , Gaussian Mean Supervector and Gaussian Posterior probability Supervector for Spontaneous Telephone Speech",
                "authors": [
                    {
                        "first": "Mohamad",
                        "middle": [],
                        "last": "Hasan Bahari",
                        "suffix": ""
                    },
                    {
                        "first": "Rahim",
                        "middle": [],
                        "last": "Saeidi",
                        "suffix": ""
                    },
                    {
                        "first": "Hugo",
                        "middle": [],
                        "last": "Van Hamme",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Van Leeuwen",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "IEEE International Conference on Acoustics, Speech and Signal Processing",
                "volume": "",
                "issue": "",
                "pages": "7344--7348",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohamad Hasan Bahari, Rahim Saeidi, Hugo Van Hamme, and David Van Leeuwen. 2013. Ac- cent Recognition Using I-vector , Gaussian Mean Supervector and Gaussian Posterior probability Supervector for Spontaneous Telephone Speech. ICASSP, IEEE International Conference on Acous- tics, Speech and Signal Processing, pages 7344- 7348.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Gmmubm based speaker verification in multilingual environments",
                "authors": [
                    {
                        "first": "Utpal",
                        "middle": [],
                        "last": "Bhattacharjee",
                        "suffix": ""
                    },
                    {
                        "first": "Kshirod",
                        "middle": [],
                        "last": "Sarmah",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "International Journal of Computer Science Issues (IJCSI)",
                "volume": "9",
                "issue": "6",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Utpal Bhattacharjee and Kshirod Sarmah. 2012. Gmm- ubm based speaker verification in multilingual envi- ronments. International Journal of Computer Sci- ence Issues (IJCSI), 9(6):373.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Svm based speaker verification using a gmm supervector kernel and nap variability compensation",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "M"
                        ],
                        "last": "Campbell",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "E"
                        ],
                        "last": "Sturim",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "A"
                        ],
                        "last": "Reynolds",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Solomonoff",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "IEEE International Conference on Acoustics Speech and Signal Processing Proceedings",
                "volume": "1",
                "issue": "",
                "pages": "I--I",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICASSP.2006.1659966"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "W. M. Campbell, D. E. Sturim, D. A. Reynolds, and A. Solomonoff. 2006. Svm based speaker verifica- tion using a gmm supervector kernel and nap vari- ability compensation. In 2006 IEEE International Conference on Acoustics Speech and Signal Pro- cessing Proceedings, volume 1, pages I-I.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Characterizing phonetic transformations and acoustic differences across English dialects",
                "authors": [
                    {
                        "first": "Nancy",
                        "middle": [
                            "F"
                        ],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Sharon",
                        "middle": [
                            "W"
                        ],
                        "last": "Tam",
                        "suffix": ""
                    },
                    {
                        "first": "Wade",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Joseph",
                        "middle": [
                            "P"
                        ],
                        "last": "Campbell",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "IEEE Transactions on Audio, Speech and Language Processing",
                "volume": "22",
                "issue": "1",
                "pages": "110--124",
                "other_ids": {
                    "DOI": [
                        "10.1109/TASLP.2013.2285482"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nancy F. Chen, Sharon W. Tam, Wade Shen, and Joseph P. Campbell. 2014. Characterizing phonetic transformations and acoustic differences across En- glish dialects. IEEE Transactions on Audio, Speech and Language Processing, 22(1):110-124.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Automatic accent quantification of indian speakers of english",
                "authors": [
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Nikhil",
                        "middle": [],
                        "last": "Bojja",
                        "suffix": ""
                    },
                    {
                        "first": "Xin",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jian Cheng, Nikhil Bojja, and Xin Chen. 2013. Au- tomatic accent quantification of indian speakers of english. In INTERSPEECH.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Robust textindependent speaker verification using genetic programming",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Day",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "K"
                        ],
                        "last": "Nandi",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "IEEE Transactions on Audio, Speech, and Language Processing",
                "volume": "15",
                "issue": "1",
                "pages": "285--295",
                "other_ids": {
                    "DOI": [
                        "10.1109/TASL.2006.876765"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "P. Day and A. K. Nandi. 2007. Robust text- independent speaker verification using genetic pro- gramming. IEEE Transactions on Audio, Speech, and Language Processing, 15(1):285-295.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Speaker recognition based on idiolectal differences between speakers",
                "authors": [
                    {
                        "first": "George",
                        "middle": [
                            "R"
                        ],
                        "last": "Doddington",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "INTERSPEECH",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George R. Doddington. 2001. Speaker recognition based on idiolectal differences between speakers. In INTERSPEECH.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Speech intonation and focus location in matched statements and questions",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Stephen",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [
                            "E"
                        ],
                        "last": "Eady",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Cooper",
                        "suffix": ""
                    }
                ],
                "year": 1986,
                "venue": "The Journal of the Acoustical Society of America",
                "volume": "80",
                "issue": "2",
                "pages": "402--415",
                "other_ids": {
                    "DOI": [
                        "10.1121/1.394091"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Stephen J. Eady and William E. Cooper. 1986. Speech intonation and focus location in matched statements and questions. The Journal of the Acoustical Society of America, 80(2):402-415.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Automatic speaker recognition as a measurement of voice imitation and conversion",
                "authors": [
                    {
                        "first": "Mireia",
                        "middle": [],
                        "last": "Farr\u00fas",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Wagner",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Erro",
                        "suffix": ""
                    },
                    {
                        "first": "Javier",
                        "middle": [
                            "Hernando"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "International Journal of Speech, Language and the Law",
                "volume": "17",
                "issue": "1",
                "pages": "119--142",
                "other_ids": {
                    "DOI": [
                        "10.1558/ijsll.v17i1.119"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mireia Farr\u00fas, Michael Wagner, Daniel Erro, and Javier Hernando. 2010. Automatic speaker recognition as a measurement of voice imitation and conversion. International Journal of Speech, Language and the Law, 17(1):119-142.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Combination of machine scores for automatic grading of pronunciation quality",
                "authors": [
                    {
                        "first": "Horacio",
                        "middle": [],
                        "last": "Franco",
                        "suffix": ""
                    },
                    {
                        "first": "Leonardo",
                        "middle": [],
                        "last": "Neumeyer",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Speech Communication",
                "volume": "30",
                "issue": "2",
                "pages": "121--130",
                "other_ids": {
                    "DOI": [
                        "10.1016/S0167-6393(99)00045-X"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Horacio Franco, Leonardo Neumeyer, Vassilios Di- galakis, and Orith Ronen. 2000. Combination of machine scores for automatic grading of pronunci- ation quality. Speech Communication, 30(2):121- 130.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Leveraging native language information for improved accented speech recognition",
                "authors": [
                    {
                        "first": "Shahram",
                        "middle": [],
                        "last": "Ghorbani",
                        "suffix": ""
                    },
                    {
                        "first": "H L",
                        "middle": [],
                        "last": "John",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hansen",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "2449--2453",
                "other_ids": {
                    "DOI": [
                        "10.21437/Interspeech.2018-1378"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shahram Ghorbani, John H L Hansen, Robust Speech, and Systems Crss. 2018. Leveraging native lan- guage information for improved accented speech recognition. (September):2449-2453.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Native Language Identification from South Indian English Speech",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Krishnan",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Radha",
                        "middle": [],
                        "last": "Krishna",
                        "suffix": ""
                    },
                    {
                        "first": "Vinay",
                        "middle": [],
                        "last": "Kumar Mittal",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Workshop on Machine Learning in Speech and Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Krishnan G.Radha Krishna and Vinay Kumar Mit- tal. 2018. Native Language Identification from South Indian English Speech. In Workshop on Ma- chine Learning in Speech and Language Processing, September 7th, 2018.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Second language acquisition of intonation: Peak alignment in American English",
                "authors": [
                    {
                        "first": "Calbert",
                        "middle": [],
                        "last": "Graham",
                        "suffix": ""
                    },
                    {
                        "first": "Brechtje",
                        "middle": [],
                        "last": "Post",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Journal of Phonetics",
                "volume": "66",
                "issue": "",
                "pages": "1--14",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.wocn.2017.08.002"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Calbert Graham and Brechtje Post. 2018. Second lan- guage acquisition of intonation: Peak alignment in American English. Journal of Phonetics, 66:1-14.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Prosodic Analysis of Non-Native South Indian English Speech",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Radha Krishna Guntur",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "K"
                        ],
                        "last": "Krishnan",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proc. The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages",
                "volume": "",
                "issue": "",
                "pages": "71--75",
                "other_ids": {
                    "DOI": [
                        "10.21437/SLTU.2018-15"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Radha Krishna Guntur, R Krishnan, and V.K. Mittal. 2018. Prosodic Analysis of Non-Native South In- dian English Speech. In Proc. The 6th Intl. Work- shop on Spoken Language Technologies for Under- Resourced Languages, pages 71-75.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Human and computer recognition of regional accents and ethnic groups from British English speech",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Hanani",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "J"
                        ],
                        "last": "Russell",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "J"
                        ],
                        "last": "Carey",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Computer Speech and Language",
                "volume": "27",
                "issue": "1",
                "pages": "59--74",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.csl.2012.01.003"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "A. Hanani, M. J. Russell, and M. J. Carey. 2013. Human and computer recognition of regional ac- cents and ethnic groups from British English speech. Computer Speech and Language, 27(1):59-74.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Spoken Language Characterization",
                "authors": [
                    {
                        "first": "Mary",
                        "middle": [
                            "P"
                        ],
                        "last": "Harper",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Maxwell",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "797--810",
                "other_ids": {
                    "DOI": [
                        "10.1007/978-3-540-49127-9_40"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mary P. Harper and Michael Maxwell. 2008. Spo- ken Language Characterization, pages 797-810.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Perceptual linear predictive (plp) analysis of speech",
                "authors": [
                    {
                        "first": "Hynek",
                        "middle": [],
                        "last": "Hermansky",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "The Journal of the Acoustical Society of America",
                "volume": "87",
                "issue": "4",
                "pages": "1738--1752",
                "other_ids": {
                    "DOI": [
                        "10.1121/1.399423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hynek Hermansky. 1990. Perceptual linear predictive (plp) analysis of speech. The Journal of the Acous- tical Society of America, 87(4):1738-1752.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Automatic Assessment of Non-Native Prosody Annotation, Modelling and Evaluation",
                "authors": [
                    {
                        "first": "Florian",
                        "middle": [],
                        "last": "H\u00f6nig",
                        "suffix": ""
                    },
                    {
                        "first": "Anton",
                        "middle": [],
                        "last": "Batliner",
                        "suffix": ""
                    },
                    {
                        "first": "Elmar",
                        "middle": [],
                        "last": "N\u00f6th",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the International Symposium on Automatic Detection of Errors in Pronunciation Training (IS ADEPT)",
                "volume": "",
                "issue": "",
                "pages": "21--30",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Florian H\u00f6nig, Anton Batliner, and Elmar N\u00f6th. 2012. Automatic Assessment of Non-Native Prosody An- notation, Modelling and Evaluation. Proceedings of the International Symposium on Automatic De- tection of Errors in Pronunciation Training (IS ADEPT), pages 21-30.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Perceptual Recognition Cues in Native English Accent Variation",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ikeno",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "H L"
                        ],
                        "last": "Hansen",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings",
                "volume": "1",
                "issue": "",
                "pages": "401--404",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICASSP.2006.1660042"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "A. Ikeno and J.H.L. Hansen. 2006. Perceptual Recog- nition Cues in Native English Accent Variation: \"Listener Accent, Perceived Accent, and Compre- hension\". 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceed- ings, 1:I-401-I-404.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "An overview of text-independent speaker recognition: From features to supervectors",
                "authors": [
                    {
                        "first": "Tomi",
                        "middle": [],
                        "last": "Kinnunen",
                        "suffix": ""
                    },
                    {
                        "first": "Haizhou",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Speech Communication",
                "volume": "52",
                "issue": "1",
                "pages": "12--40",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.specom.2009.08.009"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tomi Kinnunen and Haizhou Li. 2010. An overview of text-independent speaker recognition: From features to supervectors. Speech Communication, 52(1):12 - 40.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Category similarity in multilingual pronunciation training",
                "authors": [
                    {
                        "first": "Jacques",
                        "middle": [],
                        "last": "Koreman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proc",
                "volume": "",
                "issue": "",
                "pages": "2578--2582",
                "other_ids": {
                    "DOI": [
                        "10.21437/Interspeech.2018-1938"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacques Koreman. 2018. Category similarity in multi- lingual pronunciation training. In Proc. Interspeech 2018, pages 2578-2582.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Influence of mother tongue on english accent",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Krishna",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Krishnan",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 11th International Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "63--67",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Radha Krishna and R. Krishnan. 2014. Influence of mother tongue on english accent. In Proceedings of the 11th International Conference on Natural Lan- guage Processing, pages 63-67, Goa, India. NLP Association of India.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "An automated system for regional nativity identification of indian speakers from english speech",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Krishna",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Krishnan",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "K"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "16th IEEE India Council International Conference INDICON 2019",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G.Radha Krishna, R.Krishnan, and V.K.Mittal. 2019. An automated system for regional nativity identifi- cation of indian speakers from english speech. In 16th IEEE India Council International Conference INDICON 2019 (Accepted).",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Spoken language recognition: From fundamentals to practice",
                "authors": [
                    {
                        "first": "Haizhou",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Bin",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Kong Aik",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the IEEE",
                "volume": "101",
                "issue": "5",
                "pages": "1136--1159",
                "other_ids": {
                    "DOI": [
                        "10.1109/JPROC.2012.2237151"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Haizhou Li, Bin Ma, and Kong Aik Lee. 2013. Spoken language recognition: From fundamentals to prac- tice. Proceedings of the IEEE, 101(5):1136-1159.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Intonation classification for L2 English speech using multi-distribution deep neural networks",
                "authors": [
                    {
                        "first": "Kun",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Xixin",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Helen",
                        "middle": [],
                        "last": "Meng",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Computer Speech and Language",
                "volume": "43",
                "issue": "",
                "pages": "18--33",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.csl.2016.11.006"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kun Li, Xixin Wu, and Helen Meng. 2017. Into- nation classification for L2 English speech using multi-distribution deep neural networks. Computer Speech and Language, 43:18-33.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Advances on Speaker Recognition in non Collaborative Environments",
                "authors": [
                    {
                        "first": "Jes\u00fas Antonio Villalba",
                        "middle": [],
                        "last": "L\u00f3pez",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jes\u00fas Antonio Villalba L\u00f3pez. 2014. Advances on Speaker Recognition in non Collaborative Environ- ments. page 311.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Text independent speaker identification in multilingual environments",
                "authors": [
                    {
                        "first": "Iker",
                        "middle": [],
                        "last": "Luengo",
                        "suffix": ""
                    },
                    {
                        "first": "Eva",
                        "middle": [],
                        "last": "Navas",
                        "suffix": ""
                    },
                    {
                        "first": "I\u00f1aki",
                        "middle": [],
                        "last": "Sainz",
                        "suffix": ""
                    },
                    {
                        "first": "Ibon",
                        "middle": [],
                        "last": "Saratxaga",
                        "suffix": ""
                    },
                    {
                        "first": "Jon",
                        "middle": [],
                        "last": "Sanchez",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Iker Luengo, Eva Navas, I\u00f1aki Sainz, Ibon Saratxaga, Jon Sanchez, Igor Odriozola, and Inma Hernaez. 2008. Text independent speaker identification in multilingual environments. In LREC 2008.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Multilingual native language identification",
                "authors": [
                    {
                        "first": "Shervin",
                        "middle": [],
                        "last": "Malmasi",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Dras",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Natural Language Engineering",
                "volume": "23",
                "issue": "2",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1017/S1351324915000406"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "SHERVIN MALMASI and MARK DRAS. 2017. Mul- tilingual native language identification. Natural Language Engineering, 23(2):163215.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Extraction and representation of prosodic features for language and speaker recognition",
                "authors": [
                    {
                        "first": "Leena",
                        "middle": [],
                        "last": "Mary",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Yegnanarayana",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Speech Communication",
                "volume": "50",
                "issue": "10",
                "pages": "782--796",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.specom.2008.04.010"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Leena Mary and B. Yegnanarayana. 2008. Extraction and representation of prosodic features for language and speaker recognition. Speech Communication, 50(10):782-796.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Effect of glottal dynamics in the production of shouted speech",
                "authors": [
                    {
                        "first": "V",
                        "middle": [
                            "K"
                        ],
                        "last": "Mittal",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Yegnanarayana",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "The Journal of the Acoustical Society of America",
                "volume": "133",
                "issue": "5",
                "pages": "3050--3061",
                "other_ids": {
                    "DOI": [
                        "10.1121/1.4796110"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "V. K. Mittal and B. Yegnanarayana. 2013. Effect of glottal dynamics in the production of shouted speech. The Journal of the Acoustical Society of America, 133(5):3050-3061.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Study of characteristics of aperiodicity in noh voices",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Vinay Kumar Mittal",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Yegnanarayana",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "The Journal of the Acoustical Society of America",
                "volume": "137",
                "issue": "6",
                "pages": "3411--3421",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vinay Kumar Mittal and B Yegnanarayana. 2015. Study of characteristics of aperiodicity in noh voices. The Journal of the Acoustical Society of America, 137(6):3411-3421.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Study of the effects of vocal tract constriction on glottal vibration",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Vinay Kumar Mittal",
                        "suffix": ""
                    },
                    {
                        "first": "Peri",
                        "middle": [],
                        "last": "Yegnanarayana",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Bhaskararao",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "The Journal of the Acoustical Society of America",
                "volume": "136",
                "issue": "4",
                "pages": "1932--1941",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vinay Kumar Mittal, B Yegnanarayana, and Peri Bhaskararao. 2014. Study of the effects of vocal tract constriction on glottal vibration. The Journal of the Acoustical Society of America, 136(4):1932- 1941.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Significance of aperiodicity in the pitch perception of expressive voices",
                "authors": [
                    {
                        "first": "Bayya",
                        "middle": [],
                        "last": "Vinay Kumar Mittal",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Yegnanarayana",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "INTERSPEECH",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vinay Kumar Mittal and Bayya Yegnanarayana. 2014. Significance of aperiodicity in the pitch perception of expressive voices. In INTERSPEECH.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Language-specific influence on phoneme development: French and drehu data",
                "authors": [
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Monnin",
                        "suffix": ""
                    },
                    {
                        "first": "H\u00e9l\u00e8ne",
                        "middle": [],
                        "last": "Loevenbruck",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "INTERSPEECH",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Julia Monnin and H\u00e9l\u00e8ne Loevenbruck. 2010. Language-specific influence on phoneme develop- ment: French and drehu data. In INTERSPEECH.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Automatic pronunciation evaluation of foreign speakers using unknown text",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Moustroufas",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Digalakis",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Computer Speech and Language",
                "volume": "21",
                "issue": "1",
                "pages": "219--230",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.csl.2006.04.001"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "N. Moustroufas and V. Digalakis. 2007. Automatic pronunciation evaluation of foreign speakers using unknown text. Computer Speech and Language, 21(1):219-230.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Vassilios Digalakis, and Mitchel Weintraub",
                "authors": [
                    {
                        "first": "Leonardo",
                        "middle": [],
                        "last": "Neumeyer",
                        "suffix": ""
                    },
                    {
                        "first": "Horacio",
                        "middle": [],
                        "last": "Franco",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Speech Communication",
                "volume": "30",
                "issue": "2",
                "pages": "83--93",
                "other_ids": {
                    "DOI": [
                        "10.1016/S0167-6393(99)00046-1"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Leonardo Neumeyer, Horacio Franco, Vassilios Di- galakis, and Mitchel Weintraub. 2000. Automatic scoring of pronunciation quality. Speech Communi- cation, 30(2):83-93.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Feature analysis for native language identification",
                "authors": [
                    {
                        "first": "Sergiu",
                        "middle": [],
                        "last": "Nisioi",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
                "volume": "9041",
                "issue": "",
                "pages": "644--657",
                "other_ids": {
                    "DOI": [
                        "10.1007/978-3-319-18111-0_49"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sergiu Nisioi. 2015. Feature analysis for native lan- guage identification. Lecture Notes in Computer Science (including subseries Lecture Notes in Arti- ficial Intelligence and Lecture Notes in Bioinformat- ics), 9041:644-657.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "A novel approach to detecting non-native speakers and their native language",
                "authors": [
                    {
                        "first": "Mohamed",
                        "middle": [],
                        "last": "Kamal",
                        "suffix": ""
                    },
                    {
                        "first": "Omar",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Pelecanos",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "IEEE International Conference on Acoustics, Speech and Signal Processing -Proceedings",
                "volume": "",
                "issue": "",
                "pages": "4398--4401",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICASSP.2010.5495628"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mohamed Kamal Omar and Jason Pelecanos. 2010. A novel approach to detecting non-native speakers and their native language. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Pro- cessing -Proceedings, pages 4398-4401.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Improving sub-phone modeling for better native language identification with non-native english speech",
                "authors": [
                    {
                        "first": "Hillary",
                        "middle": [
                            "R"
                        ],
                        "last": "Lange",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [
                            "K"
                        ],
                        "last": "Molloy",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Soong",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "INTERSPEECH",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lange, Hillary R. Molloy, and Frank K. Soong. 2017. Improving sub-phone modeling for better na- tive language identification with non-native english speech. In INTERSPEECH.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Robust textindependent speaker identification using gaussian mixture speaker models",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "A"
                        ],
                        "last": "Reynolds",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "C"
                        ],
                        "last": "Rose",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "IEEE Transactions on Speech and Audio Processing",
                "volume": "3",
                "issue": "1",
                "pages": "72--83",
                "other_ids": {
                    "DOI": [
                        "10.1109/89.365379"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "D. A. Reynolds and R. C. Rose. 1995. Robust text- independent speaker identification using gaussian mixture speaker models. IEEE Transactions on Speech and Audio Processing, 3(1):72-83.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Study of acoustic correlates of english lexical stress produced by native (l1) bengali speakers compared to native (l1) english speakers",
                "authors": [
                    {
                        "first": "Nath",
                        "middle": [],
                        "last": "Shambhu",
                        "suffix": ""
                    },
                    {
                        "first": "Shyamal",
                        "middle": [],
                        "last": "Saha",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kr",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Das Mandal",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "INTER-SPEECH",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shambhu Nath Saha and Shyamal Kr. Das Mandal. 2015. Study of acoustic correlates of english lexi- cal stress produced by native (l1) bengali speakers compared to native (l1) english speakers. In INTER- SPEECH.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Paralinguistics in speech and language -State-of-the-art and the challenge",
                "authors": [
                    {
                        "first": "Bj\u00f6rn",
                        "middle": [],
                        "last": "Schuller",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Steidl",
                        "suffix": ""
                    },
                    {
                        "first": "Anton",
                        "middle": [],
                        "last": "Batliner",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Burkhardt",
                        "suffix": ""
                    },
                    {
                        "first": "Laurence",
                        "middle": [],
                        "last": "Devillers",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "M\u00fcller",
                        "suffix": ""
                    },
                    {
                        "first": "Shrikanth",
                        "middle": [],
                        "last": "Narayanan",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Computer Speech and Language",
                "volume": "27",
                "issue": "1",
                "pages": "4--39",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.csl.2012.02.005"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bj\u00f6rn Schuller, Stefan Steidl, Anton Batliner, Felix Burkhardt, Laurence Devillers, Christian M\u00fcller, and Shrikanth Narayanan. 2013. Paralinguistics in speech and language -State-of-the-art and the chal- lenge. Computer Speech and Language, 27(1):4-39.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Modeling prosodic feature sequences for speaker recognition",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Shriberg",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Ferrer",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kajarekar",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Venkataraman",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Stolcke",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Speech Communication",
                "volume": "46",
                "issue": "3-4",
                "pages": "455--472",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.specom.2005.02.018"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "E. Shriberg, L. Ferrer, S. Kajarekar, A. Venkataraman, and A. Stolcke. 2005. Modeling prosodic feature sequences for speaker recognition. Speech Commu- nication, 46(3-4):455-472.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "Better nonnative intonation scores through prosodic theory",
                "authors": [
                    {
                        "first": "Joseph",
                        "middle": [],
                        "last": "Tepperman",
                        "suffix": ""
                    },
                    {
                        "first": "Shrikanth",
                        "middle": [],
                        "last": "Narayanan",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "INTERSPEECH",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joseph Tepperman and Shrikanth Narayanan. 2008. Better nonnative intonation scores through prosodic theory. In INTERSPEECH.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "Non-Native Differences in Prosodic-Construction Use",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Nigel",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Paola",
                        "middle": [],
                        "last": "Org",
                        "suffix": ""
                    },
                    {
                        "first": "Amanda",
                        "middle": [],
                        "last": "Gallardo",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Stent",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Dialogue & Discourse",
                "volume": "8",
                "issue": "1",
                "pages": "1--30",
                "other_ids": {
                    "DOI": [
                        "10.5087/dad.2017.101"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nigel G Ward, Nigelward@acm Org, Paola Gallardo, and Amanda Stent. 2017. Non-Native Differences in Prosodic-Construction Use. Dialogue & Discourse, 8(1):1-30.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Feature subset selection for improved native accent identification",
                "authors": [
                    {
                        "first": "Tingyao",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Jacques",
                        "middle": [],
                        "last": "Duchateau",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [
                            "Pierre"
                        ],
                        "last": "Martens",
                        "suffix": ""
                    },
                    {
                        "first": "Dirk",
                        "middle": [],
                        "last": "Van Compernolle",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Speech Communication",
                "volume": "52",
                "issue": "2",
                "pages": "83--98",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.specom.2009.08.010"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tingyao Wu, Jacques Duchateau, Jean Pierre Martens, and Dirk Van Compernolle. 2010. Feature subset selection for improved native accent identification. Speech Communication, 52(2):83-98.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Integration of complementary acoustic features for speaker recognition",
                "authors": [
                    {
                        "first": "Nengheng",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    },
                    {
                        "first": "Tan",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "C"
                        ],
                        "last": "Ching",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "IEEE Signal Processing Letters",
                "volume": "14",
                "issue": "3",
                "pages": "181--184",
                "other_ids": {
                    "DOI": [
                        "10.1109/LSP.2006.884031"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nengheng Zheng, Tan Lee, and P. C. Ching. 2007. Integration of complementary acoustic features for speaker recognition. IEEE Signal Processing Let- ters, 14(3):181-184.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "Distribution of MFCC Coefficients C 0 versus C 1 for non-native English speech by four South Indian language speakers against native English speech.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "uris": null,
                "text": "Confusion Matrix for SVM classification of South-Indian English including native English. Note: TPR is True Positive Rate, FNR is False Negative Rate.Table5: Non-native Regional English Accent Classification accuracies using (a) k-nearest neighbourhood (KNN), (b) Linear Discriminant (LDA), and (c) SVM Classifier (a) KNN (b) LDA (c) SVM Accuracy 86",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF2": {
                "uris": null,
                "text": ": ROC curve for SVM classification of Nonnative English speech by Kannada speakers.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF3": {
                "uris": null,
                "text": "Confusion Matrix for SVM classification of English by speakers of KAN, TAM, and TEL. Note: TPR is True Positive Rate, FNR is False Negative Rate.",
                "num": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "type_str": "table",
                "html": null,
                "text": "Summary of data used for training and testing: (a) attributes (b) values for training set and (c) values for testing set",
                "num": null,
                "content": "<table><tr><td colspan=\"2\">(a) Attributes</td><td colspan=\"2\">(b) Training set (c) Test set</td></tr><tr><td colspan=\"2\">Total number</td><td>60</td><td>75</td></tr><tr><td>of speakers</td><td/><td/><td/></tr><tr><td colspan=\"2\">Speakers per</td><td>20</td><td>25</td></tr><tr><td colspan=\"2\">language group</td><td/><td/></tr><tr><td colspan=\"2\">(KAN, MAL*,</td><td/><td/></tr><tr><td colspan=\"2\">TAM, TEL)</td><td/><td/></tr><tr><td>Speech</td><td>Du-</td><td>300 sec</td><td>60 sec</td></tr><tr><td>ration</td><td>per</td><td/><td/></tr><tr><td>speaker</td><td/><td/><td/></tr><tr><td colspan=\"4\">Note: *MAL-Malayalam data set is used only in</td></tr><tr><td colspan=\"4\">tests related to cepstral features.</td></tr></table>"
            },
            "TABREF1": {
                "type_str": "table",
                "html": null,
                "text": "Template of file naming for data recording",
                "num": null,
                "content": "<table><tr><td>Native</td></tr><tr><td>language Name Age / Sex File Name</td></tr></table>"
            },
            "TABREF2": {
                "type_str": "table",
                "html": null,
                "text": "Summary of speaker traits and related speech features(Day and Nandi, 2007).",
                "num": null,
                "content": "<table><tr><td colspan=\"2\">Speech char-</td><td colspan=\"3\">Speaker trait Speech feature</td></tr><tr><td colspan=\"2\">acteristic</td><td/><td/></tr><tr><td colspan=\"2\">Lexical, Syn-</td><td colspan=\"2\">Socio eco-</td><td>Vocabulary,</td></tr><tr><td>tactic</td><td/><td>nomic</td><td/><td>Word</td></tr><tr><td colspan=\"2\">(Idiolect,</td><td colspan=\"2\">Educational</td><td>arrangement</td></tr><tr><td colspan=\"2\">Semantics,</td><td colspan=\"2\">status (Lan-</td><td>&amp; grammatical</td></tr><tr><td>Pronun-</td><td/><td>guage</td><td>use</td><td>cues.</td></tr><tr><td>ciations,</td><td/><td colspan=\"2\">and sentence</td></tr><tr><td colspan=\"2\">dictions, Id-</td><td colspan=\"2\">construction)</td></tr><tr><td colspan=\"2\">iosyncrasies)</td><td/><td/></tr><tr><td>Prosodic</td><td/><td colspan=\"2\">Personality</td><td>Durational fea-</td></tr><tr><td colspan=\"2\">(Rhythm,</td><td colspan=\"2\">type, Parental</td><td>tures.</td><td>Pitch</td></tr><tr><td colspan=\"2\">Intonation,</td><td>influences</td><td/><td>dynamics, En-</td></tr><tr><td colspan=\"2\">Articulation</td><td/><td/><td>ergy (likely to</td></tr><tr><td>rate etc.)</td><td/><td/><td/><td>be Text / time</td></tr><tr><td/><td/><td/><td/><td>dependent).</td></tr><tr><td>Low</td><td>level</td><td colspan=\"2\">Anatomical</td><td>Short-time spec-</td></tr><tr><td>acoustic</td><td/><td colspan=\"2\">structure of</td><td>trum, Predictor</td></tr><tr><td>features</td><td/><td colspan=\"2\">speaker's vo-</td><td>coefficients, In-</td></tr><tr><td/><td/><td colspan=\"2\">cal apparatus</td><td>tensity, Pitch.</td></tr></table>"
            },
            "TABREF3": {
                "type_str": "table",
                "html": null,
                "text": "Major text-independent features used in prosodic analysis.",
                "num": null,
                "content": "<table><tr><td colspan=\"2\">Prosodic</td><td>Factors that influences speech</td></tr><tr><td colspan=\"2\">features</td><td/></tr><tr><td colspan=\"2\">Dynamics</td><td>Identity of sound unit, its position</td></tr><tr><td>of</td><td>F 0</td><td>from phrase, word; Speaking style;</td></tr><tr><td colspan=\"2\">contour</td><td>Intonation rules; Type of sentence</td></tr><tr><td/><td/><td>(Interrogative, Declarative)</td></tr><tr><td colspan=\"2\">Intonation,</td><td/></tr><tr><td colspan=\"2\">Rhythm,</td><td/></tr><tr><td>Stress</td><td/><td/></tr></table>"
            },
            "TABREF4": {
                "type_str": "table",
                "html": null,
                "text": "Mean (\u00b5)  and SD (\u03c3) of Pitch variation of single speaker from three groups of native speakers when speaking (a) Native Language (NL) (b) English (c) Other South Indian language (OSIL)",
                "num": null,
                "content": "<table><tr><td/><td/><td colspan=\"2\">LANGUAGE SPOKEN</td></tr><tr><td>L1</td><td>\u00b5</td><td>(a) NL \u03c3</td><td>(b) English (c) OSIL \u00b5 \u03c3 \u00b5 \u03c3</td></tr><tr><td colspan=\"4\">Kan 214 32.2 254 32.3 235 32.4</td></tr><tr><td colspan=\"4\">Tam 227 21.7 248 28.9 230 30.6</td></tr><tr><td>Tel</td><td colspan=\"3\">133 21.5 157 22.9 150 26.3</td></tr></table>"
            },
            "TABREF5": {
                "type_str": "table",
                "html": null,
                "text": "Percentage increase in Standard Deviation of pitch contour from native language speech to English speech (using two non-overlapping sets of 20 speakers from each native language group Kannada, Tamil, and Telugu).",
                "num": null,
                "content": "<table/>"
            }
        }
    }
}