File size: 169,697 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:28:13.955002Z"
    },
    "title": "The CACAPO Dataset: A Multilingual, Multi-Domain Dataset for Neural Pipeline and End-to-End Data-to-Text Generation",
    "authors": [
        {
            "first": "Chris",
            "middle": [],
            "last": "Van Der Lee",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tilburg University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Chris",
            "middle": [],
            "last": "Emmery",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tilburg University",
                "location": {}
            },
            "email": "c.d.emmery@uvt.nl"
        },
        {
            "first": "Sander",
            "middle": [],
            "last": "Wubben",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tilburg University",
                "location": {}
            },
            "email": "s.wubben@uvt.nl"
        },
        {
            "first": "Emiel",
            "middle": [],
            "last": "Krahmer",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tilburg University",
                "location": {}
            },
            "email": "e.j.krahmer@uvt.nl"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper describes the CACAPO dataset, built for training both neural pipeline and endto-end data-to-text language generation systems. The dataset is multilingual (Dutch and English), and contains almost 10,000 sentences from human-written news texts in the sports, weather, stocks, and incidents domain, together with aligned attribute-value paired data. The dataset is unique in that the linguistic variation and indirect ways of expressing data in these texts reflect the challenges of real world NLG tasks.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper describes the CACAPO dataset, built for training both neural pipeline and endto-end data-to-text language generation systems. The dataset is multilingual (Dutch and English), and contains almost 10,000 sentences from human-written news texts in the sports, weather, stocks, and incidents domain, together with aligned attribute-value paired data. The dataset is unique in that the linguistic variation and indirect ways of expressing data in these texts reflect the challenges of real world NLG tasks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The current paper presents the Combinations of Aligned Data-Sentences from Naturally Produced Texts (hereafter: CACAPO) dataset; a dataset for data-to-text generation (the task of producing adequate, fluent natural language text from nonlinguistic structured data, such as database records, spreadsheets, knowledge graphs, tables, etc., Gatt and Krahmer, 2018) . The dataset contains sentences from automatically scraped news texts for the sports, weather, stock, and incidents domain in English and Dutch, aligned with relevant attributevalue paired data (see Figure 1 and Appendix A for examples). To our knowledge, this is the first dataset based on 'naturally occurring' humanwritten texts (i.e., texts that were not collected in a task-based setting), that covers various domains, as well as multiple languages.",
                "cite_spans": [
                    {
                        "start": 337,
                        "end": 360,
                        "text": "Gatt and Krahmer, 2018)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 561,
                        "end": 569,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Neural Natural Language Generation (NLG) is a promising technique, as neural NLG systems are not bound by any special-purpose mechanisms, and hence are argued to be easily adaptable to other domains and languages (Oraby et al., 2019; Puduppully et al., 2019; van der Lee et al., 2018 ). Yet despite this advantage, it can still be challenging to create a neural NLG system that achieves the same rich and detailed output as a well-designed traditional rule-based pipeline system (Novikova et al., 2017; van der Lee et al., 2018; Moryossef et al., 2019b) . This is because a large-scale parallel dataset (i.e., a dataset with aligned texts and relevant data) is required for training neural NLG systems, and such datasets are not a common natural occurrence. This limitation is especially persistent in neural pipeline architectures: neural architectures modeled after the 'traditional' pipeline architecture (Reiter and Dale, 2000) that sequentially performs tasks related to document planning, sentence planning and linguistic realization (Castro Ferreira et al., 2019) . These architectures require an explicit representation for every intermediate step. The (enriched) WebNLG dataset (Gardent et al., 2017a,b; Castro Ferreira et al., 2018) is presently the only other dataset viable for both end-to-end, as well as neural pipeline architectures.",
                "cite_spans": [
                    {
                        "start": 213,
                        "end": 233,
                        "text": "(Oraby et al., 2019;",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 234,
                        "end": 258,
                        "text": "Puduppully et al., 2019;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 259,
                        "end": 283,
                        "text": "van der Lee et al., 2018",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 479,
                        "end": 502,
                        "text": "(Novikova et al., 2017;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 503,
                        "end": 528,
                        "text": "van der Lee et al., 2018;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 529,
                        "end": 553,
                        "text": "Moryossef et al., 2019b)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 908,
                        "end": 931,
                        "text": "(Reiter and Dale, 2000)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 1040,
                        "end": 1070,
                        "text": "(Castro Ferreira et al., 2019)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1187,
                        "end": 1212,
                        "text": "(Gardent et al., 2017a,b;",
                        "ref_id": null
                    },
                    {
                        "start": 1213,
                        "end": 1242,
                        "text": "Castro Ferreira et al., 2018)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The present paper thus presents a new automatically scraped dataset that can be used for end-toend, as well as neural pipeline architectures. Furthermore, it describes a collection process inspired by Oraby et al. (2019) , where collection starts with the news reports and attribute-value datapoints are constructed from them, which also enables relatively low-effort extension and adaptation of the current dataset (Section 3). Characteristics of the dataset are described based on the methodology by Perez-Beltrachini and Gardent (2017) (Section 4) . Finally, a baseline is developed for the dataset using TGen (Du\u0161ek and Jur\u010d\u00ed\u010dek, 2015) (Section 5) .",
                "cite_spans": [
                    {
                        "start": 201,
                        "end": 220,
                        "text": "Oraby et al. (2019)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 502,
                        "end": 538,
                        "text": "Perez-Beltrachini and Gardent (2017)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 539,
                        "end": 550,
                        "text": "(Section 4)",
                        "ref_id": null
                    },
                    {
                        "start": 613,
                        "end": 639,
                        "text": "(Du\u0161ek and Jur\u010d\u00ed\u010dek, 2015)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 640,
                        "end": 651,
                        "text": "(Section 5)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The full dataset is freely available for research purposes upon request, licensed under AusGoal Restrictive Licence. A 'thin' version of the dataset that contains the annotated data in combination with the URLs of the scraped texts and the scraping tools is publicly available via https://github. com/TallChris91/CACAPO-Dataset, licensed under CC BY-NC-SA.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Value pitcherName CC Sabathia teamName Blue Jays teamName Yankees hitNumber hitless inningsPitched five \u2193 All CC Sabathia did was hold the Blue Jays hitless over the final five innings to give the Yankees a chance to rally. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atribute",
                "sec_num": null
            },
            {
                "text": "Neural data-to-text NLG models have the ability to produce texts without requiring handwritten rules and templates, generating texts in a completely data-driven way. However, neural data-to-text NLG is struggling to overcome two critical bottlenecks, identified by Oraby et al. (2019) , that hamper the performance of the models: (1) a data bottleneck, a lack of (high quality, large scale) parallel data-text datasets; and (2) a control bottleneck, which they describe as an inability to control stylistic variation, but can be more broadly described as the inability to systematically control the generation process and the generated output of a neural system.",
                "cite_spans": [
                    {
                        "start": 265,
                        "end": 284,
                        "text": "Oraby et al. (2019)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "The field has started to address the data bottleneck issue recently, exhibited by an increase of parallel data-text corpora. E2E (Novikova et al., 2017) , and WebNLG (Gardent et al., 2017a,b) are two prime examples of this. Crowdsourcing techniques were employed for the creation of these datasets, meaning that humans were asked to write a text given an input meaning representation (MR). This makes it feasible to collect ample texts of good quality, but such techniques can quickly become a financial burden, and require significant effort from the researchers to design and assemble (Oraby et al., 2019) . This amount of time can be reduced as is shown by the construction of the ToTTo dataset , where humans edited existing Wikipedia phrases to reflect a given input MR, rather than writing text phrases from scratch. This still requires significant resources, however. Compiling a dataset via crowdsourcing usually ensures that texts are a direct verbalization of the aligned data, which limits the amount of noise and inaccuracies present in the datasets. However, peo- Tag  Entity  PATIENT-1 CC Sabathia  PATIENT-2 Blue Jays  PATIENT-3 hitless  PATIENT-4 five  PATIENT-5 Yankees   \u2193 All PATIENT-1 did was hold the PATIENT-2 PATIENT-3 over the final PATIENT-4 innings to give the PATIENT-5 a chance to rally. ple have increasingly started to criticize the realism of these datasets as they are usually not representative of real world scenarios and language use. 1 Verbalizations by crowdsource workers are different from how data is usually verbalized by professional journalists, for instance, whose focusbesides high fidelity-is also on producing fluent and enjoyable texts. Such a focus can result in more indirect descriptions of data or superfluous information. Generating texts from these indirect descriptions may be more challenging as the NLG systems need to learn how to abstract from the 'noise' in these datasets. A different but related problem is that the presence of superfluous descriptions in input make these neural systems more prone to 'hallucinations', i.e., producing output information that is not present in the input data (Reiter, 2018a) . However, having a system that performs well on such unedited texts might make it more attainable to develop systems that can be deployed in nonacademic settings, as these texts are representative of such settings. Companies for which data-totext systems may be especially relevant (i.e., press agencies, publishers, weather institutes, etc.), oftentimes have an extensive archive of historical data and human-written texts, that would contain similar types of 'noise' in their data representation. Therefore, it seems imperative to also pursue other dataset collection techniques-such as text and data collection-by scraping publicly available sources. Datasets that were compiled via this method have also seen a surge recently, with YelpNLG (Oraby et al., 2019) , RotoWire (Wiseman et al., 2017) , and RotoWire-inspired datasets like RotoWire-FG (Wang, 2019) and MLB (Puduppully et al., 2019) . Using this method 1 See, for instance, the discussion at https://twitter.com/yoavgo/status/ 1281971375029325824. enables data and text collection without having to spend as much time and resources as would be necessary with crowdsourcing techniques. However, most of the current automatically scraped datasets are for document-level texts, which generally requires different architectural approaches than the shorter sentence-level or phrase-level texts that are most commonly found in the datasets compiled via crowdsourcing. Furthermore, they are limited to one domain (restaurants, basketball, and baseball, for YelpNLG, RotoWire, and MLB respectively), and one language (English). This makes it difficult to train domain-invariant systems.",
                "cite_spans": [
                    {
                        "start": 129,
                        "end": 152,
                        "text": "(Novikova et al., 2017)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 166,
                        "end": 191,
                        "text": "(Gardent et al., 2017a,b)",
                        "ref_id": null
                    },
                    {
                        "start": 587,
                        "end": 607,
                        "text": "(Oraby et al., 2019)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 2155,
                        "end": 2170,
                        "text": "(Reiter, 2018a)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 2916,
                        "end": 2936,
                        "text": "(Oraby et al., 2019)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 2948,
                        "end": 2970,
                        "text": "(Wiseman et al., 2017)",
                        "ref_id": "BIBREF53"
                    },
                    {
                        "start": 3021,
                        "end": 3033,
                        "text": "(Wang, 2019)",
                        "ref_id": "BIBREF52"
                    },
                    {
                        "start": 3042,
                        "end": 3067,
                        "text": "(Puduppully et al., 2019)",
                        "ref_id": "BIBREF40"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1077,
                        "end": 1190,
                        "text": "Tag  Entity  PATIENT-1 CC Sabathia  PATIENT-2 Blue Jays  PATIENT-3 hitless  PATIENT-4 five  PATIENT-5 Yankees   \u2193",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Data bottleneck",
                "sec_num": "2.1"
            },
            {
                "text": "Furthermore, most existing datasets are constructed for end-to-end architectures, where the non-lingustic input is converted into natural language without explicit intermediate representations in between (Castro Ferreira et al., 2019) . By contrast, researchers have started to experiment with neural pipeline methods, in which the data conversion process happens via one or more explicit intermediate transformations (see, for instance, Castro Ferreira et al., 2019; Jiang et al., 2020; Moryossef et al., 2019a,b) . These methods enable the control over parts of the data-to-text conversion process, making it possible to develop hybrid (e.g. rule-based and neural) systems. Additionally, a direct comparison between end-to-end and pipeline approaches suggests that pipeline approaches lead to improved output quality, and decreases data hallucination and data omission; two challenges for datasets compiled using unedited texts from publicly available sources (Castro Ferreira et al., 2019) . However, pipeline architectures require a training dataset containing the intermediate representations in order to be trained. And, with the exception of the Enriched WebNLG dataset (Castro Ferreira et al., 2018) , there are currently no datasets facilitating such an approach. 2",
                "cite_spans": [
                    {
                        "start": 204,
                        "end": 234,
                        "text": "(Castro Ferreira et al., 2019)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 418,
                        "end": 467,
                        "text": "(see, for instance, Castro Ferreira et al., 2019;",
                        "ref_id": null
                    },
                    {
                        "start": 468,
                        "end": 487,
                        "text": "Jiang et al., 2020;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 488,
                        "end": 514,
                        "text": "Moryossef et al., 2019a,b)",
                        "ref_id": null
                    },
                    {
                        "start": 962,
                        "end": 992,
                        "text": "(Castro Ferreira et al., 2019)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1177,
                        "end": 1207,
                        "text": "(Castro Ferreira et al., 2018)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Control bottleneck",
                "sec_num": "2.2"
            },
            {
                "text": "The current work introduces the CACAPO dataset which addresses the aforementioned limitations of the existing datasets: it contains intermediate representations for discourse ordering, text structuring, lexicalization, referring expression generation, and textual realization for pipeline approaches such as the one by Castro Ferreira et al. (2019). Furthermore, it is a sentence-level dataset containing unedited sentences from news articles written by professional journalists and meteorologists (see Section 3 for details).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current work",
                "sec_num": "2.3"
            },
            {
                "text": "Finally, many of the datasets that are commonly used currently lack domain diversity (Radev et al., 2020) and are solely constructed for the English language (with the exception of WebNLG, see Castro Ferreira et al., 2018; Shimorina et al., 2019) . The CACAPO dataset contains texts from the sports, weather, stocks, and incidents domain for both Dutch and English.",
                "cite_spans": [
                    {
                        "start": 85,
                        "end": 105,
                        "text": "(Radev et al., 2020)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 193,
                        "end": 222,
                        "text": "Castro Ferreira et al., 2018;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 223,
                        "end": 246,
                        "text": "Shimorina et al., 2019)",
                        "ref_id": "BIBREF50"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current work",
                "sec_num": "2.3"
            },
            {
                "text": "3 The CACAPO dataset",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current work",
                "sec_num": "2.3"
            },
            {
                "text": "Both the Dutch and English version of the CACAPO dataset contain the same four domains (sports, weather, stocks, and incidents) albeit with different events and hence also some topical variety between both languages. For each domain a scraping tool was used or custom built that either fully automatically collected relevant texts, or collected these texts with as little human effort as possible (e.g humans needed to copy the URLs, website source code, or needed to copy some aspects to a custombuilt tool). 3 The following texts were collected:",
                "cite_spans": [
                    {
                        "start": 510,
                        "end": 511,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collection methods",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Dutch sports domain texts cover soccer match reports from the 15/16 and 16/17 season of the Dutch Eredivisie, the highest professional soccer league in The Netherlands. Texts were scraped from 10 professional news websites using Google search queries for all matches played during the 15/16 and 16/17 seasons (teams and play date). In total, 6,600 texts were scraped (2,101,338 tokens; 27,619 types).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collection methods",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Dutch stocks domain texts cover daily reports on stock exchanges, company stock listings, (crypto)currency exchange rates, and oil prices. These reports were collected from 49 different newspapers using Nexis Uni, 4 covering all reports from January 2019-January 2020. A total of 4,280 texts were collected (1,211,842 tokens; 22,685 types).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collection methods",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Dutch weather domain texts cover severaldaily short-term weather forecasts for The Netherlands from the Royal Netherlands Meteorological Institute (KNMI); the Dutch national weather service. These texts originate from the \"complete weather report\" prognosis, found on the KNMI website 5 . The weather reports were obtained for all of 2019, totalling 5,897 texts (1,099,556 tokens; 1,076 types).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collection methods",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Dutch incidents domain texts originate from Hendriks (2019) who collected data from https://www.hetongeluk.nl/; an online database for news articles about traffic incidents, which in total contains traffic incident reports from 139 websites from 2013 to 2019. This collection contains 1,600 texts (154,596 tokens; 8,919 types).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collection methods",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 English sports domain texts cover baseball reports from the American MLB League, the top league in American professional baseball. The baseball reports were obtained using the scraper made available by Puduppully et al. 2019 \u2022 English stocks domain texts cover the same topics as the Dutch stocks domain texts. The texts were obtained using Google News by searching news items containing \"stock index\" and \"stock market\" in the period of January 2019-January 2020. 1,109 texts from 182 websites were collected (621,997 tokens; 23,216 types).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collection methods",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 English weather domain texts cover weather forecasts for several countries (e.g., Canada, United States, India, Ireland). The weather forecasts were collected using Google News by searching news items containing \"weather forecast\" in the period of January 2019-2020. This resulted in a collection of 926 texts from 215 websites (341,622 tokens; 11,426 types).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collection methods",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 English incidents domain texts cover gun violence incidents from the Gun Violence Archive, 7 a database on gun violence incidents, which in total contains 3,180 incident reports from 596 websites ranging from 2012 to 2019 (1,105,567 tokens; 26,968 types).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collection methods",
                "sec_num": "3.1"
            },
            {
                "text": "Thus, in total 51,575 texts were collected via these different methods. For the CACAPO dataset, all texts above 325 words were discarded as most basic news reports typically do not exceed that amount of words (Asbreuk et al., 2017) , leaving 20,630 texts. 8 From this sample, 200 texts were randomly selected for each language and domain (a total of 1,600 texts; 12.89% of the text selection) to obtain a representative number of sentences while keeping the annotation load reasonable (see Section 3.2). These texts were automatically split into sentences using a sentence tokenizer. SpaCy (Honnibal and Montani, 2017) was used as a tokenizer for the Dutch part, and SoMaJo for the English part (Proisl and Uhrig, 2016) . Finally, the sentences were assigned to training, validation, and testing sets in a 76.5, 8.5, 15 ratio-the same ratio that (Novikova et al., 2017) used. All sentences occurring in the selected texts are part of the CACAPO dataset and the order of occurrence of the sentences in a text was preserved in the dataset.",
                "cite_spans": [
                    {
                        "start": 209,
                        "end": 231,
                        "text": "(Asbreuk et al., 2017)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 695,
                        "end": 719,
                        "text": "(Proisl and Uhrig, 2016)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 846,
                        "end": 869,
                        "text": "(Novikova et al., 2017)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Collection methods",
                "sec_num": "3.1"
            },
            {
                "text": "The data annotation process followed after the sample sentences were tokenized. Sentences were manually aligned with data using Prodigy 9 , a data annotation tool (Montani and Honnibal, 2018) , in a attribute-value pair format, done by two expert annotators. The annotators annotated a part of the dataset jointly (1,755 sentences), resulting in Cohen's \u03ba = 0.67 (substantial agreement; Landis and Koch, 1977 ) and a 70.92% agreement. This agreement was deemed high enough for a single coder per item approach for the rest of the dataset. One of the annotators developed the guidelines with a definition of each category and examples of passages belonging to that category resulting in relatively quick acquisition of the categories. Annotation took between 5 and 15 minutes per text on average.",
                "cite_spans": [
                    {
                        "start": 163,
                        "end": 191,
                        "text": "(Montani and Honnibal, 2018)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 387,
                        "end": 408,
                        "text": "Landis and Koch, 1977",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data annotation",
                "sec_num": "3.2"
            },
            {
                "text": "All annotated attributes can be found in Appendix C. The amount of types that were annotated varied between 10 (Dutch/English stocks domain) and 76 (English sports domain). Which labels to annotate was decided upon by doing a practice set of 10 texts. All data labels are based on the 5 Ws and 1 H questions (Who, What, When, Where, Why, and How). As most journalism schools teach students to write news articles that focus on answers to the 5 Ws and 1 H questions (Canavilhas, 2007; Kussendrager et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 465,
                        "end": 483,
                        "text": "(Canavilhas, 2007;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 484,
                        "end": 510,
                        "text": "Kussendrager et al., 2018)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data annotation",
                "sec_num": "3.2"
            },
            {
                "text": "'Who' data is for instance player and referee information for the sports domain (assistName, goalName, goalkeeperName, pitcherName, pitcher-Record, umpireName) and suspect and victim information for the incidents domain (suspec-tAge, suspectGender, victimBased, victimName, victimOccupation) . Examples of 'What' data are stock price increases and decreases for the stocks domain (stockChange, stockChangePercentage, stockPoints), and information about cloudiness, wind, and weather type for the weather domain (cloudAmount, gustChange, temperatureCelsius, weatherType). 'When' data types are the (next) match date for the sports domain (matchDate, matchTime, nextMatchDate), and the date/time that an incident occurred for the incidents domain (date-Time, accidentDate). 'Where' data is the stadium where a match is played for the sports domain (sta-diumPlayed, locationPlayed), or where weather events will happen for the weather domain (loca-tionArea). 'Why' data is for example the cause of a traffic incident for the incidents domain (inci-dentCause). And 'How' data can be information about the way a goal was scored or a ball was hit for the sports domain (goalType, strikingType), and how a traffic/shooting incident took place for the incidents domain (incidentType, shootingType).",
                "cite_spans": [
                    {
                        "start": 220,
                        "end": 291,
                        "text": "(suspec-tAge, suspectGender, victimBased, victimName, victimOccupation)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data annotation",
                "sec_num": "3.2"
            },
            {
                "text": "After the data annotation process was completed, the annotated data and collected texts were then used to create explicit intermediate representations suitable for neural pipeline architectures. The CACAPO dataset is saved in a similar XML format as the Enriched WebNLG dataset (Castro Ferreira et al., 2018) (see Figure 3 for an example) to enable effortless testing of systems designed for this dataset. This also means that the CACAPO dataset is suitable for pipeline systems that convert data into text using the same 5 sequential steps as Castro Ferreira et al. (2019), which follows the original pipeline architecture of (Reiter and Dale, 2000):",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 314,
                        "end": 322,
                        "text": "Figure 3",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Intermediate representations",
                "sec_num": "3.3"
            },
            {
                "text": "1. Discourse Ordering is the task of determining in which order to present the data that should be verbalized in the tar-<e n t r y c a t e g o r y =\" E n g l i s h I n c i d e n t s \" e i d =\" I d 2 \" s i z e =\" 3 \"> <o r i g i n a l d a t a s e t> <o d a t a>v i c t i m A g e | 22\u2212y e a r\u2212o l d</ o d a t a> <o d a t a>v i c t i m S t a t u s | g r a z e d i n t h e t h i g h</ o d a t a> </ o r i g i n a l d a t a s e t> <l e x comment=\" good \" l i d =\" I d 1 \"> <s o r t e d d a t a s e t> <s e n t e n c e ID=\" 1 \"> <s d a t a>v i c t i m A g e | 22\u2212y e a r\u2212o l d</ s d a t a> <s d a t a>v i c t i m S t a t u s | g r a z e d i n t h e \u2192 t h i g h</ s d a t a> </ s e n t e n c e> </ s o r t e d d a t a s e t> <r e f e r e n c e s> <r e f e r e n c e e n t i t y =\"22\u2212y e a r\u2212o l d \" number=\" 1 \" \u2192 t a g =\"ENTITY\u22121\" \u2192 t y p e =\" d e s c r i p t i o n \">22\u2212y e a r\u2212o l d \u2192 </ r e f e r e n c e> <r e f e r e n c e e n t i t y =\" g r a z e d i n t h e t h i g h \" \u2192 number=\" 2 \" t a g =\"ENTITY\u22122\" \u2192 t y get text.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Intermediate representations",
                "sec_num": "3.3"
            },
            {
                "text": "This can be trained using the MRs found in the (alphabetically ordered) <originaldataset>, and the <sorteddataset> that is ordered based on the appearance of the MR in the sentence. This ordering is determined based on the string position information provided by Prodigy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Intermediate representations",
                "sec_num": "3.3"
            },
            {
                "text": "2. Text Structuring is the task of organizing the ordered triples into paragraphs and sentences. The <sorteddataset> tag also contains sentence information relevant for the Text Structuring step. As the CACAPO dataset is a sentence-level dataset, Text Structuring is not a directly relevant step. Although the sentence information in the <sorteddataset> tag allows for extensions to phrase-level or paragraph-level instances.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Intermediate representations",
                "sec_num": "3.3"
            },
            {
                "text": "3. Lexicalization is the task of finding the words and phrases that describe the input data correctly (Reiter and Dale, 2000) . This means using the information found in <sorteddataset> to (ideally) generate the string in <lexicalization>, for this dataset. The string found in this tag is a delexicalized version of the original sentence (found in <text>). This <lexicalization> tag not only contains information to se-lect accurate words and phrases to describe an MR, but also contains information for the two steps further ahead in the pipeline. The ENTITY-[0-9] placeholders indicate where MRs should be realized. The entity number indicates which MR to realize based on the order in <sorteddataset>. Furthermore, the delexicalized string contains syntactical information. For (lemmatized) verbs, it stores aspect, mood, tense, voice and number in a VP tag. And it stores the form of determiners in a DT tag.",
                "cite_spans": [
                    {
                        "start": 102,
                        "end": 125,
                        "text": "(Reiter and Dale, 2000)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Intermediate representations",
                "sec_num": "3.3"
            },
            {
                "text": "Delexicalization was done by a script that matches the annotated data with the original string, using the string location information provided by Prodigy. The annotation of syntactical information and lemmatization was done using CoreNLP (Manning et al., 2014) for English, and DeepFrog 10 for Dutch.",
                "cite_spans": [
                    {
                        "start": 238,
                        "end": 260,
                        "text": "(Manning et al., 2014)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Intermediate representations",
                "sec_num": "3.3"
            },
            {
                "text": "task of generating the correct entities in a text (Krahmer and van Deemter, 2012) . In this step, a system can be trained to fill the ENTITY-[0-9] placeholders found in the <lexicalization> string with the data found in the <references> tag.",
                "cite_spans": [
                    {
                        "start": 50,
                        "end": 81,
                        "text": "(Krahmer and van Deemter, 2012)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Referring Expression Generation is the",
                "sec_num": "4."
            },
            {
                "text": "5. Textual Realization is the task of performing the final steps to convert the non-linguistic data into natural language text. For this dataset, this means converting the lemmatized verbs and determiners to a form that is congruent with the MR, using the VP and DT tags found in <lexicalization>.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Referring Expression Generation is the",
                "sec_num": "4."
            },
            {
                "text": "Of course, the dataset also lends itself for datato-text generation in an end-to-end fashion. For this, a system can be trained on the information in <originaldataset> and <text>.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Referring Expression Generation is the",
                "sec_num": "4."
            },
            {
                "text": "We compare the CACAPO dataset to the Enriched WebNLG dataset (Castro Ferreira et al., 2018; Gardent et al., 2017a,b) , as these datasets are comparable in the sense that both are multilingual, multidomain, and contain explicit intermediate steps that allow for neural pipeline architectures to be employed. However, they are different in the fact that WebNLG is constructed using crowdsourcing, while CACAPO is constructed using unedited texts 10 https://github.com/proycon/deepfrog scraped from publicly available sources. Similar to Novikova et al. (2017) we compare the two datasets on size, lexical richness, and sentence complexity.",
                "cite_spans": [
                    {
                        "start": 61,
                        "end": 91,
                        "text": "(Castro Ferreira et al., 2018;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 92,
                        "end": 116,
                        "text": "Gardent et al., 2017a,b)",
                        "ref_id": null
                    },
                    {
                        "start": 535,
                        "end": 557,
                        "text": "Novikova et al. (2017)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Statistics",
                "sec_num": "4"
            },
            {
                "text": "Based on, Novikova et al. (2017) and Perez-Beltrachini and Gardent (2017) , we employ the following size metrics to compare the Enriched WebNLG dataset (Castro Ferreira et al., 2018) to our dataset (see Table 1 ):",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 32,
                        "text": "Novikova et al. (2017)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 37,
                        "end": 73,
                        "text": "Perez-Beltrachini and Gardent (2017)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 152,
                        "end": 182,
                        "text": "(Castro Ferreira et al., 2018)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 203,
                        "end": 210,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Size",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Number of instances: Absolute number of texts in the dataset (single sentences for CACAPO, single sentences and multi-sentence phrases for WebNLG). This gives a direct indication of the dataset size.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Size",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Number of unique MRs: Number of different MRs appearing in the dataset (set of attribute-value paired data for CACAPO, set of RDF-triple data for WebNLG aligned to a text). Besides dataset size, this also gives an indication of training difficulty: more unique MRs means a greater challenge to train models on the data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Size",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Instances per MR: Average number of verbalizations for one MR. The more references for an MR appear in the training set, the better models can be trained to learn how to verbalize this MR.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Size",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Slots per MR: Average number of data points (single attribute-value paired data for CACAPO, single RDF-triples for WebNLG) that compose an MR.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Size",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Words per instance: Average number of words appearing in an instance (single sentences for CACAPO, single sentences and multi-sentence phrases for WebNLG).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Size",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Words per sentence: Average number of words appearing in a sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Size",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Sentences per instance: Average number of sentences appearing in an instance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Size",
                "sec_num": "4.1"
            },
            {
                "text": "The metrics in Table 1 show that the CACAPO dataset and Enriched WebNLG dataset are very similar in size, as displayed by the number of instances and number of unique MRs, with the CACAPO dataset being slightly bigger. Also, in terms of slots per MR, and words per reference, the CACAPO dataset and the Enriched WebNLG dataset seem comparable. However, on average, there are fewer references for MRs in the CACAPO dataset compared to the WebNLG dataset. This indicates that it would be more challenging for data-to-text generation systems to learn alignments between MRs and text for the CACAPO dataset compared to the WebNLG dataset.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 15,
                        "end": 22,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Size",
                "sec_num": "4.1"
            },
            {
                "text": "Following Novikova et al. 2017, we investigate various aspects of lexical richness by looking at traditional measures, such as the number of tokens, and types, and type-token ratio (TTR; see Table 2 ). And we include the more robust mean segmental TTR (MSTTR), which divides the dataset into equal segments of a given token length (here: 25 tokens) and calculates the average TTR of all these segments. Finally, we also include Lexical Sophistication (LS). Also known as Guiraud Advanced (Daller et al., 2003) which gauges the number of unique words in a dataset; another way to measure lexical richness. We calculate the Guiraud Advanced metric by taking the proportion of word types that are not in the top 2,000 most frequent words in large and diverse corpora for each language: the British National Corpus (British National Corpus, 2007), the SoNaR 500 corpus (Oostdijk et al., 2013) , and the German Internet corpus (Sharoff, 2006) , for the English and Dutch CACAPO dataset, with additional statistics for English and German WebNLG added for comparison, respectively. Each of these corpora contains a large amount of texts and covers a wide array of topics and domains. Therefore, we believe that their top 2,000 most frequent words are representative of the language. The number of tokens in Table 2 show that the texts of the CACAPO dataset are somewhat smaller than those found in the WebNLG dataset. However, supporting our expectations, the CACAPO dataset is the more lexically varied dataset of the two, as illustrated by the higher TTR and MSTTR scores, and the higher absolute number of types. The higher amount of lexical diversity found in the CACAPO dataset is a further indication that training a datato-text generation system to produce high quality output may be more challenging for this dataset. The lexical sophistication metric shows a similar proportion of infrequent words in the CACAPO and WebNLG dataset, which suggests that both datasets are similarly diverse in terms of the amount of nonstandard language found in the dataset. Also similar to Novikova et al. 2017, we have analyzed the appearance of bigrams and trigrams in the dataset. Focusing on (1) the proportion of bigrams and trigrams appearing only once in the CACAPO dataset and WebNLG dataset; and (2) on the average frequency of bigrams and trigrams of those that appear more than once. These metrics give further indication of lexical richness: a high amount of unique bigrams and trigrams, and a low average frequency for non-unique bigrams and trigrams makes it more challenging to train a neural data-to-text system.",
                "cite_spans": [
                    {
                        "start": 488,
                        "end": 509,
                        "text": "(Daller et al., 2003)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 865,
                        "end": 888,
                        "text": "(Oostdijk et al., 2013)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 922,
                        "end": 937,
                        "text": "(Sharoff, 2006)",
                        "ref_id": "BIBREF48"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 191,
                        "end": 198,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 1300,
                        "end": 1307,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Lexical Richness",
                "sec_num": "4.2"
            },
            {
                "text": "The results in Table 3 show further evidence that the English and Dutch versions of the CACAPO dataset are more lexically rich compared to the English and German versions of the WebNLG dataset. The CACAPO dataset has a much larger proportion of bigrams and trigrams that appear only once. Furthermore, of the bigrams and trigrams appearing more than once, the average frequency of bigrams and trigrams in the CACAPO dataset is much lower than for the WebNLG dataset.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 15,
                        "end": 22,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Lexical Richness",
                "sec_num": "4.2"
            },
            {
                "text": "To assess the complexity of sentences in the WebNLG and CACAPO datasets, we look at the Table 3 : Proportion of bigrams and trigrams occuring once, and average frequency of bigrams and trigrams that occur more than once.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 88,
                        "end": 95,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Sentence complexity",
                "sec_num": "4.3"
            },
            {
                "text": "revised Developmental Level scale (Rosenberg and Abbeduto, 1987; Covington et al., 2006) , also known as D-Level (similar to Novikova et al., 2017) . We used D-Level Analyser (Lu, 2009) to obtain the D-Level proportions for the English datasets, and T-Scan (Pander Maat et al., 2014) to find the D-Level proportions for the Dutch dataset. There are currently no tools to obtain D-Level for German, but it can be assumed that the composition of this dataset is similar to its English WebNLG counterpart, as the German WebNLG dataset is a close translation of that version (Castro Ferreira et al., 2018) . The D-Level scale contains 8 levels: level 0 being the simplest, and level 7 the most complex. Complexity is determined by, for instance, complex syntactic structures, subordinate clauses, and referring expressions. Table 4 shows sizable differences between the datasets in terms of complexity. The Dutch CACAPO dataset predominantly consists of simpler sentences (below level 4), while the English version of the dataset has a large portion of higher level sentences. The WebNLG resides somewhere in between those two in terms of complexity. This would mean that the Dutch version of the CACAPO dataset would be the least challenging for systems to learn the sentence structure of, and the English version of the dataset the most challenging.",
                "cite_spans": [
                    {
                        "start": 34,
                        "end": 64,
                        "text": "(Rosenberg and Abbeduto, 1987;",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 65,
                        "end": 88,
                        "text": "Covington et al., 2006)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 125,
                        "end": 147,
                        "text": "Novikova et al., 2017)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 175,
                        "end": 185,
                        "text": "(Lu, 2009)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 257,
                        "end": 283,
                        "text": "(Pander Maat et al., 2014)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 571,
                        "end": 601,
                        "text": "(Castro Ferreira et al., 2018)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 820,
                        "end": 827,
                        "text": "Table 4",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Sentence complexity",
                "sec_num": "4.3"
            },
            {
                "text": "TGen, a sequence-to-sequence model using Attention (Du\u0161ek and Jur\u010d\u00ed\u010dek, 2015) , was used to establish a baseline on the CACAPO dataset. 11 The performance of TGen was evaluated on the test data of the CACAPO dataset using BLEU (Papineni et al., 2002) , NIST (Doddington, 2002) , ME-TEOR (Banerjee and Lavie, 2005) , ROUGE-L (Lin, 2004) , CIDEr (Vedantam et al., 2015) and 11 Parameters are provided in Appendix B. It should be noted that the system is only trained in an end-to-end fashion. BertScore (Table 5) . 12 The results show that the TGen baseline scores vary considerably across domains, as was to be expected. The Dutch Stocks subcorpus offers a positive outlier, which might have to do with the relatively few labels and consistent language of the domain. It should be noted that the same parametersoriginally used for the E2E challenge (Novikova et al., 2017) -were applied to all domains, which might mean that the model is too large and complex for some domains (such as Dutch Weather and English Incidents, where the texts are highly consistent translations of the data, and the domain only contains a small number of types), resulting in overfitting. In other cases, the dataset is arguably too small, which-combined with its lexical richnessmight make it difficult for a neural NLG model to be trained on. However, in all cases, parameter tuning, application of different models, and tokenization/delexicalization of the training texts (as done by Novikova et al., 2017) is likely to increase the text quality and automatic metrics scores. Additionally, it seems worthwhile to explore ways of semi-automatically extending the training corpora, as we hope to do in future work.",
                "cite_spans": [
                    {
                        "start": 51,
                        "end": 77,
                        "text": "(Du\u0161ek and Jur\u010d\u00ed\u010dek, 2015)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 227,
                        "end": 250,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 258,
                        "end": 276,
                        "text": "(Doddington, 2002)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 287,
                        "end": 313,
                        "text": "(Banerjee and Lavie, 2005)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 324,
                        "end": 335,
                        "text": "(Lin, 2004)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 344,
                        "end": 367,
                        "text": "(Vedantam et al., 2015)",
                        "ref_id": "BIBREF51"
                    },
                    {
                        "start": 372,
                        "end": 374,
                        "text": "11",
                        "ref_id": null
                    },
                    {
                        "start": 513,
                        "end": 515,
                        "text": "12",
                        "ref_id": null
                    },
                    {
                        "start": 848,
                        "end": 871,
                        "text": "(Novikova et al., 2017)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 1465,
                        "end": 1487,
                        "text": "Novikova et al., 2017)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 501,
                        "end": 510,
                        "text": "(Table 5)",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Baseline system performance",
                "sec_num": "5"
            },
            {
                "text": "This paper described the CACAPO dataset. A multilingual, multi-domain dataset that enables the use of neural pipeline architectures, as well as endto-end architectures. The dataset is comparable in size to the WebNLG dataset, and its lexical richness-due to the fact that the texts directly originate from journalistic articles-provides interesting challenges. Furthermore, the fact that these texts were derived from 'naturally occurring' texts means that there may be superfluous information, as well as indirect descriptions of the data in the text. This is challenging for NLG systems, as shown by the system performance scores when performing an end-to-end data-to-text task on the dataset using TGen (Du\u0161ek and Jur\u010d\u00ed\u010dek, 2015) . However, the dataset closely mirrors real-world scenarios in which companies oftentimes have large amounts of human-written texts that are not purposefully written for NLG applications, accompanied by corresponding data.",
                "cite_spans": [
                    {
                        "start": 706,
                        "end": 732,
                        "text": "(Du\u0161ek and Jur\u010d\u00ed\u010dek, 2015)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Bias The fact that the CACAPO dataset is based on 'naturally occurring' data addresses the issue of datasets being not representative of real world NLP issues. However, it should also be noticed that having unedited texts in the dataset means that the biases from the original data are still present in the dataset and may lead to further generation of biased texts (Lepp\u00e4nen et al., 2020) . Therefore, texts generated with this dataset, as well as the texts in the dataset itself, could warrant more traditional linguistics-oriented text analysis research to investigate biases that might exist.",
                "cite_spans": [
                    {
                        "start": 366,
                        "end": 389,
                        "text": "(Lepp\u00e4nen et al., 2020)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Evaluation NLG has recently increased its focus on evaluation and multiple researchers have argued that automatic metrics lack interpretability and do not correlate well with human judgments (see, for instance, Reiter, 2018b; . This might especially be an issue for this type of dataset, originating from texts that-besides informing-try to provide engaging texts to read, as evidenced by the high lexical richness and sentence complexity. Since journalists try to convey data in diverse ways, reference-based metrics such as BLEU (Papineni et al., 2002) , METEOR (Banerjee and Lavie, 2005), and ROUGE (Lin, 2004) might be especially ineffective to measure text quality. Van der Lee et al. 2018, for instance, found that BLEU scores were near zero for a similar dataset, while human evaluation showed the texts to be of reasonable quality. Recent learningbased metrics, such as RUSE (Shimanaka et al., 2018) , BertScore , MoverScore (Zhao et al., 2019) , and BLEURT (Sellam et al., 2020) might be more viable options, since they claim to capture semantic similarity. However, we discourage using this dataset as a leaderboard chasing game and recommend using various types of evaluation methods to evaluate systems trained on the CACAPO dataset (e.g., evaluating the results on the dataset using human and automatic metrics, and qualitative and quantitative research methods). Variety in evaluation methods ensures that the results obtained on this dataset are put into a broad perspective. This will give valuable insights into the systems trained on the dataset, as well as the characteristics of the dataset itself.",
                "cite_spans": [
                    {
                        "start": 211,
                        "end": 225,
                        "text": "Reiter, 2018b;",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 531,
                        "end": 554,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 602,
                        "end": 613,
                        "text": "(Lin, 2004)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 883,
                        "end": 907,
                        "text": "(Shimanaka et al., 2018)",
                        "ref_id": "BIBREF49"
                    },
                    {
                        "start": 933,
                        "end": 952,
                        "text": "(Zhao et al., 2019)",
                        "ref_id": "BIBREF55"
                    },
                    {
                        "start": 966,
                        "end": 987,
                        "text": "(Sellam et al., 2020)",
                        "ref_id": "BIBREF46"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "The dataset creation method of this paper, where texts are collected first, and data is subsequently manually annotated for each text (Oraby et al., 2019) , also facilitates extensions to the dataset with relative ease. We make the tools to do so publicly available, so that anyone interested can extend the current dataset by annotating a selection of scraped texts that were not used for the definitive dataset. In future work, we would also like to extend the dataset to other languages and other domains (e.g. product reviews, movie descriptions, etc.). Furthermore, we would like to explore the possibility of BERT-based (Devlin et al., 2019) Information Extraction to automatically extend the size of the dataset in a semi-supervised fashion.",
                "cite_spans": [
                    {
                        "start": 134,
                        "end": 154,
                        "text": "(Oraby et al., 2019)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 626,
                        "end": 647,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Future work",
                "sec_num": null
            },
            {
                "text": "At least, datasets that start from data. Surface realization datasets such as the one employed in(Mille et al., 2019) can be seen as facilitating the pipeline approach.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://www.knmi.nl/nederland-nu/ weer/verwachtingen 6 http://www.espn.com/ 7 http://www.gunviolencearchive.org/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The full collection of unlabeled texts and the selection of unlabeled texts is freely available upon request-licensed under AusGoal Restrictive Licence-to facilitate extension of the dataset as well as other tasks, such as information extraction.9 https://prodi.gy/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "METEOR and BertScore were calculated using the authors' provided scripts, while BLEU was calculated using SacreBLEU(Post, 2018), NIST using NLTK(Bird et al., 2009), and ROUGE-L and CIDEr using nlg-eval(Sharma et al., 2017).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We received support from RAAK-PRO SIA (2014-01-51PRO) and The Netherlands Organization for Scientific Research (NWO 360-89-050). We also want to thank the anonymous reviewers, Saar Hommes, Annemarie Nanne, Jeroen van de Nieuwenhof, Noa Reijnen, and Tess van der Zanden for their contributions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            },
            {
                "text": "De wind is zwak tot matig en komt uit oost tot zuidoost. There will be a weak to moderate breeze coming from east to southeast. TGen training parameters as reported in (Novikova et al., 2017) : main-sequence-to-sequence model with attention. TGen training parameters as reported in (Novikova et al., 2017) : reranker.",
                "cite_spans": [
                    {
                        "start": 168,
                        "end": 191,
                        "text": "(Novikova et al., 2017)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 282,
                        "end": 305,
                        "text": "(Novikova et al., 2017)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u2193",
                "sec_num": null
            },
            {
                "text": "Beam size 10 Reranker misfit penalty 100TGen decoder parameters as reported in (Novikova et al., 2017) .The parameters are the same as the TGen parameters for the E2E dataset (Novikova et al., 2017) . Raw strings are used for training and generation. Validation is performed on the reserved instances after each epoch using BLEU. Early stopping is applied if the top 3 BLEU results do not change for 5 epochs. , atBatNumber, baseNumber, baseReachedNumber, baseStolen, basesRan, batterHitsTries, batterName, batterScoreNumber, battersFacedNumber, battingAverage, battingLineupNumber, catchType, catcherName, competitionName, earnedRunsNumber, errorNumber, fielderName, fielderPosition, finalScore, gameNumber, gameTally, hasLostTeam, hasScored, hasWonTeam, hitNumber, homeAway, homeRunNumber, injuryType, inningNumber, inningScore, inningsPitched, isOut, leftOnBase, locationPlayed, managerName, matchDate, matchStreakNumber, matchStreakType, numberOfStarts, onBaseNumber, outNumber, pitchCount, pitchNumber, pitchResult, pitchResultNumber, pitchType, pitcherName, pitcherRecord, pitcherSaveRecord, pitchesTotalThrown, presidentName, retireNumber, runAverage, runNumber, scoreNumber, scoreTally, standingsGames, startsNumber, stealNumber, strikeNumber, strikeOutNumber, strikeTrajectory, strikingType, teamName, teamRecord, teamStandings, throwDirection, umpireName, umpireType, unearnedRunsNumber, walkNumber, winLossRecord, incidentCause, incidentLocation, incidentType, suspectAddress, suspectAge, suspectAmount, suspectDescription, suspectGender, suspectStatus, suspectVehicle, victimAddress, victimAge, victimAmount, victimDescription, victimGender, victimName, victimStatus, victimVehicle English incidents accidentAddress, accidentDate, hospitalName, numberOfRoundsFired, personnelArrivedTime, prisonName, shootingNumber, shootingType, suspectAge, suspectAgeGroup, suspectBased, suspectDescription, suspectGender, suspectHeight, suspectName, suspectNumber, suspectOccupation, suspectRace, suspectStatus, suspectVehicle, suspectWeapon, suspectWeight, takenToHospital, victimAge, victimAgeGroup, victimBased, victimGender, victimName, victimNumber, victimOccupation, victimRace, victimStatus, victimVehicle Labels of data types used in the CACAPO dataset per subdomain.",
                "cite_spans": [
                    {
                        "start": 79,
                        "end": 102,
                        "text": "(Novikova et al., 2017)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 175,
                        "end": 198,
                        "text": "(Novikova et al., 2017)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 410,
                        "end": 1424,
                        "text": ", atBatNumber, baseNumber, baseReachedNumber, baseStolen, basesRan, batterHitsTries, batterName, batterScoreNumber, battersFacedNumber, battingAverage, battingLineupNumber, catchType, catcherName, competitionName, earnedRunsNumber, errorNumber, fielderName, fielderPosition, finalScore, gameNumber, gameTally, hasLostTeam, hasScored, hasWonTeam, hitNumber, homeAway, homeRunNumber, injuryType, inningNumber, inningScore, inningsPitched, isOut, leftOnBase, locationPlayed, managerName, matchDate, matchStreakNumber, matchStreakType, numberOfStarts, onBaseNumber, outNumber, pitchCount, pitchNumber, pitchResult, pitchResultNumber, pitchType, pitcherName, pitcherRecord, pitcherSaveRecord, pitchesTotalThrown, presidentName, retireNumber, runAverage, runNumber, scoreNumber, scoreTally, standingsGames, startsNumber, stealNumber, strikeNumber, strikeOutNumber, strikeTrajectory, strikingType, teamName, teamRecord, teamStandings, throwDirection, umpireName, umpireType, unearnedRunsNumber, walkNumber, winLossRecord,",
                        "ref_id": null
                    },
                    {
                        "start": 1425,
                        "end": 2210,
                        "text": "incidentCause, incidentLocation, incidentType, suspectAddress, suspectAge, suspectAmount, suspectDescription, suspectGender, suspectStatus, suspectVehicle, victimAddress, victimAge, victimAmount, victimDescription, victimGender, victimName, victimStatus, victimVehicle English incidents accidentAddress, accidentDate, hospitalName, numberOfRoundsFired, personnelArrivedTime, prisonName, shootingNumber, shootingType, suspectAge, suspectAgeGroup, suspectBased, suspectDescription, suspectGender, suspectHeight, suspectName, suspectNumber, suspectOccupation, suspectRace, suspectStatus, suspectVehicle, suspectWeapon, suspectWeight, takenToHospital, victimAge, victimAgeGroup, victimBased, victimGender, victimName, victimNumber, victimOccupation, victimRace, victimStatus, victimVehicle",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Setting Value",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Basisboek journalistiek schrijven. Noordhoff Uitgevers",
                "authors": [
                    {
                        "first": "Henk",
                        "middle": [],
                        "last": "Asbreuk",
                        "suffix": ""
                    },
                    {
                        "first": "Addie",
                        "middle": [],
                        "last": "De Moor",
                        "suffix": ""
                    },
                    {
                        "first": "Esther",
                        "middle": [],
                        "last": "Van Der Meer",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Henk Asbreuk, Addie de Moor, and Esther van der Meer. 2017. Basisboek journalistiek schrijven. No- ordhoff Uitgevers.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "METEOR: An automatic metric for MT evaluation with improved correlation with human judgments",
                "authors": [
                    {
                        "first": "Satanjeev",
                        "middle": [],
                        "last": "Banerjee",
                        "suffix": ""
                    },
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Lavie",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization",
                "volume": "",
                "issue": "",
                "pages": "65--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with im- proved correlation with human judgments. In Pro- ceedings of the ACL Workshop on Intrinsic and Ex- trinsic Evaluation Measures for Machine Transla- tion and/or Summarization, pages 65-72, Ann Ar- bor, Michigan, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Natural language processing with Python: Analyzing text with the natural language toolkit",
                "authors": [
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Bird",
                        "suffix": ""
                    },
                    {
                        "first": "Ewan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    },
                    {
                        "first": "Edward",
                        "middle": [],
                        "last": "Loper",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing with Python: Analyz- ing text with the natural language toolkit. \"O'Reilly Media, Inc.\".",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "British National Corpus",
                "authors": [],
                "year": 2007,
                "venue": "",
                "volume": "3",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "British National Corpus. 2007. British National Cor- pus, BNC XML Edition edition, volume 3. Dis- tributed by Oxford.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Web journalism: from the inverted pyramid to the tumbled pyramid. Biblioteca on-line de ci\u00eancias da comunica\u00e7\u00e3o",
                "authors": [
                    {
                        "first": "Jo\u00e3o",
                        "middle": [],
                        "last": "Canavilhas",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jo\u00e3o Canavilhas. 2007. Web journalism: from the in- verted pyramid to the tumbled pyramid. Biblioteca on-line de ci\u00eancias da comunica\u00e7\u00e3o.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Neural datato-text generation: A comparison between pipeline and end-to-end architectures",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Thiago Castro Ferreira",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Der Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Emiel Van Miltenburg",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thiago Castro Ferreira, Chris van der Lee, Emiel van Miltenburg, and Emiel Krahmer. 2019. Neural data- to-text generation: A comparison between pipeline and end-to-end architectures. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, SAR. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Enriching the WebNLG corpus",
                "authors": [
                    {
                        "first": "Diego",
                        "middle": [],
                        "last": "Thiago Castro Ferreira",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Moussallem",
                        "suffix": ""
                    },
                    {
                        "first": "Sander",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wubben",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 11th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "171--176",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-6521"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thiago Castro Ferreira, Diego Moussallem, Emiel Krahmer, and Sander Wubben. 2018. Enriching the WebNLG corpus. In Proceedings of the 11th Inter- national Conference on Natural Language Genera- tion, pages 171-176, Tilburg University, The Nether- lands. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "How complex is that sentence? A proposed revision of the Rosenberg and Abbeduto D-Level Scale",
                "authors": [
                    {
                        "first": "Congzhou",
                        "middle": [],
                        "last": "Michael A Covington",
                        "suffix": ""
                    },
                    {
                        "first": "Cati",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Lorina",
                        "middle": [],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Naci",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Brown",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "CASPR Research Report",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael A Covington, Congzhou He, Cati Brown, Lo- rina Naci, and John Brown. 2006. How complex is that sentence? A proposed revision of the Rosenberg and Abbeduto D-Level Scale. In CASPR Research Report 2006-01. University of Georgia Artificial In- telligence Center, Athens, GA.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Lexical richness in the spontaneous speech of bilinguals",
                "authors": [
                    {
                        "first": "Helmut",
                        "middle": [],
                        "last": "Daller",
                        "suffix": ""
                    },
                    {
                        "first": "Roeland",
                        "middle": [],
                        "last": "Van Hout",
                        "suffix": ""
                    },
                    {
                        "first": "Jeanine",
                        "middle": [],
                        "last": "Treffers-Daller",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Applied linguistics",
                "volume": "24",
                "issue": "2",
                "pages": "197--222",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Helmut Daller, Roeland Van Hout, and Jeanine Treffers-Daller. 2003. Lexical richness in the spon- taneous speech of bilinguals. Applied linguistics, 24(2):197-222.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Un- derstanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Automatic evaluation of machine translation quality using n-gram cooccurrence statistics",
                "authors": [
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Doddington",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the Second International Conference on Human Language Technology Research",
                "volume": "",
                "issue": "",
                "pages": "138--145",
                "other_ids": {
                    "DOI": [
                        "10.3115/1289189.1289273"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "George Doddington. 2002. Automatic evaluation of machine translation quality using n-gram co- occurrence statistics. In Proceedings of the Sec- ond International Conference on Human Language Technology Research, pages 138-145. Morgan Kauf- mann Publishers Inc.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Training a natural language generator from unaligned data",
                "authors": [
                    {
                        "first": "Ond\u0159ej",
                        "middle": [],
                        "last": "Du\u0161ek",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Jur\u010d\u00ed\u010dek",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "451--461",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-1044"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ond\u0159ej Du\u0161ek and Filip Jur\u010d\u00ed\u010dek. 2015. Training a nat- ural language generator from unaligned data. In Pro- ceedings of the 53rd Annual Meeting of the Associa- tion for Computational Linguistics and the 7th Inter- national Joint Conference on Natural Language Pro- cessing (Volume 1: Long Papers), pages 451-461, Beijing, China. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Creating training corpora for NLG micro-planners",
                "authors": [
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Gardent",
                        "suffix": ""
                    },
                    {
                        "first": "Anastasia",
                        "middle": [],
                        "last": "Shimorina",
                        "suffix": ""
                    },
                    {
                        "first": "Shashi",
                        "middle": [],
                        "last": "Narayan",
                        "suffix": ""
                    },
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Perez-Beltrachini",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "179--188",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1017"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017a. Creating train- ing corpora for NLG micro-planners. In Proceed- ings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 179-188, Vancouver, Canada. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "The WebNLG challenge: Generating text from RDF data",
                "authors": [
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Gardent",
                        "suffix": ""
                    },
                    {
                        "first": "Anastasia",
                        "middle": [],
                        "last": "Shimorina",
                        "suffix": ""
                    },
                    {
                        "first": "Shashi",
                        "middle": [],
                        "last": "Narayan",
                        "suffix": ""
                    },
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Perez-Beltrachini",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 10th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "124--133",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-3518"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017b. The WebNLG challenge: Generating text from RDF data. In Pro- ceedings of the 10th International Conference on Natural Language Generation, pages 124-133, San- tiago de Compostela, Spain. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Survey of the state of the art in natural language generation: Core tasks, applications and evaluation",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Journal of Artificial Intelligence Research",
                "volume": "61",
                "issue": "",
                "pages": "65--170",
                "other_ids": {
                    "DOI": [
                        "10.1613/jair.5477"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural language generation: Core tasks, applications and evaluation. Journal of Artifi- cial Intelligence Research, 61:65-170.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Retrieving, cleaning and analysing Dutch news articles about traffic accidents",
                "authors": [
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Hendriks",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Barry Hendriks. 2019. Retrieving, cleaning and analysing Dutch news articles about traffic acci- dents. Master's thesis, University of Amsterdam, The Netherlands.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "2017. spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Honnibal",
                        "suffix": ""
                    },
                    {
                        "first": "Ines",
                        "middle": [],
                        "last": "Montani",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding with Bloom embed- dings, convolutional neural networks and incremen- tal parsing. To appear.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "PAN: Pipeline assisted neural networks model for data-to-text generation in social internet of things",
                "authors": [
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Jing",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Ri-Gui",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Changxing",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Honglong",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Jiaqi",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Wan",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Information Sciences",
                "volume": "530",
                "issue": "",
                "pages": "167--179",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.ins.2020.03.080"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nan Jiang, Jing Chen, Ri-Gui Zhou, Changxing Wu, Honglong Chen, Jiaqi Zheng, and Tao Wan. 2020. PAN: Pipeline assisted neural networks model for data-to-text generation in social internet of things. Information Sciences, 530:167-179.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Computational generation of referring expressions: A survey",
                "authors": [
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kees Van Deemter",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Computational Linguistics",
                "volume": "38",
                "issue": "1",
                "pages": "173--218",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emiel Krahmer and Kees van Deemter. 2012. Compu- tational generation of referring expressions: A sur- vey. Computational Linguistics, 38(1):173-218.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Dick Van der Lugt, and Ben Rogmans",
                "authors": [
                    {
                        "first": "Nico",
                        "middle": [],
                        "last": "Kussendrager",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Basisboek journalistiek. Noordhoff",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nico Kussendrager, Dick Van der Lugt, and Ben Rog- mans. 2018. Basisboek journalistiek. Noordhoff.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "The measurement of observer agreement for categorical data",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Landis",
                        "suffix": ""
                    },
                    {
                        "first": "Gary G",
                        "middle": [],
                        "last": "Koch",
                        "suffix": ""
                    }
                ],
                "year": 1977,
                "venue": "Biometrics",
                "volume": "",
                "issue": "",
                "pages": "159--174",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J Richard Landis and Gary G Koch. 1977. The mea- surement of observer agreement for categorical data. Biometrics, pages 159-174.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Best practices for the human evaluation of automatically generated text",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Van Der Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Sander",
                        "middle": [],
                        "last": "Emiel Van Miltenburg",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Wubben",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 12th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "355--368",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-8643"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chris van der Lee, Albert Gatt, Emiel van Miltenburg, Sander Wubben, and Emiel Krahmer. 2019. Best practices for the human evaluation of automatically generated text. In Proceedings of the 12th Interna- tional Conference on Natural Language Generation, pages 355-368, Tokyo, Japan. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Evaluating the text quality, human likeness and tailoring component of PASS: A Dutch data-to-text system for soccer",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Van Der Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Bart",
                        "middle": [],
                        "last": "Verduijn",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    },
                    {
                        "first": "Sander",
                        "middle": [],
                        "last": "Wubben",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "962--972",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chris van der Lee, Bart Verduijn, Emiel Krahmer, and Sander Wubben. 2018. Evaluating the text quality, human likeness and tailoring component of PASS: A Dutch data-to-text system for soccer. In Proceed- ings of the 27th International Conference on Compu- tational Linguistics, pages 962-972, Santa Fe, New Mexico, USA. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Automated journalism as a source of and a diagnostic device for bias in reporting",
                "authors": [
                    {
                        "first": "Leo",
                        "middle": [],
                        "last": "Lepp\u00e4nen",
                        "suffix": ""
                    },
                    {
                        "first": "Hanna",
                        "middle": [],
                        "last": "Tuulonen",
                        "suffix": ""
                    },
                    {
                        "first": "Stefanie",
                        "middle": [],
                        "last": "Sir\u00e9n-Heikel",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Media and Communication",
                "volume": "8",
                "issue": "3",
                "pages": "1--11",
                "other_ids": {
                    "DOI": [
                        "10.17645/mac.v8i3.3022"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Leo Lepp\u00e4nen, Hanna Tuulonen, Stefanie Sir\u00e9n-Heikel, et al. 2020. Automated journalism as a source of and a diagnostic device for bias in reporting. Media and Communication, 8(3):1-11.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "ROUGE: A package for automatic evaluation of summaries",
                "authors": [
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Text Summarization Branches Out",
                "volume": "",
                "issue": "",
                "pages": "74--81",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chin-Yew Lin. 2004. ROUGE: A package for auto- matic evaluation of summaries. In Text Summariza- tion Branches Out, pages 74-81, Barcelona, Spain. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Automatic measurement of syntactic complexity in child language acquisition",
                "authors": [
                    {
                        "first": "Xiaofei",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "International Journal of Corpus Linguistics",
                "volume": "14",
                "issue": "1",
                "pages": "3--28",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaofei Lu. 2009. Automatic measurement of syntac- tic complexity in child language acquisition. Inter- national Journal of Corpus Linguistics, 14(1):3-28.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "The Stanford CoreNLP natural language processing toolkit",
                "authors": [
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "Mihai",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Bauer",
                        "suffix": ""
                    },
                    {
                        "first": "Jenny",
                        "middle": [],
                        "last": "Finkel",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [
                            "J"
                        ],
                        "last": "Bethard",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Mc-Closky",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Association for Computational Linguistics (ACL) System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "55--60",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David Mc- Closky. 2014. The Stanford CoreNLP natural lan- guage processing toolkit. In Association for Compu- tational Linguistics (ACL) System Demonstrations, pages 55-60.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "The second multilingual surface realisation shared task (SR'19): Overview and evaluation results",
                "authors": [
                    {
                        "first": "Simon",
                        "middle": [],
                        "last": "Mille",
                        "suffix": ""
                    },
                    {
                        "first": "Anja",
                        "middle": [],
                        "last": "Belz",
                        "suffix": ""
                    },
                    {
                        "first": "Bernd",
                        "middle": [],
                        "last": "Bohnet",
                        "suffix": ""
                    },
                    {
                        "first": "Yvette",
                        "middle": [],
                        "last": "Graham",
                        "suffix": ""
                    },
                    {
                        "first": "Leo",
                        "middle": [],
                        "last": "Wanner",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019)",
                "volume": "",
                "issue": "",
                "pages": "1--17",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-6301"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra- ham, and Leo Wanner. 2019. The second mul- tilingual surface realisation shared task (SR'19): Overview and evaluation results. In Proceedings of the 2nd Workshop on Multilingual Surface Realisa- tion (MSR 2019), pages 1-17, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Prodigy: A new annotation tool for radically efficient machine teaching",
                "authors": [
                    {
                        "first": "Ines",
                        "middle": [],
                        "last": "Montani",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Honnibal",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ines Montani and Matthew Honnibal. 2018. Prodigy: A new annotation tool for radically efficient machine teaching. Artificial Intelligence.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Improving quality and efficiency in planbased neural data-to-text generation",
                "authors": [
                    {
                        "first": "Amit",
                        "middle": [],
                        "last": "Moryossef",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Ido",
                        "middle": [],
                        "last": "Dagan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 12th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "377--382",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-8645"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019a. Improving quality and efficiency in plan- based neural data-to-text generation. In Proceed- ings of the 12th International Conference on Nat- ural Language Generation, pages 377-382, Tokyo, Japan. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Step-by-step: Separating planning from realization in neural data-to-text generation",
                "authors": [
                    {
                        "first": "Amit",
                        "middle": [],
                        "last": "Moryossef",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Ido",
                        "middle": [],
                        "last": "Dagan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "2267--2277",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1236"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019b. Step-by-step: Separating planning from real- ization in neural data-to-text generation. In Proceed- ings of the 2019 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2267-2277, Min- neapolis, Minnesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "The E2E dataset: New challenges for endto-end generation",
                "authors": [
                    {
                        "first": "Jekaterina",
                        "middle": [],
                        "last": "Novikova",
                        "suffix": ""
                    },
                    {
                        "first": "Ond\u0159ej",
                        "middle": [],
                        "last": "Du\u0161ek",
                        "suffix": ""
                    },
                    {
                        "first": "Verena",
                        "middle": [],
                        "last": "Rieser",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "201--206",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-5525"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jekaterina Novikova, Ond\u0159ej Du\u0161ek, and Verena Rieser. 2017. The E2E dataset: New challenges for end- to-end generation. In Proceedings of the 18th An- nual SIGdial Meeting on Discourse and Dialogue, pages 201-206, Saarbr\u00fccken, Germany. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "The construction of a 500-million-word reference corpus of contemporary written Dutch",
                "authors": [
                    {
                        "first": "Nelleke",
                        "middle": [],
                        "last": "Oostdijk",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Reynaert",
                        "suffix": ""
                    },
                    {
                        "first": "V\u00e9ronique",
                        "middle": [],
                        "last": "Hoste",
                        "suffix": ""
                    },
                    {
                        "first": "Ineke",
                        "middle": [],
                        "last": "Schuurman",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Essential speech and language technology for Dutch",
                "volume": "",
                "issue": "",
                "pages": "219--247",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nelleke Oostdijk, Martin Reynaert, V\u00e9ronique Hoste, and Ineke Schuurman. 2013. The construction of a 500-million-word reference corpus of contemporary written Dutch. In Essential speech and language technology for Dutch, pages 219-247. Springer, Berlin, Heidelberg.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Curate and generate: A corpus and method for joint control of semantics and style in neural NLG",
                "authors": [
                    {
                        "first": "Shereen",
                        "middle": [],
                        "last": "Oraby",
                        "suffix": ""
                    },
                    {
                        "first": "Vrindavan",
                        "middle": [],
                        "last": "Harrison",
                        "suffix": ""
                    },
                    {
                        "first": "Abteen",
                        "middle": [],
                        "last": "Ebrahimi",
                        "suffix": ""
                    },
                    {
                        "first": "Marilyn",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5938--5951",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1596"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shereen Oraby, Vrindavan Harrison, Abteen Ebrahimi, and Marilyn Walker. 2019. Curate and generate: A corpus and method for joint control of semantics and style in neural NLG. In Proceedings of the 57th An- nual Meeting of the Association for Computational Linguistics, pages 5938-5951, Florence, Italy. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "T-scan: A new tool for analyzing Dutch text",
                "authors": [
                    {
                        "first": "Rogier",
                        "middle": [],
                        "last": "Henk Pander Maat",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kraf",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Den",
                        "suffix": ""
                    },
                    {
                        "first": "Nick",
                        "middle": [],
                        "last": "Bosch",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dekker",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Van Gompel",
                        "suffix": ""
                    },
                    {
                        "first": "Ted",
                        "middle": [],
                        "last": "Kleijn",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Sanders",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Der",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sloot",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Computational Linguistics in The Netherlands journal",
                "volume": "4",
                "issue": "",
                "pages": "53--74",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Henk Pander Maat, Rogier Kraf, Antal van den Bosch, Nick Dekker, M van Gompel, S Kleijn, Ted Sanders, and K van der Sloot. 2014. T-scan: A new tool for analyzing Dutch text. Computational Linguistics in The Netherlands journal, 4:53-74.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "BLEU: A method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {
                    "DOI": [
                        "10.3115/1073083.1073135"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. BLEU: A method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Com- putational Linguistics, pages 311-318, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "ToTTo: A controlled table-to-text generation dataset",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Ankur",
                        "suffix": ""
                    },
                    {
                        "first": "Xuezhi",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Manaal",
                        "middle": [],
                        "last": "Gehrmann",
                        "suffix": ""
                    },
                    {
                        "first": "Bhuwan",
                        "middle": [],
                        "last": "Faruqui",
                        "suffix": ""
                    },
                    {
                        "first": "Diyi",
                        "middle": [],
                        "last": "Dhingra",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2004.14373"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipanjan Das. 2020. ToTTo: A controlled table-to-text generation dataset. arXiv preprint arXiv:2004.14373.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Analysing data-to-text generation benchmarks",
                "authors": [
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Perez",
                        "suffix": ""
                    },
                    {
                        "first": "-",
                        "middle": [],
                        "last": "Beltrachini",
                        "suffix": ""
                    },
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Gardent",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 10th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "238--242",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-3537"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Laura Perez-Beltrachini and Claire Gardent. 2017. Analysing data-to-text generation benchmarks. In Proceedings of the 10th International Conference on Natural Language Generation, pages 238-242, San- tiago de Compostela, Spain. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "A call for clarity in reporting BLEU scores",
                "authors": [
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Post",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Third Conference on Machine Translation: Research Papers",
                "volume": "",
                "issue": "",
                "pages": "186--191",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matt Post. 2018. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 186- 191, Belgium, Brussels. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "SoMaJo: Stateof-the-art tokenization for German web and social media texts",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Proisl",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Uhrig",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 10th Web as Corpus Workshop",
                "volume": "",
                "issue": "",
                "pages": "57--62",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W16-2607"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thomas Proisl and Peter Uhrig. 2016. SoMaJo: State- of-the-art tokenization for German web and social media texts. In Proceedings of the 10th Web as Cor- pus Workshop, pages 57-62, Berlin. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Data-to-text generation with entity modeling",
                "authors": [
                    {
                        "first": "Ratish",
                        "middle": [],
                        "last": "Puduppully",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2023--2035",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1195"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ratish Puduppully, Li Dong, and Mirella Lapata. 2019. Data-to-text generation with entity modeling. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2023-2035, Florence, Italy. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "DART: Open-domain structured data record to text generation",
                "authors": [
                    {
                        "first": "Dragomir",
                        "middle": [],
                        "last": "Radev",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Amrit",
                        "middle": [],
                        "last": "Rau",
                        "suffix": ""
                    },
                    {
                        "first": "Abhinand",
                        "middle": [],
                        "last": "Sivaprasad",
                        "suffix": ""
                    },
                    {
                        "first": "Chiachun",
                        "middle": [],
                        "last": "Hsieh",
                        "suffix": ""
                    },
                    {
                        "first": "Nazneen",
                        "middle": [],
                        "last": "Fatema Rajani",
                        "suffix": ""
                    },
                    {
                        "first": "Xiangru",
                        "middle": [],
                        "last": "Tang",
                        "suffix": ""
                    },
                    {
                        "first": "Aadit",
                        "middle": [],
                        "last": "Vyas",
                        "suffix": ""
                    },
                    {
                        "first": "Neha",
                        "middle": [],
                        "last": "Verma",
                        "suffix": ""
                    },
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Krishna",
                        "suffix": ""
                    },
                    {
                        "first": "Yangxiaokang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Nadia",
                        "middle": [],
                        "last": "Irwanto",
                        "suffix": ""
                    },
                    {
                        "first": "Jessica",
                        "middle": [],
                        "last": "Pan",
                        "suffix": ""
                    },
                    {
                        "first": "Faiaz",
                        "middle": [],
                        "last": "Rahman",
                        "suffix": ""
                    },
                    {
                        "first": "Ahmad",
                        "middle": [],
                        "last": "Zaidi",
                        "suffix": ""
                    },
                    {
                        "first": "Murori",
                        "middle": [],
                        "last": "Mutuma",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2007.02871"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Nazneen Fatema Ra- jani, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto, Jessica Pan, Faiaz Rahman, Ahmad Zaidi, Murori Mutuma, Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, and Richard Socher. 2020. DART: Open-domain struc- tured data record to text generation. arXiv preprint arXiv:2007.02871.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Hallucination in neural nlg. Re",
                "authors": [
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ehud Reiter. 2018a. Hallucination in neural nlg. Re- trieved from https://ehudreiter.com/2018/ 11/12/hallucination-in-neural-nlg/ on August 27, 2020.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "A structured review of the validity of BLEU",
                "authors": [
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1--12",
                "other_ids": {
                    "DOI": [
                        "10.1162/coli_a_00322"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ehud Reiter. 2018b. A structured review of the validity of BLEU. Computational Linguistics, pages 1-12.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Building Natural Language Generation Systems",
                "authors": [
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1017/CBO9780511519857"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ehud Reiter and Robert Dale. 2000. Building Natural Language Generation Systems. Cambridge Univer- sity Press, New York, NY, USA.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Indicators of linguistic competence in the peer group conversational behavior of mildly retarded adults",
                "authors": [
                    {
                        "first": "Sheldon",
                        "middle": [],
                        "last": "Rosenberg",
                        "suffix": ""
                    },
                    {
                        "first": "Leonard",
                        "middle": [],
                        "last": "Abbeduto",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "Applied Psycholinguistics",
                "volume": "8",
                "issue": "1",
                "pages": "19--32",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sheldon Rosenberg and Leonard Abbeduto. 1987. In- dicators of linguistic competence in the peer group conversational behavior of mildly retarded adults. Applied Psycholinguistics, 8(1):19-32.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "BLEURT: Learning robust metrics for text generation",
                "authors": [
                    {
                        "first": "Thibault",
                        "middle": [],
                        "last": "Sellam",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Ankur",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "7881--7892",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning robust metrics for text generation. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 7881-7892, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "Relevance of unsupervised metrics in task-oriented dialogue for evaluating natural language generation",
                "authors": [
                    {
                        "first": "Shikhar",
                        "middle": [],
                        "last": "Sharma",
                        "suffix": ""
                    },
                    {
                        "first": "Layla",
                        "middle": [
                            "El"
                        ],
                        "last": "Asri",
                        "suffix": ""
                    },
                    {
                        "first": "Hannes",
                        "middle": [],
                        "last": "Schulz",
                        "suffix": ""
                    },
                    {
                        "first": "Jeremie",
                        "middle": [],
                        "last": "Zumer",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shikhar Sharma, Layla El Asri, Hannes Schulz, and Jeremie Zumer. 2017. Relevance of unsupervised metrics in task-oriented dialogue for evaluating nat- ural language generation. CoRR, abs/1706.09799.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Creating general-purpose corpora using automated search engine queries",
                "authors": [
                    {
                        "first": "Serge",
                        "middle": [],
                        "last": "Sharoff",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "WaCky! Working papers on the Web as Corpus",
                "volume": "",
                "issue": "",
                "pages": "63--98",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Serge Sharoff. 2006. Creating general-purpose corpora using automated search engine queries. In Marco Baroni and Silvia Bernardini, editors, WaCky! Work- ing papers on the Web as Corpus, pages 63-98. GEDIT.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "RUSE: Regressor Using Sentence Embeddings for Automatic Machine Translation Evaluation",
                "authors": [
                    {
                        "first": "Hiroki",
                        "middle": [],
                        "last": "Shimanaka",
                        "suffix": ""
                    },
                    {
                        "first": "Tomoyuki",
                        "middle": [],
                        "last": "Kajiwara",
                        "suffix": ""
                    },
                    {
                        "first": "Mamoru",
                        "middle": [],
                        "last": "Komachi",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Third Conference on Machine Translation: Shared Task Papers",
                "volume": "",
                "issue": "",
                "pages": "751--758",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-6456"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hiroki Shimanaka, Tomoyuki Kajiwara, and Mamoru Komachi. 2018. RUSE: Regressor Using Sen- tence Embeddings for Automatic Machine Transla- tion Evaluation. In Proceedings of the Third Confer- ence on Machine Translation: Shared Task Papers, pages 751-758, Belgium, Brussels. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Creating a corpus for Russian datato-text generation using neural machine translation and post-editing",
                "authors": [
                    {
                        "first": "Anastasia",
                        "middle": [],
                        "last": "Shimorina",
                        "suffix": ""
                    },
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Khasanova",
                        "suffix": ""
                    },
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Gardent",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "44--49",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-3706"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Anastasia Shimorina, Elena Khasanova, and Claire Gardent. 2019. Creating a corpus for Russian data- to-text generation using neural machine translation and post-editing. In Proceedings of the 7th Work- shop on Balto-Slavic Natural Language Processing, pages 44-49, Florence, Italy. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF51": {
                "ref_id": "b51",
                "title": "CIDEr: Consensus-based image description evaluation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Vedantam",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "L"
                        ],
                        "last": "Zitnick",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
                "volume": "",
                "issue": "",
                "pages": "4566--4575",
                "other_ids": {
                    "DOI": [
                        "10.1109/CVPR.2015.7299087"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "R. Vedantam, C. L. Zitnick, and D. Parikh. 2015. CIDEr: Consensus-based image description evalua- tion. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4566-4575.",
                "links": null
            },
            "BIBREF52": {
                "ref_id": "b52",
                "title": "Revisiting challenges in datato-text generation with fact grounding",
                "authors": [
                    {
                        "first": "Hongmin",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 12th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "311--322",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-8639"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hongmin Wang. 2019. Revisiting challenges in data- to-text generation with fact grounding. In Proceed- ings of the 12th International Conference on Nat- ural Language Generation, pages 311-322, Tokyo, Japan. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF53": {
                "ref_id": "b53",
                "title": "Challenges in data-to-document generation",
                "authors": [
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Wiseman",
                        "suffix": ""
                    },
                    {
                        "first": "Stuart",
                        "middle": [],
                        "last": "Shieber",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2253--2263",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1239"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sam Wiseman, Stuart Shieber, and Alexander Rush. 2017. Challenges in data-to-document generation. In Proceedings of the 2017 Conference on Empiri- cal Methods in Natural Language Processing, pages 2253-2263, Copenhagen, Denmark. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF54": {
                "ref_id": "b54",
                "title": "BERTScore: Evaluating text generation with BERT",
                "authors": [
                    {
                        "first": "Tianyi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Varsha",
                        "middle": [],
                        "last": "Kishore",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Kilian",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Weinberger",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Artzi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Eighth International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "1--43",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2020. BERTScore: Evaluating text generation with BERT. In Pro- ceedings of the Eighth International Conference on Learning Representations, pages 1-43, Ethiopia, Addis Ababa. OpenReview.net.",
                "links": null
            },
            "BIBREF55": {
                "ref_id": "b55",
                "title": "MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance",
                "authors": [
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Maxime",
                        "middle": [],
                        "last": "Peyrard",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [
                            "M"
                        ],
                        "last": "Meyer",
                        "suffix": ""
                    },
                    {
                        "first": "Steffen",
                        "middle": [],
                        "last": "Eger",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "563--578",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1053"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris- tian M. Meyer, and Steffen Eger. 2019. MoverScore: Text generation evaluating with contextualized em- beddings and earth mover distance. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Interna- tional Joint Conference on Natural Language Pro- cessing (EMNLP-IJCNLP), pages 563-578, Hong Kong, China. Association for Computational Lin- guistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Example of a set of attribute-value pairs (top) and corresponding text (bottom).",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "FIGREF1": {
                "text": "Mapping between tags and entities for the corresponding delexicalized template.",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "FIGREF2": {
                "text": "p e =\" d e s c r i p t i o n \">g r a z e d i n t h e \u2192 t h i g h</ r e f e r e n c e> </ r e f e r e n c e s> <t e x t>A 22\u2212y e a r\u2212o l d was g r a z e d i n t h e t h i g h .</ t e x t> <t e m p l a t e>A ENTITY\u22121 was ENTITY\u22122 .</ t e m p l a t e> <l e x i c a l i z a t i o n>DT[ form = u n d e f i n e d ] A ENTITY\u22121 \u2192 VP [ a s p e c t = s i m p l e , t e n s e = p a s t , \u2192 v o i c e = a c t i v e , p e r s o n = n u l l , number= s i n g u l a r ] \u2192 be ENTITY\u22122 .</ l e x i c a l i z a t i o n> </ l e x> </ e n t r y>",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "FIGREF3": {
                "text": "Example of an XML formatted data instance in the CACAPO dataset.",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "TABREF2": {
                "html": null,
                "text": "Descriptive statistics for various size-related dimensions.",
                "content": "<table/>",
                "type_str": "table",
                "num": null
            },
            "TABREF4": {
                "html": null,
                "text": "Size and lexical diversity metrics.",
                "content": "<table/>",
                "type_str": "table",
                "num": null
            },
            "TABREF7": {
                "html": null,
                "text": "",
                "content": "<table/>",
                "type_str": "table",
                "num": null
            },
            "TABREF9": {
                "html": null,
                "text": "TGen results on the CACAPO dataset.",
                "content": "<table/>",
                "type_str": "table",
                "num": null
            }
        }
    }
}