File size: 127,597 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:28:08.292384Z"
    },
    "title": "Generating Varied Training Corpora in Runyankore Using a Combined Semantic and Syntactic, Pattern-Grammar-based Approach",
    "authors": [
        {
            "first": "Joan",
            "middle": [],
            "last": "Byamugisha",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research Africa",
                "location": {
                    "addrLine": "45 Juta Street",
                    "settlement": "Braamfontein Johannesburg",
                    "country": "South Africa"
                }
            },
            "email": "joan.byamugisha@ibm.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Machine learning algorithms have been applied to achieve high levels of accuracy in tasks associated with the processing of natural language. However, these algorithms require large amounts of training data in order to perform efficiently. Since most Bantu languages lack the required training corpora because they are computationally under-resourced, we investigated how to generate a large varied training corpus in Runyankore, a Bantu language indigenous to Uganda. We found the use of a combined semantic and syntactic, pattern and grammar-based approach to be applicable to this purpose, and used it to generate one million sentences, both labelled and unlabelled, which can be applied as training data for machine learning algorithms. The generated text was evaluated in two ways: (1) assessing the semantics encoded in word embeddings obtained from the generated text, which showed correct word similarity; and (2) applying the labelled data to tasks such as sentiment analysis, which achieved satisfactory levels of accuracy.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Machine learning algorithms have been applied to achieve high levels of accuracy in tasks associated with the processing of natural language. However, these algorithms require large amounts of training data in order to perform efficiently. Since most Bantu languages lack the required training corpora because they are computationally under-resourced, we investigated how to generate a large varied training corpus in Runyankore, a Bantu language indigenous to Uganda. We found the use of a combined semantic and syntactic, pattern and grammar-based approach to be applicable to this purpose, and used it to generate one million sentences, both labelled and unlabelled, which can be applied as training data for machine learning algorithms. The generated text was evaluated in two ways: (1) assessing the semantics encoded in word embeddings obtained from the generated text, which showed correct word similarity; and (2) applying the labelled data to tasks such as sentiment analysis, which achieved satisfactory levels of accuracy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The application of machine learning algorithms to natural language processing, generation, and understanding has led to the development of highly accurate systems for information extraction, text classification, summarization, question answering, machine translation, image and video captioning (Otter et al., 2018) , and language learning (assessment, support, and analytics) (Vajjala, 2018) . However, large training sets are critical to achieving high levels of accuracy, and, for some applications, creating these training sets is the most time-consuming and expensive part of applying machine learning algorithms (Ratner et al., 2016) . This has resulted in the absence, to a larger extent, of machine learning applications for the very under-resourced Bantu languages. A possible solution to this problem is to generate large datasets that can then be used as training data.",
                "cite_spans": [
                    {
                        "start": 295,
                        "end": 315,
                        "text": "(Otter et al., 2018)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 377,
                        "end": 392,
                        "text": "(Vajjala, 2018)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 618,
                        "end": 639,
                        "text": "(Ratner et al., 2016)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Artificially creating more training data has been applied to speech (Hannun et al., 2014) , image (Taylor and Nitschke, 2017) , and text (D'hondt et al., 2017; Ratner et al., 2016) . Our interest lies in textual data, specifically, a method for how to generate a large training corpus in Runyankore, a Bantu language indigenous to Uganda. We posed the following questions:",
                "cite_spans": [
                    {
                        "start": 68,
                        "end": 89,
                        "text": "(Hannun et al., 2014)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 98,
                        "end": 125,
                        "text": "(Taylor and Nitschke, 2017)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 137,
                        "end": 159,
                        "text": "(D'hondt et al., 2017;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 160,
                        "end": 180,
                        "text": "Ratner et al., 2016)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "1. What are the existing approaches for generating large training textual corpora?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "2. Which one(s) can be applied to generate a varied, semantically coherent training corpus in Runyankore?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our aim was to generate very large corpora, both labelled and unlabelled, which could be used for sentiment and morphological analysis, and to assess word similarity, respectively. We found the use of a combined semantic and syntactic, pattern and grammar-based approach sufficient to generate one million Runyankore sentences , both labelled and unlabelled, from a dictionary of terms categorized into their appropriate parts of speech. We used generation patterns to handle the phrasal structure that comprised: adjectives, adverbs, conjunctions, prepositions, nouns, and verbs. A Context-Free Grammar (CFG) was used for verb conjugation in the simple present, present continuous, near future, remote past, near past, participial present continuous, and participial near future tenses; both primary and secondary negation; as well as the applicative, causative, and passive extensions. The evaluation of the generated text showed that it was correctly semantically related, and applicable to supervised machine learning tasks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The rest of this paper is arranged as follows: Section 2 provides some basics on Runyankore and its complex grammatical structure; Section 3 discusses the existing approaches for generating large training corpora and their applicability to Runyankore; Section 4 details how we generated a large Runyankore corpus and evaluated its level of variation, applicability, and word similarity; and we discuss the implications of this work in Section 5 and conclude in Section 6.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Runyankore is a Bantu language spoken in the south-western part of Uganda (Asiimwe, 2014; Tayebwa, 2014; Turamyomwe, 2011) . It has an agglutinating morphology, where words are formed by adding affixes to their bases, and each affix carries meaning such as tense and aspect (Nurse and Philippson, 2003; Turamyomwe, 2011) as shown in the example below.",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 89,
                        "text": "(Asiimwe, 2014;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 90,
                        "end": 104,
                        "text": "Tayebwa, 2014;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 105,
                        "end": 122,
                        "text": "Turamyomwe, 2011)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 274,
                        "end": 302,
                        "text": "(Nurse and Philippson, 2003;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 303,
                        "end": 320,
                        "text": "Turamyomwe, 2011)",
                        "ref_id": "BIBREF34"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "Runyankore: Ninkimumanya.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "Morphemes: ni-n-ki-mu-many-a English: I still know him/her.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "In the above example, the morpheme ni is the continuous marker; n is the pronoun 'I'; ki is the persistive aspect that translates to 'still'; mu is the third-person pronoun for 'him/her'; many is the verb-root for 'know'; and a is the indicative final vowel.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "Like all Bantu languages, Runyankore assigns all nouns to a class, and it has 20 noun classes (Excluding class 19) (Asiimwe, 2014) . The simple noun comprises a prefix and a stem; for example, omuntu 'person' comprises the class prefix o-mu-(where o is the initial vowel or augment), and the stem -ntu. Additionally, the noun class (NC) is at the heart of an extensive system of concordial agreement that governs agreement in verbs, adjectives, possessives, subject, object, etc. (Katamba, 2003; Maho, 1999; Tayebwa, 2014) . Table 1 shows the noun class (NC) with its number and class prefix, as well as the subject concord (SC), possessive concord (PC), and adjective concord (AC).",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 130,
                        "text": "(Asiimwe, 2014)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 480,
                        "end": 495,
                        "text": "(Katamba, 2003;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 496,
                        "end": 507,
                        "text": "Maho, 1999;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 508,
                        "end": 522,
                        "text": "Tayebwa, 2014)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 525,
                        "end": 532,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "The default phrasal structure in Runyankore, and across Bantu languages, is Subject-Verb-Object (SVO), and the noun precedes its modifiers within a noun phrase (Nurse and Philippson, 2003) . Runyankore's verbal morphology comprises fourteen tenses, six aspects, and nine verbal extensions, and",
                "cite_spans": [
                    {
                        "start": 160,
                        "end": 188,
                        "text": "(Nurse and Philippson, 2003)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "NC SC PC AC 1. o-mu- -a- o-wa o-mu- 2. a-ba- -ba- a-ba a-ba- 3. o-mu- -gu- o-gwa o-mu- 4. e-mi-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "-gi-e-ya e-mi-5. ei-/e-ri--ri-e-rya e-ri-6. a-ma--ga-a-ga a-ma-7. e-ki--ki-e-kya e-ki-8. e-bi--bi-e-bya e-bi-9. e-n-/e-m--e-e-ya e-n-10. e-n-/em--zi-e-za e-n- the general verbal structure is as below (Turamyomwe, 2011): <PreInitial> <Initial> <PostInitial> <Formative> <Limitative> <Infix> <Root> <Extension> <Final> Table 2 from Turamyomwe (2011) shows the different 'slots' in Runyankore's verbal morphology, as well as the morphemes which occupy these slots.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 317,
                        "end": 324,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "11. o-ru- -ru- o-rwa o-ru- 12. a-ka- -ka- a-ka -a-ka- 13. o-tu- -tu- o-twa o-tu- 14. o-bu- -bu- o-bwa o-bu - 15. o-ku- -ku- o-kwa o-ku- 16. a-ha- -ha- a-ha a-ha- 17. o-ku- -ha- - a-ha- 18. o-mu- -ha- - a-ha- 20. o-gu- -gu- o-gwa o-gu- 21. a-ga- -ga- a-ga a-ga-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "The 'PreInitial' contains the primary negation or continuous marker; the 'initial,', the NC-based subject concord; 'the 'PostInitial', the secondary negative; the 'Formative', all tenses except the near past tense; the 'Limitative', the persistive aspect; the 'Infix', the NC-based object concord; the 'Extensions', that specify valency-changing categories and include the causative, applicative, stative, reciprocal, reversive, repetitive, intensive, instrumental, and passive; and the 'Final' contains morphemes associated with mood (indicative or subjunctive), the near past tense, locatives, emphatic, or declarative (Turamyomwe, 2011). In this section, we only discuss the approaches used to produce large general-purpose corpora that are used in the applications stated in Section 1. We therefore do not include methods for taskoriented training data generation such as Gardent et al. (2017) ; Lebret et al. (2016) ; Wen et al. (2015). We instead focus on four approaches: thesaurus inflation, data counterfeiting, weak supervision, and a combined semantic and syntactic, rule-based and statistical approach. Thesaurus inflation involves probabilistically replacing terms with their synonyms (Zhang and Le-Cun, 2015) . Data counterfeiting is the process of delexicalizing the annotated values from existing training data, and then randomly replacing them with similar related values (Wen et al., 2016) . In weak supervision, training documents are deliberately noisily annotated to produce weighted low quality training data, and the weights are used in a loss function to enable noise-aware training Ratner et al., 2016 . Weak supervision focuses on generating labelled training data, and its use was found to result in training on larger and more diverse corpora during OCR postcorrection (D'hondt et al., 2017) . The combined semantic and syntactic, rule-based and statistical approach has been applied by ForgeAI and comprises: (1) a grammatical model derived from a Probabilistic Context-Free Grammar (PCFG) and refined using human annotations, which learns the grammar that characterizes a particular event; (2) semantic planning, built with a probabilistic graphical model, which decides the semantically relevant roles and tokens to include in an expression; and (3) a surface realizer, which converts a semantic plan into a grammatically correct text (Neely, 2018) .",
                "cite_spans": [
                    {
                        "start": 876,
                        "end": 897,
                        "text": "Gardent et al. (2017)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 900,
                        "end": 920,
                        "text": "Lebret et al. (2016)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1198,
                        "end": 1222,
                        "text": "(Zhang and Le-Cun, 2015)",
                        "ref_id": null
                    },
                    {
                        "start": 1389,
                        "end": 1407,
                        "text": "(Wen et al., 2016)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 1607,
                        "end": 1626,
                        "text": "Ratner et al., 2016",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 1797,
                        "end": 1819,
                        "text": "(D'hondt et al., 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 2366,
                        "end": 2379,
                        "text": "(Neely, 2018)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "Thesaurus inflation, data counterfeiting, and weak supervision all rely on working on existing corpora (labelled data in the case of weak supervision), which Runyankore does not possess, thus creating a 'chicken and egg' problem. Also, thesaurus inflation and data counterfeiting introduce no new semantic variation in the generated text, and this is a key requirement for our preferred training corpus. The combined semantic and syntactic, rule-based and statistical approach is also limited because it requires statistical methods (PCFGs and probabilistic graphical models) which are obtained from large corpora, again, which Runyankore does not possess.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "Despite this, and unlike the first three approaches, we found that the drawbacks of the combined semantic and syntactic, rule-based and statistical approach can be overcome, with some modifications, in order to generate a large corpus in Runyankore. For example, the PCFGs can be substituted with a Context-Free-Grammar-based generator that has already been shown to produce simple verbs in Runyankore (Byamugisha et al., 2016b) and more complex verbs in isiZulu 1 . The semantic planning can be built using generation patterns that have been used in surface realizers for Runyankore (Byamugisha et al., 2016a (Byamugisha et al., , 2017b and isiZulu (Keet and Khumalo, 2014; . However, the use of patterns requires a means of providing enough variation in the patterns so as to generate a varied training corpus. We therefore investigated the use of a combined semantic and syntactic, pattern-grammarbased approach to generate a varied training corpus in Runyankore.",
                "cite_spans": [
                    {
                        "start": 402,
                        "end": 428,
                        "text": "(Byamugisha et al., 2016b)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 584,
                        "end": 609,
                        "text": "(Byamugisha et al., 2016a",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 610,
                        "end": 637,
                        "text": "(Byamugisha et al., , 2017b",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 650,
                        "end": 674,
                        "text": "(Keet and Khumalo, 2014;",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brief Background on Runyankore",
                "sec_num": "2"
            },
            {
                "text": "From previous work on generating text in Runyankore, it has been shown that noun semantics play a crucial role in noun pluralization (Byamugisha et al., 2016c) , verb conjugation (Byamugisha et al., 2016b) , and the generation of other grammatical units such as quantifiers (Byamugisha et al., 2017a) . On the other hand, the syntactical structure of Runyankore is also taken into account during noun pluralization (Byamugisha et al., 2016c) and phonological conditioning (Byamugisha et al., 2016b) . This, together with evidence for the use of a grammar engine (Byamugisha et al., 2017a) and pattern-based generation (Byamugisha et al., 2016a) in Runyankore, are the basis for investigating the use of a combined semantic and syntactic, pattern-grammar-based approach to generate a Runyankore corpus that is large enough and has sufficient variation to be used as training data.. Given that there are supervised and unsupervised machine learning algorithms, we aimed to generate both labelled and unlabelled data, and focused on morphological analysis for the labels..",
                "cite_spans": [
                    {
                        "start": 133,
                        "end": 159,
                        "text": "(Byamugisha et al., 2016c)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 179,
                        "end": 205,
                        "text": "(Byamugisha et al., 2016b)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 274,
                        "end": 300,
                        "text": "(Byamugisha et al., 2017a)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 415,
                        "end": 441,
                        "text": "(Byamugisha et al., 2016c)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 472,
                        "end": 498,
                        "text": "(Byamugisha et al., 2016b)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 618,
                        "end": 644,
                        "text": "(Byamugisha et al., 2016a)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generating Large Varied Training Corpora in Runyankore",
                "sec_num": "4"
            },
            {
                "text": "We first extracted different parts of speech from a Runyankore dictionary (Taylor, 2009) . For both nouns and verbs, we only considered those that are applicable in multiple contexts (such as omuntu 'person' and reeb-'see'), and avoided nouns like egyora 'a cloth measure' and verbs like kusinsina 'stop oneself from saying'. We also avoided proper nouns unless they referred to time or locations. The annotation process on nouns for their sentiment, category, and noun class, on verbs for their type, subject, object, sentiment, and category, and on other parts of speech for their concord, phonological conditioning, and sentiment, was done manually, following the definitions and examples provided in the dictionary.",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 88,
                        "text": "(Taylor, 2009)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Materials And Methods",
                "sec_num": "4.1"
            },
            {
                "text": "Nouns From 2548 singular nouns extracted from the dictionary, we selected 385 nouns. We only considered singular nouns because an existing Runyankore pluralizer (Byamugisha et al., 2016c) is available. We annotated each noun with its noun class, category, and sentiment. We identified 34 noun categories, and also accounted for their taxonomic relationships. Table 3 , it can be seen that a male kinship term (for example, grandfather) categorized as 'kin m' belongs to the superclass 'kins', that in turn belongs to the superclass 'humans' that is a subclass of 'animals', and this is a subclass of 'living' for all living things. Similarly, a fruit belongs to the superclasses 'food' and 'plants', and the latter is a subclass of 'living'.",
                "cite_spans": [
                    {
                        "start": 161,
                        "end": 187,
                        "text": "(Byamugisha et al., 2016c)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 359,
                        "end": 366,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Materials And Methods",
                "sec_num": "4.1"
            },
            {
                "text": "Verbs We selected 198 verbs from the 1330 extracted from the dictionary. As the verbs in the dictionary contain the infinitive ku, as well as the final vowel and verbal extensions, we further preprocessed the selected verbs to their roots, and annotated each with its subject category, sentiment, type, and object category. The subject categories correspond to the noun categories shown in Table 3, and we only considered seven verb types: action, catenative, copulative, dependent, performative, predicative, and stative. We also identified 28 object categories, which included whether the verb is intransitive, transitive, or ditransitive. From the categories shown in Table 4 , the subject and object of a verb can be obtained to produce a sentence. For example, the verb root ih for 'remove' is marked as having type 'dependent' and object category 'ditransitive locative'. A dependent verb requires a preposition, and the indirect object is a location, resulting in a pattern where the direct object is removed from somewhere.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 671,
                        "end": 678,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Materials And Methods",
                "sec_num": "4.1"
            },
            {
                "text": "Other Parts of Speech For the other parts of speech, we extracted 21 adjectives, 6 adverbs, 7 conjunctions, and 8 prepositions. We annotated each with its concord (whether subject, adjective, relative, possessive, or pronomial), if phonological conditioning is required (and if so, what kind), and sentiment. The sentiment labels used here, as well as for nouns and verbs, are 'good', 'bad', 'none', and 'both'. The label 'both' is used where the sentiment of the part of speech can be either bad or good depending on the context in which it is used.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Materials And Methods",
                "sec_num": "4.1"
            },
            {
                "text": "Pattern Structures When determining pattern structures, we referred to the sentence structure used in the Runyankore newspaper Orumuri 2 . We aimed to cover the past, present, and future tenses, and based on a manual analysis of the tenses, aspects, and extensions used in this newspaper, we considered the simple present, present continuous, near future, remote past, near past, participial present continuous, and participial near future tenses. We also considered the applicative, causative, and passive extensions; the indicative and subjunctive moods; as well as primary and secondary negation. Algorithm 4.1 below shows a simple sentence pattern.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Materials And Methods",
                "sec_num": "4.1"
            },
            {
                "text": "The pattern shown in Algorithm 4.1 is the simplest possible pattern, with the object concord conjugated in the verb, instead of stating the object explicitly. It can be enhanced to include adjectives, adverbs, negation, tense and aspect, pluralization, and sentiment. Algorithm 4.2 shows a more complicated pattern.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Materials And Methods",
                "sec_num": "4.1"
            },
            {
                "text": "In Algorithm 4.2, the sentiment is used when selecting the noun, vverb, and adjective. The sentence output pattern shows the placement of the different parts of speech, as well as the use of two verb types, 'copulative' and 'stative'. {get the noun class of the noun} 5: vr \u2190 getV erbRoot( 'action') {Randomly get a verb root of type 'action'} 6: t \u2190 getT ense(tenses) {Randomly select a tense from the available tenses} 7: o \u2190 getObjectCategory (vr) {get the appropriate object category for the verb} 8: o \u2190 getN oun(o ) {Randomly obtain a noun based on the object category} 9: oc \u2190 getObjectConcord(nc) {Use the noun class to get the object concord} 10: sc \u2190 getSubjectConcord(nc) {Use the noun class to get the subject concord} 11: v \u2190 conjugateV erb(t, sc, oc, vr, fv) {Conjugate the verb for the tense t, object concord oc, and final vowel fv} 12: Result \u2190 \" n v \" {Generate the sentence} 13: return Result mar (CFG) to conjugate verbs in Runyankore (Byamugisha et al., 2016b) .",
                "cite_spans": [
                    {
                        "start": 446,
                        "end": 450,
                        "text": "(vr)",
                        "ref_id": null
                    },
                    {
                        "start": 955,
                        "end": 981,
                        "text": "(Byamugisha et al., 2016b)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Materials And Methods",
                "sec_num": "4.1"
            },
            {
                "text": "We extended the existing Runyankore CFGs to include the tenses and aspects observed in the sentences in the Orumuri newspaper. The slots in Table  2 formed the non-terminals in the CFG, while the morphemes formed the terminals. In the CFG shown below, IG is the non-terminal with the initial grouping, with a production rule for the PN, the 'PreInitial', IT, the 'Initial', and SN, the 'PostInitial'; FM is for the 'Formative'; LM, the 'Limitative'; IF, the 'Infix'; VR, the verb root; EX, the 'Extensions'; and FN the 'Final'.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 140,
                        "end": 148,
                        "text": "Table  2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Verb Conjugation",
                "sec_num": null
            },
            {
                "text": "S \u2192 IG F M LM IF V R EX F N IG \u2192 P N IT SN P N \u2192 ti | ni IT \u2192 a | o | n | tu | mu | ba | gu | gi | ri | ga | ki | bi | e | zi | ru | tu | ka | bu | ku | gu | ga SN \u2192 ta F M \u2192 za | ka | riku | rikuza LM \u2192 ki IF \u2192 mu | ba | gu | gi | ri | ma | ki | bi | gi | zi | ru | tu | ka | bu | ha | gu | ga V R \u2192 verbRoot EX \u2192 w | er | erer | ir | zi | is | n | ur | uur | gur | V S | isP N F N \u2192 a | e | ire",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Verb Conjugation",
                "sec_num": null
            },
            {
                "text": "The above CFG accounts for rules stating which slots can and cannot co-occur. For example, the continuous marker ni cannot co-occur with the primary negative ti or the secondary negative ta (Turamyomwe, 2011). {get the noun class of the noun} 6: vr1 \u2190 getV erbRoot('copulative') {Randomly get a copulative verb root} 7: vr2 \u2190 getV erbRoot ('stative', s) {Randomly get a stative verb root based on the sentiment} 8: t \u2190 getT ense(tenses) {Randomly select a tense from the available tenses} 9: ac \u2190 getAdjectivalConcord(nc) {Use the noun class to get the adjectival concord} 10: ar \u2190 getAdjectivalRoot(s) {Randomly get an adjectival root based on the tense} 11: aj \u2190 getAdjective(nc, ar) {Obtain the full adjective using the adjectival root and concord} 12: av \u2190 getAdjective() {Randomly get an adverb} 13: sc \u2190 getSubjectConcord(nc) {Use the noun class to get the subject concord} 14: v1 \u2190 conjugateV erb (sc, vr1) {Conjugate the copulative verb with the subject concord sc} 15: v2 \u2190 conjugateV erb (t, sc, vr, fv) {Conjugate the stative verb for the tense t, subject concord sc, and final vowel fv} 16: Result \u2190 \" n aj v1 v2 av \" {Generate the sentence} 17: return Result",
                "cite_spans": [
                    {
                        "start": 339,
                        "end": 353,
                        "text": "('stative', s)",
                        "ref_id": null
                    },
                    {
                        "start": 904,
                        "end": 913,
                        "text": "(sc, vr1)",
                        "ref_id": null
                    },
                    {
                        "start": 998,
                        "end": 1013,
                        "text": "(t, sc, vr, fv)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Verb Conjugation",
                "sec_num": null
            },
            {
                "text": "The surface realizer was implemented as a Java application, with the verb conjugation based on the CFG Java tool by Xu et al. (2011) . From the annotated resources and the selected generation patterns, we generated text in seven tenses: the simple present tense, which has no tense morpheme; the present continuous tense that uses the continuous marker ni-; the near future tense, -zathat applies to the infinitive form of the verb; the remote past tense, -ka-; the near past tense, -ire; the participial present continuous tense, -riku-; and the participial near future tense, -rikuza-(Turamyomwe, 2011). All these tenses, except for the near past tense that is placed in the final slot, are placed in the formative slot in Table 2 .",
                "cite_spans": [
                    {
                        "start": 116,
                        "end": 132,
                        "text": "Xu et al. (2011)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 725,
                        "end": 732,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Training Data Generation",
                "sec_num": "4.2"
            },
            {
                "text": "We also used the applicative (-er-and -erer-), causative (-ir-), and passive (-w-) extensions that are placed in the extensions slot in Table 2 ; the indicative (-a-) and subjunctive (-e) moods that are placed in the final slot; as well as primary negation (ti-) that is placed in the initial slot, and secondary negation (-ta-) that is placed in the post-initial slot in Table 2 (Turamyomwe, 2011).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 136,
                        "end": 143,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 372,
                        "end": 379,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Training Data Generation",
                "sec_num": "4.2"
            },
            {
                "text": "Of the seven conjunctions, four (haza, reero, kandi, and obwo) are different variations of 'and', thus the proceeding phrase should maintain the same sentiment as the preceding phrase. On the other hand, three of the conjunctions (kwonka, okwihaho, and baitu) are different variations of 'but', and should therefore change the sentiment of the proceeding phrase. Given a type of verb, a sentiment, and a noun category, sentiment change was implemented in three ways: (1) using an adjective or adverb of the opposite sentiment; (2) negating the verb, which would make a positive verb negative, and vice versa; and (3) changing the sentiment itself, and then using it to obtain verbs and nouns of this new sentiment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Data Generation",
                "sec_num": "4.2"
            },
            {
                "text": "In order to vary the structure and content of each sentence, we randomly selected the sentence pattern to use, which specific part-of-speech to realize based on the different noun categories, verb types, and the sentiment of the adjectives, when to pluralize the nouns, as well as whether to change, negate, or keep the existing sentiment. We also performed phonological conditioning that is required during generation, where, due to the agglutinative structure of Runyankore, the generated text can contain letter combinations that do not exist in Runyankore phonology. When this occurs, phonological rules are used to make the required changes that reflect the sound change, and this is referred to as phonological conditioning (Maho, 1999) . Phonological conditioning was performed during noun pluralization, verb conjugation, and pattern realization, and was achieved through vowel coalescence (adding an extra vowel), vowel elision (deleting a vowel), vowel harmony (considering the presence of a nasal compound), vowel assimilation (replacing a vowel with an apostrophe), or by deleting or adding a consonant.",
                "cite_spans": [
                    {
                        "start": 730,
                        "end": 742,
                        "text": "(Maho, 1999)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Data Generation",
                "sec_num": "4.2"
            },
            {
                "text": "Finally, a boolean flag was used to decide whether to generate labelled or unlabelled data. Table 5 shows the different tags that were considered for labelling the morphology of the generated text. These tags were based on the labels used in a Runyankore dictionary (Taylor, 2009) for different parts of speech, as well as the tags used in the morphological analyzers by Eiselen and Puttkammer (2014) ",
                "cite_spans": [
                    {
                        "start": 266,
                        "end": 280,
                        "text": "(Taylor, 2009)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 371,
                        "end": 400,
                        "text": "Eiselen and Puttkammer (2014)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 92,
                        "end": 99,
                        "text": "Table 5",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Training Data Generation",
                "sec_num": "4.2"
            },
            {
                "text": "We generated a one million sentence generalpurpose domain independent corpus. We also generated labelled data, with labels for sentiment, parts-of-speech (such as noun, adjective, preposition, etc.) as well as the morphological units of the conjugated verb. From the 28 object categories, 7 tenses, 3 extensions, 8 major patterns, and 4 sentiment adjustment options, we created 18,816 different ways of varying the sentence structure for a single subject, verb, and object. Further variation is introduced by performing noun pluralization, having 34 different noun categories and 7 different verb types, as well as 7 different conjunctions for the 8 major patterns. We evaluated for the quality of the generated text using a task-based evaluation, where we applied the generated text to some supervised and unsupervised machine learning tasks. For the latter, we used FastText to obtain word vectors and assess the semantic relatedness from the generated text. We also trained and tested a sentiment analysis text classifier based on FastText .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Evaluation",
                "sec_num": "4.3"
            },
            {
                "text": "Assessing Semantic Relatedness We obtained word vectors and queried for nearest neighbors. The query word was selected based on its semantic category, that is, whether it is a noun for people, plants, or animals, or an adjective. The examples in Table 6 show the query word and the first five results according to highest confidence.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 246,
                        "end": 253,
                        "text": "Table 6",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Evaluation",
                "sec_num": "4.3"
            },
            {
                "text": "Results omuntu (person) omugyesi (reaper), omutaahi (companion), omukoreesa (overseer), omushomesa (teacher), omukuru (elder) omuti (tree) omutumba (banana tree), omwani (coffee tree), omuzaabibu (grape or grapevine), omucungwa (orange), omugusha (sorghum) omukono (arm) omunwa (mouth), omutwe (head), eriino (tooth), enkokora (elbow), okuguru (leg) embwa (dog) embeba (rat), enkyende (monkey), empungu (bird of prey), enumi (bull), enyawaawa (green ibis) rungi (beautiful) rurungi (beautiful), rukuru (important), rirungi (beautiful), oruyonjo (clean/tidy), orurikutukura (pure) rofa (dirty) erirofa (dirty), eriruhire (tired), rigufu (short), erifiire (stupid), ribi (ugly) The results in Table 6 show that the semantics embedded in the generated text are correctly associated as similar.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 691,
                        "end": 698,
                        "text": "Table 6",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Query Word",
                "sec_num": null
            },
            {
                "text": "Performing Sentiment Analysis In order to perform sentiment analysis on the generated text, we also stored the sentiment of each sentence (whether good, bad, none, or both) in a separate file; each sentence labelled according to the FastText default style of ' label '. For example, a sentence with a 'bad' sentiment is labelled as: label bad omunywi mugufu naaba naatomera obugaari kandi omurofa mugufu naaba naatomera ekyarani, 'The short beer supplier spends time knocking over wheelbarrows and the short dirty one spends time knocking over sowing machines'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Query Word",
                "sec_num": null
            },
            {
                "text": "We trained two models, one that accounts for all four sentiments, and another that only predicts 'good' or 'bad'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Query Word",
                "sec_num": null
            },
            {
                "text": "Each sentiment has over 200,000 examples in the dataset ('good'=270,720, 'bad'=271,031, 'none'=207,796, and 'both'=250,453) . The four-sentiment model was trained on 800,000 sentences and tested on 200,000 sentences, and achieved 64% accuracy. The binary sentiment model had a dataset with 541,751 examples, and it was trained on 500,000 sentences and tested on 41,751 sentences, and achieved 77.3% accuracy. These results show a good first attempt at sentiment analysis for Runyankore.",
                "cite_spans": [
                    {
                        "start": 56,
                        "end": 123,
                        "text": "('good'=270,720, 'bad'=271,031, 'none'=207,796, and 'both'=250,453)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Query Word",
                "sec_num": null
            },
            {
                "text": "We investigated how to solve the problem of the lack of training data in Runyankore, and found several ways in which training data can be generated. We found the use of a combined semantic and syntactic, pattern-grammar-based approach to be applicable to the grammatical complexity and under-resourced state of Runyankore. Using this approach, we were able to generate one million labelled and unlabelled sentences in seven of Runyankore's 14 tenses. This large dataset can be used in both supervised and unsupervised machine learning algorithms for various tasks as shown in our evaluation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "The effort required to generate this dataset is significant, as explained in Section 4.1. The grammatical aspects too are specific to Runyankore's morphology. Despite this, previous work has shown that the important text generation aspects-noun pluralization, verb conjugation, and pattern-based generation-can be generalized to other agglutinating Bantu languages. For noun pluralization, a generic noun pluralizer exists for agglutinating Bantu languages (Byamugisha et al., 2018) . Verb conjugation using CFGs has also been shown to be possible for isiZulu , another agglutinating Bantu language. Finally, the ability to bootstrap text generation patterns from one agglutinating Bantu language to another was shown in (Byamugisha, 2019) . We therefore hypothesize that, with some tailoring, this approach may be generalizable to other Bantu languages.",
                "cite_spans": [
                    {
                        "start": 457,
                        "end": 482,
                        "text": "(Byamugisha et al., 2018)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 721,
                        "end": 739,
                        "text": "(Byamugisha, 2019)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "Interestingly, the results from word similarity evaluation in Table 6 hint on the possibility of using this approach to identify the noun class (NC) of a noun. Generally, the classes of nouns in Bantu languages are based on the semantics of the noun. Table 7 shows the semantic generalizations of the types of nouns in each class (Keet and Khumalo, 2014; Baertlein and Ssekitto, 2014; Kimenyi, 2004; Jeon et al., 2015; Zentz, 2016; Taraldsen, 2010; Mohlala, 2003; Katamba, 2003; Maho, 1999) .",
                "cite_spans": [
                    {
                        "start": 330,
                        "end": 354,
                        "text": "(Keet and Khumalo, 2014;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 355,
                        "end": 384,
                        "text": "Baertlein and Ssekitto, 2014;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 385,
                        "end": 399,
                        "text": "Kimenyi, 2004;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 400,
                        "end": 418,
                        "text": "Jeon et al., 2015;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 419,
                        "end": 431,
                        "text": "Zentz, 2016;",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 432,
                        "end": 448,
                        "text": "Taraldsen, 2010;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 449,
                        "end": 463,
                        "text": "Mohlala, 2003;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 464,
                        "end": 478,
                        "text": "Katamba, 2003;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 479,
                        "end": 490,
                        "text": "Maho, 1999)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 62,
                        "end": 69,
                        "text": "Table 6",
                        "ref_id": "TABREF11"
                    },
                    {
                        "start": 251,
                        "end": 258,
                        "text": "Table 7",
                        "ref_id": "TABREF13"
                    }
                ],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "Description of Associated Nouns  1 and 2  People and kinship  3 and 4 Plants, nature, and some parts of the body 5 and 6",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 26,
                        "end": 69,
                        "text": "Nouns  1 and 2  People and kinship  3 and 4",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Noun Class",
                "sec_num": null
            },
            {
                "text": "Fruits, liquids, some parts of the body, and paired things 7 and 8",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Class",
                "sec_num": null
            },
            {
                "text": "Inanimate The inability to detect the noun class of nouns with the same prefix but belonging to different classes (such as omuntu (person) in NC 1 and omuti (tree) in NC 3) is a big problem in Bantu language computational linguistics. This is because, as explained in Section 2, the noun class (NC) is at the heart of an extensive system of concordial agreement, and getting the NC wrong can result in incorrect noun pluralization, verb conjugation, as well as other parts -of-speech such as adjectives and possessives.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Class",
                "sec_num": null
            },
            {
                "text": "Comparing the semantic categories of nouns in Table 7 with the examples in Table 6 , it can be seen that omuntu and its related words, people terms, would belong to NC 1; the omuti group, plants, would fit in NC 3; the omukono group, parts of the body, can be split among NCs 3 and 5; and embwa, animals, can be placed in NC 9.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 46,
                        "end": 53,
                        "text": "Table 7",
                        "ref_id": "TABREF13"
                    },
                    {
                        "start": 75,
                        "end": 82,
                        "text": "Table 6",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Noun Class",
                "sec_num": null
            },
            {
                "text": "Existing approaches for surface realization in Runyankore (Byamugisha et al., 2016a (Byamugisha et al., , 2017b and isiZulu (Keet and Khumalo, 2014; annotate nouns with their noun class (NC) in order to solve the problem of having the same class prefix in different classes (see classes 1, 3, and 18 in Table 1 in Section 2). However, our results from word similarity evaluation show that a semantic distinction is made between people nouns (that are found in NC 1; see the omuntu example in Table 6 ) and other nouns starting with the omuprefix (see the omuti and omukono examples in Table 6 ).",
                "cite_spans": [
                    {
                        "start": 58,
                        "end": 83,
                        "text": "(Byamugisha et al., 2016a",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 84,
                        "end": 111,
                        "text": "(Byamugisha et al., , 2017b",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 124,
                        "end": 148,
                        "text": "(Keet and Khumalo, 2014;",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 303,
                        "end": 310,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 492,
                        "end": 499,
                        "text": "Table 6",
                        "ref_id": "TABREF11"
                    },
                    {
                        "start": 585,
                        "end": 592,
                        "text": "Table 6",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Noun Class",
                "sec_num": null
            },
            {
                "text": "Finally, while the results on sentiment analysis are not spectacular, our work is, to the best of our knowledge, the first sentiment analysis module for Runyankore. Additionally, the results from the word similarity evaluation also show that different sentiments can be distinguished (see the rungi and rofa examples in Table 6 ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 320,
                        "end": 327,
                        "text": "Table 6",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Noun Class",
                "sec_num": null
            },
            {
                "text": "In this paper, we investigated how to generate a large and varied corpus to act as training data for a grammatically complex and computationally underresourced language, Runyankore. We found the use of a combined semantic and syntactic, patterngrammar-based approach to be applicable to Runyankore. Using this approach, we were able to generate one million labelled and unlabelled sentences, that were evaluated as correctly encoding related word semantics, and performing well when applied to a supervised machine learning task, sentiment analysis. Future work will involve identifying a qualitative evaluation for the dataset; manually labelling sentences from Orumuri for sentiment, in order to have an independent dataset to evaluate sentiment analysis, and investigating how the labelled data can be used together with the word similarity results to determine the noun class of a noun.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "isiZulu is a Bantu language indigenous to South Africa",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Definiteness and Specificity in Runyankore-Rukiga",
                "authors": [
                    {
                        "first": "Allen",
                        "middle": [],
                        "last": "Asiimwe",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Stallenbosch University",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Allen Asiimwe. 2014. Definiteness and Specificity in Runyankore-Rukiga. Ph.D. thesis, Stallenbosch Uni- versity, Cape Town, South Africa.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Learning the structure of generative models without labeled data",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Bach",
                        "suffix": ""
                    },
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Ratner",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "R\u00e9",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "34th International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Stephen Bach, Bryan He, Alexander Ratner, and Christopher R\u00e9. 2017. Learning the structure of gen- erative models without labeled data. In 34th Inter- national Conference on Machine Learning (ICML 2017), Sidney, Austtralia. ArXiv.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Luganda nouns inflectional morphology and tests",
                "authors": [
                    {
                        "first": "Elizabeth",
                        "middle": [],
                        "last": "Baertlein",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Ssekitto",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Elizabeth Baertlein and Martin Ssekitto. 2014. Lu- ganda nouns inflectional morphology and tests. Lin- guistic Portfolios, 3.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Enriching word vectors with subword information",
                "authors": [
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1607.04606"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vec- tors with subword information. arXiv preprint arXiv:1607.04606.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Ontology Verbalization in Agglutinating Bantu Languages: A Study of Runyankore and its Generalizability",
                "authors": [
                    {
                        "first": "Joan",
                        "middle": [],
                        "last": "Byamugisha",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joan Byamugisha. 2019. Ontology Verbalization in Agglutinating Bantu Languages: A Study of Run- yankore and its Generalizability. Ph.D. thesis, Uni- versity of Cape Town.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Bootstrapping a runyankore cnl from an isizulu cnl",
                "authors": [
                    {
                        "first": "Joan",
                        "middle": [],
                        "last": "Byamugisha",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "Maria"
                        ],
                        "last": "Keet",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Derenzi",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "5th Workshop on Controlled Natural Language (CNL 2016)",
                "volume": "9767",
                "issue": "",
                "pages": "25--36",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joan Byamugisha, C. Maria Keet, and Brian DeRenzi. 2016a. Bootstrapping a runyankore cnl from an isizulu cnl. In 5th Workshop on Controlled Natural Language (CNL 2016), volume 9767, pages 25-36, Aberdeen, Scotland. Springer LNAI.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Tense and aspect in runyankore using a context-free grammar",
                "authors": [
                    {
                        "first": "Joan",
                        "middle": [],
                        "last": "Byamugisha",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "Maria"
                        ],
                        "last": "Keet",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Derenzi",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "9th International Conference on Natural Language Generation (INLG 2016)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joan Byamugisha, C. Maria Keet, and Brian DeRenzi. 2016b. Tense and aspect in runyankore using a context-free grammar. In 9th International Confer- ence on Natural Language Generation (INLG 2016), Edinburgh, Scotland.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Evaluation of a runyankore grammar engine for healthcare messages",
                "authors": [
                    {
                        "first": "Joan",
                        "middle": [],
                        "last": "Byamugisha",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "Maria"
                        ],
                        "last": "Keet",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Derenzi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "10th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joan Byamugisha, C. Maria Keet, and Brian DeRenzi. 2017a. Evaluation of a runyankore grammar en- gine for healthcare messages. In 10th International Conference on Natural Language Generation (INLG 2017), Santiago de Compostela, Spain.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Toward an nlg system for bantu languages: first steps with runyankore (demo)",
                "authors": [
                    {
                        "first": "Joan",
                        "middle": [],
                        "last": "Byamugisha",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "Maria"
                        ],
                        "last": "Keet",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Derenzi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "10th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joan Byamugisha, C. Maria Keet, and Brian DeRenzi. 2017b. Toward an nlg system for bantu languages: first steps with runyankore (demo). In 10th Interna- tional Conference on Natural Language Generation (INLG 2017), Santiago de Compostela, Spain.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Pluralizing nouns in agglutinating bantu languages",
                "authors": [
                    {
                        "first": "Joan",
                        "middle": [],
                        "last": "Byamugisha",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "Maria"
                        ],
                        "last": "Keet",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Derenzi",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "27th International Conference on Computational Linguistics (COLING 2018)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joan Byamugisha, C. Maria Keet, and Brian DeRenzi. 2018. Pluralizing nouns in agglutinating bantu lan- guages. In 27th International Conference on Com- putational Linguistics (COLING 2018), Santa Fe, New Mexico, USA.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Pluralizing nouns in isizulu and related languages",
                "authors": [
                    {
                        "first": "Joan",
                        "middle": [],
                        "last": "Byamugisha",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "Maria"
                        ],
                        "last": "Keet",
                        "suffix": ""
                    },
                    {
                        "first": "Langa",
                        "middle": [],
                        "last": "Khumalo",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "17th International Conference on Intelligent Text Processing and Computational Linguistics",
                "volume": "9626",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joan Byamugisha, C. Maria Keet, and Langa Khumalo. 2016c. Pluralizing nouns in isizulu and related lan- guages. In 17th International Conference on Intel- ligent Text Processing and Computational Linguis- tics (CICLing 2016), volume 9626, Konya, Turkey. Springer LNCS.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Generating a training corpus for ocr post-correction using encoder-decoder model",
                "authors": [
                    {
                        "first": "Cyril",
                        "middle": [],
                        "last": "Eva D'hondt",
                        "suffix": ""
                    },
                    {
                        "first": "Brigitte",
                        "middle": [],
                        "last": "Grouin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grau",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "8th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1006--1014",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eva D'hondt, Cyril Grouin, and Brigitte Grau. 2017. Generating a training corpus for ocr post-correction using encoder-decoder model. In 8th International Joint Conference on Natural Language Processing, pages 1006-1014, Taipei, Taiwan.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Developing text resources for ten south african languages",
                "authors": [
                    {
                        "first": "Roald",
                        "middle": [],
                        "last": "Eiselen",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Martin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Puttkammer",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "3698--3703",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roald Eiselen and Martin J Puttkammer. 2014. Devel- oping text resources for ten south african languages. In LREC, pages 3698-3703.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Creating training corpora for NLG micro-planners",
                "authors": [
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Gardent",
                        "suffix": ""
                    },
                    {
                        "first": "Anastasia",
                        "middle": [],
                        "last": "Shimorina",
                        "suffix": ""
                    },
                    {
                        "first": "Shashi",
                        "middle": [],
                        "last": "Narayan",
                        "suffix": ""
                    },
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Perez-Beltrachini",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "179--188",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1017"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017. Creating train- ing corpora for NLG micro-planners. In Proceed- ings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 179-188, Vancouver, Canada. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Deep speech: Scaling up endto-end speech recognition",
                "authors": [
                    {
                        "first": "Awni",
                        "middle": [],
                        "last": "Hannun",
                        "suffix": ""
                    },
                    {
                        "first": "Carl",
                        "middle": [],
                        "last": "Case",
                        "suffix": ""
                    },
                    {
                        "first": "Jared",
                        "middle": [],
                        "last": "Casper",
                        "suffix": ""
                    },
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Catanzaro",
                        "suffix": ""
                    },
                    {
                        "first": "Greg",
                        "middle": [],
                        "last": "Diamos",
                        "suffix": ""
                    },
                    {
                        "first": "Erich",
                        "middle": [],
                        "last": "Elsen",
                        "suffix": ""
                    },
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Prenger",
                        "suffix": ""
                    },
                    {
                        "first": "Sanjeev",
                        "middle": [],
                        "last": "Satheesh",
                        "suffix": ""
                    },
                    {
                        "first": "Shubho",
                        "middle": [],
                        "last": "Sengupta",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Coates",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [
                            "Andrew"
                        ],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Computational Research",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Awni Hannun, Carl Case, Jared Casper, Bryan Catan- zaro, Greg Diamos, Erich Elsen, Bryan Prenger, San- jeev Satheesh, Shubho Sengupta, Adam Coates, and Y. Andrew Ng. 2014. Deep speech: Scaling up end- to-end speech recognition. Computational Research Repository (CoRR), abs/1412.5567.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A basic sketch grammar of g\u00edk\u00fay\u00fa",
                "authors": [
                    {
                        "first": "Lisa",
                        "middle": [],
                        "last": "Jeon",
                        "suffix": ""
                    },
                    {
                        "first": "Jessica",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Samantha",
                        "middle": [],
                        "last": "Mauney",
                        "suffix": ""
                    },
                    {
                        "first": "Ana\u00ed",
                        "middle": [],
                        "last": "Navarro",
                        "suffix": ""
                    },
                    {
                        "first": "Jonas",
                        "middle": [],
                        "last": "Wittke",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Rice Working Papers in Linguistics",
                "volume": "6",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lisa Jeon, Jessica Li, Samantha Mauney, Ana\u00ed Navarro, and Jonas Wittke. 2015. A basic sketch grammar of g\u00edk\u00fay\u00fa. Rice Working Papers in Linguistics, 6.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Bag of tricks for efficient text classification",
                "authors": [
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1607.01759"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Bantu nominal morphology",
                "authors": [
                    {
                        "first": "Francis",
                        "middle": [],
                        "last": "Katamba",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "The Bantu Languages: Routledge Language Family Series 4, chapter",
                "volume": "",
                "issue": "",
                "pages": "103--120",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Francis Katamba. 2003. Bantu nominal morphology. In The Bantu Languages: Routledge Language Fam- ily Series 4, chapter 7, pages 103-120. Taylor and Francis Routledge, London.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Verbalising owl ontologies in isizulu with python",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "M"
                        ],
                        "last": "Keet",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Xakaza",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Khumalo",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "14th Extended Semantic Web Conference (ESWC'17)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. M. Keet, M. Xakaza, and L. Khumalo. 2017. Verbal- ising owl ontologies in isizulu with python. In 14th Extended Semantic Web Conference (ESWC'17), Portoroz, Slovenia. Springer LNCS.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Towards verbalizing ontologies in isizulu",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Keet",
                        "suffix": ""
                    },
                    {
                        "first": "Langa",
                        "middle": [],
                        "last": "Khumalo",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "4th Workshop on Controlled Natural Languages (CNL'14)",
                "volume": "",
                "issue": "",
                "pages": "78--89",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Maria Keet and Langa Khumalo. 2014. Towards verbalizing ontologies in isizulu. In 4th Workshop on Controlled Natural Languages (CNL'14), pages 78-89, Galway, Ireland.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Grammar rules for the isizulu complex verb. Southern African Linguistics and Applied Language Studies",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Keet",
                        "suffix": ""
                    },
                    {
                        "first": "Langa",
                        "middle": [],
                        "last": "Khumalo",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "35",
                "issue": "",
                "pages": "183--200",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Maria Keet and Langa Khumalo. 2017. Grammar rules for the isizulu complex verb. Southern African Linguistics and Applied Language Studies, 35:183- 200.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Kinyarwanda morphology",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Kimenyi",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Morphology: An International Handbook for Inflection and Word Formation",
                "volume": "17",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alex Kimenyi. 2004. Kinyarwanda morphology. In Geert Booij, Christian Lehmann, Joachim Mudgan, and Stavros Skopeteas, editors, Morphology: An In- ternational Handbook for Inflection and Word For- mation, volume 17.2. De Gruyter.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Neural text generation from structured data with application to the biography domain",
                "authors": [
                    {
                        "first": "R\u00e9mi",
                        "middle": [],
                        "last": "Lebret",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Grangier",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Auli",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1203--1213",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R\u00e9mi Lebret, David Grangier, and Michael Auli. 2016. Neural text generation from structured data with ap- plication to the biography domain. In 2016 Con- ference on Empirical Methods in Natural Language Processing, pages 1203-1213, Austin, Texas. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "A Comparative Study of Bantu Noun Classes",
                "authors": [
                    {
                        "first": "Jouni",
                        "middle": [],
                        "last": "Maho",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jouni Maho. 1999. A Comparative Study of Bantu Noun Classes. Ph.D. thesis, Goteborg University, Goteborg, Sweden.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "The bantu attribute noun class prefixes and their suffixal counterparts",
                "authors": [
                    {
                        "first": "Linkie",
                        "middle": [],
                        "last": "Mohlala",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Linkie Mohlala. 2003. The bantu attribute noun class prefixes and their suffixal counterparts, with special reference to zulu. Master's thesis, University of Pre- toria, Pretoria, South Africa.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "How we are using natural language generation to scale forge",
                "authors": [
                    {
                        "first": "Jake",
                        "middle": [],
                        "last": "Neely",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jake Neely. 2018. How we are using natural language generation to scale forge.ai. Webpage.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Introduction",
                "authors": [
                    {
                        "first": "Derek",
                        "middle": [],
                        "last": "Nurse",
                        "suffix": ""
                    },
                    {
                        "first": "Gerard",
                        "middle": [],
                        "last": "Philippson",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "The Bantu Languages: Routledge Language Family Series",
                "volume": "4",
                "issue": "",
                "pages": "1--9",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Derek Nurse and Gerard Philippson. 2003. Introduc- tion. In The Bantu Languages: Routledge Language Family Series 4, chapter 1, pages 1-9. Taylor and Francis Routledge, London.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "A survey of the usages of deep learning in natural language processing",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [
                            "W"
                        ],
                        "last": "Otter",
                        "suffix": ""
                    },
                    {
                        "first": "Julian",
                        "middle": [
                            "R"
                        ],
                        "last": "Medina",
                        "suffix": ""
                    },
                    {
                        "first": "Jugal",
                        "middle": [
                            "K"
                        ],
                        "last": "Kalita",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Computing Research",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. 2018. A survey of the usages of deep learning in natural language processing. Computing Research Repository (CoRR), abs/1807.10854.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Snorkel: Rapid training data creation with weak supervision",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Ratner",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [
                            "Stephen"
                        ],
                        "last": "Bach",
                        "suffix": ""
                    },
                    {
                        "first": "Henry",
                        "middle": [],
                        "last": "Ehrenberg",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Fries",
                        "suffix": ""
                    },
                    {
                        "first": "Sen",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Christophher",
                        "middle": [],
                        "last": "R\u00e9",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "VLDB Endowment (PVLDB)",
                "volume": "",
                "issue": "3",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexander Ratner, H. Stephen Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christophher R\u00e9. 2017. Snorkel: Rapid training data creation with weak su- pervision. VLDB Endowment (PVLDB), 11(3).",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Data programming: Creating large training sets, quickly",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Alexander",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher M De",
                        "middle": [],
                        "last": "Ratner",
                        "suffix": ""
                    },
                    {
                        "first": "Sen",
                        "middle": [],
                        "last": "Sa",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Selsam",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "R\u00e9",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Advances in Neural Information Processing Systems 29 (NIPS 2016)",
                "volume": "",
                "issue": "",
                "pages": "3567--3575",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher R\u00e9. 2016. Data pro- gramming: Creating large training sets, quickly. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Infor- mation Processing Systems 29 (NIPS 2016), pages 3567-3575. Curran Associates, Inc., Barcelona, Spain.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "The nanosyntax of nguni noun class prefixes and concords",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Knut Tarald Taraldsen",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Lingua",
                "volume": "120",
                "issue": "6",
                "pages": "1522--1548",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Knut Tarald Taraldsen. 2010. The nanosyntax of nguni noun class prefixes and concords. Lingua, 120(6):1522-1548.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Demonstrative determiners in runyankore-rukiga",
                "authors": [
                    {
                        "first": "Doreen",
                        "middle": [
                            "Daphine"
                        ],
                        "last": "Tayebwa",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Master's thesis",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Doreen Daphine Tayebwa. 2014. Demonstrative deter- miners in runyankore-rukiga. Master's thesis, Nor- wegian University of Science and Technology, Nor- way.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "A Simplified Runyankore-Rukiga-English Dictionary",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Taylor",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Taylor. 2009. A Simplified Runyankore-Rukiga- English Dictionary. Fountain Publishers, Kampala, Uganda.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Improving deep learning using generic data augmentation networks",
                "authors": [
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Taylor",
                        "suffix": ""
                    },
                    {
                        "first": "Geoff",
                        "middle": [],
                        "last": "Nitschke",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Computing Research",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Luke Taylor and Geoff Nitschke. 2017. Improving deep learning using generic data augmentation net- works. Computing Research Repository (CoRR), abs/1708.06020.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Tense and aspect in runyankore-rukiga: Linguistic resources and analysis",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Justus Turamyomwe",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Justus Turamyomwe. 2011. Tense and aspect in runyankore-rukiga: Linguistic resources and analy- sis. Master's thesis, Norwegian University of Sci- ence and Technology, Norway.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Machine learning and applied linguistics. The Encyclopedia of Applied Linguistics",
                "authors": [
                    {
                        "first": "Sowmya",
                        "middle": [],
                        "last": "Vajjala",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "https://onlinelibrary.wiley.com/doi/abs/10.1002/9781405198431.wbeal1486"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sowmya Vajjala. 2018. Machine learning and applied linguistics. The Encyclopedia of Applied Linguis- tics.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Multi-domain neural network language generation for spoken dialogue systems",
                "authors": [
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Tsung-Hsien Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Nikola",
                        "middle": [],
                        "last": "Gasic",
                        "suffix": ""
                    },
                    {
                        "first": "Lina",
                        "middle": [
                            "Maria"
                        ],
                        "last": "Mrksic",
                        "suffix": ""
                    },
                    {
                        "first": "Pei-Hao",
                        "middle": [],
                        "last": "Rojas-Barahona",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "J. Steve",
                        "middle": [],
                        "last": "Vandyke",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "15th Annual Conference of the North American Chapter of the Association for Computational Linguistics-Human Language Technologies (NAACL-HLT)",
                "volume": "",
                "issue": "",
                "pages": "120--129",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina Maria Rojas-barahona, Pei-hao Su, David Vandyke, and J. Steve Young. 2016. Multi-domain neural network language generation for spoken di- alogue systems. In 15th Annual Conference of the North American Chapter of the Association for Com- putational Linguistics-Human Language Technolo- gies (NAACL-HLT), pages 120-129, San Diego, Cal- ifornia, USA. Association for Computational Lin- guistics (ACL), Association for Computational Lin- guistics (ACL).",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Semantically conditioned lstm-based natural language generation for spoken dialogue systems",
                "authors": [
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Tsung-Hsien Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Nikola",
                        "middle": [],
                        "last": "Gas\u00edc",
                        "suffix": ""
                    },
                    {
                        "first": "Pei-Hao",
                        "middle": [],
                        "last": "Mrks\u00edc",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Vandyke",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1711--1721",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tsung-Hsien Wen, Milica Gas\u00edc, Nikola Mrks\u00edc, Pei- Hao Su, David Vandyke, and Steve Young. 2015. Se- mantically conditioned lstm-based natural language generation for spoken dialogue systems. In 2015 Conference on Empirical Methods in Natural Lan- guage Processing, pages 1711-1721, Lisbon, Portu- gal. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "A toolkit for generating sentences from context-free grammars",
                "authors": [
                    {
                        "first": "Zhiwu",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Lixiao",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    },
                    {
                        "first": "Haiming",
                        "middle": [],
                        "last": "Zhen",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "International Journal of Software and Informatics",
                "volume": "5",
                "issue": "",
                "pages": "659--676",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhiwu Xu, Lixiao Zheng, and Haiming Zhen. 2011. A toolkit for generating sentences from context-free grammars. International Journal of Software and In- formatics, 5:659-676.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Forming Wh-Questions in Shona: A Comparative Bantu Perspective",
                "authors": [
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Zentz",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jason Zentz. 2016. Forming Wh-Questions in Shona: A Comparative Bantu Perspective. Ph.D. thesis, Yale University.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Text understanding from scratch",
                "authors": [
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yann",
                        "middle": [],
                        "last": "Lecun",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Computing Research",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiang Zhang and Yann LeCun. 2015. Text understand- ing from scratch. Computing Research Repository (CoRR), abs/1502.01710.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "",
                "num": null
            },
            "TABREF2": {
                "type_str": "table",
                "content": "<table><tr><td>: Verbal morphology of Runyankore; App: ap-</td></tr><tr><td>plicative, Cs: causative, Ps: passive, Rec: reciprocal,</td></tr><tr><td>Rev: reversive, Stv: stative, Itv: intensive, Red: redu-</td></tr><tr><td>plicative, Ism: instrumental</td></tr><tr><td>3 Approaches to Generating Textual</td></tr><tr><td>Training Corpora</td></tr></table>",
                "html": null,
                "text": "",
                "num": null
            },
            "TABREF3": {
                "type_str": "table",
                "content": "<table><tr><td>Superclass</td><td>Noun Categories</td></tr><tr><td>abstract</td><td>abstract give, abstract have, ab-</td></tr><tr><td/><td>stract rw, abstract time, prop time</td></tr><tr><td>time</td><td>abstract time, prop time</td></tr><tr><td>food</td><td>food fruit, food liquid, food plant,</td></tr><tr><td/><td>food solid</td></tr><tr><td>kins</td><td>kin, kin f, kin m</td></tr><tr><td>humans</td><td>human, human f, human m, hu-</td></tr><tr><td/><td>man med, human y,kins</td></tr><tr><td>animal</td><td>animal meat, animal plant, animal y</td></tr><tr><td>animals</td><td>animal, humans</td></tr><tr><td>loc</td><td>loc in, loc out, prop loc</td></tr><tr><td>part</td><td>part animal, part plant</td></tr><tr><td>plants</td><td>plant, food fruit, food plant</td></tr><tr><td>non living</td><td>food cook, food loc, thing cloth,</td></tr><tr><td/><td>thing move, thing tool</td></tr><tr><td>living</td><td>animals, plants</td></tr><tr><td>all</td><td>living, non living</td></tr><tr><td colspan=\"2\">&lt;unclassified&gt; illness, thing med</td></tr></table>",
                "html": null,
                "text": "shows the classifications for the different categories.",
                "num": null
            },
            "TABREF4": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "The taxonomic groupings for the different noun categories From",
                "num": null
            },
            "TABREF5": {
                "type_str": "table",
                "content": "<table><tr><td colspan=\"2\">Verb Category Object Categories</td></tr><tr><td>ditransitive</td><td>all, all; illness, med; all, loc</td></tr><tr><td>intransitive</td><td/></tr><tr><td>transitive</td><td>Nouns: abstract, all, animal, food, hu-</td></tr><tr><td/><td>man, illness, living, non living, part,</td></tr><tr><td/><td>plant</td></tr><tr><td>transitive</td><td>Verbs: action, all</td></tr></table>",
                "html": null,
                "text": "shows the object categories for the different verb categories.",
                "num": null
            },
            "TABREF6": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "",
                "num": null
            },
            "TABREF7": {
                "type_str": "table",
                "content": "<table><tr><td/><td/><td/><td/><td colspan=\"2\">Algorithm 4.1 An example of a simple generation</td></tr><tr><td/><td/><td/><td/><td>pattern</td></tr><tr><td/><td/><td/><td/><td>1: sc subject concord</td></tr><tr><td/><td/><td/><td/><td>2: Functions:</td><td>getN oun(nounCategory),</td></tr><tr><td/><td/><td/><td/><td>getN ounClass(n),</td><td>getV erbRoot(type),</td></tr><tr><td/><td/><td/><td/><td>getT ense(tenses),</td><td>getObjectCategory(vr),</td></tr><tr><td/><td/><td/><td/><td>getObjectConcord(nc),</td></tr><tr><td/><td/><td/><td/><td colspan=\"2\">conjugateV erb(t, sc, oc, vr, fv)</td></tr><tr><td/><td/><td/><td/><td colspan=\"2\">3: n \u2190 getN oun(nounCategory) {Randomly obtain a</td></tr><tr><td/><td/><td/><td/><td colspan=\"2\">noun based on one of the categories in Table 3}</td></tr><tr><td/><td/><td/><td/><td>4: nc \u2190 getN ounClass(n)</td></tr><tr><td/><td/><td colspan=\"3\">Previous work shows</td></tr><tr><td colspan=\"5\">that it is possible to use a Context-Free Gram-</td></tr><tr><td>2 Orimuri</td><td>is</td><td>available</td><td>from</td><td>https://www.</td></tr><tr><td colspan=\"5\">newvision.co.ug/new_vision/news/1044356/</td></tr><tr><td>orumuri</td><td/><td/><td/><td/></tr></table>",
                "html": null,
                "text": "Variables: n noun, nc noun class, vr verb root, t tense, o object category, o object, oc object category, v conjugated verb,",
                "num": null
            },
            "TABREF8": {
                "type_str": "table",
                "content": "<table><tr><td colspan=\"3\">4.2 An example of a more complicated</td></tr><tr><td>generation pattern</td><td/></tr><tr><td colspan=\"2\">1: adverb, sc subject concord</td></tr><tr><td>2: Functions:</td><td colspan=\"2\">getN oun(nounCategory, s),</td></tr><tr><td>getN ounClass(n),</td><td/><td>getV erbRoot(type, s),</td></tr><tr><td>getT ense(tenses),</td><td colspan=\"2\">getObjectCategory(vr),</td></tr><tr><td colspan=\"2\">getObjectConcord(nc),</td></tr><tr><td colspan=\"2\">conjugateV erb(t, sc, vr, fv),</td><td>getSentiment(),</td></tr><tr><td>getAdjectivalRoot(s),</td><td/><td>getAdjective(nc, ar),</td></tr><tr><td>getAdverb()</td><td/></tr><tr><td colspan=\"3\">3: s \u2190 getSentiment() {Randomly select from one of</td></tr><tr><td>the four sentiments}</td><td/></tr><tr><td colspan=\"3\">4: n \u2190 getN oun(nounCategory, s) {Randomly obtain</td></tr><tr><td colspan=\"3\">a noun based on its sentiment and one of the categories in</td></tr><tr><td>Table 3}</td><td/></tr><tr><td colspan=\"2\">5: nc \u2190 getN ounClass(n)</td></tr></table>",
                "html": null,
                "text": "Variables: n noun, nc noun class, vr verb root, t tense, o object category, o object, oc object category, v conjugated verb, s sentiment, aj adjective, ar adjectival root, av",
                "num": null
            },
            "TABREF9": {
                "type_str": "table",
                "content": "<table><tr><td>Tag</td><td>Meaning</td></tr><tr><td colspan=\"2\">&lt;NC Number&gt;ac NC + Adjective concord</td></tr><tr><td>adj</td><td>Adjective</td></tr><tr><td>adv</td><td>Adverb</td></tr><tr><td>aug</td><td>Augment</td></tr><tr><td>conj</td><td>Conjunction</td></tr><tr><td>cont</td><td>Continuous marker</td></tr><tr><td>ext</td><td>Extension</td></tr><tr><td>fv</td><td>Final vowel</td></tr><tr><td>inf</td><td>Infinitive</td></tr><tr><td>n&lt;NC number&gt;</td><td>Noun + NC</td></tr><tr><td colspan=\"2\">&lt;NC number&gt;oc NC + object concord</td></tr><tr><td colspan=\"2\">&lt;NC Number&gt;pc NC + Possessive concord</td></tr><tr><td>hline primNeg</td><td>Primary negative</td></tr><tr><td>secNeg</td><td>Secondary negative</td></tr><tr><td>&lt;NC number&gt;sc</td><td>NC + subject concord</td></tr><tr><td>tn</td><td>Tense marker</td></tr><tr><td>v</td><td>Verb</td></tr></table>",
                "html": null,
                "text": "that covers nine Bantu languages.",
                "num": null
            },
            "TABREF10": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "List of tags used to label morphological units and parts of speech",
                "num": null
            },
            "TABREF11": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "Results from word similarity evaluation",
                "num": null
            },
            "TABREF13": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "Classification of Bantu nouns into noun classes (the 'and' indicates that the two classes are a singular/plural pairing)",
                "num": null
            }
        }
    }
}