File size: 150,838 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:29:39.033438Z"
},
"title": "Self Attended Stack Pointer Networks for Learning Long Term Dependencies",
"authors": [
{
"first": "Salih",
"middle": [],
"last": "Tu\u00e7",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Hacettepe University",
"location": {
"country": "Turkey"
}
},
"email": "salihtuc0@gmail.com"
},
{
"first": "Burcu",
"middle": [],
"last": "Can",
"suffix": "",
"affiliation": {},
"email": "b.can@wlv.ac.uk"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "We propose a novel deep neural architecture for dependency parsing, which is built upon a Transformer Encoder (Vaswani et al., 2017) and a Stack Pointer Network (Ma et al., 2018). We first encode each sentence using a Transformer Network and then the dependency graph is generated by a Stack Pointer Network by selecting the head of each word in the sentence through a head selection process. We evaluate our model on Turkish and English treebanks. The results show that our trasformer-based model learns long term dependencies efficiently compared to sequential models such as recurrent neural networks. Our self attended stack pointer network improves UAS score around 6% upon the LSTM based stack pointer (Ma et al., 2018) for Turkish sentences with a length of more than 20 words.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "We propose a novel deep neural architecture for dependency parsing, which is built upon a Transformer Encoder (Vaswani et al., 2017) and a Stack Pointer Network (Ma et al., 2018). We first encode each sentence using a Transformer Network and then the dependency graph is generated by a Stack Pointer Network by selecting the head of each word in the sentence through a head selection process. We evaluate our model on Turkish and English treebanks. The results show that our trasformer-based model learns long term dependencies efficiently compared to sequential models such as recurrent neural networks. Our self attended stack pointer network improves UAS score around 6% upon the LSTM based stack pointer (Ma et al., 2018) for Turkish sentences with a length of more than 20 words.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Dependency Parsing is the task of finding the grammatical structure of a sentence by identifying syntactic and semantic relationships between words. Dependency parsing has been utilized in many other NLP tasks such as machine translation (Carreras and Collins, 2009; Chen et al., 2017) , relation extraction (Fundel-Clemens et al., 2007; Zhang et al., 2018) , named entity recognition (Jie et al., 2017; Finkel and Manning, 2009) , information extraction (Angeli et al., 2015; Peng et al., 2017) , all of which involve natural language understanding to an extent. Each dependency relation is identified between a head word and a dependent word that modifies the head word in a sentence. Although such relations are considered syntactic, they are naturally built upon semantic relationships between words. For example, each dependent has a role in modifying its head word, which is a result of a semantic influence.",
"cite_spans": [
{
"start": 238,
"end": 266,
"text": "(Carreras and Collins, 2009;",
"ref_id": "BIBREF7"
},
{
"start": 267,
"end": 285,
"text": "Chen et al., 2017)",
"ref_id": "BIBREF9"
},
{
"start": 308,
"end": 337,
"text": "(Fundel-Clemens et al., 2007;",
"ref_id": "BIBREF18"
},
{
"start": 338,
"end": 357,
"text": "Zhang et al., 2018)",
"ref_id": "BIBREF50"
},
{
"start": 385,
"end": 403,
"text": "(Jie et al., 2017;",
"ref_id": "BIBREF24"
},
{
"start": 404,
"end": 429,
"text": "Finkel and Manning, 2009)",
"ref_id": "BIBREF16"
},
{
"start": 455,
"end": 476,
"text": "(Angeli et al., 2015;",
"ref_id": "BIBREF2"
},
{
"start": 477,
"end": 495,
"text": "Peng et al., 2017)",
"ref_id": "BIBREF41"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Within the context of dependency parsing, relations between heads and dependents are also la-beled by specifying the type of the grammatical relation between words. In the Universal Dependencies (de Marneffe et al., 2014) tagset, there are 37 dependency relation types defined. In the latest Universal Dependencies (UD v2.0) tagset, relations are split into four main categories (Core Arguments, Non-core dependents, Nominal dependents and Other) and nine sub-categories (Nominals, Clauses, Modifier Words, Function Words, Coordination, MWE, Loose Special and Other) .",
"cite_spans": [
{
"start": 195,
"end": 221,
"text": "(de Marneffe et al., 2014)",
"ref_id": "BIBREF34"
},
{
"start": 471,
"end": 566,
"text": "(Nominals, Clauses, Modifier Words, Function Words, Coordination, MWE, Loose Special and Other)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "One way to illustrate the grammatical structure obtained from dependency parsing is a dependency graph. An example dependency graph is given below:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Thank you , Mr. Poettering . Here, the relations are illustrated by the links from head words to dependent words along with their dependency labels. Every sentence has a global head word, which is the ROOT of the sentence.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "There are two main difficulties in dependency parsing. One is the long term dependencies in especially long sentences that are difficult to be identified in a standard Recurrent Neural Network due to the loss of the information flow in long sequences. Another difficulty in parsing is the outof-vocabulary (OOV) words. In this work, we try to tackle these two problems by using Transformer Networks (Vaswani et al., 2017) by introducing subword information for OOV words in especially morphologically rich languages such as Turkish. For that purpose, we integrate character-level word embeddings obtained from Convolutional Neural Networks (CNNs). The morphological complexity in such agglutinative languages makes the parsing task even harder because of the sparsity problem due to the number of suffixes that each word can take, which brings more problems in syntactic parsing. Dependencies in such languages were also defined between morphemic units (i.e. inflectional groups) rather than word tokens (Eryigit et al., 2008) , however this is not in the scope of this work.",
"cite_spans": [
{
"start": 399,
"end": 421,
"text": "(Vaswani et al., 2017)",
"ref_id": null
},
{
"start": 1004,
"end": 1026,
"text": "(Eryigit et al., 2008)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this work, we introduce a novel two-level deep neural architecture for graph-based dependency parsing. Graph-based dependency parsers build dependency trees among all possible trees, therefore the final dependency tree has the highest score globally. However, in transition-based dependency parsers, each linear selection in a sentence is made based on a local score which may lead to erroneous trees at the end of parsing. For this reason, we prefer graph-based dependency parsing in our approach to be able to do global selections while building dependency trees. In the first level of our deep neural architecture, we encode each sentence through a transformer network (Vaswani et al., 2017) , which shows superior performance in long sequences compared to standard recurrent neural networks (RNNs). In the second level, we decode the dependencies between heads and dependents using a Stack Pointer Network (Ma et al., 2018) , which is extended with an internal stack based on pointer networks (Vinyals et al., 2015) . Since stack pointer networks benefit from the full sequence similar to self attention mechanism in transformer networks, they do not have left-to-right restriction as in transition based parsing. Hence, we combine the two networks to have a more accurate and efficient dependency parser. We evaluate our model on Turkish which is a morphologically rich language and on English with a comparably poorer morphological structure. Although our model does not outperform other recent model, it shows competitive performance among other neural dependency parsers. However, our results show that our self attended stack pointer network improves UAS score around 6% upon the LSTM based stack pointer (Ma et al., 2018) for Turkish sentences with a length of more than 20 words.",
"cite_spans": [
{
"start": 675,
"end": 697,
"text": "(Vaswani et al., 2017)",
"ref_id": null
},
{
"start": 913,
"end": 930,
"text": "(Ma et al., 2018)",
"ref_id": "BIBREF32"
},
{
"start": 1000,
"end": 1022,
"text": "(Vinyals et al., 2015)",
"ref_id": null
},
{
"start": 1717,
"end": 1734,
"text": "(Ma et al., 2018)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The paper is organized as follows: Section 2 reviews the related work on both graph-based and transition-based dependency parsing, Section 3 explains the dependency parsing task briefly, Section 4 describes the proposed deep neural architecture ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Dependency parsing is performed by two different approaches: graph-based and transition-based parsing. We review related work on both of these approaches.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Graph-based Dependency Parsing: Graphbased approaches are generally based on performing the entire parsing process as graph operations where the nodes in the graph represent the words in a sentence. For the sentence, \"John saw Mary\", we can illustrate its parse tree with a weighted graph G with four vertices where each of them refers to a word including the ROOT . Edges store the dependency scores between the words. The main idea here is to find the maximum spanning tree of this graph G. The parse tree of the sentence is given in Figure 1 . The dependencies are between ROOT and saw, saw and John; and saw and M ary where the first ones are the heads and the latter ones are the dependents.",
"cite_spans": [],
"ref_spans": [
{
"start": 536,
"end": 544,
"text": "Figure 1",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "When the parsing structure is represented as a graph, finding dependencies becomes easier to visualize, and moreover the task becomes finding the highest scored tree among all possible trees. Edge scores in the graphs represent the dependency measures between word couples.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Neural architectures have been used for graphbased dependency parsing extensively in the last decade. Li et al. (2018) introduce a seq2seq model using bi-directional LSTMs (BiLSTMs) (Hochreiter and Schmidhuber, 1997), where an attention mechanism is involved between the encoder and decoder LSTMs. Kiperwasser and Goldberg (2016) propose another model using BiLSTMs, where the right and left arcs in the dependency trees are identified through the BiLSTMs. Dozat and Manning (2016) proposes a parser that uses biaffine attention mechanism, which is extended based on the models of Kiperwasser and Goldberg (2016) , Hashimoto et al. (2017) , and Cheng et al. (2016) . The biaffine parser (Dozat and Manning, 2016) provides a baseline for other two models introduced by Zhou and Zhao (2019) and Li et al. (2019) , which forms trees in the form of Head-Driven Phase Structure Grammar (HPSG) and uses self-attention mechanism respectively. Ji et al. (2019) propose a Graph Neural Network (GNN) that is improved upon the biaffine model. Another LSTM-based model is introduced by Choe and Charniak 2016, where dependency parsing is considered as part of language modelling (LM) and each sentence is parsed with a LSTM-LM architecture which builds parse trees simultaneously with the language model.",
"cite_spans": [
{
"start": 102,
"end": 118,
"text": "Li et al. (2018)",
"ref_id": "BIBREF29"
},
{
"start": 298,
"end": 329,
"text": "Kiperwasser and Goldberg (2016)",
"ref_id": "BIBREF25"
},
{
"start": 457,
"end": 481,
"text": "Dozat and Manning (2016)",
"ref_id": "BIBREF13"
},
{
"start": 581,
"end": 612,
"text": "Kiperwasser and Goldberg (2016)",
"ref_id": "BIBREF25"
},
{
"start": 615,
"end": 638,
"text": "Hashimoto et al. (2017)",
"ref_id": "BIBREF20"
},
{
"start": 645,
"end": 664,
"text": "Cheng et al. (2016)",
"ref_id": "BIBREF10"
},
{
"start": 687,
"end": 712,
"text": "(Dozat and Manning, 2016)",
"ref_id": "BIBREF13"
},
{
"start": 793,
"end": 809,
"text": "Li et al. (2019)",
"ref_id": "BIBREF28"
},
{
"start": 936,
"end": 952,
"text": "Ji et al. (2019)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "The recent works generally focus on the encoder in seq2seq models because a better encoding of an input eliminates most of the cons of the sequence models. For example, Hewitt and Manning 2019and Tai et al. (2015) aim to improve the LSTMbased encoders while Clark et al. 2018introduce an attention-based approach to improve encoding, where they propose Cross-View Training (CVT).",
"cite_spans": [
{
"start": 196,
"end": 213,
"text": "Tai et al. (2015)",
"ref_id": "BIBREF45"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "In this work, we encode each sentence through a transformer network based on self-attention mechanism (Vaswani et al., 2017) and learn the head of each word using a stack pointer network as a decoder (Ma et al., 2018) in our deep neural architecture. Our main aim is to learn long term dependencies efficiently with a transformer network by removing the recurrent structures from encoder. Transformer networks (Vaswani et al., 2017) and stack pointer networks (Ma et al., 2018) have been used for dependency parsing before. However, this will be the first attempt to combine these two methods for the dependency parsing task.",
"cite_spans": [
{
"start": 102,
"end": 124,
"text": "(Vaswani et al., 2017)",
"ref_id": null
},
{
"start": 200,
"end": 217,
"text": "(Ma et al., 2018)",
"ref_id": "BIBREF32"
},
{
"start": 410,
"end": 432,
"text": "(Vaswani et al., 2017)",
"ref_id": null
},
{
"start": 460,
"end": 477,
"text": "(Ma et al., 2018)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Transition-based Dependency Parsing: In transition-based dependency parsing, local selections are made for each dependency relationship without considering the complete dependency tree. Therefore, globally motivated selections are normally not performed in transition-based parsing by contrast with graph-based dependency parsing. For this purpose, two stacks are employed to keep track of the actions made during transition-based parsing.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Similar to graph-based parsing, neural approaches have been used extensively for transitionbased parsing. Chen and Manning (2014) introduce a feed forward neural network with various extensions by utilizing single-word, word-pair and three-word features. Weiss et al. (2015) improve upon the model by Chen and Manning (2014) with a deeper neural network and with a more structured training and inference using structured perceptron with beam-search decoding. Andor et al. (2016) use also feed forward neural networks similar to others and argue that feed forward neural networks outperform RNNs in case of a global normalization rather than local normalizations as in Chen and Manning (2014) , which apply greedy parsing.",
"cite_spans": [
{
"start": 106,
"end": 129,
"text": "Chen and Manning (2014)",
"ref_id": "BIBREF8"
},
{
"start": 255,
"end": 274,
"text": "Weiss et al. (2015)",
"ref_id": "BIBREF48"
},
{
"start": 301,
"end": 324,
"text": "Chen and Manning (2014)",
"ref_id": "BIBREF8"
},
{
"start": 459,
"end": 478,
"text": "Andor et al. (2016)",
"ref_id": "BIBREF1"
},
{
"start": 668,
"end": 691,
"text": "Chen and Manning (2014)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Mohammadshahi and Henderson (2019) utilize a transformer network, in which graph features are employed as input and output embeddings to learn graph relations, thereby their novel model, Graph2Graph transformer, is introduced.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Fern\u00e1ndez-Gonz\u00e1lez and G\u00f3mez-Rodr\u00edguez (2019) propose a transition-based algorithm that is similar to the stack pointer model by Ma et al. (2018) ; however, left-to-right parsing is adopted on the contrary to Ma et al. (2018) , where top-down parsing is performed. Hence, each parse tree is built in n actions for an n length sentence without requiring any additional data structure.",
"cite_spans": [
{
"start": 129,
"end": 145,
"text": "Ma et al. (2018)",
"ref_id": "BIBREF32"
},
{
"start": 209,
"end": 225,
"text": "Ma et al. (2018)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "In addition to these models, there are some works such as the greedy parser of and Kuncoro et al. (2016) , and the highperformance parser by Qi and Manning (2017) . Nivre and McDonald (2008) indicate that graphbased and transition-based parsers can be also combined by integrating their features. And several works follow this idea (Goldberg and Elhadad, 2010; Spitkovsky et al., 2010; Ma et al., 2013; Ballesteros and Bohnet, 2014; Zhang and Clark, 2008) .",
"cite_spans": [
{
"start": 83,
"end": 104,
"text": "Kuncoro et al. (2016)",
"ref_id": "BIBREF27"
},
{
"start": 141,
"end": 162,
"text": "Qi and Manning (2017)",
"ref_id": "BIBREF41"
},
{
"start": 165,
"end": 190,
"text": "Nivre and McDonald (2008)",
"ref_id": "BIBREF38"
},
{
"start": 332,
"end": 360,
"text": "(Goldberg and Elhadad, 2010;",
"ref_id": "BIBREF19"
},
{
"start": 361,
"end": 385,
"text": "Spitkovsky et al., 2010;",
"ref_id": "BIBREF42"
},
{
"start": 386,
"end": 402,
"text": "Ma et al., 2013;",
"ref_id": "BIBREF30"
},
{
"start": 403,
"end": 432,
"text": "Ballesteros and Bohnet, 2014;",
"ref_id": "BIBREF4"
},
{
"start": 433,
"end": 455,
"text": "Zhang and Clark, 2008)",
"ref_id": "BIBREF49"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Dependency parsing is the task of inferring the grammatical structure of a sentence by identifying the relationships between words. Dependency is a head-dependent relation between words and each dependent is affected by its head. The dependencies in a dependency tree are always from the head to the dependents. The parsing, no matter which approach is used, creates a dependency tree or a graph, as we mentioned above. There are some formal conditions of this graph:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Formal Definition of Dependency Parsing",
"sec_num": "3"
},
{
"text": "\u2022 Graph should be connected.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Formal Definition of Dependency Parsing",
"sec_num": "3"
},
{
"text": "-Each word must have a head. \u2022 Graph must be acyclic.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Formal Definition of Dependency Parsing",
"sec_num": "3"
},
{
"text": "-If there are dependencies w1 \u2192 w2 and w2 \u2192 w3; there must not be a dependency such as w3 \u2192 w1.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Formal Definition of Dependency Parsing",
"sec_num": "3"
},
{
"text": "\u2022 Each of the vertices must have one incoming edge.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Formal Definition of Dependency Parsing",
"sec_num": "3"
},
{
"text": "-Each word must only have one head. A graph that includes w1 \u2192 w2 and w3 \u2192 w2 is not allowed in a dependency graph.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Formal Definition of Dependency Parsing",
"sec_num": "3"
},
{
"text": "A dependency tree is projective if there are no crossing edges on the dependency graph. Figure 2 illustrates a projective tree and Figure 3 illustrates a non-projective dependency graph. Our model deviates from the STACKPTR model with a transformer network that encodes each word with a self-attention mechanism, which will allow to learn long-term dependencies since every word's relation to all words in a sentence can be effectively processed in a transformer network on the contrary to recurrent neural networks. In sequential recurrent structures such as RNNs or LSTMs, every word's encoding contains information about only previous words in a sentence and there is always a loss in the information flow through the long sequences in those structures.",
"cite_spans": [],
"ref_spans": [
{
"start": 88,
"end": 96,
"text": "Figure 2",
"ref_id": "FIGREF2"
},
{
"start": 131,
"end": 139,
"text": "Figure 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "The Formal Definition of Dependency Parsing",
"sec_num": "3"
},
{
"text": "In our transformer network, we adopt a multihead attention and a feed-forward network. Once we encode a sequence with a transformer network, we decode the sequence to predict the head of each word in that sequence by using a stack pointer network.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Formal Definition of Dependency Parsing",
"sec_num": "3"
},
{
"text": "In RNNs, each state is informed by the previous states with a sequential information flow through the states. However, in longer sequences, information passed from earlier states loses its effect on the later states in RNNs by definition. Transformer networks are effective attention-based neural network architectures (Vaswani et al., 2017) . The main idea is to replace the recurrent networks with a single transformer network which has the ability to compute the relationships between all words in a sequence with a self-attention mechanism without requiring any recurrent structure. Therefore, each word in a sequence will be informed by all other words in the sequence.",
"cite_spans": [
{
"start": 319,
"end": 341,
"text": "(Vaswani et al., 2017)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Transformer Encoder",
"sec_num": "4.2"
},
{
"text": "Learning long term dependencies in especially long sentences is still one of the challenges in dependency parsing. We employ transformer networks in order to tackle with the long term dependencies problem by eliminating the usage of recurrent neural networks while encoding each sentence during parsing. Hence, we use transformer network as an encoder to encode each word by feeding our transformer encoder with each word's pretrained word embeddings (Glove (Pennington et al., 2014) or Polyglot (Al-Rfou' et al., 2013) embeddings), part-of-speech (PoS) tag embeddings, characterlevel word embeddings obtained from CNN, and the positional encodings of each word.",
"cite_spans": [
{
"start": 458,
"end": 483,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF40"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Transformer Encoder",
"sec_num": "4.2"
},
{
"text": "Positional encoding (PE) is used to inject positional information for each encoded word, since there is not a sequential recurrent structure in a self attention mechanism. With the positional encoding, some relative or absolute positions of words in a sentence are utilized. The cos function is used for the odd indices and the sin function is used for even indices. The injection of the position information is performed with the sinus waves. The Figure 4 : Overview of the Self-Attended Pointer Network Model. After concatenating word embeddings, POS tag embeddings, and char-embeddings obtained from CNN, the final embedding is fed into the self-attention encoder stack. Then, embedding of the word at the top of the stack, its sibling and grandparent vectors are summed-up in order to predict the dependency head. sin function for the even indices is computed as follows:",
"cite_spans": [],
"ref_spans": [
{
"start": 448,
"end": 456,
"text": "Figure 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Transformer Encoder",
"sec_num": "4.2"
},
{
"text": "P E(x, 2i) = sin x 10000 2i/d model (1)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Transformer Encoder",
"sec_num": "4.2"
},
{
"text": "where d model is the dimension of the word embeddings, i \u2208 [0, d model /2), and x is the position of each word where x \u2208 [0, n] in the input sequence s = (w 0 , w 1 . . . w n ). The cos function for the odd indices is computed analogously. The positional encoding is calculated for each embedding and they are summed. So the dimension d model does not change. Concatenation is also possible theoretically. However, in the input and output embeddings, the position information is included in the first few indices in the embedding. Thus, when the d model is large enough, there is no need to concatenate. The summation also meets the requirements.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Transformer Encoder",
"sec_num": "4.2"
},
{
"text": "The Encoder stack contains a Multi-Head Attention and a Feed-Forward Network. A Layer Normalization is applied after each of these two layers. There could be more than one encoder in the encoder stack. In this case, all of the outputs in one encoder is fed into the next encoder in the encoder stack. In our model, we performed several experiments with different number of encoder layers in the encoder stack to optimize the number of encoder layers for parsing.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Transformer Encoder",
"sec_num": "4.2"
},
{
"text": "Multi-Head Attention is evolved from Self-Attention Mechanism, which enables encoding all words using all of the words in the sentence. So it learns better relations between words compared to recurrent structures. The all-to-all encoding in self-attention mechanism is performed through query, key and value matrices. There are multiple sets of queries, keys and values that are learned in the model. Self-attention is calculated for each of these sets and a new embedding is produced. The new embeddings for each set are concatenated and multiplied with Z matrix which is a randomlyinitialized matrix in order to compute the final embeddings. Z matrix is trained jointly and multiplied with the concatenated weight matrix in order to reduce the embeddings into a single final embedding for each set. In other words, the final embedding is learnt from different contexts at the same time. It is multi-head because it learns from the head of each set. The head of each set is calculated by using self-attention.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Transformer Encoder",
"sec_num": "4.2"
},
{
"text": "Finally, a Feed Forward Neural Network which is basically a neural network with two linear layers and ReLU activation function is used to process the embeddings obtained from multi-head attention. It is placed at the end of the encoder because with this feed-forward neural network, we can train the embeddings with a latent space of words.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Transformer Encoder",
"sec_num": "4.2"
},
{
"text": "Layer Normalization (Ba et al., 2016) is applied to normalize the weights and retain some form of information from the previous layers, which is performed for both Multi-Head Attention and Feed Forward Neural Network.",
"cite_spans": [
{
"start": 20,
"end": 37,
"text": "(Ba et al., 2016)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Transformer Encoder",
"sec_num": "4.2"
},
{
"text": "Final output embeddings contain contextual information about the input sentence and the words in the sequence. So, the output of the Transformer Encoder is a -theoretically-more comprehensive representation of contextual information compared to the input word embeddings and also compared to the the output of a BiLSTM encoder head sibling modifier ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Transformer Encoder",
"sec_num": "4.2"
},
{
"text": "Stack Pointer Network (STACKPTR) (Ma et al., 2018 ) is a transition-based structure but it still performs a global optimization over the potential dependency parse trees of a sentence. STACKPTR is based on a pointer network (PTR-NET) (Vinyals et al., 2015) but differently, a STACKPTR has a stack to store the order of head words in trees. In each step, an arc is built from a child to the head word at the top of the stack based on the attention scores obtained from a pointer network.",
"cite_spans": [
{
"start": 33,
"end": 49,
"text": "(Ma et al., 2018",
"ref_id": "BIBREF32"
},
{
"start": 234,
"end": 256,
"text": "(Vinyals et al., 2015)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "We use a Stack Pointer Network for decoding the sequence to infer the dependencies, where each word is encoded with a Transformer Network as mentioned in the previous section.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "The transformer encoder outputs a hidden state vector s i for the ith word in the sequence. The hidden state vector is summed with higher-order information similar to that of Ma et al. (2018) . There are two types of higher-order information in the model: Sibling (two words that have the same parent) and grandparent/grandchild (parent of the word's parent and the child of the word's child). Figure 5 and Figure 6 shows an illustration of these high-order structures.",
"cite_spans": [
{
"start": 175,
"end": 191,
"text": "Ma et al. (2018)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [
{
"start": 394,
"end": 402,
"text": "Figure 5",
"ref_id": null
},
{
"start": 407,
"end": 415,
"text": "Figure 6",
"ref_id": null
}
],
"eq_spans": [],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "So, the input vector for the decoder is the sum of the state vector of the word on the top of the stack, its sibling and its grandparent:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u03b2 i = s h + s s + s g",
"eq_num": "(2)"
}
],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "In the decoder part, an LSTM gathers all of the contextual and higher-order information about the word at the top of stack. Normally, in the pointer networks, at each time step t, the decoder receives the input from the last step and outputs decoder hidden state h t . Therefore, an attention score is obtained as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "e t i = score(h t , s i ) (3)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "where e t is the output of the scoring function, s i is the encoder hidden state and h t is the decoder hidden state at time step t. After calculating the score for each possible output in the Biaffine attention mechanism, the final prediction is performed as follows with a softmax function to convert it into a probability distribution:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "a t = sof tmax(e t )",
"eq_num": "(4)"
}
],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "where a t is the output probability vector for each possible child word and e t is the output vector of the scoring function. In our model, scoring function is adopted from Deep Biaffine attention mechanism (Dozat and Manning, 2016) :",
"cite_spans": [
{
"start": 207,
"end": 232,
"text": "(Dozat and Manning, 2016)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "e t i = h T t W s i + U t h t + V t s i + b (5)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "where W is the weight matrix, U and V are the weight vectors and b is the bias. Additionally, before the scoring function, an MLP is applied to the output of decoder, as proposed by Dozat and Manning (2016) to reduce the dimensionality.",
"cite_spans": [
{
"start": 182,
"end": 206,
"text": "Dozat and Manning (2016)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "As for the dependency labels, we also use another MLP to reduce the dimensionlity and then apply deep biaffine to score the possible labels for the word at the top of the stack.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Stack Pointer Network",
"sec_num": "4.3"
},
{
"text": "We use cross-entropy loss for training the model similar to STACKPTR. The probability of a parse tree y for a given sentence x under the parameter set \u03b8 is P \u03b8 (y|x) and estimated as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Learning",
"sec_num": "4.4"
},
{
"text": "P \u03b8 (y|x) = k i=1 P \u03b8 (p i |p <i , x) (6) = k i=1 l i j=1 P \u03b8 (c i,j |c i,<j , p <i , x) (7)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Learning",
"sec_num": "4.4"
},
{
"text": "p <i denotes the preceding paths that have already been generated, c i,j represents the j th word in the path p i and c i,<j denotes all the proceeding words on the path p i . Here, a path consists of a sequence of words from the root to the leaf. The model learns the arcs and labels in the dependency tree simultaneously.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Learning",
"sec_num": "4.4"
},
{
"text": "We ran experiments on both Turkish and English. We used Penn Treebank (PTB) (Marcus et al., 1993) for English and IMST dataset (Sulubacak et al., 2016) in Universal Dependencies for Turkish.",
"cite_spans": [
{
"start": 76,
"end": 97,
"text": "(Marcus et al., 1993)",
"ref_id": "BIBREF33"
},
{
"start": 127,
"end": 151,
"text": "(Sulubacak et al., 2016)",
"ref_id": "BIBREF44"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Datasets",
"sec_num": "5.1"
},
{
"text": "As for the word embeddings, we used pre-trained Glove embeddings (Pennington et al., 2014) on Wikipedia and pre-trained Polyglot embeddings (Al-Rfou' et al., 2013) on Wikipedia for both Turkish and English.",
"cite_spans": [
{
"start": 65,
"end": 90,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF40"
},
{
"start": 140,
"end": 163,
"text": "(Al-Rfou' et al., 2013)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Datasets",
"sec_num": "5.1"
},
{
"text": "For the evaluation, we used two different evaluation metrics: UAS and LAS, which are the standard metrics for dependency parsing.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation Metrics",
"sec_num": "5.2"
},
{
"text": "UAS is a metric that is used to calculate the accuracy of predicting words' heads. In other words, it is the ratio of the number of correctly predicted heads to the total number of words in the dataset:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation Metrics",
"sec_num": "5.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "U AS = #of correctheads #of words",
"eq_num": "(8)"
}
],
"section": "Evaluation Metrics",
"sec_num": "5.2"
},
{
"text": "LAS is another metric for dependency parsing that measures the correctness of both heads and labels. In other words, it is the ratio of correctly predicted heads and labels to the total number of words in the dataset:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation Metrics",
"sec_num": "5.2"
},
{
"text": "LAS = #of correcthead, labelpair",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation Metrics",
"sec_num": "5.2"
},
{
"text": "#of words (9)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation Metrics",
"sec_num": "5.2"
},
{
"text": "In our experiments, we use similar configurations with the baseline models: STACKPTR model by Ma et al. (2018) and Self-Attention mechanism by Vaswani et al. (2017) . Differently from the baseline models, for the self-attended encoder stack; we used 6 layers because this configuration performs better with the Polyglot embeddings for both English and Turkish as seen in Table 1 and Table 2 for English and Turkish respectively.",
"cite_spans": [
{
"start": 94,
"end": 110,
"text": "Ma et al. (2018)",
"ref_id": "BIBREF32"
},
{
"start": 143,
"end": 164,
"text": "Vaswani et al. (2017)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 371,
"end": 390,
"text": "Table 1 and Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Hyperparameters",
"sec_num": "5.3"
},
{
"text": "The results obtained from IMST dataset (Sulubacak et al., 2016) in Turkish is given in Table 1 : Accuracy for different number of encoder layers for PTB Dataset (Marcus et al., 1993) Layer Table 2 : Accuracy for different number of encoder layers for Turkish IMST Dataset (Sulubacak et al., 2016) an UAS score of 76.81% and LAS score of 67.95% are obtained with Polyglot embeddings. Therefore, using Polyglot embeddings gives far better results in Turkish. This could be due to the size of the train set used for the Polyglot embeddings. The results obtained from Penn Treebank dataset (Marcus et al., 1993) in English is given in Table 4 . Our results again show competitive performance compared to other related work for English. Similar to the Turkish results, our model performs better with Polyglot embeddings. While Glove gives 93.43% UAS and 91.98% LAS, Polyglot gives 94.23% UAS and 92.67% LAS.",
"cite_spans": [
{
"start": 39,
"end": 63,
"text": "(Sulubacak et al., 2016)",
"ref_id": "BIBREF44"
},
{
"start": 161,
"end": 182,
"text": "(Marcus et al., 1993)",
"ref_id": "BIBREF33"
},
{
"start": 272,
"end": 296,
"text": "(Sulubacak et al., 2016)",
"ref_id": "BIBREF44"
},
{
"start": 586,
"end": 607,
"text": "(Marcus et al., 1993)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [
{
"start": 87,
"end": 94,
"text": "Table 1",
"ref_id": null
},
{
"start": 189,
"end": 196,
"text": "Table 2",
"ref_id": null
},
{
"start": 631,
"end": 639,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "5.4"
},
{
"text": "The main aim in this study is to utilize Transformer Networks to resolve the long-term dependencies problem in dependency parsing. We analyzed the accuracy of our model in both short and longer sentences to see the impact of the Transformer Networks in our model compared to sequential STACKPTR model that is based on LSTMs. Table 7 gives the results for different lengths of sentences to show the impact of using Transformer Networks in long term depedencies. We compare our model with the original STACKPTR (Ma et al., 2018) model, which is based on LSTMs. As the results show, our model performs far better for sentences with more than 20 words compared to the standard STACKPTR model, with an improvement Kondratyuk and Straka (2019) 74.56 67.44 McDonald et al. (2006) 74.70 63.20 Dozat and Manning (2016) 77.46 68.02 Ma et al. (2018) 79.56 68.93 Ballesteros et al. (2015) 79.30 69.28 Ballesteros et al. (2015) 91.63 89.44 Chen and Manning (2014) 91.8 89.6 Kiperwasser and Goldberg (2016) 93.1 91.0 93.56 91.42 Weiss et al. (2015) 94.26 92.41 Andor et al. (2016) 94.61 92.79 Ma and Hovy (2017) 94.88 92.98 Dozat and Manning (2016) 95.74 94.08 Ma et al. (2018) 95.87 94.19 Table 4 : Results for English PTB Dataset (Marcus et al., 1993) of UAS score with around 7%. For less than 20 words, our model's accuracy is lower compared to longer sentences. It shows that our self-attention based model is not able to learn shorter sentences better than the BiLSTM based STACKPTR model. However, we observed that decreasing the number of layers in our encoder stack gives a higher accuracy for shorter sentences. However, it decreases the overall accuracy for the entire dataset.",
"cite_spans": [
{
"start": 509,
"end": 526,
"text": "(Ma et al., 2018)",
"ref_id": "BIBREF32"
},
{
"start": 709,
"end": 723,
"text": "Kondratyuk and",
"ref_id": "BIBREF26"
},
{
"start": 724,
"end": 772,
"text": "Straka (2019) 74.56 67.44 McDonald et al. (2006)",
"ref_id": null
},
{
"start": 785,
"end": 809,
"text": "Dozat and Manning (2016)",
"ref_id": "BIBREF13"
},
{
"start": 822,
"end": 838,
"text": "Ma et al. (2018)",
"ref_id": "BIBREF32"
},
{
"start": 851,
"end": 876,
"text": "Ballesteros et al. (2015)",
"ref_id": "BIBREF5"
},
{
"start": 889,
"end": 914,
"text": "Ballesteros et al. (2015)",
"ref_id": "BIBREF5"
},
{
"start": 927,
"end": 950,
"text": "Chen and Manning (2014)",
"ref_id": "BIBREF8"
},
{
"start": 961,
"end": 992,
"text": "Kiperwasser and Goldberg (2016)",
"ref_id": "BIBREF25"
},
{
"start": 1015,
"end": 1034,
"text": "Weiss et al. (2015)",
"ref_id": "BIBREF48"
},
{
"start": 1047,
"end": 1066,
"text": "Andor et al. (2016)",
"ref_id": "BIBREF1"
},
{
"start": 1079,
"end": 1097,
"text": "Ma and Hovy (2017)",
"ref_id": "BIBREF31"
},
{
"start": 1110,
"end": 1134,
"text": "Dozat and Manning (2016)",
"ref_id": "BIBREF13"
},
{
"start": 1147,
"end": 1163,
"text": "Ma et al. (2018)",
"ref_id": "BIBREF32"
},
{
"start": 1218,
"end": 1239,
"text": "(Marcus et al., 1993)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [
{
"start": 325,
"end": 332,
"text": "Table 7",
"ref_id": null
},
{
"start": 1176,
"end": 1183,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Sentence Length",
"sec_num": "5.5.1"
},
{
"text": "We also analyzed the impact of using punctuation in the datasets during training. Analysis of Spitkovsky et al. (Spitkovsky et al., 2011) shows that the usage of lexicalized and punctuated sentences gives better results in dependency parsing. So, we ran our model with both punctuated and not-punctuated versions of both datasets in Turkish and English. Table 5 shows that punctuation affects the learning of the model for both languages Table 5 : Accuracy (UAS (LAS)) with and without punctuation on IMST (Sulubacak et al., 2016) and PTB (Marcus et al., 1993) Table 6 : The impact of using word embeddings (Glove or Polyglot), PoS tag embeddings and character-based word embeddings for the Turkish IMST Dataset (Sulubacak et al., 2016) and the results are comparably higher when the punctuation is also used in the datasets. The impact of using punctuation is even more for Turkish language and both UAS and LAS are around %5 higher compared to training on datasets without punctuation.",
"cite_spans": [
{
"start": 94,
"end": 137,
"text": "Spitkovsky et al. (Spitkovsky et al., 2011)",
"ref_id": "BIBREF43"
},
{
"start": 506,
"end": 530,
"text": "(Sulubacak et al., 2016)",
"ref_id": "BIBREF44"
},
{
"start": 539,
"end": 560,
"text": "(Marcus et al., 1993)",
"ref_id": "BIBREF33"
},
{
"start": 712,
"end": 736,
"text": "(Sulubacak et al., 2016)",
"ref_id": "BIBREF44"
}
],
"ref_spans": [
{
"start": 354,
"end": 361,
"text": "Table 5",
"ref_id": null
},
{
"start": 438,
"end": 445,
"text": "Table 5",
"ref_id": null
},
{
"start": 561,
"end": 568,
"text": "Table 6",
"ref_id": null
}
],
"eq_spans": [],
"section": "The Impact of Punctuation",
"sec_num": "5.5.2"
},
{
"text": "We analyzed the effect of using various embeddings in the Transformer encoder. As mentioned before, we utilize word embeddings, PoS tag embeddings and char embeddings obtained from CNN in our model. Table 6 shows the impact of the embeddings on the accuracy of the model. As the results show, character-level encoding plays a crucial role in our model because it helps to mitigate the OOV problem during training. We obtained the highest scores when Polyglot word embeddings, PoS tag embeddings and character-based word embeddings are incorporated in training.",
"cite_spans": [],
"ref_spans": [
{
"start": 199,
"end": 206,
"text": "Table 6",
"ref_id": null
}
],
"eq_spans": [],
"section": "The Impact of Using Embeddings",
"sec_num": "5.5.3"
},
{
"text": "Our experiments show that using Self-Attention mechanism increases parsing accuracy especially in longer sentences in Turkish. However, our parser requires more data to learn better for also shorter sentences. The results also show that using character level word embeddings along with word embeddings and PoS tag embeddings gives the highest accuracy for our model.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion & Future Work",
"sec_num": "6"
},
{
"text": "We obtained the highest scores when we include Number of words in sentence UAS -STACKPTR UAS -Self-Attended STACKPTR less than 10 words 93.23 86.47 between 10 and 20 words 88.96 81.63 more than 20 words 56.49 62.33 Table 7 : Accuracies for different lengths of sentences in IMST Dataset in Turkish (Sulubacak et al., 2016) 6 layers in our encoder stack by using Polyglot embeddings. Our results also show that including punctuation in the dataset improves the accuracy substantially. We leave integrating morpheme-level information in especially morphologically rich languages such as Turkish as future work.",
"cite_spans": [
{
"start": 298,
"end": 322,
"text": "(Sulubacak et al., 2016)",
"ref_id": "BIBREF44"
}
],
"ref_spans": [
{
"start": 215,
"end": 222,
"text": "Table 7",
"ref_id": null
}
],
"eq_spans": [],
"section": "Conclusion & Future Work",
"sec_num": "6"
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Polyglot: Distributed word representations for multilingual NLP",
"authors": [
{
"first": "Rami",
"middle": [],
"last": "Al-Rfou",
"suffix": ""
},
{
"first": "'",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Bryan",
"middle": [],
"last": "Perozzi",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Skiena",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
"volume": "",
"issue": "",
"pages": "183--192",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rami Al-Rfou', Bryan Perozzi, and Steven Skiena. 2013. Polyglot: Distributed word representations for multilingual NLP. In Proceedings of the Seven- teenth Conference on Computational Natural Lan- guage Learning, pages 183-192, Sofia, Bulgaria. Association for Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Globally normalized transition-based neural networks",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Andor",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Alberti",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Weiss",
"suffix": ""
},
{
"first": "Aliaksei",
"middle": [],
"last": "Severyn",
"suffix": ""
},
{
"first": "Alessandro",
"middle": [],
"last": "Presta",
"suffix": ""
},
{
"first": "Kuzman",
"middle": [],
"last": "Ganchev",
"suffix": ""
},
{
"first": "Slav",
"middle": [],
"last": "Petrov",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "2442--2452",
"other_ids": {
"DOI": [
"10.18653/v1/P16-1231"
]
},
"num": null,
"urls": [],
"raw_text": "Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normal- ized transition-based neural networks. In Proceed- ings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 2442-2452, Berlin, Germany. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Leveraging linguistic structure for open domain information extraction",
"authors": [
{
"first": "Gabor",
"middle": [],
"last": "Angeli",
"suffix": ""
},
{
"first": "Melvin Jose Johnson",
"middle": [],
"last": "Premkumar",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "1",
"issue": "",
"pages": "344--354",
"other_ids": {
"DOI": [
"10.3115/v1/P15-1034"
]
},
"num": null,
"urls": [],
"raw_text": "Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. 2015. Leveraging linguis- tic structure for open domain information extraction. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Lan- guage Processing (Volume 1: Long Papers), pages 344-354, Beijing, China. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Layer normalization",
"authors": [
{
"first": "Jimmy",
"middle": [
"Lei"
],
"last": "Ba",
"suffix": ""
},
{
"first": "Jamie",
"middle": [
"Ryan"
],
"last": "Kiros",
"suffix": ""
},
{
"first": "Geoffrey",
"middle": [
"E"
],
"last": "",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin- ton. 2016. Layer normalization.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Automatic feature selection for agenda-based dependency parsing",
"authors": [
{
"first": "Miguel",
"middle": [],
"last": "Ballesteros",
"suffix": ""
},
{
"first": "Bernd",
"middle": [],
"last": "Bohnet",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers",
"volume": "",
"issue": "",
"pages": "794--805",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Miguel Ballesteros and Bernd Bohnet. 2014. Au- tomatic feature selection for agenda-based depen- dency parsing. In Proceedings of COLING 2014, the 25th International Conference on Computa- tional Linguistics: Technical Papers, pages 794- 805, Dublin, Ireland. Dublin City University and As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Improved transition-based parsing by modeling characters instead of words with lstms",
"authors": [
{
"first": "Miguel",
"middle": [],
"last": "Ballesteros",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved transition-based parsing by model- ing characters instead of words with lstms.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Training with exploration improves a greedy stack-lstm parser",
"authors": [
{
"first": "Miguel",
"middle": [],
"last": "Ballesteros",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and Noah A. Smith. 2016. Training with exploration im- proves a greedy stack-lstm parser.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Nonprojective parsing for statistical machine translation",
"authors": [
{
"first": "Xavier",
"middle": [],
"last": "Carreras",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "200--209",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xavier Carreras and Michael Collins. 2009. Non- projective parsing for statistical machine translation. In Proceedings of the 2009 Conference on Empiri- cal Methods in Natural Language Processing, pages 200-209, Singapore. Association for Computational Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "A fast and accurate dependency parser using neural networks",
"authors": [
{
"first": "Danqi",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "740--750",
"other_ids": {
"DOI": [
"10.3115/v1/D14-1082"
]
},
"num": null,
"urls": [],
"raw_text": "Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency parser using neural net- works. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 740-750, Doha, Qatar. Association for Computational Linguistics.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Improved neural machine translation with a syntax-aware encoder and decoder",
"authors": [
{
"first": "Huadong",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Shujian",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Chiang",
"suffix": ""
},
{
"first": "Jiajun",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "1936--1945",
"other_ids": {
"DOI": [
"10.18653/v1/P17-1177"
]
},
"num": null,
"urls": [],
"raw_text": "Huadong Chen, Shujian Huang, David Chiang, and Ji- ajun Chen. 2017. Improved neural machine trans- lation with a syntax-aware encoder and decoder. pages 1936-1945.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Bi-directional attention with agreement for dependency parsing",
"authors": [
{
"first": "Hao",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "Hao",
"middle": [],
"last": "Fang",
"suffix": ""
},
{
"first": "Xiaodong",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Jianfeng",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Li",
"middle": [],
"last": "Deng",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2204--2214",
"other_ids": {
"DOI": [
"10.18653/v1/D16-1238"
]
},
"num": null,
"urls": [],
"raw_text": "Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao, and Li Deng. 2016. Bi-directional attention with agreement for dependency parsing. In Proceed- ings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2204-2214, Austin, Texas. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Parsing as language modeling",
"authors": [
{
"first": "Kook",
"middle": [],
"last": "Do",
"suffix": ""
},
{
"first": "Eugene",
"middle": [],
"last": "Choe",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Charniak",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2331--2336",
"other_ids": {
"DOI": [
"10.18653/v1/D16-1257"
]
},
"num": null,
"urls": [],
"raw_text": "Do Kook Choe and Eugene Charniak. 2016. Parsing as language modeling. In Proceedings of the 2016 Conference on Empirical Methods in Natural Lan- guage Processing, pages 2331-2336, Austin, Texas. Association for Computational Linguistics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Semi-supervised sequence modeling with cross-view training",
"authors": [
{
"first": "Kevin",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Minh-Thang",
"middle": [],
"last": "Luong",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
},
{
"first": "Quoc",
"middle": [
"V"
],
"last": "Le",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kevin Clark, Minh-Thang Luong, Christopher D. Man- ning, and Quoc V. Le. 2018. Semi-supervised se- quence modeling with cross-view training.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Deep biaffine attention for neural dependency parsing",
"authors": [
{
"first": "Timothy",
"middle": [],
"last": "Dozat",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Timothy Dozat and Christopher D. Manning. 2016. Deep biaffine attention for neural dependency pars- ing.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Dependency parsing of turkish",
"authors": [
{
"first": "G\u00fcl\u015fen",
"middle": [],
"last": "Eryigit",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Kemal",
"middle": [],
"last": "Oflazer",
"suffix": ""
}
],
"year": 2008,
"venue": "Computational Linguistics",
"volume": "34",
"issue": "3",
"pages": "357--389",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G\u00fcl\u015fen Eryigit, Joakim Nivre, and Kemal Oflazer. 2008. Dependency parsing of turkish. Computational Lin- guistics, 34(3):357-389.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Left-to-right dependency parsing with pointer networks",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Fern\u00e1ndez",
"suffix": ""
},
{
"first": "-",
"middle": [],
"last": "Gonz\u00e1lez",
"suffix": ""
},
{
"first": "Carlos",
"middle": [],
"last": "G\u00f3mez-Rodr\u00edguez",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "710--716",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1076"
]
},
"num": null,
"urls": [],
"raw_text": "Daniel Fern\u00e1ndez-Gonz\u00e1lez and Carlos G\u00f3mez- Rodr\u00edguez. 2019. Left-to-right dependency parsing with pointer networks. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 710-716, Minneapolis, Minnesota. Association for Computational Linguistics.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Joint parsing and named entity recognition",
"authors": [
{
"first": "Jenny",
"middle": [
"Rose"
],
"last": "Finkel",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of Human Language Technologies: The",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jenny Rose Finkel and Christopher D. Manning. 2009. Joint parsing and named entity recognition. In Pro- ceedings of Human Language Technologies: The",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Annual Conference of the North American Chapter of the Association for Computational Linguistics",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "326--334",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Annual Conference of the North American Chapter of the Association for Computational Lin- guistics, pages 326-334, Boulder, Colorado. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Relex -relation extraction using dependency parse trees",
"authors": [
{
"first": "Katrin",
"middle": [],
"last": "Fundel-Clemens",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "K\u00fcffner",
"suffix": ""
},
{
"first": "Ralf",
"middle": [],
"last": "Zimmer",
"suffix": ""
}
],
"year": 2007,
"venue": "Bioinformatics",
"volume": "23",
"issue": "",
"pages": "365--71",
"other_ids": {
"DOI": [
"10.1093/bioinformatics/btl616"
]
},
"num": null,
"urls": [],
"raw_text": "Katrin Fundel-Clemens, Robert K\u00fcffner, and Ralf Zim- mer. 2007. Relex -relation extraction using de- pendency parse trees. Bioinformatics (Oxford, Eng- land), 23:365-71.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "An efficient algorithm for easy-first non-directional dependency parsing",
"authors": [
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
},
{
"first": "Michael",
"middle": [
"Elhadad"
],
"last": "",
"suffix": ""
}
],
"year": 2010,
"venue": "Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "742--750",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yoav Goldberg and Michael Elhadad. 2010. An effi- cient algorithm for easy-first non-directional depen- dency parsing. In Human Language Technologies: The 2010 Annual Conference of the North Ameri- can Chapter of the Association for Computational Linguistics, pages 742-750, Los Angeles, California. Association for Computational Linguistics.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "A joint many-task model: Growing a neural network for multiple NLP tasks",
"authors": [
{
"first": "Kazuma",
"middle": [],
"last": "Hashimoto",
"suffix": ""
},
{
"first": "Caiming",
"middle": [],
"last": "Xiong",
"suffix": ""
},
{
"first": "Yoshimasa",
"middle": [],
"last": "Tsuruoka",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1923--1933",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1206"
]
},
"num": null,
"urls": [],
"raw_text": "Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu- ruoka, and Richard Socher. 2017. A joint many-task model: Growing a neural network for multiple NLP tasks. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1923-1933, Copenhagen, Denmark. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "A structural probe for finding syntax in word representations",
"authors": [
{
"first": "John",
"middle": [],
"last": "Hewitt",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Christopher",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4129--4138",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1419"
]
},
"num": null,
"urls": [],
"raw_text": "John Hewitt and Christopher D. Manning. 2019. A structural probe for finding syntax in word repre- sentations. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4129-4138, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Long short-term memory",
"authors": [
{
"first": "Sepp",
"middle": [],
"last": "Hochreiter",
"suffix": ""
},
{
"first": "J\u00fcrgen",
"middle": [],
"last": "Schmidhuber",
"suffix": ""
}
],
"year": 1997,
"venue": "Neural computation",
"volume": "9",
"issue": "",
"pages": "1735--80",
"other_ids": {
"DOI": [
"10.1162/neco.1997.9.8.1735"
]
},
"num": null,
"urls": [],
"raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9:1735- 80.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Graphbased dependency parsing with graph neural networks",
"authors": [
{
"first": "Tao",
"middle": [],
"last": "Ji",
"suffix": ""
},
{
"first": "Yuanbin",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Man",
"middle": [],
"last": "Lan",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2475--2485",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1237"
]
},
"num": null,
"urls": [],
"raw_text": "Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph- based dependency parsing with graph neural net- works. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 2475-2485, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Efficient dependency-guided named entity recognition",
"authors": [
{
"first": "Zhanming",
"middle": [],
"last": "Jie",
"suffix": ""
},
{
"first": "Aldrian",
"middle": [],
"last": "Obaja Muis",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI'17",
"volume": "",
"issue": "",
"pages": "3457--3465",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhanming Jie, Aldrian Obaja Muis, and Wei Lu. 2017. Efficient dependency-guided named entity recogni- tion. In Proceedings of the Thirty-First AAAI Con- ference on Artificial Intelligence, AAAI'17, page 3457-3465. AAAI Press.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Simple and accurate dependency parsing using bidirectional LSTM feature representations",
"authors": [
{
"first": "Eliyahu",
"middle": [],
"last": "Kiperwasser",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
}
],
"year": 2016,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "4",
"issue": "",
"pages": "313--327",
"other_ids": {
"DOI": [
"10.1162/tacl_a_00101"
]
},
"num": null,
"urls": [],
"raw_text": "Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim- ple and accurate dependency parsing using bidirec- tional LSTM feature representations. Transactions of the Association for Computational Linguistics, 4:313-327.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "75 languages, 1 model: Parsing universal dependencies universally",
"authors": [
{
"first": "Dan",
"middle": [],
"last": "Kondratyuk",
"suffix": ""
},
{
"first": "Milan",
"middle": [],
"last": "Straka",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dan Kondratyuk and Milan Straka. 2019. 75 lan- guages, 1 model: Parsing universal dependencies universally.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Distilling an ensemble of greedy dependency parsers into one mst parser",
"authors": [
{
"first": "Adhiguna",
"middle": [],
"last": "Kuncoro",
"suffix": ""
},
{
"first": "Miguel",
"middle": [],
"last": "Ballesteros",
"suffix": ""
},
{
"first": "Lingpeng",
"middle": [],
"last": "Kong",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, and Noah A. Smith. 2016. Distill- ing an ensemble of greedy dependency parsers into one mst parser.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Self-attentive biaffine dependency parsing",
"authors": [
{
"first": "Ying",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Zhenghua",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Min",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Rui",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Sheng",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Luo",
"middle": [],
"last": "Si",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 28th International Joint Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "5067--5073",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ying Li, Zhenghua Li, Min Zhang, Rui Wang, Sheng Li, and Luo Si. 2019. Self-attentive biaffine depen- dency parsing. In Proceedings of the 28th Inter- national Joint Conference on Artificial Intelligence, pages 5067-5073. AAAI Press.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Seq2seq dependency parsing",
"authors": [
{
"first": "Zuchao",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Jiaxun",
"middle": [],
"last": "Cai",
"suffix": ""
},
{
"first": "Shexia",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Hai",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 27th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "3203--3214",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018. Seq2seq dependency parsing. In Proceedings of the 27th International Conference on Computational Linguistics, pages 3203-3214, Santa Fe, New Mex- ico, USA. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Easy-first POS tagging and dependency parsing with beam search",
"authors": [
{
"first": "Ji",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Jingbo",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Tong",
"middle": [],
"last": "Xiao",
"suffix": ""
},
{
"first": "Nan",
"middle": [],
"last": "Yang",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "110--114",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ji Ma, Jingbo Zhu, Tong Xiao, and Nan Yang. 2013. Easy-first POS tagging and dependency parsing with beam search. In Proceedings of the 51st Annual Meeting of the Association for Computational Lin- guistics (Volume 2: Short Papers), pages 110-114, Sofia, Bulgaria. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Neural probabilistic model for non-projective MST parsing",
"authors": [
{
"first": "Xuezhe",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the Eighth International Joint Conference on Natural Language Processing",
"volume": "1",
"issue": "",
"pages": "59--69",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuezhe Ma and Eduard Hovy. 2017. Neural proba- bilistic model for non-projective MST parsing. In Proceedings of the Eighth International Joint Con- ference on Natural Language Processing (Volume 1: Long Papers), pages 59-69, Taipei, Taiwan. Asian Federation of Natural Language Processing.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Stackpointer networks for dependency parsing",
"authors": [
{
"first": "Xuezhe",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Zecong",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Jingzhou",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Nanyun",
"middle": [],
"last": "Peng",
"suffix": ""
},
{
"first": "Graham",
"middle": [],
"last": "Neubig",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "1403--1414",
"other_ids": {
"DOI": [
"10.18653/v1/P18-1130"
]
},
"num": null,
"urls": [],
"raw_text": "Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Eduard Hovy. 2018. Stack- pointer networks for dependency parsing. In Pro- ceedings of the 56th Annual Meeting of the Associa- tion for Computational Linguistics (Volume 1: Long Papers), pages 1403-1414, Melbourne, Australia. Association for Computational Linguistics.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Building a large annotated corpus of english: The penn treebank",
"authors": [
{
"first": "Mitchell",
"middle": [],
"last": "Marcus",
"suffix": ""
},
{
"first": "Beatrice",
"middle": [],
"last": "Santorini",
"suffix": ""
},
{
"first": "Mary",
"middle": [
"Ann"
],
"last": "Marcinkiewicz",
"suffix": ""
}
],
"year": 1993,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of english: The penn treebank.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Universal Stanford dependencies: A cross-linguistic typology",
"authors": [
{
"first": "Marie-Catherine",
"middle": [],
"last": "De Marneffe",
"suffix": ""
},
{
"first": "Timothy",
"middle": [],
"last": "Dozat",
"suffix": ""
},
{
"first": "Natalia",
"middle": [],
"last": "Silveira",
"suffix": ""
},
{
"first": "Katri",
"middle": [],
"last": "Haverinen",
"suffix": ""
},
{
"first": "Filip",
"middle": [],
"last": "Ginter",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014)",
"volume": "",
"issue": "",
"pages": "4585--4592",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marie-Catherine de Marneffe, Timothy Dozat, Na- talia Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre, and Christopher D. Manning. 2014. Uni- versal Stanford dependencies: A cross-linguistic ty- pology. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), pages 4585-4592, Reykjavik, Ice- land. European Languages Resources Association (ELRA).",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Multilingual dependency analysis with a twostage discriminative parser",
"authors": [
{
"first": "Ryan",
"middle": [],
"last": "Mcdonald",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Lerman",
"suffix": ""
},
{
"first": "Fernando",
"middle": [],
"last": "Pereira",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the Tenth Conference on Computational Natural Language Learning (CoNLL-X)",
"volume": "",
"issue": "",
"pages": "216--220",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ryan McDonald, Kevin Lerman, and Fernando Pereira. 2006. Multilingual dependency analysis with a two- stage discriminative parser. In Proceedings of the Tenth Conference on Computational Natural Lan- guage Learning (CoNLL-X), pages 216-220, New York City. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Graph-to-graph transformer for transition-based dependency parsing",
"authors": [
{
"first": "Alireza",
"middle": [],
"last": "Mohammadshahi",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Henderson",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alireza Mohammadshahi and James Henderson. 2019. Graph-to-graph transformer for transition-based de- pendency parsing.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "An improved neural network model for joint",
"authors": [
{
"first": "Karin",
"middle": [],
"last": "Dat Quoc Nguyen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Verspoor",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/k18-2008"
]
},
"num": null,
"urls": [],
"raw_text": "Dat Quoc Nguyen and Karin Verspoor. 2018. An im- proved neural network model for joint. Proceedings of the.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Integrating graph-based and transition-based dependency parsers",
"authors": [
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Ryan",
"middle": [],
"last": "Mcdonald",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of ACL-08: HLT",
"volume": "",
"issue": "",
"pages": "950--958",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joakim Nivre and Ryan McDonald. 2008. Integrat- ing graph-based and transition-based dependency parsers. In Proceedings of ACL-08: HLT, pages 950-958, Columbus, Ohio. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Cross-sentence n-ary relation extraction with graph lstms. Transactions of the Association for Computational Linguistics",
"authors": [
{
"first": "Nanyun",
"middle": [],
"last": "Peng",
"suffix": ""
},
{
"first": "Hoifung",
"middle": [],
"last": "Poon",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Quirk",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
},
{
"first": "Wen-Tau",
"middle": [],
"last": "Yih",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "5",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.1162/tacl_a_00049"
]
},
"num": null,
"urls": [],
"raw_text": "Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, and Wen-tau Yih. 2017. Cross-sentence n-ary relation extraction with graph lstms. Transac- tions of the Association for Computational Linguis- tics, 5.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Glove: Global vectors for word representation",
"authors": [
{
"first": "Jeffrey",
"middle": [],
"last": "Pennington",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "1532--1543",
"other_ids": {
"DOI": [
"10.3115/v1/D14-1162"
]
},
"num": null,
"urls": [],
"raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word rep- resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 1532-1543, Doha, Qatar. Asso- ciation for Computational Linguistics.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Arc-swift: A novel transition system for dependency parsing",
"authors": [
{
"first": "Peng",
"middle": [],
"last": "Qi",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Peng Qi and Christopher D. Manning. 2017. Arc-swift: A novel transition system for dependency parsing.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "From baby steps to leapfrog: How \"less is more\" in unsupervised dependency parsing",
"authors": [
{
"first": "I",
"middle": [],
"last": "Valentin",
"suffix": ""
},
{
"first": "Hiyan",
"middle": [],
"last": "Spitkovsky",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Alshawi",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Jurafsky",
"suffix": ""
}
],
"year": 2010,
"venue": "Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "751--759",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju- rafsky. 2010. From baby steps to leapfrog: How \"less is more\" in unsupervised dependency parsing. In Human Language Technologies: The 2010 An- nual Conference of the North American Chapter of the Association for Computational Linguistics, pages 751-759, Los Angeles, California. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Punctuation: Making a point in unsupervised dependency parsing",
"authors": [
{
"first": "I",
"middle": [],
"last": "Valentin",
"suffix": ""
},
{
"first": "Hiyan",
"middle": [],
"last": "Spitkovsky",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Alshawi",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Jurafsky",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the Fifteenth Conference on Computational Natural Language Learning",
"volume": "",
"issue": "",
"pages": "19--28",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju- rafsky. 2011. Punctuation: Making a point in un- supervised dependency parsing. In Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 19-28, Portland, Oregon, USA. Association for Computational Linguistics.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Universal dependencies for Turkish",
"authors": [
{
"first": "Umut",
"middle": [],
"last": "Sulubacak",
"suffix": ""
},
{
"first": "Memduh",
"middle": [],
"last": "Gokirmak",
"suffix": ""
},
{
"first": "Francis",
"middle": [],
"last": "Tyers",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Agr\u0131 \u00c7\u00f6ltekin",
"suffix": ""
},
{
"first": "G\u00fcl\u015fen",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Eryigit",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
"volume": "",
"issue": "",
"pages": "3444--3454",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Umut Sulubacak, Memduh Gokirmak, Francis Tyers, \u00c7 agr\u0131 \u00c7\u00f6ltekin, Joakim Nivre, and G\u00fcl\u015fen Eryigit. 2016. Universal dependencies for Turkish. In Pro- ceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Techni- cal Papers, pages 3444-3454, Osaka, Japan. The COLING 2016 Organizing Committee.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Improved semantic representations from tree-structured long short-term memory networks",
"authors": [
{
"first": "Kai Sheng",
"middle": [],
"last": "Tai",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "1",
"issue": "",
"pages": "1556--1566",
"other_ids": {
"DOI": [
"10.3115/v1/P15-1150"
]
},
"num": null,
"urls": [],
"raw_text": "Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from tree-structured long short-term memory net- works. In Proceedings of the 53rd Annual Meet- ing of the Association for Computational Linguistics and the 7th International Joint Conference on Natu- ral Language Processing (Volume 1: Long Papers), pages 1556-1566, Beijing, China. Association for Computational Linguistics.",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "Structured training for neural network transition-based parsing",
"authors": [
{
"first": "David",
"middle": [],
"last": "Weiss",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Alberti",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
},
{
"first": "Slav",
"middle": [],
"last": "Petrov",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "1",
"issue": "",
"pages": "323--333",
"other_ids": {
"DOI": [
"10.3115/v1/P15-1032"
]
},
"num": null,
"urls": [],
"raw_text": "David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. 2015. Structured training for neural net- work transition-based parsing. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 323-333, Beijing, China. Association for Computational Linguistics.",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing",
"authors": [
{
"first": "Yue",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Stephen",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "562--571",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yue Zhang and Stephen Clark. 2008. A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing. In Pro- ceedings of the 2008 Conference on Empirical Meth- ods in Natural Language Processing, pages 562- 571, Honolulu, Hawaii. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "Graph convolution over pruned dependency trees improves relation extraction",
"authors": [
{
"first": "Yuhao",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Peng",
"middle": [],
"last": "Qi",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2205--2215",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1244"
]
},
"num": null,
"urls": [],
"raw_text": "Yuhao Zhang, Peng Qi, and Christopher D. Manning. 2018. Graph convolution over pruned dependency trees improves relation extraction. In Proceedings of the 2018 Conference on Empirical Methods in Nat- ural Language Processing, pages 2205-2215, Brus- sels, Belgium. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "Head-driven phrase structure grammar parsing on Penn treebank",
"authors": [
{
"first": "Junru",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Hai",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2396--2408",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1230"
]
},
"num": null,
"urls": [],
"raw_text": "Junru Zhou and Hai Zhao. 2019. Head-driven phrase structure grammar parsing on Penn treebank. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2396-2408, Florence, Italy. Association for Compu- tational Linguistics.",
"links": null
}
},
"ref_entries": {
"FIGREF1": {
"type_str": "figure",
"text": "An example to graph-based dependency parsing with a maximum spanning tree.based on Transformer Networks and Stack Pointer Networks, and finally Section 5 presents the experimental results of the proposed model for both English and Turkish.",
"uris": null,
"num": null
},
"FIGREF2": {
"type_str": "figure",
"text": "An example projective tree Figure 3: An example non-projective tree",
"uris": null,
"num": null
},
"FIGREF3": {
"type_str": "figure",
"text": "Figure 5: Sibling structure",
"uris": null,
"num": null
},
"FIGREF4": {
"type_str": "figure",
"text": "Figure 6: Grandchild structure",
"uris": null,
"num": null
},
"TABREF1": {
"type_str": "table",
"content": "<table><tr><td>,</td></tr></table>",
"html": null,
"num": null,
"text": ""
},
"TABREF4": {
"type_str": "table",
"content": "<table><tr><td colspan=\"2\">: Results for Turkish IMST Dataset (Sulubacak</td></tr><tr><td>et al., 2016)</td><td/></tr><tr><td>Model</td><td>UAS LAS</td></tr><tr><td>Our Model w/ Glove</td><td>93.43 91.98</td></tr><tr><td>Our Model w/ Polyglot</td><td>94.23 92.67</td></tr></table>",
"html": null,
"num": null,
"text": ""
},
"TABREF5": {
"type_str": "table",
"content": "<table/>",
"html": null,
"num": null,
"text": "Dataset w/ Punctuation w/o Punctuation PTB 94.23 (92.67) 93.47 (91.94) IMST 76.81 (67.95) 71.96 (62.41)"
}
}
}
} |