File size: 88,184 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:28:50.706362Z"
    },
    "title": "Memory Attentive Fusion: External Language Model Integration for Transformer-based Sequence-to-Sequence Model",
    "authors": [
        {
            "first": "Mana",
            "middle": [],
            "last": "Ihori",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NTT Corporation",
                "location": {
                    "addrLine": "1-1 Hikarinooka, Yokosuka-Shi",
                    "postCode": "239-0847",
                    "settlement": "Kanagawa",
                    "country": "Japan"
                }
            },
            "email": "mana.ihori.kx@hco.ntt.co.jp"
        },
        {
            "first": "Ryo",
            "middle": [],
            "last": "Masumura",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NTT Corporation",
                "location": {
                    "addrLine": "1-1 Hikarinooka, Yokosuka-Shi",
                    "postCode": "239-0847",
                    "settlement": "Kanagawa",
                    "country": "Japan"
                }
            },
            "email": ""
        },
        {
            "first": "Naoki",
            "middle": [],
            "last": "Makishima",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NTT Corporation",
                "location": {
                    "addrLine": "1-1 Hikarinooka, Yokosuka-Shi",
                    "postCode": "239-0847",
                    "settlement": "Kanagawa",
                    "country": "Japan"
                }
            },
            "email": ""
        },
        {
            "first": "Tomohiro",
            "middle": [],
            "last": "Tanaka",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NTT Corporation",
                "location": {
                    "addrLine": "1-1 Hikarinooka, Yokosuka-Shi",
                    "postCode": "239-0847",
                    "settlement": "Kanagawa",
                    "country": "Japan"
                }
            },
            "email": ""
        },
        {
            "first": "Akihiko",
            "middle": [],
            "last": "Takashima",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NTT Corporation",
                "location": {
                    "addrLine": "1-1 Hikarinooka, Yokosuka-Shi",
                    "postCode": "239-0847",
                    "settlement": "Kanagawa",
                    "country": "Japan"
                }
            },
            "email": ""
        },
        {
            "first": "Shota",
            "middle": [],
            "last": "Orihashi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NTT Corporation",
                "location": {
                    "addrLine": "1-1 Hikarinooka, Yokosuka-Shi",
                    "postCode": "239-0847",
                    "settlement": "Kanagawa",
                    "country": "Japan"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper presents a novel fusion method for integrating an external language model (LM) into the Transformer based sequenceto-sequence (seq2seq) model. While paired data are basically required to train the seq2seq model, the external LM can be trained with only unpaired data. Thus, it is important to leverage memorized knowledge in the external LM for building the seq2seq model, since it is hard to prepare a large amount of paired data. However, the existing fusion methods assume that the LM is integrated with recurrent neural network-based seq2seq models instead of the Transformer. Therefore, this paper proposes a fusion method that can explicitly utilize network structures in the Transformer. The proposed method, called memory attentive fusion, leverages the Transformer-style attention mechanism that repeats source-target attention in a multi-hop manner for reading the memorized knowledge in the LM. Our experiments on two text-style conversion tasks demonstrate that the proposed method performs better than conventional fusion methods.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper presents a novel fusion method for integrating an external language model (LM) into the Transformer based sequenceto-sequence (seq2seq) model. While paired data are basically required to train the seq2seq model, the external LM can be trained with only unpaired data. Thus, it is important to leverage memorized knowledge in the external LM for building the seq2seq model, since it is hard to prepare a large amount of paired data. However, the existing fusion methods assume that the LM is integrated with recurrent neural network-based seq2seq models instead of the Transformer. Therefore, this paper proposes a fusion method that can explicitly utilize network structures in the Transformer. The proposed method, called memory attentive fusion, leverages the Transformer-style attention mechanism that repeats source-target attention in a multi-hop manner for reading the memorized knowledge in the LM. Our experiments on two text-style conversion tasks demonstrate that the proposed method performs better than conventional fusion methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In recent studies, the Transformer sequence-tosequence (seq2seq) model (Vaswani et al., 2017) has successfully performed in various natural language generation tasks, such as machine translation Barrault et al., 2019) , image captioning (Li et al., 2019b; Yu et al., 2019; Li et al., 2019a) , and automatic speech recognition (Dong et al., 2018; Karita et al., 2019; Salazar et al., 2019) . Although the Transformer training needs paired data, a large amount of paired data cannot often be prepared. Moreover, unpaired data cannot be used for training the Transformer even though such data can be collected on a large scale.",
                "cite_spans": [
                    {
                        "start": 71,
                        "end": 93,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 195,
                        "end": 217,
                        "text": "Barrault et al., 2019)",
                        "ref_id": null
                    },
                    {
                        "start": 237,
                        "end": 255,
                        "text": "(Li et al., 2019b;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 256,
                        "end": 272,
                        "text": "Yu et al., 2019;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 273,
                        "end": 290,
                        "text": "Li et al., 2019a)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 326,
                        "end": 345,
                        "text": "(Dong et al., 2018;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 346,
                        "end": 366,
                        "text": "Karita et al., 2019;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 367,
                        "end": 388,
                        "text": "Salazar et al., 2019)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To utilize a large amount of unpaired data, methods of integrating an external language model (LM) trained with these data into seq2seq mod-els have been proposed (Kannan et al., 2018; Gulcehre et al., 2015; Sriram et al., 2018) . These methods can improve the fluency of sentences that are generated by seq2seq models; however, they integrate the LM into recurrent neural network (RNN) based seq2seq models rather than the Transformer. In other words, LM fusion methods specific to the Transformer have not been considered yet.",
                "cite_spans": [
                    {
                        "start": 163,
                        "end": 184,
                        "text": "(Kannan et al., 2018;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 185,
                        "end": 207,
                        "text": "Gulcehre et al., 2015;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 208,
                        "end": 228,
                        "text": "Sriram et al., 2018)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Here, the Transformer employs the multi-hop attention mechanism (Sukhbaatar et al., 2015 ) that repeats the source-target attention mechanism in each Transformer decoder block. Thus, it is supposed that the source-target attention mechanism promotes to extract effective source information for target tasks more exactly than RNN based seq2seq models. Therefore, we assume that the Transformer can utilize memorized knowledge in the external LM more effectively by using the multi-hop attention mechanism for the LM fusion.",
                "cite_spans": [
                    {
                        "start": 64,
                        "end": 88,
                        "text": "(Sukhbaatar et al., 2015",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we propose a novel fusion method, called memory attentive fusion, to integrate an external LM into the Transformer. This fusion method utilizes a multi-hop source-target attention mechanism for combining the Transformer decoder with the external LM. We performed experiments with two text-style conversion tasks: spoken-to-written style conversion and dialect conversion. Our experiments demonstrate that the proposed method performs better than conventional fusion methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The simplest fusion method is to train the seq2seq model and the LM independently and then combine their outputs (Kannan et al., 2018; Chorowski and Jaitly, 2017; Sutskever et al., 2014) . These methods are called shallow fusion.",
                "cite_spans": [
                    {
                        "start": 113,
                        "end": 134,
                        "text": "(Kannan et al., 2018;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 135,
                        "end": 162,
                        "text": "Chorowski and Jaitly, 2017;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 163,
                        "end": 186,
                        "text": "Sutskever et al., 2014)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "Moreover, methods that integrate an external LM into seq2seq models during training have been proposed: deep fusion (Gulcehre et al., 2015) and cold fusion (Sriram et al., 2018) . These methods utilize the information of not only paired data but also unpaired data in training. Figure 1 shows a Transformer with cold fusion. These methods assume that the LM is integrated into RNN-based seq2seq models instead of the Transformer.",
                "cite_spans": [
                    {
                        "start": 116,
                        "end": 139,
                        "text": "(Gulcehre et al., 2015)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 156,
                        "end": 177,
                        "text": "(Sriram et al., 2018)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 278,
                        "end": 286,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "This section details memory attentive fusion for the Transformer seq2seq model. In fact, memory attentive fusion is an extended method of the cold fusion (Sriram et al., 2018) . While the cold fusion uses memorized knowledge in the LM at an output layer only once, the memory attentive fusion repeatedly uses the knowledge at Transformer decoder blocks based on a source-target attention mechanism.",
                "cite_spans": [
                    {
                        "start": 154,
                        "end": 175,
                        "text": "(Sriram et al., 2018)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "We define an input sequence as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "X = {x 1 , \u2022 \u2022 \u2022 , x M } and an output sequence as Y = {y 1 , \u2022 \u2022 \u2022 , y N },",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "where x m and y n are tokens in the input and output sequence. In text-style conversion, the model predicts the generation probabilities of the output sequence given the input sequence. The generation probability of Y is defined as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "P (Y |X; \u0398) = N \u220f n=1 P (y n |y 1:n\u22121 , X; \u0398), (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "where \u0398 = {\u03b8 enc , \u03b8 dec , \u03b8 lm } represents model parameter sets. \u03b8 enc and \u03b8 dec are trainable parameter sets with encoder and decoder, respectively. \u03b8 lm is parameter set for the external LM. P (y n |y 1:n\u22121 , X; \u0398) can be computed using an encoder and a decoder with memory attentive fusion in the Transformer. Figure 2 shows the Transformer with memory attentive fusion.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 315,
                        "end": 323,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "Encoder: The encoder converts an input sequence X into the hidden representations S (K) using K Transformer encoder blocks. First, the input hidden representation of the Transformer encoder block S (0) ",
                "cite_spans": [
                    {
                        "start": 84,
                        "end": 87,
                        "text": "(K)",
                        "ref_id": null
                    },
                    {
                        "start": 198,
                        "end": 201,
                        "text": "(0)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "= {s (0) 1:M } is produced by s (0) m = Embedding(x m ; \u03b8 enc ),",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "where Embedding(\u2022) consists of positional encoding and a linear layer. Next, the k-th Transformer encoder block composes the k-th hidden representations S (k) from the lower inputs S (k\u22121) as where TransformeEncBlock(\u2022) is the Transformer encoder block that consists of a scaled dot product multi-head self-attention layer and a position-wise feed-forward network (Vaswani et al., 2017) .",
                "cite_spans": [
                    {
                        "start": 155,
                        "end": 158,
                        "text": "(k)",
                        "ref_id": null
                    },
                    {
                        "start": 183,
                        "end": 188,
                        "text": "(k\u22121)",
                        "ref_id": null
                    },
                    {
                        "start": 364,
                        "end": 386,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "S (k) = TransformerEncBlock(S (k\u22121) ; \u03b8 enc ),",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "Decoder with memory attentive fusion: The decoder with memory attentive fusion computes the generation probability of a token from the preceding tokens and hidden representations of the input sequence and the LM information. The predicted probabilities of the n-th token y n are calculated as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (y n |y 1:n\u22121 , X) = softmax(u (J) n ; \u03b8 dec ),",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "where softmax(\u2022) is a softmax layer with a linear transformation. The input hidden vector u",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "(J) n",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "is computed from S (K) and y 1:n\u22121 using J Transformer decoder blocks with an external LM. First, the input hidden representation of the Transformer decoder block u",
                "cite_spans": [
                    {
                        "start": 19,
                        "end": 22,
                        "text": "(K)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "n\u22121 and h LM n\u22121 are produced by",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "u (0) n\u22121 = Embedding(y n\u22121 ; \u03b8 dec ),",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "l LM n\u22121 = LanguageModel(y 1:n\u22121 ; \u03b8 lm ),",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "h LM n\u22121 = linear(l LM n\u22121 ; \u03b8 dec ),",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "where LanguageModel(\u2022) is the trained external LM, and l LM n\u22121 is the logit output. Next, we convert hidden representations in the lower layer u (j\u22121) 1:n\u22121 and the encoder output S (k) into a hidden vector c (j) n . The hidden vector is computed as v (j) n = SourceTarget(u",
                "cite_spans": [
                    {
                        "start": 183,
                        "end": 186,
                        "text": "(k)",
                        "ref_id": null
                    },
                    {
                        "start": 210,
                        "end": 213,
                        "text": "(j)",
                        "ref_id": null
                    },
                    {
                        "start": 253,
                        "end": 256,
                        "text": "(j)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "(j\u22121) 1:n\u22121 , u (j\u22121) n\u22121 ; \u03b8 dec ),",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "v (j) n = LayerNorm(u (j\u22121) n\u22121 +v (j) n ),",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "c (j) n = SourceTarget(S (K) , v (j) n ; \u03b8 dec ), (10) c (j) n = LayerNorm(v (j) n +c (j) n ),",
                        "eq_num": "(11)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "where SourceTarget(\u2022) is a scaled dot product multi-head source target attention layer and LayerNorm(\u2022) is layer normalization (Ba et al., 2016) . In memory attentive fusion, we also convert the LM output h LM 1:n\u22121 and the hidden vector v ",
                "cite_spans": [
                    {
                        "start": 127,
                        "end": 144,
                        "text": "(Ba et al., 2016)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "b (j) n = SourceTarget(h LM 1:n\u22121 , v (j) n ; \u03b8 dec ), (12) b (j) n = LayerNorm(v (j) n +b (j) n ).",
                        "eq_num": "(13)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "This attention mechanism is repeated with Transformer decoder block in the multi-hop manner. Therefore, we expect to read the memorized memory in the LM effectively. Next, we concatenate the hidden vector that have target and source information, and that have target and the LM information with gating mechanism by",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "g (j) n = sigmoid([c (j) n T , b (j) n T ] T ; \u03b8 dec ), (14) q (j) n = [c (j) n T , g (j) n \u2299 b (j) n T ] T ,",
                        "eq_num": "(15)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "where sigmoid(\u2022) is a sigmoid layer with a linear transformation. Next, the hidden vector q (j) n is converted into the j-th hidden representation u (j) n . The hidden representation is computed as",
                "cite_spans": [
                    {
                        "start": 92,
                        "end": 95,
                        "text": "(j)",
                        "ref_id": null
                    },
                    {
                        "start": 149,
                        "end": 152,
                        "text": "(j)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "u (j) n = FeedForward(q (j) n ; \u03b8 dec ),",
                        "eq_num": "(16)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "u (j) n = LayerNorm(q (j) n +\u016b (j) n ),",
                        "eq_num": "(17)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "where FeedForwrd(\u2022) is a position-wise feedforward network.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "Training: In the Transformer, the model parameter set can be optimized from training dataset",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "D = {(X 1 , Y 1 ), \u2022 \u2022 \u2022 , (X |D| , Y |D| )}.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "The objective function for optimizing the model parameter is defined as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L = \u2212 1 |D| |D| \u2211 d=1 log P (Y d |X d ; \u0398).",
                        "eq_num": "(18)"
                    }
                ],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "Note that the external LM uses the freezing parameter \u03b8 lm .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Memory attentive fusion",
                "sec_num": "3"
            },
            {
                "text": "We evaluated our method on text-style conversion tasks. In particular, we chose spoken-to-written style conversion task and dialect conversion task in Japanese. In the spoken-to-written style conversion task, spoken-style text produced by an automatic speech recognition system is converted into written-style text that has correct punctuation and no disfluency (Ihori et al., 2020) . In the dialect conversion task, Japanese dialects are converted into standard Japanese.",
                "cite_spans": [
                    {
                        "start": 362,
                        "end": 382,
                        "text": "(Ihori et al., 2020)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "Spoken-to-written style conversion: We used the Corpus of Spontaneous Japanese (CSJ) (Maekawa et al., 2000) and the parallel corpus for Japanese spoken-to-written style conversion (CJSW) (Ihori et al., 2020) . We divided the CSJ into a training set, validation set, and test set. The training set, validation set, and test set have 46,847, 13,510, and 3,949 sentences, respectively. The CJSW has four domains, and we divided it up following (Ihori et al., 2020) . We used all of the training and validation sets for training and each test set (CJSW-1, 2, 3, 4) for the evaluation. All of these datasets are paired data of spoken-style text (manual transcriptions of speech) and writtenstyle text (created with crowd-sourcing).",
                "cite_spans": [
                    {
                        "start": 85,
                        "end": 107,
                        "text": "(Maekawa et al., 2000)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 187,
                        "end": 207,
                        "text": "(Ihori et al., 2020)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 441,
                        "end": 461,
                        "text": "(Ihori et al., 2020)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.1"
            },
            {
                "text": "We prepared three paired data of dialects (Tohoku-ben, Osaka-ben, Kyushuben) and standard Japanese with crowd-sourcing. We divided these data into a training set, validation set, and test set for each dialect. We used all of the training and validation sets for training and three test sets for the evaluation. The training set, validation set and test set have 15,506, 3,924 and 2,160 sentences, respectively. Moreover, the test set consists of 700 Tohoku-ben, 862 Osaka-ben, and 598 Kyushu-ben sentences, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dialect conversion:",
                "sec_num": null
            },
            {
                "text": "External text: We prepared a large-scale Japanese web text as the unpaired written-style text data. The Web text was downloaded from various topic Web pages using our home-made crawler. The downloaded pages were filtered in such a way that HTML tags, Javascript codes and other parts that were not useful for these tasks were excluded. Finally, we prepare one million sentences for training the external LM. Moreover, we divided this data into a training set, validation set. The training set and validation set have 800,000 and 200,000 sentences, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dialect conversion:",
                "sec_num": null
            },
            {
                "text": "Transformer: We constructed the Transformer with shallow fusion (Kannan et al., 2018) , cold fusion (Sriram et al., 2018) and memory attentive fusion methods. In addition, we constructed the Transformer without fusion methods as a baseline. We used the following configurations. The dimensions of the output continuous representations and the inner outputs in the position-wise feed-forward network were set to 256, and the number of heads in the multi-head attentions was set to 8. ReLU activation was used in nonlinear transformation function. We stacked 4-layer Transformer encoder blocks, and 2-layer Transformer decoder blocks. We set the output unit size (witch corresponded to the amount of tokens in the training set for language model) to 5,640. To train these models, we used the adam optimizer and label smoothing with a smoothing parameter of 0.1. The training steps were stopped based on early stopping using the part of the training data. We set the mini-batch size to 64 sentences and the dropout rate in the Transformer blocks to 0.2. For the mini-batch training, we truncated each sentence to 200 tokens. We used characters as tokens. All trainable parameters were randomly initialized. For the decoding, we used a beam search algorithm in which the beam size was set to 4.",
                "cite_spans": [
                    {
                        "start": 64,
                        "end": 85,
                        "text": "(Kannan et al., 2018)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 100,
                        "end": 121,
                        "text": "(Sriram et al., 2018)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Setups",
                "sec_num": "4.2"
            },
            {
                "text": "External LM: We utilized Open AI GPT (Radford et al., 2019) for the LM fusion, although any LM can potentially be used. We used the following configurations. The number of heads in the multi-head attentions was set to 4. We stacked 8layer Transformer blocks. The training steps were stopped based on early stopping using the part of the training data. We set the dropout rate in the Transformer blocks to 0.1. The other settings were the same as the Transformer settings. After training, perplexity of this LM was 11.8. Note that this LM was used in both two tasks and the Transformer and the external LM were not pre-trained. Table 1 shows the experimental results in the spoken-to-written style conversion task. Also, Table 2 shows the experimental results in the dialect conversion task. We calculated automatic evaluation scores in three metrics: BLEU-3 (B-3) (Papineni et al., 2002) , ROUGE-L (R-L) (Lin and Och, 2004) , and METEOR (Banerjee and Lavie, 2005) . Baseline in the tables mean the results of the Transformer without the external LM. Table 1 shows that shallow fusion and cold fusion performed worse than the baseline on the CSJ dataset. On the other hand, memory attentive fusion outperformed the baseline. Moreover, memory attentive fusion outperformed the baseline and shallow fusion on the CJSW dataset. In addition, cold fusion outperformed the baseline on CJSW-1, -3 and -4. As in the spoken-to-written style conversion task, Table 2 shows that memory attentive fusion outperformed the other methods.",
                "cite_spans": [
                    {
                        "start": 864,
                        "end": 887,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 904,
                        "end": 923,
                        "text": "(Lin and Och, 2004)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 937,
                        "end": 963,
                        "text": "(Banerjee and Lavie, 2005)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 627,
                        "end": 634,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 720,
                        "end": 727,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 1050,
                        "end": 1057,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 1448,
                        "end": 1455,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Setups",
                "sec_num": "4.2"
            },
            {
                "text": "The above results show that shallow fusion is not suitable for the Transformer because it degraded performance in all cases. Moreover, when the LM was integrated with cold fusion, the performance was better than baseline in some domains. Thus, we consider that cold fusion can be used with the Transformer in limited cases. On the other hand, memory attentive fusion outperformed the other fusion methods in almost all of the domains and tasks. Therefore, we consider that memory attentive fusion is suitable for integration of the external LM into the Transformer. In addition, memory attentive fusion worked well especially in the dialect conversion task. Thus, we can infer that the fusion method for the Transformer is more effective when there is small training data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.3"
            },
            {
                "text": "We show the converted example of spoken-towritten style conversion in CSJ dataset with each fusion method in Figure 3 . Figure 3 shows that the word \" \" (flesh) was output correctly with memory attentive fusion, but other methods were not output the word correctly. The word \" \" was not included in training data for the Transformer, but it was included in training data for the external LM. This indicate that only memory attentive fusion was successful in extracting knowledge of the external LM.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 109,
                        "end": 117,
                        "text": "Figure 3",
                        "ref_id": "FIGREF5"
                    },
                    {
                        "start": 120,
                        "end": 128,
                        "text": "Figure 3",
                        "ref_id": "FIGREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.3"
            },
            {
                "text": "We proposed memory attentive fusion, a novel method to integrate an external LM into the Transformer. Conventional fusion methods assume that the LM is integrated into the RNN-based seq2seq. On the other hand, the proposed method employs a Transformer-specific fusion method which repeats the attention mechanism for the LM many times. Experiments demonstrated that the proposed method outperformed the conventional methods in two tasks. We conclude that the proposed method is suitable for integrating the LM into the Transformer. In the future work, we will try using the proposed method in other natural language generation tasks such as automatic speech recognition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF1": {
                "ref_id": "b1",
                "title": "METEOR: An automatic metric for MT evaluation with improved correlation with human judgments",
                "authors": [
                    {
                        "first": "Satanjeev",
                        "middle": [],
                        "last": "Banerjee",
                        "suffix": ""
                    },
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Lavie",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization",
                "volume": "",
                "issue": "",
                "pages": "65--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with im- proved correlation with human judgments. In Proc. the ACL Workshop on Intrinsic and Extrinsic Eval- uation Measures for Machine Translation and/or Summarization, pages 65-72.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Santanu Pal, Matt Post, and Marcos Zampieri. 2019. Findings of the 2019 conference on machine translation (WMT19)",
                "authors": [
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Barrault",
                        "suffix": ""
                    },
                    {
                        "first": "Ond\u0159ej",
                        "middle": [],
                        "last": "Bojar",
                        "suffix": ""
                    },
                    {
                        "first": "Marta",
                        "middle": [
                            "R"
                        ],
                        "last": "Costa-Juss\u00e0",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Federmann",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Fishel",
                        "suffix": ""
                    },
                    {
                        "first": "Yvette",
                        "middle": [],
                        "last": "Graham",
                        "suffix": ""
                    },
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Haddow",
                        "suffix": ""
                    },
                    {
                        "first": "Matthias",
                        "middle": [],
                        "last": "Huck",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Shervin",
                        "middle": [],
                        "last": "Malmasi",
                        "suffix": ""
                    },
                    {
                        "first": "Christof",
                        "middle": [],
                        "last": "Monz",
                        "suffix": ""
                    },
                    {
                        "first": "Mathias",
                        "middle": [],
                        "last": "M\u00fcller",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Proc. Conference on Machine Translation (WMT)",
                "volume": "",
                "issue": "",
                "pages": "1--61",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lo\u00efc Barrault, Ond\u0159ej Bojar, Marta R. Costa-juss\u00e0, Christian Federmann, Mark Fishel, Yvette Gra- ham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz, Mathias M\u00fcller, Santanu Pal, Matt Post, and Marcos Zampieri. 2019. Findings of the 2019 conference on machine trans- lation (WMT19). In Proc. Conference on Machine Translation (WMT), pages 1-61.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Towards better decoding and language model integration in sequence to sequence models",
                "authors": [
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Chorowski",
                        "suffix": ""
                    },
                    {
                        "first": "Navdeep",
                        "middle": [],
                        "last": "Jaitly",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proc. International Speech Communication Association (INTER-SPEECH)",
                "volume": "",
                "issue": "",
                "pages": "523--527",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jan Chorowski and Navdeep Jaitly. 2017. Towards better decoding and language model integration in sequence to sequence models. In Proc. Interna- tional Speech Communication Association (INTER- SPEECH), pages 523-527.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Speechtransformer: a no-recurrence sequence-to-sequence model for speech recognition",
                "authors": [
                    {
                        "first": "Linhao",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Shuang",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Bo",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proc. International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "5884--5888",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech- transformer: a no-recurrence sequence-to-sequence model for speech recognition. In Proc. International Conference on Acoustics, Speech and Signal Pro- cessing (ICASSP), pages 5884-5888.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "On using monolingual corpora in neural machine translation",
                "authors": [
                    {
                        "first": "Caglar",
                        "middle": [],
                        "last": "Gulcehre",
                        "suffix": ""
                    },
                    {
                        "first": "Orhan",
                        "middle": [],
                        "last": "Firat",
                        "suffix": ""
                    },
                    {
                        "first": "Kelvin",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "Loic",
                        "middle": [],
                        "last": "Barrault",
                        "suffix": ""
                    },
                    {
                        "first": "Huei-Chi",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Fethi",
                        "middle": [],
                        "last": "Bougares",
                        "suffix": ""
                    },
                    {
                        "first": "Holger",
                        "middle": [],
                        "last": "Schwenk",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1503.03535"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2015. On us- ing monolingual corpora in neural machine transla- tion. arXiv preprint arXiv:1503.03535.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Parallel corpus for Japanese spoken-towritten style conversion",
                "authors": [
                    {
                        "first": "Mana",
                        "middle": [],
                        "last": "Ihori",
                        "suffix": ""
                    },
                    {
                        "first": "Akihiko",
                        "middle": [],
                        "last": "Takashima",
                        "suffix": ""
                    },
                    {
                        "first": "Ryo",
                        "middle": [],
                        "last": "Masumura",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proc. Language Resources and Evaluation Conference (LREC)",
                "volume": "",
                "issue": "",
                "pages": "6346--6353",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mana Ihori, Akihiko Takashima, and Ryo Masumura. 2020. Parallel corpus for Japanese spoken-to- written style conversion. In Proc. Language Re- sources and Evaluation Conference (LREC), pages 6346-6353.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "An analysis of incorporating an external language model into a sequence-to-sequence model",
                "authors": [
                    {
                        "first": "Anjuli",
                        "middle": [],
                        "last": "Kannan",
                        "suffix": ""
                    },
                    {
                        "first": "Yonghui",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Tara",
                        "middle": [
                            "N"
                        ],
                        "last": "Sainath",
                        "suffix": ""
                    },
                    {
                        "first": "Zhijeng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Rohit",
                        "middle": [],
                        "last": "Prabhavalkar",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proc. International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "5824--5828",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N Sainath, Zhijeng Chen, and Rohit Prabhavalkar. 2018. An analysis of incorporating an exter- nal language model into a sequence-to-sequence model. In Proc. International Conference on Acous- tics, Speech and Signal Processing (ICASSP), pages 5824-5828.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A comparative study on transformer vs RNN in speech applications",
                "authors": [
                    {
                        "first": "Shigeki",
                        "middle": [],
                        "last": "Karita",
                        "suffix": ""
                    },
                    {
                        "first": "Nanxin",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Tomoki",
                        "middle": [],
                        "last": "Hayashi",
                        "suffix": ""
                    },
                    {
                        "first": "Takaaki",
                        "middle": [],
                        "last": "Hori",
                        "suffix": ""
                    },
                    {
                        "first": "Hirofumi",
                        "middle": [],
                        "last": "Inaguma",
                        "suffix": ""
                    },
                    {
                        "first": "Ziyan",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Masao",
                        "middle": [],
                        "last": "Someki",
                        "suffix": ""
                    },
                    {
                        "first": "Nelson",
                        "middle": [
                            "Enrique"
                        ],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Yalta",
                        "middle": [],
                        "last": "Soplin",
                        "suffix": ""
                    },
                    {
                        "first": "Ryuichi",
                        "middle": [],
                        "last": "Yamamoto",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaofei",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proc. Automatic Speech Recognition and Understanding Workshop (ASRU)",
                "volume": "",
                "issue": "",
                "pages": "449--456",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma, Ziyan Jiang, Masao Someki, Nelson Enrique Yalta Soplin, Ryuichi Yamamoto, Xiaofei Wang, et al. 2019. A comparative study on transformer vs RNN in speech applications. In Proc. Automatic Speech Recogni- tion and Understanding Workshop (ASRU), pages 449-456.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Entangled transformer for image captioning",
                "authors": [
                    {
                        "first": "Guang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Linchao",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Ping",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proc. International Conference on Computer Vision (ICCV)",
                "volume": "",
                "issue": "",
                "pages": "8928--8937",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guang Li, Linchao Zhu, Ping Liu, and Yi Yang. 2019a. Entangled transformer for image captioning. In Proc. International Conference on Computer Vision (ICCV), pages 8928-8937.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "The speechtransformer for large-scale Mandarin Chinese speech recognition",
                "authors": [
                    {
                        "first": "Jie",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaorui",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Yan",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proc. International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "7095--7099",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jie Li, Xiaorui Wang, Yan Li, et al. 2019b. The speechtransformer for large-scale Mandarin Chinese speech recognition. In Proc. International Confer- ence on Acoustics, Speech and Signal Processing (ICASSP), pages 7095-7099.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics",
                "authors": [
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Franz Josef",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. Annual Meeting on Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "605--612",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chin-Yew Lin and Franz Josef Och. 2004. Auto- matic evaluation of machine translation quality us- ing longest common subsequence and skip-bigram statistics. In Proc. Annual Meeting on Association for Computational Linguistics (ACL), pages 605- 612.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Spontaneous speech corpus of Japanese",
                "authors": [
                    {
                        "first": "Kikuo",
                        "middle": [],
                        "last": "Maekawa",
                        "suffix": ""
                    },
                    {
                        "first": "Hanae",
                        "middle": [],
                        "last": "Koiso",
                        "suffix": ""
                    },
                    {
                        "first": "Sadaoki",
                        "middle": [],
                        "last": "Furui",
                        "suffix": ""
                    },
                    {
                        "first": "Hitoshi",
                        "middle": [],
                        "last": "Isahara",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. International Conference on Language Resources and Evaluation (LREC)",
                "volume": "",
                "issue": "",
                "pages": "947--952",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kikuo Maekawa, Hanae Koiso, Sadaoki Furui, and Hi- toshi Isahara. 2000. Spontaneous speech corpus of Japanese. In Proc. International Conference on Language Resources and Evaluation (LREC), pages 947-952.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. Annual Meeting on Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic evalu- ation of machine translation. In Proc. Annual Meet- ing on Association for Computational Linguistics (ACL), pages 311-318.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Language models are unsupervised multitask learners. OpenAI blog",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI blog, page 9.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Self-attention networks for connectionist temporal classification in speech recognition",
                "authors": [
                    {
                        "first": "Julian",
                        "middle": [],
                        "last": "Salazar",
                        "suffix": ""
                    },
                    {
                        "first": "Katrin",
                        "middle": [],
                        "last": "Kirchhoff",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiheng",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proc. International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "7115--7119",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Julian Salazar, Katrin Kirchhoff, and Zhiheng Huang. 2019. Self-attention networks for connectionist tem- poral classification in speech recognition. In Proc. International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7115-7119.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Cold fusion: Training seq2seq models together with language models",
                "authors": [
                    {
                        "first": "Anuroop",
                        "middle": [],
                        "last": "Sriram",
                        "suffix": ""
                    },
                    {
                        "first": "Heewoo",
                        "middle": [],
                        "last": "Jun",
                        "suffix": ""
                    },
                    {
                        "first": "Sanjeev",
                        "middle": [],
                        "last": "Satheesh",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Coates",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proc. International Speech Communication Association (IN-TERSPEECH)",
                "volume": "",
                "issue": "",
                "pages": "387--391",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, and Adam Coates. 2018. Cold fusion: Training seq2seq models together with language models. In Proc. In- ternational Speech Communication Association (IN- TERSPEECH), pages 387-391.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "End-to-end memory networks",
                "authors": [
                    {
                        "first": "Sainbayar",
                        "middle": [],
                        "last": "Sukhbaatar",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    },
                    {
                        "first": "Rob",
                        "middle": [],
                        "last": "Fergus",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proc. Advances in neural information processing systems (NIPS)",
                "volume": "",
                "issue": "",
                "pages": "2440--2448",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. 2015. End-to-end memory networks. In Proc. Advances in neural information processing systems (NIPS), pages 2440-2448.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Sequence to sequence learning with neural networks",
                "authors": [
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Vinyals",
                        "suffix": ""
                    },
                    {
                        "first": "Quoc V",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proc. Advances in neural information processing systems(NIPS)",
                "volume": "",
                "issue": "",
                "pages": "3104--3112",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural net- works. In Proc. Advances in neural information pro- cessing systems(NIPS), pages 3104-3112.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "\u0141ukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proc. Advances in neural information processing systems (NIPS)",
                "volume": "",
                "issue": "",
                "pages": "5998--6008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proc. Advances in neural information processing systems (NIPS), pages 5998-6008.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Learning deep transformer models for machine translation",
                "authors": [
                    {
                        "first": "Qiang",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Bei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    },
                    {
                        "first": "Jingbo",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Changliang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Derek",
                        "middle": [
                            "F"
                        ],
                        "last": "Wong",
                        "suffix": ""
                    },
                    {
                        "first": "Lidia",
                        "middle": [
                            "S"
                        ],
                        "last": "Chao",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proc. Association for Computational Linguistics(ACL)",
                "volume": "",
                "issue": "",
                "pages": "1810--1822",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S. Chao. 2019. Learning deep transformer models for ma- chine translation. In Proc. Association for Compu- tational Linguistics(ACL), pages 1810-1822.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Multimodal transformer with multi-view visual representation for image captioning",
                "authors": [
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Jing",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Zhou",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Qingming",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE Transactions on Circuits and Systems for Video Technology",
                "volume": "",
                "issue": "",
                "pages": "1--1",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jun Yu, Jing Li, Zhou Yu, and Qingming Huang. 2019. Multimodal transformer with multi-view visual rep- resentation for image captioning. IEEE Transac- tions on Circuits and Systems for Video Technology, pages 1-1.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Transformer with cold fusion.",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF1": {
                "text": "Transformer with memory attentive fusion.",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF2": {
                "text": "(j) n into a hidden vector b (j) n with attention mechanism. The hidden vector is computed as",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF3": {
                "text": "Baseline b). Shallow fusion c). Cold fusion d). Memory attentive fusion",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF4": {
                "text": "b). Shallow fusion c). Cold fusion d). Memory attentive fusion",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF5": {
                "text": "Example of spoken-to-written style conversion in CSJ dataset with each fusion method.",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "TABREF0": {
                "content": "<table/>",
                "num": null,
                "html": null,
                "type_str": "table",
                "text": "Results on spoken-to-written style conversion tasks."
            },
            "TABREF1": {
                "content": "<table/>",
                "num": null,
                "html": null,
                "type_str": "table",
                "text": "Results on dialect conversion tasks."
            }
        }
    }
}