File size: 150,838 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:29:39.033438Z"
    },
    "title": "Self Attended Stack Pointer Networks for Learning Long Term Dependencies",
    "authors": [
        {
            "first": "Salih",
            "middle": [],
            "last": "Tu\u00e7",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Hacettepe University",
                "location": {
                    "country": "Turkey"
                }
            },
            "email": "salihtuc0@gmail.com"
        },
        {
            "first": "Burcu",
            "middle": [],
            "last": "Can",
            "suffix": "",
            "affiliation": {},
            "email": "b.can@wlv.ac.uk"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We propose a novel deep neural architecture for dependency parsing, which is built upon a Transformer Encoder (Vaswani et al., 2017) and a Stack Pointer Network (Ma et al., 2018). We first encode each sentence using a Transformer Network and then the dependency graph is generated by a Stack Pointer Network by selecting the head of each word in the sentence through a head selection process. We evaluate our model on Turkish and English treebanks. The results show that our trasformer-based model learns long term dependencies efficiently compared to sequential models such as recurrent neural networks. Our self attended stack pointer network improves UAS score around 6% upon the LSTM based stack pointer (Ma et al., 2018) for Turkish sentences with a length of more than 20 words.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We propose a novel deep neural architecture for dependency parsing, which is built upon a Transformer Encoder (Vaswani et al., 2017) and a Stack Pointer Network (Ma et al., 2018). We first encode each sentence using a Transformer Network and then the dependency graph is generated by a Stack Pointer Network by selecting the head of each word in the sentence through a head selection process. We evaluate our model on Turkish and English treebanks. The results show that our trasformer-based model learns long term dependencies efficiently compared to sequential models such as recurrent neural networks. Our self attended stack pointer network improves UAS score around 6% upon the LSTM based stack pointer (Ma et al., 2018) for Turkish sentences with a length of more than 20 words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Dependency Parsing is the task of finding the grammatical structure of a sentence by identifying syntactic and semantic relationships between words. Dependency parsing has been utilized in many other NLP tasks such as machine translation (Carreras and Collins, 2009; Chen et al., 2017) , relation extraction (Fundel-Clemens et al., 2007; Zhang et al., 2018) , named entity recognition (Jie et al., 2017; Finkel and Manning, 2009) , information extraction (Angeli et al., 2015; Peng et al., 2017) , all of which involve natural language understanding to an extent. Each dependency relation is identified between a head word and a dependent word that modifies the head word in a sentence. Although such relations are considered syntactic, they are naturally built upon semantic relationships between words. For example, each dependent has a role in modifying its head word, which is a result of a semantic influence.",
                "cite_spans": [
                    {
                        "start": 238,
                        "end": 266,
                        "text": "(Carreras and Collins, 2009;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 267,
                        "end": 285,
                        "text": "Chen et al., 2017)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 308,
                        "end": 337,
                        "text": "(Fundel-Clemens et al., 2007;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 338,
                        "end": 357,
                        "text": "Zhang et al., 2018)",
                        "ref_id": "BIBREF50"
                    },
                    {
                        "start": 385,
                        "end": 403,
                        "text": "(Jie et al., 2017;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 404,
                        "end": 429,
                        "text": "Finkel and Manning, 2009)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 455,
                        "end": 476,
                        "text": "(Angeli et al., 2015;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 477,
                        "end": 495,
                        "text": "Peng et al., 2017)",
                        "ref_id": "BIBREF41"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Within the context of dependency parsing, relations between heads and dependents are also la-beled by specifying the type of the grammatical relation between words. In the Universal Dependencies (de Marneffe et al., 2014) tagset, there are 37 dependency relation types defined. In the latest Universal Dependencies (UD v2.0) tagset, relations are split into four main categories (Core Arguments, Non-core dependents, Nominal dependents and Other) and nine sub-categories (Nominals, Clauses, Modifier Words, Function Words, Coordination, MWE, Loose Special and Other) .",
                "cite_spans": [
                    {
                        "start": 195,
                        "end": 221,
                        "text": "(de Marneffe et al., 2014)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 471,
                        "end": 566,
                        "text": "(Nominals, Clauses, Modifier Words, Function Words, Coordination, MWE, Loose Special and Other)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "One way to illustrate the grammatical structure obtained from dependency parsing is a dependency graph. An example dependency graph is given below:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Thank you , Mr. Poettering . Here, the relations are illustrated by the links from head words to dependent words along with their dependency labels. Every sentence has a global head word, which is the ROOT of the sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "There are two main difficulties in dependency parsing. One is the long term dependencies in especially long sentences that are difficult to be identified in a standard Recurrent Neural Network due to the loss of the information flow in long sequences. Another difficulty in parsing is the outof-vocabulary (OOV) words. In this work, we try to tackle these two problems by using Transformer Networks (Vaswani et al., 2017) by introducing subword information for OOV words in especially morphologically rich languages such as Turkish. For that purpose, we integrate character-level word embeddings obtained from Convolutional Neural Networks (CNNs). The morphological complexity in such agglutinative languages makes the parsing task even harder because of the sparsity problem due to the number of suffixes that each word can take, which brings more problems in syntactic parsing. Dependencies in such languages were also defined between morphemic units (i.e. inflectional groups) rather than word tokens (Eryigit et al., 2008) , however this is not in the scope of this work.",
                "cite_spans": [
                    {
                        "start": 399,
                        "end": 421,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 1004,
                        "end": 1026,
                        "text": "(Eryigit et al., 2008)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this work, we introduce a novel two-level deep neural architecture for graph-based dependency parsing. Graph-based dependency parsers build dependency trees among all possible trees, therefore the final dependency tree has the highest score globally. However, in transition-based dependency parsers, each linear selection in a sentence is made based on a local score which may lead to erroneous trees at the end of parsing. For this reason, we prefer graph-based dependency parsing in our approach to be able to do global selections while building dependency trees. In the first level of our deep neural architecture, we encode each sentence through a transformer network (Vaswani et al., 2017) , which shows superior performance in long sequences compared to standard recurrent neural networks (RNNs). In the second level, we decode the dependencies between heads and dependents using a Stack Pointer Network (Ma et al., 2018) , which is extended with an internal stack based on pointer networks (Vinyals et al., 2015) . Since stack pointer networks benefit from the full sequence similar to self attention mechanism in transformer networks, they do not have left-to-right restriction as in transition based parsing. Hence, we combine the two networks to have a more accurate and efficient dependency parser. We evaluate our model on Turkish which is a morphologically rich language and on English with a comparably poorer morphological structure. Although our model does not outperform other recent model, it shows competitive performance among other neural dependency parsers. However, our results show that our self attended stack pointer network improves UAS score around 6% upon the LSTM based stack pointer (Ma et al., 2018) for Turkish sentences with a length of more than 20 words.",
                "cite_spans": [
                    {
                        "start": 675,
                        "end": 697,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 913,
                        "end": 930,
                        "text": "(Ma et al., 2018)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 1000,
                        "end": 1022,
                        "text": "(Vinyals et al., 2015)",
                        "ref_id": null
                    },
                    {
                        "start": 1717,
                        "end": 1734,
                        "text": "(Ma et al., 2018)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The paper is organized as follows: Section 2 reviews the related work on both graph-based and transition-based dependency parsing, Section 3 explains the dependency parsing task briefly, Section 4 describes the proposed deep neural architecture ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Dependency parsing is performed by two different approaches: graph-based and transition-based parsing. We review related work on both of these approaches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Graph-based Dependency Parsing: Graphbased approaches are generally based on performing the entire parsing process as graph operations where the nodes in the graph represent the words in a sentence. For the sentence, \"John saw Mary\", we can illustrate its parse tree with a weighted graph G with four vertices where each of them refers to a word including the ROOT . Edges store the dependency scores between the words. The main idea here is to find the maximum spanning tree of this graph G. The parse tree of the sentence is given in Figure 1 . The dependencies are between ROOT and saw, saw and John; and saw and M ary where the first ones are the heads and the latter ones are the dependents.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 536,
                        "end": 544,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "When the parsing structure is represented as a graph, finding dependencies becomes easier to visualize, and moreover the task becomes finding the highest scored tree among all possible trees. Edge scores in the graphs represent the dependency measures between word couples.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Neural architectures have been used for graphbased dependency parsing extensively in the last decade. Li et al. (2018) introduce a seq2seq model using bi-directional LSTMs (BiLSTMs) (Hochreiter and Schmidhuber, 1997), where an attention mechanism is involved between the encoder and decoder LSTMs. Kiperwasser and Goldberg (2016) propose another model using BiLSTMs, where the right and left arcs in the dependency trees are identified through the BiLSTMs. Dozat and Manning (2016) proposes a parser that uses biaffine attention mechanism, which is extended based on the models of Kiperwasser and Goldberg (2016) , Hashimoto et al. (2017) , and Cheng et al. (2016) . The biaffine parser (Dozat and Manning, 2016) provides a baseline for other two models introduced by Zhou and Zhao (2019) and Li et al. (2019) , which forms trees in the form of Head-Driven Phase Structure Grammar (HPSG) and uses self-attention mechanism respectively. Ji et al. (2019) propose a Graph Neural Network (GNN) that is improved upon the biaffine model. Another LSTM-based model is introduced by Choe and Charniak 2016, where dependency parsing is considered as part of language modelling (LM) and each sentence is parsed with a LSTM-LM architecture which builds parse trees simultaneously with the language model.",
                "cite_spans": [
                    {
                        "start": 102,
                        "end": 118,
                        "text": "Li et al. (2018)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 298,
                        "end": 329,
                        "text": "Kiperwasser and Goldberg (2016)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 457,
                        "end": 481,
                        "text": "Dozat and Manning (2016)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 581,
                        "end": 612,
                        "text": "Kiperwasser and Goldberg (2016)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 615,
                        "end": 638,
                        "text": "Hashimoto et al. (2017)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 645,
                        "end": 664,
                        "text": "Cheng et al. (2016)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 687,
                        "end": 712,
                        "text": "(Dozat and Manning, 2016)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 793,
                        "end": 809,
                        "text": "Li et al. (2019)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 936,
                        "end": 952,
                        "text": "Ji et al. (2019)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The recent works generally focus on the encoder in seq2seq models because a better encoding of an input eliminates most of the cons of the sequence models. For example, Hewitt and Manning 2019and Tai et al. (2015) aim to improve the LSTMbased encoders while Clark et al. 2018introduce an attention-based approach to improve encoding, where they propose Cross-View Training (CVT).",
                "cite_spans": [
                    {
                        "start": 196,
                        "end": 213,
                        "text": "Tai et al. (2015)",
                        "ref_id": "BIBREF45"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In this work, we encode each sentence through a transformer network based on self-attention mechanism (Vaswani et al., 2017) and learn the head of each word using a stack pointer network as a decoder (Ma et al., 2018) in our deep neural architecture. Our main aim is to learn long term dependencies efficiently with a transformer network by removing the recurrent structures from encoder. Transformer networks (Vaswani et al., 2017) and stack pointer networks (Ma et al., 2018) have been used for dependency parsing before. However, this will be the first attempt to combine these two methods for the dependency parsing task.",
                "cite_spans": [
                    {
                        "start": 102,
                        "end": 124,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 200,
                        "end": 217,
                        "text": "(Ma et al., 2018)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 410,
                        "end": 432,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 460,
                        "end": 477,
                        "text": "(Ma et al., 2018)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Transition-based Dependency Parsing: In transition-based dependency parsing, local selections are made for each dependency relationship without considering the complete dependency tree. Therefore, globally motivated selections are normally not performed in transition-based parsing by contrast with graph-based dependency parsing. For this purpose, two stacks are employed to keep track of the actions made during transition-based parsing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Similar to graph-based parsing, neural approaches have been used extensively for transitionbased parsing. Chen and Manning (2014) introduce a feed forward neural network with various extensions by utilizing single-word, word-pair and three-word features. Weiss et al. (2015) improve upon the model by Chen and Manning (2014) with a deeper neural network and with a more structured training and inference using structured perceptron with beam-search decoding. Andor et al. (2016) use also feed forward neural networks similar to others and argue that feed forward neural networks outperform RNNs in case of a global normalization rather than local normalizations as in Chen and Manning (2014) , which apply greedy parsing.",
                "cite_spans": [
                    {
                        "start": 106,
                        "end": 129,
                        "text": "Chen and Manning (2014)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 255,
                        "end": 274,
                        "text": "Weiss et al. (2015)",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 301,
                        "end": 324,
                        "text": "Chen and Manning (2014)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 459,
                        "end": 478,
                        "text": "Andor et al. (2016)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 668,
                        "end": 691,
                        "text": "Chen and Manning (2014)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Mohammadshahi and Henderson (2019) utilize a transformer network, in which graph features are employed as input and output embeddings to learn graph relations, thereby their novel model, Graph2Graph transformer, is introduced.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Fern\u00e1ndez-Gonz\u00e1lez and G\u00f3mez-Rodr\u00edguez (2019) propose a transition-based algorithm that is similar to the stack pointer model by Ma et al. (2018) ; however, left-to-right parsing is adopted on the contrary to Ma et al. (2018) , where top-down parsing is performed. Hence, each parse tree is built in n actions for an n length sentence without requiring any additional data structure.",
                "cite_spans": [
                    {
                        "start": 129,
                        "end": 145,
                        "text": "Ma et al. (2018)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 209,
                        "end": 225,
                        "text": "Ma et al. (2018)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In addition to these models, there are some works such as the greedy parser of and Kuncoro et al. (2016) , and the highperformance parser by Qi and Manning (2017) . Nivre and McDonald (2008) indicate that graphbased and transition-based parsers can be also combined by integrating their features. And several works follow this idea (Goldberg and Elhadad, 2010; Spitkovsky et al., 2010; Ma et al., 2013; Ballesteros and Bohnet, 2014; Zhang and Clark, 2008) .",
                "cite_spans": [
                    {
                        "start": 83,
                        "end": 104,
                        "text": "Kuncoro et al. (2016)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 141,
                        "end": 162,
                        "text": "Qi and Manning (2017)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 165,
                        "end": 190,
                        "text": "Nivre and McDonald (2008)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 332,
                        "end": 360,
                        "text": "(Goldberg and Elhadad, 2010;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 361,
                        "end": 385,
                        "text": "Spitkovsky et al., 2010;",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 386,
                        "end": 402,
                        "text": "Ma et al., 2013;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 403,
                        "end": 432,
                        "text": "Ballesteros and Bohnet, 2014;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 433,
                        "end": 455,
                        "text": "Zhang and Clark, 2008)",
                        "ref_id": "BIBREF49"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Dependency parsing is the task of inferring the grammatical structure of a sentence by identifying the relationships between words. Dependency is a head-dependent relation between words and each dependent is affected by its head. The dependencies in a dependency tree are always from the head to the dependents. The parsing, no matter which approach is used, creates a dependency tree or a graph, as we mentioned above. There are some formal conditions of this graph:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Formal Definition of Dependency Parsing",
                "sec_num": "3"
            },
            {
                "text": "\u2022 Graph should be connected.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Formal Definition of Dependency Parsing",
                "sec_num": "3"
            },
            {
                "text": "-Each word must have a head. \u2022 Graph must be acyclic.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Formal Definition of Dependency Parsing",
                "sec_num": "3"
            },
            {
                "text": "-If there are dependencies w1 \u2192 w2 and w2 \u2192 w3; there must not be a dependency such as w3 \u2192 w1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Formal Definition of Dependency Parsing",
                "sec_num": "3"
            },
            {
                "text": "\u2022 Each of the vertices must have one incoming edge.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Formal Definition of Dependency Parsing",
                "sec_num": "3"
            },
            {
                "text": "-Each word must only have one head. A graph that includes w1 \u2192 w2 and w3 \u2192 w2 is not allowed in a dependency graph.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Formal Definition of Dependency Parsing",
                "sec_num": "3"
            },
            {
                "text": "A dependency tree is projective if there are no crossing edges on the dependency graph. Figure 2 illustrates a projective tree and Figure 3 illustrates a non-projective dependency graph. Our model deviates from the STACKPTR model with a transformer network that encodes each word with a self-attention mechanism, which will allow to learn long-term dependencies since every word's relation to all words in a sentence can be effectively processed in a transformer network on the contrary to recurrent neural networks. In sequential recurrent structures such as RNNs or LSTMs, every word's encoding contains information about only previous words in a sentence and there is always a loss in the information flow through the long sequences in those structures.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 88,
                        "end": 96,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 131,
                        "end": 139,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "The Formal Definition of Dependency Parsing",
                "sec_num": "3"
            },
            {
                "text": "In our transformer network, we adopt a multihead attention and a feed-forward network. Once we encode a sequence with a transformer network, we decode the sequence to predict the head of each word in that sequence by using a stack pointer network.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Formal Definition of Dependency Parsing",
                "sec_num": "3"
            },
            {
                "text": "In RNNs, each state is informed by the previous states with a sequential information flow through the states. However, in longer sequences, information passed from earlier states loses its effect on the later states in RNNs by definition. Transformer networks are effective attention-based neural network architectures (Vaswani et al., 2017) . The main idea is to replace the recurrent networks with a single transformer network which has the ability to compute the relationships between all words in a sequence with a self-attention mechanism without requiring any recurrent structure. Therefore, each word in a sequence will be informed by all other words in the sequence.",
                "cite_spans": [
                    {
                        "start": 319,
                        "end": 341,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Encoder",
                "sec_num": "4.2"
            },
            {
                "text": "Learning long term dependencies in especially long sentences is still one of the challenges in dependency parsing. We employ transformer networks in order to tackle with the long term dependencies problem by eliminating the usage of recurrent neural networks while encoding each sentence during parsing. Hence, we use transformer network as an encoder to encode each word by feeding our transformer encoder with each word's pretrained word embeddings (Glove (Pennington et al., 2014) or Polyglot (Al-Rfou' et al., 2013) embeddings), part-of-speech (PoS) tag embeddings, characterlevel word embeddings obtained from CNN, and the positional encodings of each word.",
                "cite_spans": [
                    {
                        "start": 458,
                        "end": 483,
                        "text": "(Pennington et al., 2014)",
                        "ref_id": "BIBREF40"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Encoder",
                "sec_num": "4.2"
            },
            {
                "text": "Positional encoding (PE) is used to inject positional information for each encoded word, since there is not a sequential recurrent structure in a self attention mechanism. With the positional encoding, some relative or absolute positions of words in a sentence are utilized. The cos function is used for the odd indices and the sin function is used for even indices. The injection of the position information is performed with the sinus waves. The Figure 4 : Overview of the Self-Attended Pointer Network Model. After concatenating word embeddings, POS tag embeddings, and char-embeddings obtained from CNN, the final embedding is fed into the self-attention encoder stack. Then, embedding of the word at the top of the stack, its sibling and grandparent vectors are summed-up in order to predict the dependency head. sin function for the even indices is computed as follows:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 448,
                        "end": 456,
                        "text": "Figure 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Transformer Encoder",
                "sec_num": "4.2"
            },
            {
                "text": "P E(x, 2i) = sin x 10000 2i/d model (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Encoder",
                "sec_num": "4.2"
            },
            {
                "text": "where d model is the dimension of the word embeddings, i \u2208 [0, d model /2), and x is the position of each word where x \u2208 [0, n] in the input sequence s = (w 0 , w 1 . . . w n ). The cos function for the odd indices is computed analogously. The positional encoding is calculated for each embedding and they are summed. So the dimension d model does not change. Concatenation is also possible theoretically. However, in the input and output embeddings, the position information is included in the first few indices in the embedding. Thus, when the d model is large enough, there is no need to concatenate. The summation also meets the requirements.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Encoder",
                "sec_num": "4.2"
            },
            {
                "text": "The Encoder stack contains a Multi-Head Attention and a Feed-Forward Network. A Layer Normalization is applied after each of these two layers. There could be more than one encoder in the encoder stack. In this case, all of the outputs in one encoder is fed into the next encoder in the encoder stack. In our model, we performed several experiments with different number of encoder layers in the encoder stack to optimize the number of encoder layers for parsing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Encoder",
                "sec_num": "4.2"
            },
            {
                "text": "Multi-Head Attention is evolved from Self-Attention Mechanism, which enables encoding all words using all of the words in the sentence. So it learns better relations between words compared to recurrent structures. The all-to-all encoding in self-attention mechanism is performed through query, key and value matrices. There are multiple sets of queries, keys and values that are learned in the model. Self-attention is calculated for each of these sets and a new embedding is produced. The new embeddings for each set are concatenated and multiplied with Z matrix which is a randomlyinitialized matrix in order to compute the final embeddings. Z matrix is trained jointly and multiplied with the concatenated weight matrix in order to reduce the embeddings into a single final embedding for each set. In other words, the final embedding is learnt from different contexts at the same time. It is multi-head because it learns from the head of each set. The head of each set is calculated by using self-attention.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Encoder",
                "sec_num": "4.2"
            },
            {
                "text": "Finally, a Feed Forward Neural Network which is basically a neural network with two linear layers and ReLU activation function is used to process the embeddings obtained from multi-head attention. It is placed at the end of the encoder because with this feed-forward neural network, we can train the embeddings with a latent space of words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Encoder",
                "sec_num": "4.2"
            },
            {
                "text": "Layer Normalization (Ba et al., 2016) is applied to normalize the weights and retain some form of information from the previous layers, which is performed for both Multi-Head Attention and Feed Forward Neural Network.",
                "cite_spans": [
                    {
                        "start": 20,
                        "end": 37,
                        "text": "(Ba et al., 2016)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Encoder",
                "sec_num": "4.2"
            },
            {
                "text": "Final output embeddings contain contextual information about the input sentence and the words in the sequence. So, the output of the Transformer Encoder is a -theoretically-more comprehensive representation of contextual information compared to the input word embeddings and also compared to the the output of a BiLSTM encoder head sibling modifier ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Encoder",
                "sec_num": "4.2"
            },
            {
                "text": "Stack Pointer Network (STACKPTR) (Ma et al., 2018 ) is a transition-based structure but it still performs a global optimization over the potential dependency parse trees of a sentence. STACKPTR is based on a pointer network (PTR-NET) (Vinyals et al., 2015) but differently, a STACKPTR has a stack to store the order of head words in trees. In each step, an arc is built from a child to the head word at the top of the stack based on the attention scores obtained from a pointer network.",
                "cite_spans": [
                    {
                        "start": 33,
                        "end": 49,
                        "text": "(Ma et al., 2018",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 234,
                        "end": 256,
                        "text": "(Vinyals et al., 2015)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "We use a Stack Pointer Network for decoding the sequence to infer the dependencies, where each word is encoded with a Transformer Network as mentioned in the previous section.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "The transformer encoder outputs a hidden state vector s i for the ith word in the sequence. The hidden state vector is summed with higher-order information similar to that of Ma et al. (2018) . There are two types of higher-order information in the model: Sibling (two words that have the same parent) and grandparent/grandchild (parent of the word's parent and the child of the word's child). Figure 5 and Figure 6 shows an illustration of these high-order structures.",
                "cite_spans": [
                    {
                        "start": 175,
                        "end": 191,
                        "text": "Ma et al. (2018)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 394,
                        "end": 402,
                        "text": "Figure 5",
                        "ref_id": null
                    },
                    {
                        "start": 407,
                        "end": 415,
                        "text": "Figure 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "So, the input vector for the decoder is the sum of the state vector of the word on the top of the stack, its sibling and its grandparent:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03b2 i = s h + s s + s g",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "In the decoder part, an LSTM gathers all of the contextual and higher-order information about the word at the top of stack. Normally, in the pointer networks, at each time step t, the decoder receives the input from the last step and outputs decoder hidden state h t . Therefore, an attention score is obtained as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "e t i = score(h t , s i ) (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "where e t is the output of the scoring function, s i is the encoder hidden state and h t is the decoder hidden state at time step t. After calculating the score for each possible output in the Biaffine attention mechanism, the final prediction is performed as follows with a softmax function to convert it into a probability distribution:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "a t = sof tmax(e t )",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "where a t is the output probability vector for each possible child word and e t is the output vector of the scoring function. In our model, scoring function is adopted from Deep Biaffine attention mechanism (Dozat and Manning, 2016) :",
                "cite_spans": [
                    {
                        "start": 207,
                        "end": 232,
                        "text": "(Dozat and Manning, 2016)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "e t i = h T t W s i + U t h t + V t s i + b (5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "where W is the weight matrix, U and V are the weight vectors and b is the bias. Additionally, before the scoring function, an MLP is applied to the output of decoder, as proposed by Dozat and Manning (2016) to reduce the dimensionality.",
                "cite_spans": [
                    {
                        "start": 182,
                        "end": 206,
                        "text": "Dozat and Manning (2016)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "As for the dependency labels, we also use another MLP to reduce the dimensionlity and then apply deep biaffine to score the possible labels for the word at the top of the stack.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stack Pointer Network",
                "sec_num": "4.3"
            },
            {
                "text": "We use cross-entropy loss for training the model similar to STACKPTR. The probability of a parse tree y for a given sentence x under the parameter set \u03b8 is P \u03b8 (y|x) and estimated as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Learning",
                "sec_num": "4.4"
            },
            {
                "text": "P \u03b8 (y|x) = k i=1 P \u03b8 (p i |p <i , x) (6) = k i=1 l i j=1 P \u03b8 (c i,j |c i,<j , p <i , x) (7)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Learning",
                "sec_num": "4.4"
            },
            {
                "text": "p <i denotes the preceding paths that have already been generated, c i,j represents the j th word in the path p i and c i,<j denotes all the proceeding words on the path p i . Here, a path consists of a sequence of words from the root to the leaf. The model learns the arcs and labels in the dependency tree simultaneously.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Learning",
                "sec_num": "4.4"
            },
            {
                "text": "We ran experiments on both Turkish and English. We used Penn Treebank (PTB) (Marcus et al., 1993) for English and IMST dataset (Sulubacak et al., 2016) in Universal Dependencies for Turkish.",
                "cite_spans": [
                    {
                        "start": 76,
                        "end": 97,
                        "text": "(Marcus et al., 1993)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 127,
                        "end": 151,
                        "text": "(Sulubacak et al., 2016)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "5.1"
            },
            {
                "text": "As for the word embeddings, we used pre-trained Glove embeddings (Pennington et al., 2014) on Wikipedia and pre-trained Polyglot embeddings (Al-Rfou' et al., 2013) on Wikipedia for both Turkish and English.",
                "cite_spans": [
                    {
                        "start": 65,
                        "end": 90,
                        "text": "(Pennington et al., 2014)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 140,
                        "end": 163,
                        "text": "(Al-Rfou' et al., 2013)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "5.1"
            },
            {
                "text": "For the evaluation, we used two different evaluation metrics: UAS and LAS, which are the standard metrics for dependency parsing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "5.2"
            },
            {
                "text": "UAS is a metric that is used to calculate the accuracy of predicting words' heads. In other words, it is the ratio of the number of correctly predicted heads to the total number of words in the dataset:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "5.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "U AS = #of correctheads #of words",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Evaluation Metrics",
                "sec_num": "5.2"
            },
            {
                "text": "LAS is another metric for dependency parsing that measures the correctness of both heads and labels. In other words, it is the ratio of correctly predicted heads and labels to the total number of words in the dataset:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "5.2"
            },
            {
                "text": "LAS = #of correcthead, labelpair",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "5.2"
            },
            {
                "text": "#of words (9)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "5.2"
            },
            {
                "text": "In our experiments, we use similar configurations with the baseline models: STACKPTR model by Ma et al. (2018) and Self-Attention mechanism by Vaswani et al. (2017) . Differently from the baseline models, for the self-attended encoder stack; we used 6 layers because this configuration performs better with the Polyglot embeddings for both English and Turkish as seen in Table 1 and Table 2 for English and Turkish respectively.",
                "cite_spans": [
                    {
                        "start": 94,
                        "end": 110,
                        "text": "Ma et al. (2018)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 143,
                        "end": 164,
                        "text": "Vaswani et al. (2017)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 371,
                        "end": 390,
                        "text": "Table 1 and Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Hyperparameters",
                "sec_num": "5.3"
            },
            {
                "text": "The results obtained from IMST dataset (Sulubacak et al., 2016) in Turkish is given in Table 1 : Accuracy for different number of encoder layers for PTB Dataset (Marcus et al., 1993) Layer Table 2 : Accuracy for different number of encoder layers for Turkish IMST Dataset (Sulubacak et al., 2016) an UAS score of 76.81% and LAS score of 67.95% are obtained with Polyglot embeddings. Therefore, using Polyglot embeddings gives far better results in Turkish. This could be due to the size of the train set used for the Polyglot embeddings. The results obtained from Penn Treebank dataset (Marcus et al., 1993) in English is given in Table  4 . Our results again show competitive performance compared to other related work for English. Similar to the Turkish results, our model performs better with Polyglot embeddings. While Glove gives 93.43% UAS and 91.98% LAS, Polyglot gives 94.23% UAS and 92.67% LAS.",
                "cite_spans": [
                    {
                        "start": 39,
                        "end": 63,
                        "text": "(Sulubacak et al., 2016)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 161,
                        "end": 182,
                        "text": "(Marcus et al., 1993)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 272,
                        "end": 296,
                        "text": "(Sulubacak et al., 2016)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 586,
                        "end": 607,
                        "text": "(Marcus et al., 1993)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 87,
                        "end": 94,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 189,
                        "end": 196,
                        "text": "Table 2",
                        "ref_id": null
                    },
                    {
                        "start": 631,
                        "end": 639,
                        "text": "Table  4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.4"
            },
            {
                "text": "The main aim in this study is to utilize Transformer Networks to resolve the long-term dependencies problem in dependency parsing. We analyzed the accuracy of our model in both short and longer sentences to see the impact of the Transformer Networks in our model compared to sequential STACKPTR model that is based on LSTMs. Table 7 gives the results for different lengths of sentences to show the impact of using Transformer Networks in long term depedencies. We compare our model with the original STACKPTR (Ma et al., 2018) model, which is based on LSTMs. As the results show, our model performs far better for sentences with more than 20 words compared to the standard STACKPTR model, with an improvement Kondratyuk and Straka (2019) 74.56 67.44 McDonald et al. (2006) 74.70 63.20 Dozat and Manning (2016) 77.46 68.02 Ma et al. (2018) 79.56 68.93 Ballesteros et al. (2015) 79.30 69.28 Ballesteros et al. (2015) 91.63 89.44 Chen and Manning (2014) 91.8 89.6 Kiperwasser and Goldberg (2016) 93.1 91.0 93.56 91.42 Weiss et al. (2015) 94.26 92.41 Andor et al. (2016) 94.61 92.79 Ma and Hovy (2017) 94.88 92.98 Dozat and Manning (2016) 95.74 94.08 Ma et al. (2018) 95.87 94.19 Table 4 : Results for English PTB Dataset (Marcus et al., 1993) of UAS score with around 7%. For less than 20 words, our model's accuracy is lower compared to longer sentences. It shows that our self-attention based model is not able to learn shorter sentences better than the BiLSTM based STACKPTR model. However, we observed that decreasing the number of layers in our encoder stack gives a higher accuracy for shorter sentences. However, it decreases the overall accuracy for the entire dataset.",
                "cite_spans": [
                    {
                        "start": 509,
                        "end": 526,
                        "text": "(Ma et al., 2018)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 709,
                        "end": 723,
                        "text": "Kondratyuk and",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 724,
                        "end": 772,
                        "text": "Straka (2019) 74.56 67.44 McDonald et al. (2006)",
                        "ref_id": null
                    },
                    {
                        "start": 785,
                        "end": 809,
                        "text": "Dozat and Manning (2016)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 822,
                        "end": 838,
                        "text": "Ma et al. (2018)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 851,
                        "end": 876,
                        "text": "Ballesteros et al. (2015)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 889,
                        "end": 914,
                        "text": "Ballesteros et al. (2015)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 927,
                        "end": 950,
                        "text": "Chen and Manning (2014)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 961,
                        "end": 992,
                        "text": "Kiperwasser and Goldberg (2016)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 1015,
                        "end": 1034,
                        "text": "Weiss et al. (2015)",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 1047,
                        "end": 1066,
                        "text": "Andor et al. (2016)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1079,
                        "end": 1097,
                        "text": "Ma and Hovy (2017)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 1110,
                        "end": 1134,
                        "text": "Dozat and Manning (2016)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 1147,
                        "end": 1163,
                        "text": "Ma et al. (2018)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 1218,
                        "end": 1239,
                        "text": "(Marcus et al., 1993)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 325,
                        "end": 332,
                        "text": "Table 7",
                        "ref_id": null
                    },
                    {
                        "start": 1176,
                        "end": 1183,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Sentence Length",
                "sec_num": "5.5.1"
            },
            {
                "text": "We also analyzed the impact of using punctuation in the datasets during training. Analysis of Spitkovsky et al. (Spitkovsky et al., 2011) shows that the usage of lexicalized and punctuated sentences gives better results in dependency parsing. So, we ran our model with both punctuated and not-punctuated versions of both datasets in Turkish and English. Table 5 shows that punctuation affects the learning of the model for both languages Table 5 : Accuracy (UAS (LAS)) with and without punctuation on IMST (Sulubacak et al., 2016) and PTB (Marcus et al., 1993) Table 6 : The impact of using word embeddings (Glove or Polyglot), PoS tag embeddings and character-based word embeddings for the Turkish IMST Dataset (Sulubacak et al., 2016) and the results are comparably higher when the punctuation is also used in the datasets. The impact of using punctuation is even more for Turkish language and both UAS and LAS are around %5 higher compared to training on datasets without punctuation.",
                "cite_spans": [
                    {
                        "start": 94,
                        "end": 137,
                        "text": "Spitkovsky et al. (Spitkovsky et al., 2011)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 506,
                        "end": 530,
                        "text": "(Sulubacak et al., 2016)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 539,
                        "end": 560,
                        "text": "(Marcus et al., 1993)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 712,
                        "end": 736,
                        "text": "(Sulubacak et al., 2016)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 354,
                        "end": 361,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 438,
                        "end": 445,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 561,
                        "end": 568,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "The Impact of Punctuation",
                "sec_num": "5.5.2"
            },
            {
                "text": "We analyzed the effect of using various embeddings in the Transformer encoder. As mentioned before, we utilize word embeddings, PoS tag embeddings and char embeddings obtained from CNN in our model. Table 6 shows the impact of the embeddings on the accuracy of the model. As the results show, character-level encoding plays a crucial role in our model because it helps to mitigate the OOV problem during training. We obtained the highest scores when Polyglot word embeddings, PoS tag embeddings and character-based word embeddings are incorporated in training.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 199,
                        "end": 206,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "The Impact of Using Embeddings",
                "sec_num": "5.5.3"
            },
            {
                "text": "Our experiments show that using Self-Attention mechanism increases parsing accuracy especially in longer sentences in Turkish. However, our parser requires more data to learn better for also shorter sentences. The results also show that using character level word embeddings along with word embeddings and PoS tag embeddings gives the highest accuracy for our model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion & Future Work",
                "sec_num": "6"
            },
            {
                "text": "We obtained the highest scores when we include Number of words in sentence UAS -STACKPTR UAS -Self-Attended STACKPTR less than 10 words 93.23 86.47 between 10 and 20 words 88.96 81.63 more than 20 words 56.49 62.33 Table 7 : Accuracies for different lengths of sentences in IMST Dataset in Turkish (Sulubacak et al., 2016) 6 layers in our encoder stack by using Polyglot embeddings. Our results also show that including punctuation in the dataset improves the accuracy substantially. We leave integrating morpheme-level information in especially morphologically rich languages such as Turkish as future work.",
                "cite_spans": [
                    {
                        "start": 298,
                        "end": 322,
                        "text": "(Sulubacak et al., 2016)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 215,
                        "end": 222,
                        "text": "Table 7",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion & Future Work",
                "sec_num": "6"
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Polyglot: Distributed word representations for multilingual NLP",
                "authors": [
                    {
                        "first": "Rami",
                        "middle": [],
                        "last": "Al-Rfou",
                        "suffix": ""
                    },
                    {
                        "first": "'",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Perozzi",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Skiena",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "183--192",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rami Al-Rfou', Bryan Perozzi, and Steven Skiena. 2013. Polyglot: Distributed word representations for multilingual NLP. In Proceedings of the Seven- teenth Conference on Computational Natural Lan- guage Learning, pages 183-192, Sofia, Bulgaria. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Globally normalized transition-based neural networks",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Andor",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Alberti",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Weiss",
                        "suffix": ""
                    },
                    {
                        "first": "Aliaksei",
                        "middle": [],
                        "last": "Severyn",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Presta",
                        "suffix": ""
                    },
                    {
                        "first": "Kuzman",
                        "middle": [],
                        "last": "Ganchev",
                        "suffix": ""
                    },
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "2442--2452",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P16-1231"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normal- ized transition-based neural networks. In Proceed- ings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 2442-2452, Berlin, Germany. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Leveraging linguistic structure for open domain information extraction",
                "authors": [
                    {
                        "first": "Gabor",
                        "middle": [],
                        "last": "Angeli",
                        "suffix": ""
                    },
                    {
                        "first": "Melvin Jose Johnson",
                        "middle": [],
                        "last": "Premkumar",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "344--354",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-1034"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. 2015. Leveraging linguis- tic structure for open domain information extraction. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Lan- guage Processing (Volume 1: Long Papers), pages 344-354, Beijing, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Layer normalization",
                "authors": [
                    {
                        "first": "Jimmy",
                        "middle": [
                            "Lei"
                        ],
                        "last": "Ba",
                        "suffix": ""
                    },
                    {
                        "first": "Jamie",
                        "middle": [
                            "Ryan"
                        ],
                        "last": "Kiros",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [
                            "E"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin- ton. 2016. Layer normalization.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Automatic feature selection for agenda-based dependency parsing",
                "authors": [
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Ballesteros",
                        "suffix": ""
                    },
                    {
                        "first": "Bernd",
                        "middle": [],
                        "last": "Bohnet",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers",
                "volume": "",
                "issue": "",
                "pages": "794--805",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Miguel Ballesteros and Bernd Bohnet. 2014. Au- tomatic feature selection for agenda-based depen- dency parsing. In Proceedings of COLING 2014, the 25th International Conference on Computa- tional Linguistics: Technical Papers, pages 794- 805, Dublin, Ireland. Dublin City University and As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Improved transition-based parsing by modeling characters instead of words with lstms",
                "authors": [
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Ballesteros",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved transition-based parsing by model- ing characters instead of words with lstms.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Training with exploration improves a greedy stack-lstm parser",
                "authors": [
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Ballesteros",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and Noah A. Smith. 2016. Training with exploration im- proves a greedy stack-lstm parser.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Nonprojective parsing for statistical machine translation",
                "authors": [
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Carreras",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "200--209",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xavier Carreras and Michael Collins. 2009. Non- projective parsing for statistical machine translation. In Proceedings of the 2009 Conference on Empiri- cal Methods in Natural Language Processing, pages 200-209, Singapore. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A fast and accurate dependency parser using neural networks",
                "authors": [
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "740--750",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/D14-1082"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency parser using neural net- works. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 740-750, Doha, Qatar. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Improved neural machine translation with a syntax-aware encoder and decoder",
                "authors": [
                    {
                        "first": "Huadong",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Shujian",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Chiang",
                        "suffix": ""
                    },
                    {
                        "first": "Jiajun",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "1936--1945",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1177"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Huadong Chen, Shujian Huang, David Chiang, and Ji- ajun Chen. 2017. Improved neural machine trans- lation with a syntax-aware encoder and decoder. pages 1936-1945.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Bi-directional attention with agreement for dependency parsing",
                "authors": [
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Fang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2204--2214",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D16-1238"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao, and Li Deng. 2016. Bi-directional attention with agreement for dependency parsing. In Proceed- ings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2204-2214, Austin, Texas. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Parsing as language modeling",
                "authors": [
                    {
                        "first": "Kook",
                        "middle": [],
                        "last": "Do",
                        "suffix": ""
                    },
                    {
                        "first": "Eugene",
                        "middle": [],
                        "last": "Choe",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Charniak",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2331--2336",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D16-1257"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Do Kook Choe and Eugene Charniak. 2016. Parsing as language modeling. In Proceedings of the 2016 Conference on Empirical Methods in Natural Lan- guage Processing, pages 2331-2336, Austin, Texas. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Semi-supervised sequence modeling with cross-view training",
                "authors": [
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Minh-Thang",
                        "middle": [],
                        "last": "Luong",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "Quoc",
                        "middle": [
                            "V"
                        ],
                        "last": "Le",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kevin Clark, Minh-Thang Luong, Christopher D. Man- ning, and Quoc V. Le. 2018. Semi-supervised se- quence modeling with cross-view training.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Deep biaffine attention for neural dependency parsing",
                "authors": [
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Dozat",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Timothy Dozat and Christopher D. Manning. 2016. Deep biaffine attention for neural dependency pars- ing.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Dependency parsing of turkish",
                "authors": [
                    {
                        "first": "G\u00fcl\u015fen",
                        "middle": [],
                        "last": "Eryigit",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Kemal",
                        "middle": [],
                        "last": "Oflazer",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Computational Linguistics",
                "volume": "34",
                "issue": "3",
                "pages": "357--389",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G\u00fcl\u015fen Eryigit, Joakim Nivre, and Kemal Oflazer. 2008. Dependency parsing of turkish. Computational Lin- guistics, 34(3):357-389.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Left-to-right dependency parsing with pointer networks",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Fern\u00e1ndez",
                        "suffix": ""
                    },
                    {
                        "first": "-",
                        "middle": [],
                        "last": "Gonz\u00e1lez",
                        "suffix": ""
                    },
                    {
                        "first": "Carlos",
                        "middle": [],
                        "last": "G\u00f3mez-Rodr\u00edguez",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "710--716",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1076"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Fern\u00e1ndez-Gonz\u00e1lez and Carlos G\u00f3mez- Rodr\u00edguez. 2019. Left-to-right dependency parsing with pointer networks. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 710-716, Minneapolis, Minnesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Joint parsing and named entity recognition",
                "authors": [
                    {
                        "first": "Jenny",
                        "middle": [
                            "Rose"
                        ],
                        "last": "Finkel",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of Human Language Technologies: The",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jenny Rose Finkel and Christopher D. Manning. 2009. Joint parsing and named entity recognition. In Pro- ceedings of Human Language Technologies: The",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Annual Conference of the North American Chapter of the Association for Computational Linguistics",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "326--334",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Annual Conference of the North American Chapter of the Association for Computational Lin- guistics, pages 326-334, Boulder, Colorado. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Relex -relation extraction using dependency parse trees",
                "authors": [
                    {
                        "first": "Katrin",
                        "middle": [],
                        "last": "Fundel-Clemens",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "K\u00fcffner",
                        "suffix": ""
                    },
                    {
                        "first": "Ralf",
                        "middle": [],
                        "last": "Zimmer",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Bioinformatics",
                "volume": "23",
                "issue": "",
                "pages": "365--71",
                "other_ids": {
                    "DOI": [
                        "10.1093/bioinformatics/btl616"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Katrin Fundel-Clemens, Robert K\u00fcffner, and Ralf Zim- mer. 2007. Relex -relation extraction using de- pendency parse trees. Bioinformatics (Oxford, Eng- land), 23:365-71.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "An efficient algorithm for easy-first non-directional dependency parsing",
                "authors": [
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [
                            "Elhadad"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "742--750",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoav Goldberg and Michael Elhadad. 2010. An effi- cient algorithm for easy-first non-directional depen- dency parsing. In Human Language Technologies: The 2010 Annual Conference of the North Ameri- can Chapter of the Association for Computational Linguistics, pages 742-750, Los Angeles, California. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A joint many-task model: Growing a neural network for multiple NLP tasks",
                "authors": [
                    {
                        "first": "Kazuma",
                        "middle": [],
                        "last": "Hashimoto",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshimasa",
                        "middle": [],
                        "last": "Tsuruoka",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1923--1933",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1206"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu- ruoka, and Richard Socher. 2017. A joint many-task model: Growing a neural network for multiple NLP tasks. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1923-1933, Copenhagen, Denmark. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "A structural probe for finding syntax in word representations",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Hewitt",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4129--4138",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1419"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "John Hewitt and Christopher D. Manning. 2019. A structural probe for finding syntax in word repre- sentations. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4129-4138, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Long short-term memory",
                "authors": [
                    {
                        "first": "Sepp",
                        "middle": [],
                        "last": "Hochreiter",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00fcrgen",
                        "middle": [],
                        "last": "Schmidhuber",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Neural computation",
                "volume": "9",
                "issue": "",
                "pages": "1735--80",
                "other_ids": {
                    "DOI": [
                        "10.1162/neco.1997.9.8.1735"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9:1735- 80.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Graphbased dependency parsing with graph neural networks",
                "authors": [
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Yuanbin",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Man",
                        "middle": [],
                        "last": "Lan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2475--2485",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1237"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph- based dependency parsing with graph neural net- works. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 2475-2485, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Efficient dependency-guided named entity recognition",
                "authors": [
                    {
                        "first": "Zhanming",
                        "middle": [],
                        "last": "Jie",
                        "suffix": ""
                    },
                    {
                        "first": "Aldrian",
                        "middle": [],
                        "last": "Obaja Muis",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI'17",
                "volume": "",
                "issue": "",
                "pages": "3457--3465",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhanming Jie, Aldrian Obaja Muis, and Wei Lu. 2017. Efficient dependency-guided named entity recogni- tion. In Proceedings of the Thirty-First AAAI Con- ference on Artificial Intelligence, AAAI'17, page 3457-3465. AAAI Press.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Simple and accurate dependency parsing using bidirectional LSTM feature representations",
                "authors": [
                    {
                        "first": "Eliyahu",
                        "middle": [],
                        "last": "Kiperwasser",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "4",
                "issue": "",
                "pages": "313--327",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00101"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim- ple and accurate dependency parsing using bidirec- tional LSTM feature representations. Transactions of the Association for Computational Linguistics, 4:313-327.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "75 languages, 1 model: Parsing universal dependencies universally",
                "authors": [
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Kondratyuk",
                        "suffix": ""
                    },
                    {
                        "first": "Milan",
                        "middle": [],
                        "last": "Straka",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dan Kondratyuk and Milan Straka. 2019. 75 lan- guages, 1 model: Parsing universal dependencies universally.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Distilling an ensemble of greedy dependency parsers into one mst parser",
                "authors": [
                    {
                        "first": "Adhiguna",
                        "middle": [],
                        "last": "Kuncoro",
                        "suffix": ""
                    },
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Ballesteros",
                        "suffix": ""
                    },
                    {
                        "first": "Lingpeng",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, and Noah A. Smith. 2016. Distill- ing an ensemble of greedy dependency parsers into one mst parser.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Self-attentive biaffine dependency parsing",
                "authors": [
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Zhenghua",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Luo",
                        "middle": [],
                        "last": "Si",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 28th International Joint Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "5067--5073",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ying Li, Zhenghua Li, Min Zhang, Rui Wang, Sheng Li, and Luo Si. 2019. Self-attentive biaffine depen- dency parsing. In Proceedings of the 28th Inter- national Joint Conference on Artificial Intelligence, pages 5067-5073. AAAI Press.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Seq2seq dependency parsing",
                "authors": [
                    {
                        "first": "Zuchao",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jiaxun",
                        "middle": [],
                        "last": "Cai",
                        "suffix": ""
                    },
                    {
                        "first": "Shexia",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3203--3214",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018. Seq2seq dependency parsing. In Proceedings of the 27th International Conference on Computational Linguistics, pages 3203-3214, Santa Fe, New Mex- ico, USA. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Easy-first POS tagging and dependency parsing with beam search",
                "authors": [
                    {
                        "first": "Ji",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Jingbo",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    },
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "110--114",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ji Ma, Jingbo Zhu, Tong Xiao, and Nan Yang. 2013. Easy-first POS tagging and dependency parsing with beam search. In Proceedings of the 51st Annual Meeting of the Association for Computational Lin- guistics (Volume 2: Short Papers), pages 110-114, Sofia, Bulgaria. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Neural probabilistic model for non-projective MST parsing",
                "authors": [
                    {
                        "first": "Xuezhe",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Eighth International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "59--69",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xuezhe Ma and Eduard Hovy. 2017. Neural proba- bilistic model for non-projective MST parsing. In Proceedings of the Eighth International Joint Con- ference on Natural Language Processing (Volume 1: Long Papers), pages 59-69, Taipei, Taiwan. Asian Federation of Natural Language Processing.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Stackpointer networks for dependency parsing",
                "authors": [
                    {
                        "first": "Xuezhe",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Zecong",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Jingzhou",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Nanyun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1403--1414",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1130"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Eduard Hovy. 2018. Stack- pointer networks for dependency parsing. In Pro- ceedings of the 56th Annual Meeting of the Associa- tion for Computational Linguistics (Volume 1: Long Papers), pages 1403-1414, Melbourne, Australia. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Building a large annotated corpus of english: The penn treebank",
                "authors": [
                    {
                        "first": "Mitchell",
                        "middle": [],
                        "last": "Marcus",
                        "suffix": ""
                    },
                    {
                        "first": "Beatrice",
                        "middle": [],
                        "last": "Santorini",
                        "suffix": ""
                    },
                    {
                        "first": "Mary",
                        "middle": [
                            "Ann"
                        ],
                        "last": "Marcinkiewicz",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of english: The penn treebank.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Universal Stanford dependencies: A cross-linguistic typology",
                "authors": [
                    {
                        "first": "Marie-Catherine",
                        "middle": [],
                        "last": "De Marneffe",
                        "suffix": ""
                    },
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Dozat",
                        "suffix": ""
                    },
                    {
                        "first": "Natalia",
                        "middle": [],
                        "last": "Silveira",
                        "suffix": ""
                    },
                    {
                        "first": "Katri",
                        "middle": [],
                        "last": "Haverinen",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Ginter",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014)",
                "volume": "",
                "issue": "",
                "pages": "4585--4592",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marie-Catherine de Marneffe, Timothy Dozat, Na- talia Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre, and Christopher D. Manning. 2014. Uni- versal Stanford dependencies: A cross-linguistic ty- pology. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), pages 4585-4592, Reykjavik, Ice- land. European Languages Resources Association (ELRA).",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Multilingual dependency analysis with a twostage discriminative parser",
                "authors": [
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Lerman",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Tenth Conference on Computational Natural Language Learning (CoNLL-X)",
                "volume": "",
                "issue": "",
                "pages": "216--220",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ryan McDonald, Kevin Lerman, and Fernando Pereira. 2006. Multilingual dependency analysis with a two- stage discriminative parser. In Proceedings of the Tenth Conference on Computational Natural Lan- guage Learning (CoNLL-X), pages 216-220, New York City. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Graph-to-graph transformer for transition-based dependency parsing",
                "authors": [
                    {
                        "first": "Alireza",
                        "middle": [],
                        "last": "Mohammadshahi",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Henderson",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alireza Mohammadshahi and James Henderson. 2019. Graph-to-graph transformer for transition-based de- pendency parsing.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "An improved neural network model for joint",
                "authors": [
                    {
                        "first": "Karin",
                        "middle": [],
                        "last": "Dat Quoc Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Verspoor",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/k18-2008"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Dat Quoc Nguyen and Karin Verspoor. 2018. An im- proved neural network model for joint. Proceedings of the.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Integrating graph-based and transition-based dependency parsers",
                "authors": [
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of ACL-08: HLT",
                "volume": "",
                "issue": "",
                "pages": "950--958",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joakim Nivre and Ryan McDonald. 2008. Integrat- ing graph-based and transition-based dependency parsers. In Proceedings of ACL-08: HLT, pages 950-958, Columbus, Ohio. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Cross-sentence n-ary relation extraction with graph lstms. Transactions of the Association for Computational Linguistics",
                "authors": [
                    {
                        "first": "Nanyun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Hoifung",
                        "middle": [],
                        "last": "Poon",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Quirk",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    },
                    {
                        "first": "Wen-Tau",
                        "middle": [],
                        "last": "Yih",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "5",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00049"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, and Wen-tau Yih. 2017. Cross-sentence n-ary relation extraction with graph lstms. Transac- tions of the Association for Computational Linguis- tics, 5.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Glove: Global vectors for word representation",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Pennington",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "1532--1543",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/D14-1162"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word rep- resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 1532-1543, Doha, Qatar. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Arc-swift: A novel transition system for dependency parsing",
                "authors": [
                    {
                        "first": "Peng",
                        "middle": [],
                        "last": "Qi",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peng Qi and Christopher D. Manning. 2017. Arc-swift: A novel transition system for dependency parsing.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "From baby steps to leapfrog: How \"less is more\" in unsupervised dependency parsing",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Valentin",
                        "suffix": ""
                    },
                    {
                        "first": "Hiyan",
                        "middle": [],
                        "last": "Spitkovsky",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Alshawi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "751--759",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju- rafsky. 2010. From baby steps to leapfrog: How \"less is more\" in unsupervised dependency parsing. In Human Language Technologies: The 2010 An- nual Conference of the North American Chapter of the Association for Computational Linguistics, pages 751-759, Los Angeles, California. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Punctuation: Making a point in unsupervised dependency parsing",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Valentin",
                        "suffix": ""
                    },
                    {
                        "first": "Hiyan",
                        "middle": [],
                        "last": "Spitkovsky",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Alshawi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the Fifteenth Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "19--28",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju- rafsky. 2011. Punctuation: Making a point in un- supervised dependency parsing. In Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 19-28, Portland, Oregon, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Universal dependencies for Turkish",
                "authors": [
                    {
                        "first": "Umut",
                        "middle": [],
                        "last": "Sulubacak",
                        "suffix": ""
                    },
                    {
                        "first": "Memduh",
                        "middle": [],
                        "last": "Gokirmak",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [],
                        "last": "Tyers",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Agr\u0131 \u00c7\u00f6ltekin",
                        "suffix": ""
                    },
                    {
                        "first": "G\u00fcl\u015fen",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Eryigit",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
                "volume": "",
                "issue": "",
                "pages": "3444--3454",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Umut Sulubacak, Memduh Gokirmak, Francis Tyers, \u00c7 agr\u0131 \u00c7\u00f6ltekin, Joakim Nivre, and G\u00fcl\u015fen Eryigit. 2016. Universal dependencies for Turkish. In Pro- ceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Techni- cal Papers, pages 3444-3454, Osaka, Japan. The COLING 2016 Organizing Committee.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Improved semantic representations from tree-structured long short-term memory networks",
                "authors": [
                    {
                        "first": "Kai Sheng",
                        "middle": [],
                        "last": "Tai",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "1556--1566",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-1150"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from tree-structured long short-term memory net- works. In Proceedings of the 53rd Annual Meet- ing of the Association for Computational Linguistics and the 7th International Joint Conference on Natu- ral Language Processing (Volume 1: Long Papers), pages 1556-1566, Beijing, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Structured training for neural network transition-based parsing",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Weiss",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Alberti",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "323--333",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-1032"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. 2015. Structured training for neural net- work transition-based parsing. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 323-333, Beijing, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing",
                "authors": [
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "562--571",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yue Zhang and Stephen Clark. 2008. A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing. In Pro- ceedings of the 2008 Conference on Empirical Meth- ods in Natural Language Processing, pages 562- 571, Honolulu, Hawaii. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Graph convolution over pruned dependency trees improves relation extraction",
                "authors": [
                    {
                        "first": "Yuhao",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Peng",
                        "middle": [],
                        "last": "Qi",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2205--2215",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1244"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yuhao Zhang, Peng Qi, and Christopher D. Manning. 2018. Graph convolution over pruned dependency trees improves relation extraction. In Proceedings of the 2018 Conference on Empirical Methods in Nat- ural Language Processing, pages 2205-2215, Brus- sels, Belgium. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF51": {
                "ref_id": "b51",
                "title": "Head-driven phrase structure grammar parsing on Penn treebank",
                "authors": [
                    {
                        "first": "Junru",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2396--2408",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1230"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Junru Zhou and Hai Zhao. 2019. Head-driven phrase structure grammar parsing on Penn treebank. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2396-2408, Florence, Italy. Association for Compu- tational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "type_str": "figure",
                "text": "An example to graph-based dependency parsing with a maximum spanning tree.based on Transformer Networks and Stack Pointer Networks, and finally Section 5 presents the experimental results of the proposed model for both English and Turkish.",
                "uris": null,
                "num": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "text": "An example projective tree Figure 3: An example non-projective tree",
                "uris": null,
                "num": null
            },
            "FIGREF3": {
                "type_str": "figure",
                "text": "Figure 5: Sibling structure",
                "uris": null,
                "num": null
            },
            "FIGREF4": {
                "type_str": "figure",
                "text": "Figure 6: Grandchild structure",
                "uris": null,
                "num": null
            },
            "TABREF1": {
                "type_str": "table",
                "content": "<table><tr><td>,</td></tr></table>",
                "html": null,
                "num": null,
                "text": ""
            },
            "TABREF4": {
                "type_str": "table",
                "content": "<table><tr><td colspan=\"2\">: Results for Turkish IMST Dataset (Sulubacak</td></tr><tr><td>et al., 2016)</td><td/></tr><tr><td>Model</td><td>UAS LAS</td></tr><tr><td>Our Model w/ Glove</td><td>93.43 91.98</td></tr><tr><td>Our Model w/ Polyglot</td><td>94.23 92.67</td></tr></table>",
                "html": null,
                "num": null,
                "text": ""
            },
            "TABREF5": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "num": null,
                "text": "Dataset w/ Punctuation w/o Punctuation PTB 94.23 (92.67) 93.47 (91.94) IMST 76.81 (67.95) 71.96 (62.41)"
            }
        }
    }
}