File size: 83,961 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:33:49.419896Z"
},
"title": "Dynamic Facet Selection by Maximizing Graded Relevance",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Glass",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "T.J. Watson Research Center",
"location": {
"settlement": "Yorktown Heights",
"region": "NY",
"country": "USA"
}
},
"email": "mrglass@us.ibm.com"
},
{
"first": "Md",
"middle": [],
"last": "Faisal",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "T.J. Watson Research Center",
"location": {
"settlement": "Yorktown Heights",
"region": "NY",
"country": "USA"
}
},
"email": ""
},
{
"first": "Mahbub",
"middle": [],
"last": "Chowdhury",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "T.J. Watson Research Center",
"location": {
"settlement": "Yorktown Heights",
"region": "NY",
"country": "USA"
}
},
"email": ""
},
{
"first": "Yu",
"middle": [],
"last": "Deng",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "T.J. Watson Research Center",
"location": {
"settlement": "Yorktown Heights",
"region": "NY",
"country": "USA"
}
},
"email": "dengy@us.ibm.com"
},
{
"first": "Ruchi",
"middle": [],
"last": "Mahindru",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "T.J. Watson Research Center",
"location": {
"settlement": "Yorktown Heights",
"region": "NY",
"country": "USA"
}
},
"email": "rmahindr@us.ibm.com"
},
{
"first": "Nicolas",
"middle": [
"Rodolfo"
],
"last": "Fauceglia",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "T.J. Watson Research Center",
"location": {
"settlement": "Yorktown Heights",
"region": "NY",
"country": "USA"
}
},
"email": "nicolas.fauceglia@ibm.com"
},
{
"first": "Alfio",
"middle": [],
"last": "Gliozzo",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "T.J. Watson Research Center",
"location": {
"settlement": "Yorktown Heights",
"region": "NY",
"country": "USA"
}
},
"email": "gliozzo@us.ibm.com"
},
{
"first": "Nandana",
"middle": [],
"last": "Mihindukulasooriya",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "T.J. Watson Research Center",
"location": {
"settlement": "Yorktown Heights",
"region": "NY",
"country": "USA"
}
},
"email": "nandana.m@ibm.com"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Dynamic faceted search (DFS), an interactive query refinement technique, is a form of Human-computer information retrieval (HCIR) approach. It allows users to narrow down search results through facets, where the facetsdocuments mapping is determined at runtime based on the context of user query instead of pre-indexing the facets statically. In this paper, we propose a new unsupervised approach for dynamic facet generation, namely optimistic facets, which attempts to generate the best possible subset of facets, hence maximizing expected Discounted Cumulative Gain (DCG), a measure of ranking quality that uses a graded relevance scale. We also release code to generate a new evaluation dataset. Through empirical results on two datasets, we show that the proposed DFS approach considerably improves the document ranking in the search results.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "Dynamic faceted search (DFS), an interactive query refinement technique, is a form of Human-computer information retrieval (HCIR) approach. It allows users to narrow down search results through facets, where the facetsdocuments mapping is determined at runtime based on the context of user query instead of pre-indexing the facets statically. In this paper, we propose a new unsupervised approach for dynamic facet generation, namely optimistic facets, which attempts to generate the best possible subset of facets, hence maximizing expected Discounted Cumulative Gain (DCG), a measure of ranking quality that uses a graded relevance scale. We also release code to generate a new evaluation dataset. Through empirical results on two datasets, we show that the proposed DFS approach considerably improves the document ranking in the search results.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Human-computer information retrieval (HCIR) is the study of techniques that takes advantage of human intelligence into the search process. Through a multi-step search process, it facilitates opportunities for human feedback by taking into account the query context. Examples of HCIR approaches include -faceted search, relevance feedback, automatic query reformulation, illustration by tag clouds, etc.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Faceted Search (FS) (Tunkelang, 2009) , a form of HCIR, is a prevalent technique in e-commerce where document retrieval systems are augmented with faceted navigation. Facets are terms that present an overview on the variety of data available given the user query, thereby hinting at the most relevant refinement operations for zooming in on the target information need (Ben-yitzhak et al., 2008) .",
"cite_spans": [
{
"start": 20,
"end": 37,
"text": "(Tunkelang, 2009)",
"ref_id": "BIBREF13"
},
{
"start": 369,
"end": 395,
"text": "(Ben-yitzhak et al., 2008)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Traditional facet generation approaches present several drawbacks. Documents must be pre-tagged with an existing taxonomy, adding overhead in content curation and management. Moreover, such static facets lack contextual matching with documents or queries. Figure 1 shows an example of static/traditional facets.",
"cite_spans": [],
"ref_spans": [
{
"start": 256,
"end": 264,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Dynamic Faceted Search (DFS) overcomes such limitations (Dash et al., 2008) . For Dynamic facets, the facet to document mapping is determined at run-time based on the context of user query instead of pre-indexing the facets statically. In other words, in an information retrieval (IR) system, there is no exclusive list of terms to be considered for dynamic facets and such facets are not known in advance. There is no pre-existing mapping of facets to the documents (that are indexed in the corresponding IR system). The mapping can only be created at the real-time when the query is submitted followed by generation of such facets based on the search results specific to the given query and are presented to the user along with the relevant documents.",
"cite_spans": [
{
"start": 56,
"end": 75,
"text": "(Dash et al., 2008)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, we present an approach for generating dynamic facets and selecting the best set of facets to be presented to the user. Hence, allowing the user to select relevant facets (if any) to interactively refine their queries, which in turn improves search results at each facet selection iteration. This interaction can be repeated until the user is satisfied with the results presented or no further refinement is possible.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Below we highlight the major contributions of our work -",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 a new state-of-the-art unsupervised approach for dynamic facet generation (see Section 3) evaluated on two datasets (see Section 6), and \u2022 a new benchmark dataset, Stackoverflow-Technotes (or, simply Stackoverflow) Benchmark. 1 (see Section 5).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Rest of the paper is structured as follows. Section 2 includes a brief summary of related work with respect to DFS. Section 3 describes our proposed approaches. The next two sections (4 and 5) describes the experimental settings and datasets. In Section 6, we show the empirical results, both quantitative and qualitative. Finally, Section 7 concludes the paper and highlights perspectives for future work.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "A closely related research task of facet generation is to generate alternative queries, also known as query suggestion (Mei et al., 2008) . Other related tasks are query substitution (Jones et al., 2006 ) and query refinement (Kraft and Zien, 2004) . The main difference between these tasks and facet generation is that facets are not alternative/substitute/refined queries but rather a way to organize the search results obtained using the original query.",
"cite_spans": [
{
"start": 119,
"end": 137,
"text": "(Mei et al., 2008)",
"ref_id": "BIBREF10"
},
{
"start": 183,
"end": 202,
"text": "(Jones et al., 2006",
"ref_id": "BIBREF5"
},
{
"start": 226,
"end": 248,
"text": "(Kraft and Zien, 2004)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Another related task is query expansion (Xu and Croft, 1996) where the goal is adding related words to a query in order to increase the number of returned documents and improve recall accordingly. In contrast, selection of facets allow to narrow down search results.",
"cite_spans": [
{
"start": 40,
"end": 60,
"text": "(Xu and Croft, 1996)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "There is a considerable amount of work on faceted search (Zheng et al., 2013; Kong, 2016) . For brevity, here we focus on DFS only. DFS can be divided into two categories. First, DFS on databases (Basu Roy et al., 2008; Kim et al., 2014; Vandic et al., 2018) . Databases have a rich meta-data in the form of tables, attributes, dimensions, etc. DFS on databases focuses on the 1 We provide the codes for automatically creating the dataset using publicly available data, and also to run the simulated automatic evaluation. They can be found herehttps://github.com/IBM/ Stackoverflow-Technotes-dataset. best possible attributes from the meta-data, to be presented as facets.",
"cite_spans": [
{
"start": 57,
"end": 77,
"text": "(Zheng et al., 2013;",
"ref_id": "BIBREF17"
},
{
"start": 78,
"end": 89,
"text": "Kong, 2016)",
"ref_id": "BIBREF7"
},
{
"start": 196,
"end": 219,
"text": "(Basu Roy et al., 2008;",
"ref_id": "BIBREF0"
},
{
"start": 220,
"end": 237,
"text": "Kim et al., 2014;",
"ref_id": "BIBREF6"
},
{
"start": 238,
"end": 258,
"text": "Vandic et al., 2018)",
"ref_id": "BIBREF14"
},
{
"start": 377,
"end": 378,
"text": "1",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Our contributions are in the second category -DFS on textual data. An early approach was proposed by Ben-yitzhak et al. (2008) , where the generated dynamic facets are constrained by the ability to sum pre-defined Boolean expressions. Dash et al. (2008) proposed an approach, given a keyword as query, to dynamically select a small set of \"interesting\" attributes and present their aggregation to a user. Their work is focused on evaluating the execution time rather than result re-ranking. Dakka and Ipeirotis (2008) proposed an approach using external resources, namely WordNet and Wikipedia, to generate facets given a query.",
"cite_spans": [
{
"start": 101,
"end": 126,
"text": "Ben-yitzhak et al. (2008)",
"ref_id": "BIBREF1"
},
{
"start": 235,
"end": 253,
"text": "Dash et al. (2008)",
"ref_id": "BIBREF4"
},
{
"start": 491,
"end": 517,
"text": "Dakka and Ipeirotis (2008)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Our proposed DFS approach on text generates dynamic facets that are terms (which are not restricted), not just aggregated values, and does not rely on any external resource. Input queries can be natural language texts, not restricted to keywords.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "In a recent relevant work, Mihindukulasooriya et al. (2020) proposed an unsupervised DFS approach that exploits different types of word embedding models to extract so called flat and typed facets. The typed facets are organized in hierarchies while the flat facets are simply a list of facets without hierarchy. They show empirically both set of facets yield similar results.",
"cite_spans": [
{
"start": 27,
"end": 59,
"text": "Mihindukulasooriya et al. (2020)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Given a ranked set of search results from a traditional search engine, our proposed approach, namely Optimistic facet set selection, tracks document ranking changes produced by selecting each candidate facet, and uses this information to select a subset of best possible facets.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proposed Dynamic Facet Generation",
"sec_num": "3"
},
{
"text": "We use the following notations in this section: \u2022",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proposed Dynamic Facet Generation",
"sec_num": "3"
},
{
"text": "\u2022 D = [(d 1 , s 1 ), (d 2 , s 2 ), ..., (d n , s n )], where score s i \u2208 R,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proposed Dynamic Facet Generation",
"sec_num": "3"
},
{
"text": "C = {f 1 , f 2 , .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proposed Dynamic Facet Generation",
"sec_num": "3"
},
{
"text": ".., f c } is a set of c terms to be considered as facet candidates.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proposed Dynamic Facet Generation",
"sec_num": "3"
},
{
"text": "\u2022 F \u2282 C is a set of k facets generated by the system as output, where k can be set by the user or the interactive search system.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proposed Dynamic Facet Generation",
"sec_num": "3"
},
{
"text": "Given a user query and the respective search results (i.e. documents) from a search engine, we extract the terms from those candidate documents with a frequency above threshold \u03b8 f req . Let us limit the expected number of dynamic facets to k. Given a pre-trained word embedding model (for the indexed document collection), cosine similarity, sim(q 0 , t), between the query and each term t is computed. Up to the top c terms with a minimum similarity score of \u03b8 sim are kept as facet candidates. 2",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Facet candidate generation",
"sec_num": "3.1"
},
{
"text": "Our algorithm is built on two key assumptions:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "\u2022 Optimism: the user will select the best facet: one that attains the best Discounted Cumulative Gain (DCG) (or other graded relevance measure).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "\u2022 Relevance Probability: how likely a document is to be relevant is approximated by its rank in initial search results. 2 We set \u03b8 f req = 3, \u03b8sim = 0.5, and c = max(k 2 , 50). Each candidate facet, f , is associated with some change in the scores of the document results, \u03b4 f , and hence, some new ranking of the document results, R f . Using the filter strategy, \u03b4 f i is set as \u2212\u221e if f does not appear in document d i , else zero. Experimenting with a strategy of computing the change in BM25 score (Robertson and Zaragoza, 2009) if f is added to the query, resulted in lower performance.",
"cite_spans": [
{
"start": 120,
"end": 121,
"text": "2",
"ref_id": null
},
{
"start": 502,
"end": 532,
"text": "(Robertson and Zaragoza, 2009)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "1 Internal Pre-Announcement Information --Do Not Distribute R 1 R 2 3 2 5 R init R min min( ) ... ... 1 2 3 ... 3 6 1 ... 1 2 1 ... F = { f 1 f 2 ... }",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "Suppose p i is the probability of being relevant for the ith ranked document in the initial retrieval. We fit a curve to estimate p i independent of the query or document results and find this probability to be roughly proportional to the inverse of the rank plus its square root. Figure 2 shows empirical probability of relevance and the curve to fit.",
"cite_spans": [],
"ref_spans": [
{
"start": 281,
"end": 289,
"text": "Figure 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "A facet set has a minimum possible rank for each document, the lowest rank that can be achieved by selecting any facet in the set, or no facet. We indicate this list of ranks as",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "R min = [r 1 , r 2 , ..., r n ] where r j = min j, min f \u2208F (R f j )",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": ". The list of ranks R min is closely connected with our optimistic assumption. If, for example, the single relevant document is in initial rank j, then R min j is the rank it will have after the user sees the initial results and optionally selects the best facet.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "Consider the case (a majority in our datasets) where only one document is relevant. Then the expected DCG under the optimistic assumption is given by Equation 2. DCG is a standard metric in IR to measure the overall quality of the search results. DCG depends only on the ranks of the relevant (rel i = 1) documents. Intuitively, we optimize DCG in expectation by providing facets that produce different and likely rankings for the returned documents.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "DCG = n i=1 rel i log 2 (1 + i) (1) E(DCG F ) = n i=1 p i log 2 (1 + R min i ) (2)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "We select a facet set to approximately optimize E(DCG F ) using greedy and local search. Both the greedy and local search phases of facet set selection rely on a function to select the facet candidate that will improve E(DCG F ) the most:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "Best(C, F, f * , s * ).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "The greedy phase adds k facet candidates to the facet set, each time adding the facet that maximizes the set score. Local search tries to swap each facet in the facet set for some better facet candidate. This process could repeat until E(DCG F ) does not improve. Algorithm 1 shows pseudocode for these functions.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "Algorithm 1 Greedy/Local Facet Set Selection Best(C, F, f * , s * ) for f in C \u2212 F do s \u2190 E(DCG F \u222a{f } ) if s > s * then f * \u2190 f s * \u2190 s end if end for return f * , s * Greedy(C, k) F \u2190 \u2205 for i \u2190 1 through k do f * , s * \u2190Best(C, F, \u2205, 0) F \u2190 F \u222a {f * } end for return F, s * LocalSearch(C, F, s * ) repeat s0 \u2190 s * for f0 in F do F \u2190 F/f0 f * , s * \u2190 Best(C, F, f0, s * ) F \u2190 F \u222a {f * } end for until s * = s0",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Optimistic Facet Set Selection",
"sec_num": "3.2"
},
{
"text": "Evaluation Settings: We use the simulated user based automatic evaluation, called ORACLE, proposed by Mihindukulasooriya et al. (2020) . For each iteration of the faceted search, the system presents a list of ranked search results and facets to the ORACLE. It selects the facet which retrieves the target document at the highest rank.",
"cite_spans": [
{
"start": 102,
"end": 134,
"text": "Mihindukulasooriya et al. (2020)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "4"
},
{
"text": "The first dataset is an existing benchmark of real-world user questions in English in the domain of technical customer support, named the TechQA dataset (Castelli et al., 2020) . The reason we choose this dataset is -the most recent work, (Mihindukulasooriya et al., 2020) ), that we are aware of for faceted search is evaluated on this dataset. The RoBERTa based state-of-the-art IR approach (Liu et al., 2019) that we use as one of the baselines also used this dataset. The TechQA dataset has 160 answerable questions in the Dev split and is aligned with a corpus of 801,998 publicly available IBM Technotes documents. We evaluate our approaches on these questions while treating the corresponding Technotes documents (containing the answers) as the corpus.",
"cite_spans": [
{
"start": 153,
"end": 176,
"text": "(Castelli et al., 2020)",
"ref_id": "BIBREF16"
},
{
"start": 239,
"end": 272,
"text": "(Mihindukulasooriya et al., 2020)",
"ref_id": "BIBREF11"
},
{
"start": 393,
"end": 411,
"text": "(Liu et al., 2019)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "TechQA Benchmark",
"sec_num": "5.1"
},
{
"text": "In addition to the TechQA benchmark, we create a new dataset in the technical support domain to verify the generality of our approach. This allows us to evaluate it on a different benchmark containing real-world queries which are often noisy and not curated.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proposed Stackoverflow Benchmark",
"sec_num": "5.2"
},
{
"text": "We are releasing the corresponding benchmark generation codes to the research community as part of this work. The dataset contains total 883 queries. It was created from Stackoverflow 3 forum threads. We only considered those queries where the accepted answer posts contain link(s) to documents in the Technotes corpus (the same corpus as mentioned in the TechQA Benchmark). Here is how the released codes create this new benchmark:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proposed Stackoverflow Benchmark",
"sec_num": "5.2"
},
{
"text": "\u2022 Extraction of Candidate Question Answer (QA) Pairs: We first identify the set of question posts and corresponding accepted answer posts from the StackOverflow post history dump. Then we extract the title and body of the identified question posts from post history, considering that the post body further elaborates context of the question. \u2022 Validation of QA Pairs with Result Links: We retain the QA pairs where desired corpus links have been mentioned in answer posts. This ensures that the questions in the dataset have answer links from the Technotes corpus. \u2022 Generation of Benchmark Dataset: We then extract the Technotes IDs from the answer posts to form the benchmark dataset. Figure 4 shows an example of an entry in the dataset, which includes an \"id\" field containing the id of a question post, a \"title\" field about the title of the question post, a \"body\" field which is the body part of the question post, and a \"relevant docids\"",
"cite_spans": [],
"ref_spans": [
{
"start": 687,
"end": 695,
"text": "Figure 4",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "Proposed Stackoverflow Benchmark",
"sec_num": "5.2"
},
{
"text": "field with a set of Technotes IDs extracted from the corresponding accepted answer post.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proposed Stackoverflow Benchmark",
"sec_num": "5.2"
},
{
"text": "The procedure described above is generic and can be replicated for other forums and corpora with similar characteristics.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Proposed Stackoverflow Benchmark",
"sec_num": "5.2"
},
{
"text": "We implemented the flat facets proposed by Mihindukulasooriya et al. (2020) to compare with our results on both datasets. We use BM25 (Robertson and Zaragoza, 2009) as IR baseline for the Stackoverflow benchmark. For the TechQA dataset, we use the state-of-the-art IR approach of Zhang et al. (2020) built using RoBERTa (Liu et al., 2019) as baseline. Zhang et al. (2020) generously shared with us their system's output for the TechQA-DR (i.e. document retrieval) task mentioned in their paper. We feed this output as input in our system as well as our implementation of Mihindukulasooriya et al. (2020) to extract facets from corresponding search results.",
"cite_spans": [
{
"start": 43,
"end": 75,
"text": "Mihindukulasooriya et al. (2020)",
"ref_id": "BIBREF11"
},
{
"start": 134,
"end": 164,
"text": "(Robertson and Zaragoza, 2009)",
"ref_id": "BIBREF12"
},
{
"start": 320,
"end": 338,
"text": "(Liu et al., 2019)",
"ref_id": "BIBREF9"
},
{
"start": 352,
"end": 371,
"text": "Zhang et al. (2020)",
"ref_id": "BIBREF16"
},
{
"start": 571,
"end": 603,
"text": "Mihindukulasooriya et al. (2020)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "6"
},
{
"text": "For a given query, we consider maximum 50 search results retrieved by the IR baseline. Then, the ORACLE accepts only up to 5 facets generated from a DFS approach, and chose only one facet (i.e. a single interaction with the DFS system) as a filter. If a corresponding search result does not containing this facet, it is discarded which changes ranks of some of the remaining search results.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "6"
},
{
"text": "We use three standard evaluation metrics: Discounted Cumulative Gain (DCG), Mean Reciprocal Rank (MRR), and Hits@K. For Hits@K, we share the absolute number of queries where the expected document is ranked within top-K results. Table 1 empirically compares our DFS approach against other systems. As evident from the results, optimistic DFS demonstrated remarkable edge over the DFS approach of Mihindukulasooriya et al. (2020) on both of the datasets in every single metric. Furthermore, our approach significantly improves the results of the underlying strong IR baselines in both datasets.",
"cite_spans": [],
"ref_spans": [
{
"start": 228,
"end": 235,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Quantitative Evaluation",
"sec_num": "6.1"
},
{
"text": "For the qualitative evaluation, we selected a sample set of 22 random queries from the Stackoverflow dataset. We asked a Subject Matter Expert (SME), who is a customer support agent in the field, to manually inspect the facets (produced by optimistic DFS) for each selected query.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Qualitative Evaluation",
"sec_num": "6.2"
},
{
"text": "According to the SME, a facet is considered useful, if it is contextually related but not already mentioned in the user's (short) query (i.e. the 'title' in Figure 4 ) and either appears in (i) the fully specified query, aka 'post' (i.e. the 'body' in Figure 4 ), or (ii) in the target document. Table 2 shows sample subset of \"User Query\", their corresponding \"Top 5 Dynamically Generated Facets\", \"Additional Relevant Facets Present in Post\" that the system could have considered to rank higher to place in the top 5, and \"SME Recommended Facets\" that the system should have presented (even though they are not seen in the post), as they are relevant for the corresponding user query. The values in the last two columns are provided by the SME.",
"cite_spans": [],
"ref_spans": [
{
"start": 157,
"end": 165,
"text": "Figure 4",
"ref_id": "FIGREF3"
},
{
"start": 252,
"end": 260,
"text": "Figure 4",
"ref_id": "FIGREF3"
},
{
"start": 296,
"end": 303,
"text": "Table 2",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Qualitative Evaluation",
"sec_num": "6.2"
},
{
"text": "The SME marked the dynamically generated facets into four following categories:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Qualitative Evaluation",
"sec_num": "6.2"
},
{
"text": "\u2022 \"Facets seen in Post\" (highlighted in italic font) -facets seen in the post body and our algorithm also generated e.g. 'ClearCase Remote Client (CCRC)';",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Qualitative Evaluation",
"sec_num": "6.2"
},
{
"text": "\u2022 \"Facets seen in Post and relevant for query\" (highlighted in bold italic font) -relevant facets seen in the post body and our algorithm also generated e.g 'ClearCase Remote Client';",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Qualitative Evaluation",
"sec_num": "6.2"
},
{
"text": "\u2022 \"Facets unseen in Post\" (highlighted in underline) -facets unseen in the post body that our algorithm also generated e.g. 'Rational ClearCase SCM Adapter', 'rad', 'source control';",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Qualitative Evaluation",
"sec_num": "6.2"
},
{
"text": "\u2022 \"Facets unseen in Post and relevant for query\" (highlighted in bold underline) -relevant facets unseen in the post and our algorithm also generated e.g. 'dynamic views'.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Qualitative Evaluation",
"sec_num": "6.2"
},
{
"text": "In summary, 22 randomly chosen queries and respective 5 facets per query generated from Optimistic DFS were evaluated by the SME. On average, our system generated 89% \"Facets unseen in Post\", out of which 25% are relevant for queries. Among the 11% \"Facets seen in Post\", 82% of them are found to be relevant for queries.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Qualitative Evaluation",
"sec_num": "6.2"
},
{
"text": "TechQA Table 1 : DFS evaluation results using simulated user. \"Flat DFS\" refers to a DFS approach proposed by Mihindukulasooriya et al. (2020) . \"RoBERTa baseline\" is the baseline for (our IR baseline) Zhang et al. (2020) . ",
"cite_spans": [
{
"start": 110,
"end": 142,
"text": "Mihindukulasooriya et al. (2020)",
"ref_id": "BIBREF11"
},
{
"start": 202,
"end": 221,
"text": "Zhang et al. (2020)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [
{
"start": 7,
"end": 14,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Metric",
"sec_num": null
},
{
"text": "In this paper, we propose Optimistic facet set selection, a new unsupervised approach for dynamic facet generation for interactive search. It outperforms existing state of the art on two publicly available benchmarks, one of which we are releasing as part of this work.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "We believe this new dataset will be useful for the research community for training and evaluating interactive models. Currently, our proposed approach does not have an active learning component and does not explicitly learn from the user feedback (e.g. fine-tuning an NLP model). However, we think our approach will serve as a strong baseline for the future interactive search approaches.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "In future, we plan to investigate the following -",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "\u2022 how to leverage the proposed algorithm to generate facets automatically grouped by types.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "\u2022 how dynamic facets can be generated using language models as Knowledge Bases.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "Our vision is to transform the interactive search experience into a learnable knowledge discovery process.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "https://stackoverflow.com",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Minimumeffort driven dynamic faceted search in structured databases",
"authors": [
{
"first": "Haidong",
"middle": [],
"last": "Senjuti Basu Roy",
"suffix": ""
},
{
"first": "Gautam",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Das",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the International Conference on Information and Knowledge Management (CIKM 2008)",
"volume": "",
"issue": "",
"pages": "13--22",
"other_ids": {
"DOI": [
"10.1145/1458082.1458088"
]
},
"num": null,
"urls": [],
"raw_text": "Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar, and Mukesh Mohania. 2008. Minimum- effort driven dynamic faceted search in structured databases. In Proceedings of the International Con- ference on Information and Knowledge Manage- ment (CIKM 2008), pages 13-22.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Beyond basic faceted search",
"authors": [
{
"first": "Ori",
"middle": [],
"last": "Ben-Yitzhak",
"suffix": ""
},
{
"first": "Nadav",
"middle": [],
"last": "Golb",
"suffix": ""
},
{
"first": "Nadav",
"middle": [],
"last": "Har'el",
"suffix": ""
},
{
"first": "Ronny",
"middle": [],
"last": "Lempel",
"suffix": ""
},
{
"first": "Andreas",
"middle": [],
"last": "Neumann",
"suffix": ""
},
{
"first": "Shila",
"middle": [],
"last": "Ofek-Koifman",
"suffix": ""
},
{
"first": "Dafna",
"middle": [],
"last": "Sheinwald",
"suffix": ""
},
{
"first": "Eugene",
"middle": [],
"last": "Shekita",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Sznajder",
"suffix": ""
},
{
"first": "Sivan",
"middle": [],
"last": "Yogev",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the international conference on Web search and web data mining (WSDM 2008)",
"volume": "",
"issue": "",
"pages": "33--44",
"other_ids": {
"DOI": [
"10.1145/1341531.1341539"
]
},
"num": null,
"urls": [],
"raw_text": "Ori Ben-yitzhak, Nadav Golb, Nadav Har'el, Ronny Lempel, Andreas Neumann, Shila Ofek-koifman, Dafna Sheinwald, Eugene Shekita, Benjamin Szna- jder, and Sivan Yogev. 2008. Beyond basic faceted search. In Proceedings of the international confer- ence on Web search and web data mining (WSDM 2008), pages 33-44.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Zhang. 2020. The TechQA dataset",
"authors": [
{
"first": "Vittorio",
"middle": [],
"last": "Castelli",
"suffix": ""
},
{
"first": "Rishav",
"middle": [],
"last": "Chakravarti",
"suffix": ""
},
{
"first": "Saswati",
"middle": [],
"last": "Dana",
"suffix": ""
},
{
"first": "Anthony",
"middle": [],
"last": "Ferritto",
"suffix": ""
},
{
"first": "Radu",
"middle": [],
"last": "Florian",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Franz",
"suffix": ""
},
{
"first": "Dinesh",
"middle": [],
"last": "Garg",
"suffix": ""
},
{
"first": "Dinesh",
"middle": [],
"last": "Khandelwal",
"suffix": ""
},
{
"first": "Scott",
"middle": [],
"last": "Mccarley",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Mccawley",
"suffix": ""
},
{
"first": "Mohamed",
"middle": [],
"last": "Nasr",
"suffix": ""
},
{
"first": "Lin",
"middle": [],
"last": "Pan",
"suffix": ""
},
{
"first": "Cezar",
"middle": [],
"last": "Pendus",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Pitrelli",
"suffix": ""
},
{
"first": "Saurabh",
"middle": [],
"last": "Pujar",
"suffix": ""
},
{
"first": "Salim",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "Andrzej",
"middle": [],
"last": "Sakrajda",
"suffix": ""
}
],
"year": null,
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1269--1278",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Vittorio Castelli, Rishav Chakravarti, Saswati Dana, Anthony Ferritto, Radu Florian, Martin Franz, Di- nesh Garg, Dinesh Khandelwal, Scott McCarley, Michael McCawley, Mohamed Nasr, Lin Pan, Cezar Pendus, John Pitrelli, Saurabh Pujar, Salim Roukos, Andrzej Sakrajda, Avi Sil, Rosario Uceda-Sosa, Todd Ward, and Rong Zhang. 2020. The TechQA dataset. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 1269-1278, Online. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Automatic Extraction of Useful Facet Hierarchies from Text Databases",
"authors": [
{
"first": "Wisam",
"middle": [],
"last": "Dakka",
"suffix": ""
},
{
"first": "Panos",
"middle": [],
"last": "Ipeirotis",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the IEEE 24th International Conference on Data Engineering (ICDE 2008)",
"volume": "",
"issue": "",
"pages": "466--475",
"other_ids": {
"DOI": [
"10.1109/ICDE.2008.4497455"
]
},
"num": null,
"urls": [],
"raw_text": "Wisam Dakka and Panos Ipeirotis. 2008. Automatic Extraction of Useful Facet Hierarchies from Text Databases. In Proceedings of the IEEE 24th In- ternational Conference on Data Engineering (ICDE 2008), pages 466 -475.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Dynamic Faceted Search for Discovery-driven Analysis",
"authors": [
{
"first": "Debabrata",
"middle": [],
"last": "Dash",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Rao",
"suffix": ""
},
{
"first": "Nimrod",
"middle": [],
"last": "Megiddo",
"suffix": ""
},
{
"first": "Anastasia",
"middle": [],
"last": "Ailamaki",
"suffix": ""
},
{
"first": "Guy",
"middle": [
"M"
],
"last": "Lohman",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the International Conference on Information and Knowledge Management (CIKM 2008)",
"volume": "",
"issue": "",
"pages": "3--12",
"other_ids": {
"DOI": [
"10.1145/1458082.1458087"
]
},
"num": null,
"urls": [],
"raw_text": "Debabrata Dash, Jun Rao, Nimrod Megiddo, Anas- tasia Ailamaki, and Guy M. Lohman. 2008. Dy- namic Faceted Search for Discovery-driven Analy- sis. In Proceedings of the International Conference on Information and Knowledge Management (CIKM 2008), pages 3-12.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Generating query substitutions",
"authors": [
{
"first": "Rosie",
"middle": [],
"last": "Jones",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Rey",
"suffix": ""
},
{
"first": "Omid",
"middle": [],
"last": "Madani",
"suffix": ""
},
{
"first": "Wiley",
"middle": [],
"last": "Greiner",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the 15th International Conference on World Wide Web (WWW '06)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. 2006. Generating query substitutions. In Proceedings of the 15th International Conference on World Wide Web (WWW '06).",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Dynamic faceted navigation in decision making using semantic web technology",
"authors": [
{
"first": "Hak-Jin",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "Yongjun",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Wooju",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "Taimao",
"middle": [],
"last": "Sun",
"suffix": ""
}
],
"year": 2014,
"venue": "Decision Support Systems",
"volume": "61",
"issue": "",
"pages": "59--68",
"other_ids": {
"DOI": [
"10.1016/j.dss.2014.01.010"
]
},
"num": null,
"urls": [],
"raw_text": "Hak-Jin Kim, Yongjun Zhu, Wooju Kim, and Taimao Sun. 2014. Dynamic faceted navigation in decision making using semantic web technology. In Decision Support Systems, volume 61, pages 59 -68.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Extending Faceted Search to the Open-Domain Web",
"authors": [
{
"first": "Weize",
"middle": [],
"last": "Kong",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Weize Kong. 2016. Extending Faceted Search to the Open-Domain Web. Ph.D. thesis, College of Infor- mation and Computer Sciences, University of Mas- sachusetts Amherst, MA, USA.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Mining anchor text for query refinement",
"authors": [
{
"first": "Reiner",
"middle": [],
"last": "Kraft",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Zien",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the 13th International Conference on World Wide Web (WWW '04)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Reiner Kraft and Jason Zien. 2004. Mining anchor text for query refinement. In Proceedings of the 13th In- ternational Conference on World Wide Web (WWW '04).",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Roberta: A robustly optimized bert pretraining approach",
"authors": [
{
"first": "Yinhan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Myle",
"middle": [],
"last": "Ott",
"suffix": ""
},
{
"first": "Naman",
"middle": [],
"last": "Goyal",
"suffix": ""
},
{
"first": "Jingfei",
"middle": [],
"last": "Du",
"suffix": ""
},
{
"first": "Mandar",
"middle": [],
"last": "Joshi",
"suffix": ""
},
{
"first": "Danqi",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
},
{
"first": "Veselin",
"middle": [],
"last": "Stoyanov",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1907.11692"
]
},
"num": null,
"urls": [],
"raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining ap- proach. arXiv preprint arXiv:1907.11692.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Query suggestion using hitting time",
"authors": [
{
"first": "Qiaozhu",
"middle": [],
"last": "Mei",
"suffix": ""
},
{
"first": "Dengyong",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Kenneth",
"middle": [],
"last": "Church",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the 17th ACM conference on Information and knowledge management (CIKM '08)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. 2008. Query suggestion using hitting time. In Pro- ceedings of the 17th ACM conference on Informa- tion and knowledge management (CIKM '08).",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Dynamic faceted search for technical support exploiting induced knowledge",
"authors": [
{
"first": "Nandana",
"middle": [],
"last": "Mihindukulasooriya",
"suffix": ""
},
{
"first": "Ruchi",
"middle": [],
"last": "Mahindru",
"suffix": ""
},
{
"first": "Md",
"middle": [],
"last": "Faisal Mahbub",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Chowdhury",
"suffix": ""
},
{
"first": "Nicolas",
"middle": [
"Rodolfo"
],
"last": "Deng",
"suffix": ""
},
{
"first": "Gaetano",
"middle": [],
"last": "Fauceglia",
"suffix": ""
},
{
"first": "Sarthak",
"middle": [],
"last": "Rossiello",
"suffix": ""
},
{
"first": "Alfio",
"middle": [],
"last": "Dash",
"suffix": ""
},
{
"first": "Shu",
"middle": [],
"last": "Gliozzo",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Tao",
"suffix": ""
}
],
"year": 2020,
"venue": "International Semantic Web Conference",
"volume": "",
"issue": "",
"pages": "683--699",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nandana Mihindukulasooriya, Ruchi Mahindru, Md Faisal Mahbub Chowdhury, Yu Deng, Nico- las Rodolfo Fauceglia, Gaetano Rossiello, Sarthak Dash, Alfio Gliozzo, and Shu Tao. 2020. Dynamic faceted search for technical support exploiting induced knowledge. In International Semantic Web Conference, pages 683-699. Springer, Cham.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "The probabilistic relevance framework: Bm25 and beyond",
"authors": [
{
"first": "Stephen",
"middle": [],
"last": "Robertson",
"suffix": ""
},
{
"first": "Hugo",
"middle": [],
"last": "Zaragoza",
"suffix": ""
}
],
"year": 2009,
"venue": "Foundations and Trends in Information Retrieval",
"volume": "3",
"issue": "",
"pages": "333--389",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance framework: Bm25 and be- yond. Foundations and Trends in Information Re- trieval, 3:333-389.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Faceted Search",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Tunkelang",
"suffix": ""
}
],
"year": 2009,
"venue": "Synthesis Lectures on Information Concepts, Retrieval, and Services",
"volume": "1",
"issue": "",
"pages": "1--80",
"other_ids": {
"DOI": [
"10.2200/S00190ED1V01Y200904ICR005"
]
},
"num": null,
"urls": [],
"raw_text": "Daniel Tunkelang. 2009. Faceted Search. In Synthe- sis Lectures on Information Concepts, Retrieval, and Services, volume 1, pages 1-80. Morgan & Claypool Publishers.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Dynamic Facet Ordering for Faceted Product Search Engines",
"authors": [
{
"first": "Damir",
"middle": [],
"last": "Vandic",
"suffix": ""
},
{
"first": "Steven",
"middle": [
"S"
],
"last": "Aanen",
"suffix": ""
},
{
"first": "Flavius",
"middle": [],
"last": "Frasincar",
"suffix": ""
},
{
"first": "Uzay",
"middle": [],
"last": "Kaymak",
"suffix": ""
}
],
"year": 2018,
"venue": "IEEE Transactions on Knowledge and Data Engineering",
"volume": "29",
"issue": "",
"pages": "1004--1016",
"other_ids": {
"DOI": [
"10.1109/TKDE.2017.2652461"
]
},
"num": null,
"urls": [],
"raw_text": "Damir Vandic, Steven S. Aanen, Flavius Frasincar, and Uzay Kaymak. 2018. Dynamic Facet Ordering for Faceted Product Search Engines. In IEEE Trans- actions on Knowledge and Data Engineering, vol- ume 29, pages 1004 -1016.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Query expansion using local and global document analysis",
"authors": [
{
"first": "Jinxi",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "W. Bruce",
"middle": [],
"last": "Croft",
"suffix": ""
}
],
"year": 1996,
"venue": "Proceedings of the 19th Annual International ACM SI-GIR Conference on Research and Development in Information Retrieval (SIGIR '96)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jinxi Xu and W. Bruce Croft. 1996. Query expansion using local and global document analysis. In Pro- ceedings of the 19th Annual International ACM SI- GIR Conference on Research and Development in Information Retrieval (SIGIR '96).",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Multi-stage pre-training for low-resource domain adaptation",
"authors": [
{
"first": "Rong",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Revanth",
"middle": [],
"last": "Gangi Reddy",
"suffix": ""
},
{
"first": "Md",
"middle": [],
"last": "Arafat Sultan",
"suffix": ""
},
{
"first": "Vittorio",
"middle": [],
"last": "Castelli",
"suffix": ""
},
{
"first": "Anthony",
"middle": [],
"last": "Ferritto",
"suffix": ""
},
{
"first": "Radu",
"middle": [],
"last": "Florian",
"suffix": ""
},
{
"first": "Efsun",
"middle": [],
"last": "Sarioglu Kayi",
"suffix": ""
},
{
"first": "Salim",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "Avi",
"middle": [],
"last": "Sil",
"suffix": ""
},
{
"first": "Todd",
"middle": [],
"last": "Ward",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "5461--5468",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rong Zhang, Revanth Gangi Reddy, Md Arafat Sul- tan, Vittorio Castelli, Anthony Ferritto, Radu Flo- rian, Efsun Sarioglu Kayi, Salim Roukos, Avi Sil, and Todd Ward. 2020. Multi-stage pre-training for low-resource domain adaptation. In Proceedings of the 2020 Conference on Empirical Methods in Nat- ural Language Processing (EMNLP), pages 5461- 5468, Online. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "A survey of faceted search",
"authors": [
{
"first": "Bweijunl",
"middle": [],
"last": "Zheng",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Xiaoyu",
"middle": [],
"last": "Fu Boqin",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Feng",
"suffix": ""
}
],
"year": 2013,
"venue": "Journal of Web engineering",
"volume": "12",
"issue": "1&2",
"pages": "41--064",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bweijunl Zheng, Wei Zhang, and Xiaoyu Fu Boqin Feng. 2013. A survey of faceted search. Journal of Web engineering, 12(1&2):041-064.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"uris": null,
"num": null,
"type_str": "figure",
"text": "Example of static facets used to organize a set of book titles in a digital library."
},
"FIGREF1": {
"uris": null,
"num": null,
"type_str": "figure",
"text": "is a list of n documents in search results for the initial query, q 0 returned by initial traditional IR component/search engine."
},
"FIGREF2": {
"uris": null,
"num": null,
"type_str": "figure",
"text": "Minimum Rank (R min ) for Facet Set"
},
"FIGREF3": {
"uris": null,
"num": null,
"type_str": "figure",
"text": "Question Answer Pair Example"
},
"TABREF2": {
"num": null,
"content": "<table/>",
"type_str": "table",
"html": null,
"text": "Qualitative evaluation of Optimistic DFS output on the Stackoverflow dataset."
}
}
}
} |