File size: 111,919 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:27:53.993163Z"
    },
    "title": "Lessons from Computational Modelling of Reference Production in Mandarin and English",
    "authors": [
        {
            "first": "Guanyi",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Utrecht University",
                "location": {}
            },
            "email": "g.chen@uu.nl"
        },
        {
            "first": "Kees",
            "middle": [],
            "last": "Van Deemter",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Utrecht University",
                "location": {}
            },
            "email": "c.j.vandeemter@uu.nl"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Referring expression generation (REG) algorithms offer computational models of the production of referring expressions. In earlier work, a corpus of referring expressions (REs) in Mandarin was introduced. In the present paper, we annotate this corpus, evaluate classic REG algorithms on it, and compare the results with earlier results on the evaluation of REG for English referring expressions. Next, we offer an in-depth analysis of the corpus, focusing on issues that arise from the grammar of Mandarin. We discuss shortcomings of previous REG evaluations that came to light during our investigation and we highlight some surprising results. Perhaps most strikingly, we found a much higher proportion of under-specified expressions than previous studies had suggested, not just in Mandarin but in English as well.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Referring expression generation (REG) algorithms offer computational models of the production of referring expressions. In earlier work, a corpus of referring expressions (REs) in Mandarin was introduced. In the present paper, we annotate this corpus, evaluate classic REG algorithms on it, and compare the results with earlier results on the evaluation of REG for English referring expressions. Next, we offer an in-depth analysis of the corpus, focusing on issues that arise from the grammar of Mandarin. We discuss shortcomings of previous REG evaluations that came to light during our investigation and we highlight some surprising results. Perhaps most strikingly, we found a much higher proportion of under-specified expressions than previous studies had suggested, not just in Mandarin but in English as well.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Referring expression generation (REG) originated as a sub-task of traditional natural language generation systems (NLG, Reiter and Dale, 2000) . The task is to generate expressions that help hearers to identify the referent that a speaker is thinking about. REG has important practical value in natural language generation (Gatt and Krahmer, 2018) , computer vision (Mao et al., 2016) , and robotics (Fang et al., 2015) . Additionally, REG algorithms can be seen as models of human language use (van Deemter, 2016) .",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 142,
                        "text": "Reiter and Dale, 2000)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 323,
                        "end": 347,
                        "text": "(Gatt and Krahmer, 2018)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 366,
                        "end": 384,
                        "text": "(Mao et al., 2016)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 400,
                        "end": 419,
                        "text": "(Fang et al., 2015)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 495,
                        "end": 514,
                        "text": "(van Deemter, 2016)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In line with this second angle, and unlike REG studies which have started to use black-box Neural Network based models (e.g., Mao et al. (2016) ; Ferreira et al. (2018) and Cao and Cheung (2019) ), we focus on two aspects (cf., Krahmer and van Deemter (2012) ): 1) designing and conducting controlled elicitation experiments, yielding corpora which are then used for analysing and evaluating REG algorithms to gain insight into linguistic phenomena, e.g., GRE3D3 (Dale and Viethen, 2009) , TUNA , COCONUT (Jordan and Walker, 2005) , and MAP-TASK (Gupta and Stent, 2005) . 2) designing algorithms that mimic certain behaviours used by human beings, for example the maximisation of discriminatory power (Dale, 1989) and/or the preferential use of cognitively \"attractive\" attributes (Dale and Reiter, 1995) ; see Gatt et al. (2013) for discussion.",
                "cite_spans": [
                    {
                        "start": 126,
                        "end": 143,
                        "text": "Mao et al. (2016)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 146,
                        "end": 168,
                        "text": "Ferreira et al. (2018)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 173,
                        "end": 194,
                        "text": "Cao and Cheung (2019)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 228,
                        "end": 258,
                        "text": "Krahmer and van Deemter (2012)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 456,
                        "end": 462,
                        "text": "GRE3D3",
                        "ref_id": null
                    },
                    {
                        "start": 463,
                        "end": 487,
                        "text": "(Dale and Viethen, 2009)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 497,
                        "end": 504,
                        "text": "COCONUT",
                        "ref_id": null
                    },
                    {
                        "start": 505,
                        "end": 530,
                        "text": "(Jordan and Walker, 2005)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 546,
                        "end": 569,
                        "text": "(Gupta and Stent, 2005)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 701,
                        "end": 713,
                        "text": "(Dale, 1989)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 781,
                        "end": 804,
                        "text": "(Dale and Reiter, 1995)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 811,
                        "end": 829,
                        "text": "Gatt et al. (2013)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The focus of these studies was mostly on Indo-European languages, such as English, Dutch (Koolen and Krahmer, 2010) and German (Howcroft et al., 2017) . Recently researchers have started to have a look at Mandarin Chinese (van Deemter et al., 2017) , collecting a corpus of Mandarin REs, namely MTUNA. So far, only a preliminary analysis has been performed on MTUNA, and this analysis has focussed on issues of Linguistic Realisation (van Deemter et al., 2017) : the REs in the corpus have not yet been compared with those in other languages, and the performance of REG algorithms on the corpus has not been evaluated.",
                "cite_spans": [
                    {
                        "start": 89,
                        "end": 115,
                        "text": "(Koolen and Krahmer, 2010)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 120,
                        "end": 150,
                        "text": "German (Howcroft et al., 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 222,
                        "end": 248,
                        "text": "(van Deemter et al., 2017)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 434,
                        "end": 460,
                        "text": "(van Deemter et al., 2017)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To fill this gap, we provide a more detailed analysis of the use of Mandarin REs on the basis of the MTUNA corpus. We annotated the MTUNA corpus in line with the annotation scheme of TUNA (van der Sluis et al., 2006) , after which we used this annotation to evaluate the classical REG algorithms and compared the results with those for the English ETUNA corpus. Since it has been claimed that Mandarin favours brevity over clarity -the idea that Mandarin is \"cooler\" than these other languages (Newnham, 1971; Huang, 1984) -relying more on communicative context for disambiguation than western languages, we concentrated on the use of over-and under-specification. After all, if Mandarin favours brevity over clarity to a greater extent than English and Dutch, then one would expect to see less over-specification and ",
                "cite_spans": [
                    {
                        "start": 188,
                        "end": 216,
                        "text": "(van der Sluis et al., 2006)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 494,
                        "end": 509,
                        "text": "(Newnham, 1971;",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 510,
                        "end": 522,
                        "text": "Huang, 1984)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The analysis reported in paper is based on the MTUNA (for Mandarin) and ETUNA (for English) corpus. We start by briefly introducing the TUNA experiments in general, and we highlight some special features of MTUNA together with its initial findings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2"
            },
            {
                "text": "TUNA is a series of controlled elicitation experiments that were set up to aid computational linguist's understanding of human reference production. In particular, the corpora to which these experiments gave rise were employed to evaluate REG algorithms, by comparing their output with the REs in these corpora. The stimuli in the TUNA experiments were divided into two types of visual scenes: scenes that depict furniture and scenes that depict people. Figure 1 shows an example for each of these two types of scenes. In each trial, one or two objects in the scene were chosen as the target referent(s), demarcated by red borders. The subjects were asked to produce referring expressions that identify the target referents from the other objects in the scene (their \"distractors\"). For example, for the scene in Figure 1 , one might say the large chair. The trials in the people domain were intended to be more challenging than those in the furniture domain.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 454,
                        "end": 462,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 813,
                        "end": 821,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "The TUNA Experiments",
                "sec_num": "2.1"
            },
            {
                "text": "The resulting corpus, which we will call ETUNA, was subsequently studied for evaluating a set of \"classic\" REG algorithms . Although RE has given rise to a good num-ber of other corpora, with subtly different qualities (e.g., Dale and Viethen (2009) ), we focus here on the TUNA corpora for two reasons: firstly the ETUNA corpus was used in a series of Shared Task Evaluation Campaign (Gatt and Belz, 2010) , which caused it to be relatively well known. Secondly and more importantly from the perspective of the present paper, ETUNA inspired a number of similarly constructed corpora for Dutch (DTUNA, Koolen and Krahmer, 2010) , German (GTUNA, Howcroft et al., 2017) , and Mandarin (van Deemter et al., 2017).",
                "cite_spans": [
                    {
                        "start": 226,
                        "end": 249,
                        "text": "Dale and Viethen (2009)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 385,
                        "end": 406,
                        "text": "(Gatt and Belz, 2010)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 602,
                        "end": 627,
                        "text": "Koolen and Krahmer, 2010)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 637,
                        "end": 667,
                        "text": "(GTUNA, Howcroft et al., 2017)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The TUNA Experiments",
                "sec_num": "2.1"
            },
            {
                "text": "The different TUNA corpora were set up in highly similar fashion: for instance, they all use a few dozen stimuli, which were offered in isolation (i.e., participants were encouraged to disregard previous scenes and previous utterances), and chosen from the same sets of furniture and people images; furthermore, participants were asked to enter a typewritten RE following a question.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Mandarin TUNA",
                "sec_num": "2.2"
            },
            {
                "text": "Yet there were subtle differences between these corpora as well, reflecting specific research questions that the various sets of authors brought to the task. The stimuli used by MTUNA were inherited from the DTUNA, where there are totally 40 trials. Different from other TUNAs which always asked subjects essentially the same question, namely Which object/objects appears/appear in a red window?, MTUNA distinguished between referring expressions in subject and object position. 1 More precisely, subjects were asked to use REs for filling in blanks in either of the following patterns: ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Mandarin TUNA",
                "sec_num": "2.2"
            },
            {
                "text": "Analogous to studies of earlier TUNA corpora, our primary research question (RQ1) is how classic REG algorithms perform on MTUNA and how this is different from the performance on ETUNA? We were curious to see whether the value of each evaluation metric for each algorithms will change very much, and whether the rank order of the algorithms stays the same. If, as hypothesised, Mandarin prefers brevity over clarity, then the Full Brevity algorithm (which always yields REs with minimally number of properties), is expected to have higher performance on MTUNA than on ETUNA. The expected effect on other classic algorithms is less clear. It is thought that, since TYPE helps create a \"conceptual gestalt\" of the target referent (which benefits the hearer (Levelt, 1993, Chapter 4)) speakers tend to include a TYPE in their REs regardless of its discriminatory power. 2 For this reason, algorithms such as the Incremental Algorithm (Dale and Reiter, 1995) always append a TYPE to the REs they produce. However, Lv (1979) found that the head of a noun phrase in Mandarin is often omitted if this noun is the only possibility given the context. This suggests that, if all objects in a scene share the same type (e.g., all the objects in the people domain of TUNA are male scientists), then it is less likely for Mandarin speakers to express a TYPE. Accordingly, our second research question (RQ2) asks to what extent the role of TYPE differs between English and Mandarin. Connected with this, we were curious to what extent this issue affects the performance of the classic REG algorithms.",
                "cite_spans": [
                    {
                        "start": 931,
                        "end": 954,
                        "text": "(Dale and Reiter, 1995)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1010,
                        "end": 1019,
                        "text": "Lv (1979)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Research Questions",
                "sec_num": "3"
            },
            {
                "text": "As discussed in section 1, the coolness hypothesis stated that Chinese relies more on the communicative context for disambiguation than western languages, such as English, based on which Chinese is also seen as a discourse-based language while English is a sentence-based language. The existence of primary evidence for this issue in REG was identified in van Deemter et al. 2017, indicating that Mandarin speakers rarely explicitly express number, maximality and giveness in REs, and in Chen et al. (2018) , indicting that they sometimes even drop REs. In this study, we were curious about (RQ3) the use of over-specification and under-specifications in MTUNA versus ETUNA, hypothesising that Mandarin REs use fewer overspecifications and more under-specifications than English.",
                "cite_spans": [
                    {
                        "start": 488,
                        "end": 506,
                        "text": "Chen et al. (2018)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Research Questions",
                "sec_num": "3"
            },
            {
                "text": "We have seen that MTUNA asked its participants to produce REs in different syntactic positions. van Deemter et al. 2017found more indefinite NPs in the subject position, which is inconsistent with linguistic theories (James et al., 2009) that suggests subjects and other pre-verbal positions favour definiteness. Building on these findings, we investigated (RQ4) how syntactic position influences the use of over-/under-specification and the performance of REG algorithms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Research Questions",
                "sec_num": "3"
            },
            {
                "text": "Before we address the four research questions in section 3, we explain how we annotated the corpus. The annotated corpus is available at github.com/ a-quei/mtuna-annotated",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "4"
            },
            {
                "text": "1650 REs were semantically annotated (after omitting some unfinished REs from the corpus) following the scheme of van der Sluis et al. (2006) . 3 For simplicity, instead of XML we use the JSON for the annotation. Because the scenes stay the same when different subjects accomplished the experiment, we annotated the scene and the REs in MTUNA separately. For the attribute hairColour, both (van der Sluis et al., 2006) and Gatt et al. (2008) (and all the annotate scheme used by the previous TUNA corpora) annotated both hair colour and furniture  377  46  117  132  2  11  5  64  people  371  16  216  68  13  4  6  48   MTUNA-OL   furniture  264  9  83  104  0  8  4  56  people  222  14  144  36  2  1  3  22   ETUNA   furniture  158  1  58  62  0  0  0  37  people  132  3  75  37  0  0  0  7   Table 1 : Frequencies of referring expressions that fall in each type specifications in MTUNA, MTUNA-OL and ETUNA respectively. Specifically, total is the total number of descriptions in each corpus. mini. is the minimal over-specification, real is the real over-specification, nom. is the nominal over-specification, num. is the numerical over-specification, wrong is the duplicate-attribute over-specification, other stands for the RE that cannot be classified into any of these categories, and under is the under-specification. beard colour as hairColour. However, this would cause us to overlook some key phenomena, because some participants used the colour of a person's beard for distinguishing the target. Therefore, we decided to use hairColour and beardColour as separate attributes. As pointed out in van Deemter et al. 2012, since the attribute hairColour is depend on hasHair, the authors merged these two into a single attribute Hair during the evaluation. We did the same thing and obtained two merged attributes: Hair and Beard.",
                "cite_spans": [
                    {
                        "start": 135,
                        "end": 141,
                        "text": "(2006)",
                        "ref_id": null
                    },
                    {
                        "start": 144,
                        "end": 145,
                        "text": "3",
                        "ref_id": null
                    },
                    {
                        "start": 390,
                        "end": 418,
                        "text": "(van der Sluis et al., 2006)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 423,
                        "end": 441,
                        "text": "Gatt et al. (2008)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 537,
                        "end": 806,
                        "text": "furniture  377  46  117  132  2  11  5  64  people  371  16  216  68  13  4  6  48   MTUNA-OL   furniture  264  9  83  104  0  8  4  56  people  222  14  144  36  2  1  3  22   ETUNA   furniture  158  1  58  62  0  0  0  37  people  132  3  75  37  0  0  0  7   Table 1",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Annotating the Corpus",
                "sec_num": "4.1"
            },
            {
                "text": "To avoid compromising the comparison between MTUNA and ETUNA, we did not only annotate MTUNA but we also re-annotated the ETUNA corpus, using the same annotators. Details about which properties were annotated and examples of annotated REs can be found in Appendix A.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotating the Corpus",
                "sec_num": "4.1"
            },
            {
                "text": "To gain an insightful analysis of the speakers' use of over-and under-specification, and to ensure that our annotations are well defined, we will offer some definitions. In addition, given our interest in the role of TYPE, we will sub-categorise by distinguishing different types of over-specifications. Concretely, we asked the annotators to consider the following types of specifications: Minimal Description. an RE that successfully singles out the target referent and does this by using the minimum possible number of properties. These are the REs that match Dale and Reiter's Full Brevity; Numerical Over-specification. an RE that uses more properties than the corresponding minimal description uses, yet the removal of any of them results in a referential confusion. For instance, for the scene in 1(a), the RE the green chair is a numerical over-specification as it uses more properties than the minimal description the large one; Nominal Over-specification. an RE from which only one of its properties is removable, namely the TYPE of the target; Real Over-specification. an RE from which at least one of its non-TYPE properties is removable; Under-specification. an RE all of whose properties are true of the referent but that causes ref-erential confusion (i.e., it is not a distinguishing description in the sense of Dale (1992)); Wrong Description. an RE whose properties use one or more incorrect values for a given attribute. In line with previous TUNA evaluations, we only consider a value to be wrong if it could prevent a hearer from recognising the target. For example, the RE the pink chair is not called wrong if the referent is a red chair.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotating Over-/Under-specifications",
                "sec_num": "4.2"
            },
            {
                "text": "We annotated each RE in both corpora 4 , and we annotated each scene in each corpus. Thus, for each RE, we annotate which of the above specification types it falls in, and how many overspecified/under-specified properties the RE contains. In Appendix B, Table 7 records, for each scene, how many different minimal descriptions the scene permits (most often just 1, but sometimes 2 or 3). The results per RE are depicted in Table 1 5 and the results per scene are in Appendix B.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 254,
                        "end": 261,
                        "text": "Table 7",
                        "ref_id": null
                    },
                    {
                        "start": 423,
                        "end": 430,
                        "text": "Table 1",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Annotating Over-/Under-specifications",
                "sec_num": "4.2"
            },
            {
                "text": "Before reporting results and analysis, we explain what datasets and algorithms were analysed, and how evaluation was performed. Dataset. The sources of our dataset are the MTUNA and ETUNA corpora. For Mandarin, we used the whole MTUNA dataset. For comparing between languages fairly, we only used REs for scenes that were shared between MTUNA and ETUNA; we call this set of shared scenes MTUNA-OL. The original MTUNA has 20 trials, with 10 trials for each domain. The MTUNA-OL and ETUNA contains 13 trials, in which there are 7 and 6 trials from furniture and people domain respectively. (More details of which scene is used can be found in the Appendix.) Algorithms. We tested the classic REG algorithms, including: 1) the Full Brevity algorithm (FB Dale, 1989) : an algorithm that finds the shortest RE; 2) the Greedy algorithm (GR Dale, 1989) : an algorithm that iteratively selects properties that rule out a maximum number of distractors (i.e., a property that has the highest \"Discriminative Power\"); and 3) the Incremental Algorithm: an algorithm that makes use of a fixed \"preference order\" of attributes (IA Dale and Reiter, 1995) . Evaluation Metrics. We used what are still the most commonly used metrics for evaluating attribute choice in REG. One is the DICE metric (Dice, 1945) , which measures the overlap between two attributes sets:",
                "cite_spans": [
                    {
                        "start": 751,
                        "end": 762,
                        "text": "Dale, 1989)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 834,
                        "end": 845,
                        "text": "Dale, 1989)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 1117,
                        "end": 1139,
                        "text": "Dale and Reiter, 1995)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1279,
                        "end": 1291,
                        "text": "(Dice, 1945)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "5"
            },
            {
                "text": "DICE(D H , D A ) = 2 \u00d7 |D H \u2229 D A | |D H | + |D A |",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "5"
            },
            {
                "text": "where D H is the set of attributes expressed in the description produced by a human author and D A is the set of attributes expressed in the logical form generated by an algorithm. We also report the \"perfect recall percentage\" (PRP), the proportion of times the algorithm achieves a DICE score of 1, which is seen as a indicator of the recall of an algorithm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "5"
            },
            {
                "text": "We report the evaluation results on MTUNA and MTUNA-OL in the Table 2 and 3. For the FB algorithm, we tested both the original version and the version that always appends a TYPE (named FB+TYPE). Moreover, since we did not observe any significant difference in the frequencies of use of each attribute between MTUNA and ETUNA corpora, we let the IA make use of the same set of preference orders as van Deemter et al. 2012.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 62,
                        "end": 69,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Performance of Algorithms on MTUNA",
                "sec_num": "5.1"
            },
            {
                "text": "In line with the previous findings in other languages, in the furniture domain, it is IA (with a good preference order) that perform the best in both MTUNA and MTUNA-OL. Interestingly, the people domain yields very different results: this time, FB+TYPE becomes the winner.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Performance of Algorithms on MTUNA",
                "sec_num": "5.1"
            },
            {
                "text": "An ANOVA test comparing GR, FB+TYPE, and the best IA suggests a significant effect of algorithms on both domains and on both MTUNA and MTUNA-OL (Furniture: F (2, 1008) = 49.20, p = .002; People: F (2, 1065) = 11.97, p < .001) and MTUNA-OL (Furniture: F (2, 699) = 14, p < .001; People: F (2, 622) = 4.22, p = .015). As for each algorithm, by Tukey's Honestly Significant Differences (HSD), we found that IA defeats other algorithms in the furniture domain in both corpora (p < .001) and that the victory of FB+TYPE for people domain is significant in MTUNA (p = .001) but not in MTUNA-OL (p = 0.96).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Performance of Algorithms on MTUNA",
                "sec_num": "5.1"
            },
            {
                "text": "The scores for algorithms in the people domain are much lower than those in the furniture domain, even lower than the scores for the people domain in ETUNA. This may be because, based on the numbers in (\u03c7 2 (1, 747) = 55.95, p < .001) but fewer nominal over-specifications (\u03c7 2 (1, 747) = 26.57, p < .001) in the people domain than in the furniture domain 6 . As for the former, real over-specifications are notoriously hard to model accurately by deterministic REG algorithms, which is one of the motivations behind probabilistic modelling (van Gompel et al., 2019) or Bayesian Modelling (Degen et al., 2020) ; such an approach might have additional benefits for the modelling of reference in Mandarin. The relative lack of nominal overspecifications in Mandarin descriptions of people could be addressed along similar lines, adding TYPE probabilistically. Another evidence is that, in the MTUNA people domain, FB outperforms many IAs on PRP, which does not happen in the furniture domain. By comparing the results for MTUNA and MTUNA-OL, we found that the rank order (by performance) of algorithms stays the same, but the absolute scores for the latter corpus are much higher. If we look into the annotations for the trials from MTUNA that are not in MTUNA-OL (Appendix B), most of these trials have multiple possible minimal descriptions and numerical over-specifications. Every RE in the corpus that results in a successful communication can be seen as either a minimal description or a numerical over-specification, with 0 or more attributes added to it. When computing the DICE similarity score between a generated RE and human produced REs, if it is close to a minimal description, it will differ from another minimal description. For example, suppose we have a trial having two miminal descriptions: the large one and the green one. Our FB produce the second minimal description (as it can only produce one RE at a time). When we computing DICE, we obtain 2 3 for the RE the green chair while 0 for the RE the large chair, but, in fact, either of them has only one superfluous attributes. This implies that when a corpus contains multiple minimal REs, this will artificially lower the DICE scores. 7 For the same reason, the performance of FB increases a lot from MTUNA/People to MTUNA-OL/People because all trials in MTUNA-OL have only one possible minimal description. Another reason lies in the decrease in the number of under-specifications from MTUNA/People to MTUNA-OL/People. Table 3 reports the results for both MTUNA-OL and ETUNA, from which, except for the fact that FB+TYPE becomes having the best performance, we see no difference on the order of the their performance. An interesting observation is that, after correcting a few errors in the annotation of ETUNA (cf. section 4.1), the difference between IA and FB+TYPE is no longer significant in the people domain in terms of Tukey's HSD (compare the conclusion in van Deemter et al. (2012)). In other words, in both languages there is no significant difference between the performance of these two algorithms on the people domain. We also checked the influence of language on the performance of FB and FB+TYPE: the influence of the former is significant (F (1, 349) = 23.63, p < .001) while that of later is not (F (1, 349) = 0.36, p = .548). This suggest that, in fact, it is English speakers who show more brevity, except in terms of use of TYPE. This might also explain the differences in absolute scores for all algorithms in both ETUNA and MTUNA, especially in the people domain. Another possible reason for these differences is the fact that the REs in MTUNA-OL show slightly higher diversity in the choice of content than ETUNA, as the standard deviations for every model is higher.",
                "cite_spans": [
                    {
                        "start": 541,
                        "end": 566,
                        "text": "(van Gompel et al., 2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 589,
                        "end": 609,
                        "text": "(Degen et al., 2020)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 2491,
                        "end": 2498,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Performance of Algorithms on MTUNA",
                "sec_num": "5.1"
            },
            {
                "text": "On the use of TYPE, we first look at the number of REs that uses TYPE in MTUNA-OL and ETUNA. 98.4% and 95.93% of REs in the furniture and people domains of ETUNA contain TYPE. For MTUNA-OL, those numbers are 91.29% and 74.77%, suggesting that Mandarin speakers are less likely to use superfluous TYPE. Second, for Lv's hypothesis introduced in section 3, we observed a smaller proportion of uses of TYPE in the people domain (\u03c7 2 (1, 485) = 24.16, p < .001), where all the objects share the same value of TYPE. Comparing the performance of REG algorithms on the furniture domain of MTUNA and MTUNA-OL, the difference is not as huge as that in the people domain. This implies that the complement of Lv's hypothesis might also hold, namely, if the value of TYPE is not the only possibility, then it will not be omitted.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RQ2: the Role of TYPE",
                "sec_num": "5.3"
            },
            {
                "text": "To further assess the role of TYPE and to find more evidence regarding Lv's hypothesis, we investigated how introducing uncertainties in whether or not to include a TYPE affects the performance of REG algorithms for the people domain. We tried out different probabilities, and for each probability for inserting the TYPE we ran the algorithm 100 times; we report the average DICE score, drawing the lines indicating the change of performance over different probabilities in Figure 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 474,
                        "end": 482,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "RQ2: the Role of TYPE",
                "sec_num": "5.3"
            },
            {
                "text": "We found that: 1) the decrease in performance on MTUNA-OL is smaller than that on ETUNA; 2)IA and FB+TYPE have similar performance for Mandarin while IA performs better for English; 3) The difference between the performance of these algorithms becomes smaller when the influence of TYPE is ignored (i.e., when the probability of inserting TYPE is close to zero), especially for the Full Brevity algorithm. On top of these findings, we observe that although Mandarin speakers are less likely to use superfluous TYPE, always adding TYPE achieves the best performances for all the algorithms. Such a result maybe be caused by the dependencies between the use of different properties. In other words, introducing uncertainty to only the TYPE cannot sufficiently model the uncertainties in REG: when to drop a TYPE might also depend on the use of other properties.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RQ2: the Role of TYPE",
                "sec_num": "5.3"
            },
            {
                "text": "In light of Table 1 , some obvious conclusions can be drawn. For example, more \"real\" overspecifications are used for more complex domains (i.e., the people domain) than for simple ones. Focusing on RQ3 in section 3, its two hypotheses are both rejected: no significant difference has been found in the use of over-specifications (\u03c7 2 (1, 775) = 0.82, p = 0.052) or in the use of under-specifications (\u03c7 2 (1, 775) = 0.745, p = 0.105). Focusing on the people domain, where FB+TYPE performed better in English than in Mandarin, we found no significant difference (\u03c7 2 (1, 354) = 2.53, p = 0.112).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 12,
                        "end": 19,
                        "text": "Table 1",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "RQ3: Over-/Under-specification",
                "sec_num": "5.4"
            },
            {
                "text": "For RQ4, we counted the number of real overspecifications and under-specification in subject and object position. In the MTUNA-OL corpus, there are 247 and 239 descriptions in the subject and object positions, respectively. No significant difference on the use of over-specifications was found (\u03c7 2 (1, 485) = 1.57, p = 0.209) but a significant difference regarding the use of underspecifications did exist (\u03c7 2 (1, 485) = 19.27, p < .001). Considering the fact that there are more indefinite RE in subject position (van Deemter et al., 2017) , the present finding might suggest that those indefinite REs are not suitable for identifying a target referent. It appears that further research is required to understand these issues in more detail. As for the computational modelling, generally speaking, all algorithms performed better for REs in subject position than for REs is object position, with one exception, namely the GR algorithm for the people domain; the difference is significant in the Furniture domain, but is not in the people domain, possibly because the furniture domain contains more under-specifications.",
                "cite_spans": [
                    {
                        "start": 516,
                        "end": 542,
                        "text": "(van Deemter et al., 2017)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RQ4: Syntactic Position",
                "sec_num": "5.5"
            },
            {
                "text": "Regarding the \"coolness\" hypothesis, which focuses on the trade-off between brevity and clarity, we found that the brevity of Mandarin is only reflected in the use of TYPE but not in the other attributes, and, interestingly, no evidence was found that this leads to a loss of clarity; our findings are consistent with the possibility that Mandarin speakers may have found a better optimum than English.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lessons about RE use",
                "sec_num": "6.1"
            },
            {
                "text": "Although Mandarin speakers are less likely to over-specify TYPE, following Lv (1979) , we conclude that TYPE is often omitted if and only if it has only one possible value given the domain. This appears to happen \"unpredictably\" (i.e., in one and the same situation, TYPE is often expressed but often omitted as well). However, we saw that introducing probability for the use of TYPE alone does not work well. This suggests that, to do justice to the data, a REG model may have to embrace nondeterminism more wholeheartedly, as in the probabilistic approaches of van Gompel et al. (2019) and Degen et al. (2020) .",
                "cite_spans": [
                    {
                        "start": 75,
                        "end": 84,
                        "text": "Lv (1979)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 567,
                        "end": 587,
                        "text": "Gompel et al. (2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 592,
                        "end": 611,
                        "text": "Degen et al. (2020)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lessons about RE use",
                "sec_num": "6.1"
            },
            {
                "text": "We found significant influence of the syntactic position of the RE on the use of under-specification and on the performance of REG algorithms. This flies in the face of earlier research on REG -which has tended to ignore syntactic position -yet it is in line with the theory of Chao (1965). On the other hand, it gives rise to various questions: why are more under-specifications used in subject positions, and why do all REG models perform better for REs in subject positions than for those in object position? These questions invite further studies including, for example, reader experiments to find out how REs in different positions are comprehended. It would also be interesting to investigate what role syntactic position plays in other languages, where this issue has not yet been investigated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lessons about RE use",
                "sec_num": "6.1"
            },
            {
                "text": "Perhaps our most surprising findings regard the use of under-specification: firstly (deviating from what van Deemter et al. (2017) hypothesised), we did not find significantly more underspecifications in MTUNA than in ETUNA. We found a very substantial proportion, of nearly 20%, underspecified REs in both MTUNA and ETUNA. This was surprising, because, at least in Western languages, in situations where Common Ground is unproblematic (Horton and Keysar, 1996) , underspecification is widely regarded as a rarity in the language use of adults, to such an extent that existing REG algorithms are typically designed to prevent under-specification completely (see e.g., Krahmer and van Deemter (2012)). Proportions of under-specifications in corpora are often left reported, but (Koolen et al., 2011) report that only 5% of REs in DTUNA were under-specifications. 8 These findings give rise to the following questions: 1) Why did previous investigators either find far fewer under-specified REs (e.g., Koolen et al. (2011) , see Footnote 8) or ignored underspecification? 2) How does the presence of underspecification influence the performance of the classic REG algorithms (which never produce any under-specified REs, except when no distinguishing RE exists)? and 3) If a REG model aimsas most do -to produce human-like output, then what is the most effective way for them to model under-specification?",
                "cite_spans": [
                    {
                        "start": 436,
                        "end": 461,
                        "text": "(Horton and Keysar, 1996)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 777,
                        "end": 798,
                        "text": "(Koolen et al., 2011)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 862,
                        "end": 863,
                        "text": "8",
                        "ref_id": null
                    },
                    {
                        "start": 1000,
                        "end": 1020,
                        "text": "Koolen et al. (2011)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lessons about RE use",
                "sec_num": "6.1"
            },
            {
                "text": "Most REG evaluations so far have made use of the DICE score (Dice, 1945) . However, on top of the discussions of van Deemter and and of section 5, we identify the following three issues for evaluating REG with DICE. First, if a scene has multiple possible minimal descriptions or numerical over-specifications, then this causes DICE scores to be artificially lowered (section 2.2) and hence distorted. Second, there is no guarantee that an RE with a high DICE score is a distinguishing description. Third, DICE punishes underspecification more heavily than over-specification. Suppose we have a reference RE d which uses n attributes, a over-specification d o with one more superfluous comparing to d (so it uses n + 1 attributes), and a under-specification d u which can be repaired to d by adding one attribute (using n\u22121 attributes), the DICE score of d o is 2n/(2n + 1) while d u 's DICE is 2n \u2212 2/(2n \u2212 1). In other words, d o has a higher DICE than d u . Whether this should be considered a shortcoming of DICE or a feature is a matter for debate.",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 72,
                        "text": "(Dice, 1945)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lessons about REG Evaluation",
                "sec_num": "6.2"
            },
            {
                "text": "Finally, our analysis suggests that previous TUNA experiments may have been insufficiently controlled. For example, some trials in MTUNA and DTUNA use TYPE for distinguishing the target, causing nominal over-specifications not to be counted as over-specification. Different trials have different numbers of minimal descriptions and different numbers of numerical over-specifications. As shown in section 5, these issues impact evaluation results and this might cause the conclusions from evaluating algorithms with TUNA not to be reproducable.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lessons about REG Evaluation",
                "sec_num": "6.2"
            },
            {
                "text": "Comparisons between corpora need to be approached with caution, and the present situation is no exception. For all the similarities between them, we have seen that there are significant differences in the ways in which the TUNA corpora were set up. 9 Although these differences exist for a reason (i.e., for testing linguistic hypotheses), we believe that it would be worthwhile to design new multilingual datasets, where care is taken to ensure that utterances in the different languages are elicited under circumstances that are truly as similar as they can be.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lessons about REG Evaluation",
                "sec_num": "6.2"
            },
            {
                "text": "This was done because the literature on Mandarin (e.g., Chao (1965)) suggests that Mandarin NPs in pre-verbal position may be interpreted as definite unless there is information to the contrary.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Note that 92.25% of the REs in ETUNA contain a superfluous TYPE (van der).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "This includes the trials that have one target referent and those that have two targets, but, in this paper, we focus on the former one. The annotated corpus is public available at: xxx.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "When applying this annotation scheme to REs that have multiple targets, adaptations need to be made. But since the focus of this paper is on singular REs, we will not offer details.5 We observed a large number of minimal descriptions in the furniture domain of MTUNA. This is a result of the fact that some trials in MTUNA use TYPE in their minimal descriptions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "This highlights the importance of sub-categorising the different kinds of over-specifications, as we have done in section 4",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "An analogous problem has been identified in the task of evaluating image capturing(Yi et al., 2020), where the collision of multiple references for a single image was considered.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The difference might be that DTUNA used participants who came into the lab separately, whereas MTUNA participants sat together in a classroom.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Most TUNA experiments involved type-written REGs, but DTUNA elicited spoken REs. In most TUNA experiments the linguistic context was uniform, but MTUNA elicited REs in different syntactic positions, as we have seen.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We thank the anonymous reviewers for their helpful comments. Guanyi Chen is supported by China Scholarship Council (No.201907720022).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Referring expression generation using entity profiles",
                "authors": [
                    {
                        "first": "Meng",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "Jackie Chi Kit",
                        "middle": [],
                        "last": "Cheung",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1909.01528"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Meng Cao and Jackie Chi Kit Cheung. 2019. Referring expression generation using entity profiles. arXiv preprint arXiv:1909.01528.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A grammar of spoken Chinese",
                "authors": [
                    {
                        "first": "Chao",
                        "middle": [],
                        "last": "Yuen Ren",
                        "suffix": ""
                    }
                ],
                "year": 1965,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yuen Ren Chao. 1965. A grammar of spoken Chinese. Univ of California Press.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Modelling pro-drop with the rational speech acts model",
                "authors": [
                    {
                        "first": "Guanyi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Chenghua",
                        "middle": [],
                        "last": "Kees Van Deemter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 11th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "57--66",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guanyi Chen, Kees van Deemter, and Chenghua Lin. 2018. Modelling pro-drop with the rational speech acts model. In Proceedings of the 11th International Conference on Natural Language Generation, pages 57-66. Association for Computational Linguistics (ACL).",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Cooking up referring expressions",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "27th Annual Meeting of the association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "68--75",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert Dale. 1989. Cooking up referring expressions. In 27th Annual Meeting of the association for Com- putational Linguistics, pages 68-75.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Generating referring expressions: Constructing descriptions in a domain of objects and processes",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert Dale. 1992. Generating referring expressions: Constructing descriptions in a domain of objects and processes. The MIT Press.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Computational interpretations of the gricean maxims in the generation of referring expressions",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    },
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Cognitive science",
                "volume": "19",
                "issue": "2",
                "pages": "233--263",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert Dale and Ehud Reiter. 1995. Computational interpretations of the gricean maxims in the gener- ation of referring expressions. Cognitive science, 19(2):233-263.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Referring expression generation through attribute-based heuristics",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    },
                    {
                        "first": "Jette",
                        "middle": [],
                        "last": "Viethen",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 12th European workshop on natural language generation",
                "volume": "",
                "issue": "",
                "pages": "58--65",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert Dale and Jette Viethen. 2009. Referring ex- pression generation through attribute-based heuris- tics. In Proceedings of the 12th European work- shop on natural language generation (ENLG 2009), pages 58-65.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Computational models of referring: a study in cognitive science",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kees Van Deemter",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kees van Deemter. 2016. Computational models of re- ferring: a study in cognitive science. MIT Press.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Content determination in GRE: Evaluating the evaluator",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Kees Van Deemter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Using Corpora for Natural Language Generation: Language Generation and Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kees van Deemter and Albert Gatt. 2007. Content de- termination in GRE: Evaluating the evaluator. In Us- ing Corpora for Natural Language Generation: Lan- guage Generation and Machine Translation.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Generation of referring expressions: Assessing the incremental algorithm",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Kees Van Deemter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Ielka Van Der Sluis",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Power",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Cognitive science",
                "volume": "36",
                "issue": "5",
                "pages": "799--836",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kees van Deemter, Albert Gatt, Ielka van der Sluis, and Richard Power. 2012. Generation of referring expressions: Assessing the incremental algorithm. Cognitive science, 36(5):799-836.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Investigating the content and form of referring expressions in Mandarin: introducing the mtuna corpus",
                "authors": [
                    {
                        "first": "Le",
                        "middle": [],
                        "last": "Kees Van Deemter",
                        "suffix": ""
                    },
                    {
                        "first": "Rint",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Xiao",
                        "middle": [],
                        "last": "Sybesma",
                        "suffix": ""
                    },
                    {
                        "first": "Bo",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Muyun",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 10th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "213--217",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-3532"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kees van Deemter, Le Sun, Rint Sybesma, Xiao Li, Bo Chen, and Muyun Yang. 2017. Investigating the content and form of referring expressions in Man- darin: introducing the mtuna corpus. In Proceed- ings of the 10th International Conference on Natural Language Generation, pages 213-217, Santiago de Compostela, Spain. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "When redundancy is useful: A bayesian approach to \"overinformative\" referring expressions",
                "authors": [
                    {
                        "first": "Judith",
                        "middle": [],
                        "last": "Degen",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Robert",
                        "suffix": ""
                    },
                    {
                        "first": "Caroline",
                        "middle": [],
                        "last": "Hawkins",
                        "suffix": ""
                    },
                    {
                        "first": "Elisa",
                        "middle": [],
                        "last": "Graf",
                        "suffix": ""
                    },
                    {
                        "first": "Noah D",
                        "middle": [],
                        "last": "Kreiss",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Goodman",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Judith Degen, Robert D Hawkins, Caroline Graf, Elisa Kreiss, and Noah D Goodman. 2020. When redun- dancy is useful: A bayesian approach to \"overin- formative\" referring expressions. Psychological Re- view.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Measures of the amount of ecologic association between species",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lee R Dice",
                        "suffix": ""
                    }
                ],
                "year": 1945,
                "venue": "Ecology",
                "volume": "26",
                "issue": "3",
                "pages": "297--302",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee R Dice. 1945. Measures of the amount of ecologic association between species. Ecology, 26(3):297- 302.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Embodied collaborative referring expression generation in situated human-robot interaction",
                "authors": [
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Fang",
                        "suffix": ""
                    },
                    {
                        "first": "Malcolm",
                        "middle": [],
                        "last": "Doering",
                        "suffix": ""
                    },
                    {
                        "first": "Joyce Y",
                        "middle": [],
                        "last": "Chai",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction",
                "volume": "",
                "issue": "",
                "pages": "271--278",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rui Fang, Malcolm Doering, and Joyce Y Chai. 2015. Embodied collaborative referring expression gen- eration in situated human-robot interaction. In Proceedings of the Tenth Annual ACM/IEEE Inter- national Conference on Human-Robot Interaction, pages 271-278.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Neuralreg: An end-to-end approach to referring expression generation",
                "authors": [
                    {
                        "first": "Diego",
                        "middle": [],
                        "last": "Thiago Castro Ferreira",
                        "suffix": ""
                    },
                    {
                        "first": "\u00c1kos",
                        "middle": [],
                        "last": "Moussallem",
                        "suffix": ""
                    },
                    {
                        "first": "Sander",
                        "middle": [],
                        "last": "K\u00e1d\u00e1r",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Wubben",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1805.08093"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thiago Castro Ferreira, Diego Moussallem,\u00c1kos K\u00e1d\u00e1r, Sander Wubben, and Emiel Krahmer. 2018. Neuralreg: An end-to-end approach to referring expression generation. arXiv preprint arXiv:1805.08093.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Introducing shared tasks to nlg: The tuna shared task evaluation challenges",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Anja",
                        "middle": [],
                        "last": "Belz",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Empirical methods in natural language generation",
                "volume": "",
                "issue": "",
                "pages": "264--293",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Albert Gatt and Anja Belz. 2010. Introducing shared tasks to nlg: The tuna shared task evaluation chal- lenges. In Empirical methods in natural language generation, pages 264-293. Springer.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Survey of the state of the art in natural language generation: Core tasks, applications and evaluation",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Journal of Artificial Intelligence Research",
                "volume": "61",
                "issue": "",
                "pages": "65--170",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural language generation: Core tasks, applications and evaluation. Journal of Artifi- cial Intelligence Research, 61:65-170.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Production of referring expressions: Preference trumps discrimination",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    },
                    {
                        "first": "Kees",
                        "middle": [],
                        "last": "Roger Van Gompel",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Deemter",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Annual Meeting of the Cognitive Science Society",
                "volume": "35",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Albert Gatt, Emiel Krahmer, Roger van Gompel, and Kees van Deemter. 2013. Production of referring expressions: Preference trumps discrimination. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 35.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Evaluating algorithms for the generation of referring expressions using a balanced corpus",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Kees",
                        "middle": [],
                        "last": "Ielka Van Der Sluis",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Deemter",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 11th European Workshop on Natural Language Generation (ENLG'07)",
                "volume": "",
                "issue": "",
                "pages": "49--56",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Albert Gatt, Ielka van der Sluis, and Kees van Deemter. 2007. Evaluating algorithms for the generation of re- ferring expressions using a balanced corpus. In Pro- ceedings of the 11th European Workshop on Natu- ral Language Generation (ENLG'07), pages 49-56, Schloss Dagstuhl, Germany. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Xml format guidelines for the tuna corpus",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Kees",
                        "middle": [],
                        "last": "Ielka Van Der Sluis",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Deemter",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Albert Gatt, Ielka van der Sluis, and Kees van Deemter. 2008. Xml format guidelines for the tuna corpus. Technical report, Technical report, Dept of Comput- ing Science, University of Aberdeen.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Conceptualization in reference production: Probabilistic modeling and experimental testing",
                "authors": [
                    {
                        "first": "Kees",
                        "middle": [],
                        "last": "Roger Van Gompel",
                        "suffix": ""
                    },
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Van Deemter",
                        "suffix": ""
                    },
                    {
                        "first": "Rick",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Snoeren",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Psychological review",
                "volume": "126",
                "issue": "3",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roger van Gompel, Kees van Deemter, Albert Gatt, Rick Snoeren, and Emiel J Krahmer. 2019. Con- ceptualization in reference production: Probabilistic modeling and experimental testing. Psychological review, 126(3):345.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Automatic evaluation of referring expression generation using corpora",
                "authors": [
                    {
                        "first": "Surabhi",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Amanda",
                        "middle": [],
                        "last": "Stent",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the Workshop on Using Corpora for Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "1--6",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Surabhi Gupta and Amanda Stent. 2005. Automatic evaluation of referring expression generation using corpora. In Proceedings of the Workshop on Using Corpora for Natural Language Generation, pages 1- 6. Citeseer.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "When do speakers take into account common ground? Cognition",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "William",
                        "suffix": ""
                    },
                    {
                        "first": "Boaz",
                        "middle": [],
                        "last": "Horton",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Keysar",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "",
                "volume": "59",
                "issue": "",
                "pages": "91--117",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "William S Horton and Boaz Keysar. 1996. When do speakers take into account common ground? Cogni- tion, 59(1):91-117.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "G-tuna: a corpus of referring expressions in german, including duration information",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "David",
                        "suffix": ""
                    },
                    {
                        "first": "Jorrig",
                        "middle": [],
                        "last": "Howcroft",
                        "suffix": ""
                    },
                    {
                        "first": "Vera",
                        "middle": [],
                        "last": "Vogels",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Demberg",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 10th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "149--153",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David M Howcroft, Jorrig Vogels, and Vera Demberg. 2017. G-tuna: a corpus of referring expressions in german, including duration information. In Proceed- ings of the 10th International Conference on Natural Language Generation, pages 149-153.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "On the distribution and reference of empty pronouns",
                "authors": [
                    {
                        "first": "C-T James",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 1984,
                "venue": "Linguistic inquiry",
                "volume": "",
                "issue": "",
                "pages": "531--574",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C-T James Huang. 1984. On the distribution and refer- ence of empty pronouns. Linguistic inquiry, pages 531-574.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "The syntax of chinese",
                "authors": [
                    {
                        "first": "C-T",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Y-H Audrey",
                        "middle": [],
                        "last": "James",
                        "suffix": ""
                    },
                    {
                        "first": "Yafei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Huang C-T James, Y-H Audrey Li, and Yafei Li. 2009. The syntax of chinese. Cambridge, Cambridge). doi, 10.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Learning content selection rules for generating object descriptions in dialogue",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Pamela",
                        "suffix": ""
                    },
                    {
                        "first": "Marilyn",
                        "middle": [
                            "A"
                        ],
                        "last": "Jordan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Journal of Artificial Intelligence Research",
                "volume": "24",
                "issue": "",
                "pages": "157--194",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pamela W Jordan and Marilyn A Walker. 2005. Learn- ing content selection rules for generating object de- scriptions in dialogue. Journal of Artificial Intelli- gence Research, 24:157-194.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Factors causing overspecification in definite descriptions",
                "authors": [
                    {
                        "first": "Ruud",
                        "middle": [],
                        "last": "Koolen",
                        "suffix": ""
                    },
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Martijn",
                        "middle": [],
                        "last": "Goudbeek",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Journal of Pragmatics",
                "volume": "43",
                "issue": "13",
                "pages": "3231--3250",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruud Koolen, Albert Gatt, Martijn Goudbeek, and Emiel Krahmer. 2011. Factors causing overspecifi- cation in definite descriptions. Journal of Pragmat- ics, 43(13):3231-3250.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "The d-tuna corpus: A dutch dataset for the evaluation of referring expression generation algorithms",
                "authors": [
                    {
                        "first": "Ruud",
                        "middle": [],
                        "last": "Koolen",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruud Koolen and Emiel Krahmer. 2010. The d-tuna corpus: A dutch dataset for the evaluation of refer- ring expression generation algorithms. In LREC.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Computational generation of referring expressions: A survey",
                "authors": [
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kees Van Deemter",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Computational Linguistics",
                "volume": "38",
                "issue": "1",
                "pages": "173--218",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emiel Krahmer and Kees van Deemter. 2012. Compu- tational generation of referring expressions: A sur- vey. Computational Linguistics, 38(1):173-218.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Speaking: From intention to articulation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "M"
                        ],
                        "last": "Willem",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Levelt",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Willem JM Levelt. 1993. Speaking: From intention to articulation, volume 1. MIT press.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Problems in the analysis of chinese grammar",
                "authors": [
                    {
                        "first": "Shuxiang",
                        "middle": [],
                        "last": "Lv",
                        "suffix": ""
                    }
                ],
                "year": 1979,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shuxiang Lv. 1979. Problems in the analysis of chinese grammar.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Generation and comprehension of unambiguous object descriptions",
                "authors": [
                    {
                        "first": "Junhua",
                        "middle": [],
                        "last": "Mao",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Toshev",
                        "suffix": ""
                    },
                    {
                        "first": "Oana",
                        "middle": [],
                        "last": "Camburu",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [
                            "L"
                        ],
                        "last": "Yuille",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Murphy",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the IEEE conference on computer vision and pattern recognition",
                "volume": "",
                "issue": "",
                "pages": "11--20",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy. 2016. Generation and comprehension of unambiguous ob- ject descriptions. In Proceedings of the IEEE con- ference on computer vision and pattern recognition, pages 11-20.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "About Chinese",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Newnham",
                        "suffix": ""
                    }
                ],
                "year": 1971,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Newnham. 1971. About Chinese. Penguin Books Ltd.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Building natural language generation systems",
                "authors": [
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ehud Reiter and Robert Dale. 2000. Building natural language generation systems. Cambridge university press.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Manual for the tuna corpus: Referring expressions in two domains",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Ielka Van Der Sluis",
                        "suffix": ""
                    },
                    {
                        "first": "Kees",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Deemter",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ielka van der Sluis, Albert Gatt, and Kees van Deemter. 2006. Manual for the tuna corpus: Referring ex- pressions in two domains. Technical Report AUC- S/TR0705, Department of Computing Science, Univ. of Aberdeen.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Evaluating algorithms for the generation of referring expressions: Going beyond toy domains",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Ielka Van Der Sluis",
                        "suffix": ""
                    },
                    {
                        "first": "Kees",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Deemter",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP'07)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ielka van der Sluis, Albert Gatt, and Kees van Deemter. 2007. Evaluating algorithms for the generation of referring expressions: Going beyond toy domains. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP'07), Borovets, Bulgaria. RANLP.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Improving image captioning evaluation by considering inter references variance",
                "authors": [
                    {
                        "first": "Yanzhi",
                        "middle": [],
                        "last": "Yi",
                        "suffix": ""
                    },
                    {
                        "first": "Hangyu",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "Jinglu",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "985--994",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.93"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yanzhi Yi, Hangyu Deng, and Jinglu Hu. 2020. Im- proving image captioning evaluation by considering inter references variance. In Proceedings of the 58th Annual Meeting of the Association for Compu- tational Linguistics, pages 985-994, Online. Associ- ation for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "text": "Two scenes from the TUNA experiment, in which (a) is a situation from the furniture domain while (b) is from the people domain. more over-specification in Mandarin.",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "num": null,
                "text": "Change of the performance with respected to different probabilities of inserting superfluous TYPE for either the FB+TYPE and IA on either the people domain of MTUNA-OL and ETUNA.",
                "uris": null,
                "type_str": "figure"
            },
            "TABREF3": {
                "num": null,
                "content": "<table/>",
                "html": null,
                "type_str": "table",
                "text": "Experiment results on MTUNA, in which the string after each IA algorithm represents the preference order it uses. For example, \"COS\" means COLOUR > ORIENTATION > SIZE and \"BGHOATSS\" stands for hasGlasses > BEARD > HAIR > ORIENTATION > AGE > hasTie > hasShirt > hasSuit."
            },
            "TABREF4": {
                "num": null,
                "content": "<table><tr><td/><td colspan=\"2\">FURNITURE</td><td/><td/><td/><td colspan=\"2\">PEOPLE</td><td/></tr><tr><td/><td>ETUNA</td><td/><td colspan=\"2\">MTUNA-OL</td><td/><td>ETUNA</td><td/><td colspan=\"2\">MTUNA-OL</td></tr><tr><td>Model</td><td>DICE (SD)</td><td>PRP</td><td>DICE (SD)</td><td colspan=\"2\">PRP Model</td><td>DICE (SD)</td><td>PRP</td><td>DICE (SD)</td><td>PRP</td></tr><tr><td>IA-COS</td><td colspan=\"9\">0.919 (0.12) 62.8 0.915 (0.14) 65.5 IA-GBHOATSS 0.862 (0.17) 50.0 0.724 (0.22) 22.8</td></tr><tr><td>IA-CSO</td><td colspan=\"9\">0.919 (0.12) 62.8 0.915 (0.14) 65.5 IA-BGHOATSS 0.861 (0.17) 50.8 0.719 (0.21) 21.0</td></tr><tr><td>IA-OCS</td><td colspan=\"9\">0.832 (0.14) 26.3 0.823 (0.15) 25.4 IA-GHBOATSS 0.774 (0.20) 27.3 0.674 (0.25) 19.6</td></tr><tr><td>IA-SCO</td><td colspan=\"8\">0.817 (0.14) 20.5 0.808 (0.15) 19.4 IA-BHGOATSS 0.761 (0.19) 25.0 0.621 (0.22)</td><td>7.8</td></tr><tr><td>IA-OSC</td><td colspan=\"6\">0.805 (0.16) 23.7 0.798 (0.17) 23.8 IA-HGBOATSS 0.705 (0.17)</td><td>3.8</td><td>0.609 (0.22)</td><td>4.1</td></tr><tr><td>IA-SOC</td><td colspan=\"6\">0.782 (0.16) 19.9 0.767 (0.17) 19.4 IA-HBGOATSS 0.670 (0.19)</td><td>4.5</td><td>0.570 (0.23)</td><td>3.7</td></tr><tr><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td colspan=\"2\">IA-SSTAOHBG 0.339 (0.10)</td><td>0.0</td><td>0.285 (0.17)</td><td>0.0</td></tr><tr><td colspan=\"6\">FB+TYPE 0.849 (0.17) 41.7 0.849 (0.16) 42.5 FB+TYPE</td><td colspan=\"4\">0.847 (0.17) 44.7 0.734 (0.23) 27.4</td></tr><tr><td>FB</td><td>0.590 (0.23)</td><td>0.6</td><td>0.602 (0.24)</td><td>3.6</td><td>FB</td><td>0.556 (0.16)</td><td>2.3</td><td colspan=\"2\">0.541 (0.26) 11.0</td></tr><tr><td>GR</td><td colspan=\"5\">0.849 (0.17) 41.7 0.849 (0.16) 42.5 GR</td><td colspan=\"4\">0.727 (0.25) 33.3 0.650 (0.28) 21.9</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": ", a Chi Squared Test suggests that, in MTUNA, there are more real over-specifications"
            },
            "TABREF5": {
                "num": null,
                "content": "<table/>",
                "html": null,
                "type_str": "table",
                "text": "Experiment results on the MTUNA-OL and ETUNA. Algorithms are listed from top to bottom in order of their performance on ETUNA."
            },
            "TABREF7": {
                "num": null,
                "content": "<table/>",
                "html": null,
                "type_str": "table",
                "text": "The performance of REG algorithms for REs in different syntactic positions, in which IA is the IA with highest performance in the previous experiments, i.e., the IA-COS and IA-GBHOATSS. \u2020 indicates that there is significant influence of the syntactic position on that algorithm in that domain."
            }
        }
    }
}