File size: 102,836 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:33:37.570564Z"
},
"title": "Evaluating Transferability of BERT Models on Uralic Languages",
"authors": [
{
"first": "Judit",
"middle": [],
"last": "\u00c1cs",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "SZTAKI Institute for Computer Science",
"location": {}
},
"email": ""
},
{
"first": "D\u00e1niel",
"middle": [],
"last": "L\u00e9vai",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "E\u00f6tv\u00f6s Lor\u00e1nd University",
"location": {}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Transformer-based language models such as BERT have outperformed previous models on a large number of English benchmarks, but their evaluation is often limited to English or a small number of wellresourced languages. In this work, we evaluate monolingual, multilingual, and randomly initialized language models from the BERT family on a variety of Uralic languages including Estonian, Finnish, Hungarian, Erzya, Moksha, Karelian, Livvi, Komi Permyak, Komi Zyrian, Northern S\u00e1mi, and Skolt S\u00e1mi. When monolingual models are available (currently only et, fi, hu), these perform better on their native language, but in general they transfer worse than multilingual models or models of genetically unrelated languages that share the same character set. Remarkably, straightforward transfer of high-resource models, even without special efforts toward hyperparameter optimization, yields what appear to be state of the art POS and NER tools for the minority Uralic languages where there is sufficient data for finetuning.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "Transformer-based language models such as BERT have outperformed previous models on a large number of English benchmarks, but their evaluation is often limited to English or a small number of wellresourced languages. In this work, we evaluate monolingual, multilingual, and randomly initialized language models from the BERT family on a variety of Uralic languages including Estonian, Finnish, Hungarian, Erzya, Moksha, Karelian, Livvi, Komi Permyak, Komi Zyrian, Northern S\u00e1mi, and Skolt S\u00e1mi. When monolingual models are available (currently only et, fi, hu), these perform better on their native language, but in general they transfer worse than multilingual models or models of genetically unrelated languages that share the same character set. Remarkably, straightforward transfer of high-resource models, even without special efforts toward hyperparameter optimization, yields what appear to be state of the art POS and NER tools for the minority Uralic languages where there is sufficient data for finetuning.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "A BERT-\u00e9s m\u00e1s Transformer-alap\u00fa nyelvmodellek sz\u00e1mos angol tesztadaton jobban teljes\u00edtenek, mint a kor\u00e1bbi modellek, azonban ezek a tesztadatok az angolra \u00e9s n\u00e9h\u00e1ny hasonl\u00f3an sok er\u0151forr\u00e1ssal rendelkez\u0151 nyelvre korl\u00e1toz\u00f3dnak. Ebben a cikkben egynyelv\u0171, soknyelv\u0171 \u00e9s random s\u00falyokkal inicializ\u00e1lt BERT modelleket \u00e9rt\u00e9kel\u00fcnk ki a k\u00f6vetkez\u0151 ur\u00e1li nyelvekre: \u00e9szt, finn, magyar, erza, moksa, karjalai, livvi-karjalai, komi-permj\u00e1k, komi-z\u00fcrj\u00e9n, \u00e9szaki sz\u00e1mi \u00e9s kolta sz\u00e1mi. Az egynyelv\u0171 modellek -jelenleg csak \u00e9szt, finn \u00e9s mag-yar \u00e9rhet\u0151 el -ugyan jobban teljes\u00edtenek az adott nyelvre, \u00e1ltal\u00e1ban rosszabbul transzfer\u00e1lhat\u00f3ak, mint a soknyelv\u0171 modellek vagy a nem rokon, de azonos \u00edr\u00e1st haszn\u00e1l\u00f3 egynyelv\u0171 modellek. \u00c9rdekes m\u00f3don a sok er\u0151forr\u00e1son tanult modellek m\u00e9g hiperparam\u00e9ter optimaliz\u00e1l\u00e1s n\u00e9lk\u00fcl is k\u00f6nnyen transzfer\u00e1lhat\u00f3k \u00e9s finomhangol\u00e1sra alkalmas tan\u00edt\u00f3adattal cs\u00facsmin\u0151s\u00e9g\u0171 POS \u00e9s NER taggerek hozhat\u00f3ak l\u00e9tre a kisebbs\u00e9gi ur\u00e1li nyelvekre.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Contextualized language models such as BERT (Devlin et al., 2019) drastically improved the state of the art for a multitude of natural language processing applications. Devlin et al. (2019) originally released 4 English and 2 multilingual pretrained versions of BERT (mBERT for short) that support over 100 languages including three Uralic languages: Estonian [et] , Finnish [fi] , and Hungarian [hu] . BERT was quickly followed by other large pretrained Transformer (Vaswani et al., 2017) based models such as RoBERTa (Liu et al., 2019) and multilingual models such as XLM-RoBERTa (Conneau et al., 2019) . Huggingface released the Transformers library (Wolf et al., 2020) , a Py-Torch implementation of Transformer-based language models along with a repository for pretrained models from community contribution\u00b9. This list now contains over 1000 entries, many of which are domain-specific or monolingual models.",
"cite_spans": [
{
"start": 44,
"end": 65,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF4"
},
{
"start": 169,
"end": 189,
"text": "Devlin et al. (2019)",
"ref_id": "BIBREF4"
},
{
"start": 360,
"end": 364,
"text": "[et]",
"ref_id": null
},
{
"start": 375,
"end": 379,
"text": "[fi]",
"ref_id": null
},
{
"start": 396,
"end": 400,
"text": "[hu]",
"ref_id": null
},
{
"start": 467,
"end": 489,
"text": "(Vaswani et al., 2017)",
"ref_id": "BIBREF26"
},
{
"start": 519,
"end": 537,
"text": "(Liu et al., 2019)",
"ref_id": null
},
{
"start": 582,
"end": 604,
"text": "(Conneau et al., 2019)",
"ref_id": null
},
{
"start": 653,
"end": 672,
"text": "(Wolf et al., 2020)",
"ref_id": "BIBREF30"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Despite the wealth of multilingual and monolingual models, most evaluation methods are limited to English, especially for the early models. Devlin et al. (2019) showed that the original mBERT outperformed existing models on the XNLI dataset (Conneau et al., 2018) , a translation of the MultiNLI to 15 languages. mBERT was further evaluated by Wu and Dredze (2019) for 5 tasks in 39 languages, which they later expanded to over 50 languages for partof-speech (POS) tagging, named entity recognition (NER) and dependency parsing (Wu and Dredze, 2020) . mBERT has been applied to a variety of multilingual tasks such as dependency (Kondratyuk and Straka, 2019) and constituency parsing (Kitaev et al., 2019) . The surprisingly effective multilinguality of mBERT was further explored by Dufter and Sch\u00fctze (2020) .",
"cite_spans": [
{
"start": 140,
"end": 160,
"text": "Devlin et al. (2019)",
"ref_id": "BIBREF4"
},
{
"start": 241,
"end": 263,
"text": "(Conneau et al., 2018)",
"ref_id": "BIBREF3"
},
{
"start": 344,
"end": 364,
"text": "Wu and Dredze (2019)",
"ref_id": "BIBREF31"
},
{
"start": 528,
"end": 549,
"text": "(Wu and Dredze, 2020)",
"ref_id": "BIBREF32"
},
{
"start": 629,
"end": 658,
"text": "(Kondratyuk and Straka, 2019)",
"ref_id": "BIBREF8"
},
{
"start": 684,
"end": 705,
"text": "(Kitaev et al., 2019)",
"ref_id": "BIBREF7"
},
{
"start": 784,
"end": 809,
"text": "Dufter and Sch\u00fctze (2020)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Uralic languages have received relatively moderate interest from the language modeling community. Aside from the three national languages, no other Uralic language is supported by any of the multilingual models, nor does any have a monolingual model. There are no Uralic languages among the 15 languages of XNLI. Wu and Dredze (2020) do explore all 100 languages that mBERT supports but do not go into monolingual details. Alnajjar (2021) transfer existing BERT models to minority Uralic languages, the only work that focuses solely on Uralic languages.",
"cite_spans": [
{
"start": 313,
"end": 333,
"text": "Wu and Dredze (2020)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper we evaluate multilingual and monolingual models on Uralic languages. We consider three evaluation tasks: morphological probing, POS tagging and NER. We also use the models in a crosslingual setting, in other words, we test how monolingual models perform on related languages. We show that \u2022 these language models are very good at all three tasks when finetuned on a small amount of task specific data,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 for morphological tasks, when native BERT models are available (et, fi, hu), these outperform the others on their native language, though the advantage over XLM-RoBERTa is not statistically significant,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 for POS and NER, the use of native models from related, even closely related languages, rarely brings improvement over the multilingual models or even English models,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 as long as the alphabet that the language uses is covered in the vocabulary of the model, we can transfer mBERT (or RuBERT) to the NER and POS tasks with surprisingly little finetuning data.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We evaluate the models through three tasks: morphological probing, POS tagging and NER. Uralic languages have rich inflectional morphology and largely free word order. Morphology plays a key role in parsing sentences. Morphological probing tries to recover morphological tags from the sentence representation from these models. For assessing the sentence level behavior of the models we chose two token-level sentence tagging tasks, POS and NER. Part of speech tagging is a common subtask of downstream NLP applications such as dependency parsing. Named entity recognition is indispensable for various high level semantic applications such as building knowledge graphs. Our model architecture is identical for POS and NER.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Approach",
"sec_num": "2"
},
{
"text": "Probing is a popular evaluation method for black box models. Our approach is illustrated in Figure 1 . The input of a probing classifier is a sentence and a target position (a token in the sentence). We feed the sentence to the contextualized model and extract the representation corresponding to the target token. Early experiments showed that lower layers retain more morphological information than higher layers so instead of using the top layer, we take the weighted average of all Transformer layers and the embedding layer. The layer weights are learned along with the other parameters of the neural network. We train a small classifier on top of this representation that predicts a morphological tag. We expose the classifier to a limited amount of training data (2000 training and 200 validation instances). If the classifier performs well on unseen data, we conclude that the representation includes the relevant morphological information.",
"cite_spans": [],
"ref_spans": [
{
"start": 92,
"end": 100,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Morphological probing",
"sec_num": "2.1"
},
{
"text": "We generate the probing data for Estonian and Finnish from the Universal Dependencies (UD) Treebanks (Nivre et al., 2020; Haverinen et al., 2014; Pyysalo et al., 2015; Vincze et al., 2010) and from the automatically tagged Webcorpus 2.0 for Hungarian since the Hungarian UD is very small. Unfortunately we could not extend the list of languages to other Uralic languages because their treebanks are too small to sample enough data.",
"cite_spans": [
{
"start": 101,
"end": 121,
"text": "(Nivre et al., 2020;",
"ref_id": "BIBREF14"
},
{
"start": 122,
"end": 145,
"text": "Haverinen et al., 2014;",
"ref_id": "BIBREF6"
},
{
"start": 146,
"end": 167,
"text": "Pyysalo et al., 2015;",
"ref_id": "BIBREF18"
},
{
"start": 168,
"end": 188,
"text": "Vincze et al., 2010)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Morphological probing",
"sec_num": "2.1"
},
{
"text": "The sampling method is constrained so that the target words have no overlap between train, validation and test, and we limit class imbalance to 3-to-1 which resulted in filtering some rare values. We subword tokenizer You have patience .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Morphological probing",
"sec_num": "2.1"
},
{
"text": "[CLS] You have pati ##ence .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Morphological probing",
"sec_num": "2.1"
},
{
"text": "[SEP]",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Morphological probing",
"sec_num": "2.1"
},
{
"text": "contextualized model",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Morphological probing",
"sec_num": "2.1"
},
{
"text": "\u2211 w i x i MLP P (label)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Morphological probing",
"sec_num": "2.1"
},
{
"text": "Figure 1: Probing architecture. Input is tokenized into subwords and a weighted average of the mBERT layers taken on the last subword of the target word is used for classification by an MLP. Only the MLP parameters and the layer weights w i are trained.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Morphological probing",
"sec_num": "2.1"
},
{
"text": "were able to generate enough probing data for 11 Estonian, 16 Finnish and 11 Hungarian tasks, see Table 4 for the full list of these.",
"cite_spans": [],
"ref_spans": [
{
"start": 98,
"end": 105,
"text": "Table 4",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Morphological probing",
"sec_num": "2.1"
},
{
"text": "Our setup for the two sequence tagging tasks is similar to that of the morphological probes except we train a shared classifier on top of all token representations. We use the vector corresponding to the first subword in both tasks. Although this may be suboptimal in morphology, \u00c1cs et al. (2021) showed that the difference is smaller for POS and NER. We also finetune the models which seems to close the gap between first and last subword pooling for morphology, see 4.1. For sequence tagging tasks, unlike for morphology, we found that the weighted average of all layers is suboptimal compared to simply using the top layer, so the experiments presented here all use the top layer.",
"cite_spans": [
{
"start": 280,
"end": 297,
"text": "\u00c1cs et al. (2021)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Sequence tagging tasks",
"sec_num": "2.2"
},
{
"text": "We sample 2000 train, 200 validation and 200 test sentences as POS training data from the largest UD treebank in Estonian and Finnish, and from Webcorpus 2.0 for Hungarian. Aside from these three, Erzya [ Although none of these languages are officially supported by any of the language models we evaluate, we train crosslingual models and find that the models have remarkable crosslingual capabilities. Our NER data is sampled from WikiAnn (Pan et al., 2017) . WikiAnn has data in Erzya, Estonian, Finnish, Hungarian, Komi Permyak, Komi Zyrian, Moksha, and Northern S\u00e1mi.\u00b2 Similarly to the POS training data, we sample 2000 training, 200 validation and 200 test sentences when available, see Table 1 for actual training set sizes.",
"cite_spans": [
{
"start": 203,
"end": 204,
"text": "[",
"ref_id": null
},
{
"start": 440,
"end": 458,
"text": "(Pan et al., 2017)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [
{
"start": 692,
"end": 699,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Sequence tagging tasks",
"sec_num": "2.2"
},
{
"text": "We train all classifiers with identical hyperparameters. The classifiers have one hidden layer with 50 neurons and ReLU activation. The input and the output dimensions are determined by the choice of language model and the number of target labels. The classifiers have 40 to 60k trainable parameters which are randomly initialized and updated using the backpropagation algorithm. We run experiments both with and without finetuning the language models. Finetuning involves updating both the language model (all 110M parameters) and the classification layer (end-to-end training).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training details",
"sec_num": "2.3"
},
{
"text": "All models are trained using the AdamW optimizer (Loshchilov and Hutter, 2019) with lr = 0.0001, \u03b2 1 = 0.9, \u03b2 2 = 0.999. We use 0.2 dropout for regularization and early stopping based on the development set. We set the batch size to 128 when not finetuning the models, and we use batch size 8, 12 or 20 when we finetune them.",
"cite_spans": [
{
"start": 49,
"end": 78,
"text": "(Loshchilov and Hutter, 2019)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Training details",
"sec_num": "2.3"
},
{
"text": "The evaluated models, all from the BERT/RoBERTa family, differ only in the choice of training data and the training objective. They all have 12 Transformer layers, with 12 heads, and 768 hidden dimensions, for a total of 110M parameters.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training details",
"sec_num": "2.3"
},
{
"text": "Our goal is twofold: we want to assess monolingual models against multilingual models, and we want to evaluate the models on 'unsupported' languages, both typologically related and unrelated. We pick two multilingual models, mBERT and XLM-RoBERTa. Our choices for monolingual models are EstBERT for Estonian, FinBERT for Finnish and HuBERT for Hungarian (See Table 2 ). As a control, we also test the English BERT as a general test for cross-language transfer. Since many Uralic speaking communities are in Russia and the languages are heavily influenced by Russian, we test RuBERT on these languages. Finally, we also test a randomly initialized mBERT. We do this because the capacity of the BERT-base models is so large that they may memorize the probing data alone. Many models have cased and uncased version, the latter often removing diacritics along with lowercasing. Since diacritics play an important role in many Uralic languages, we only use the cased models. We return to this issue in 3.1.",
"cite_spans": [],
"ref_spans": [
{
"start": 359,
"end": 366,
"text": "Table 2",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "The models evaluated",
"sec_num": "3"
},
{
"text": "The models along with their string identifier are summarized in Table 2 .",
"cite_spans": [],
"ref_spans": [
{
"start": 64,
"end": 71,
"text": "Table 2",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "The models evaluated",
"sec_num": "3"
},
{
"text": "Subword tokenization is a key component in achieving good performance on morphologically rich languages. There are two different tokenization methods used in the models we compare: XLM-RoBERTa uses the SentencePiece algorithm (Kudo and Richardson, 2018) , the other models use the WordPiece algorithm (Schuster and Nakajima, 2012) . The two types of tokenizers are algorithmically very similar, the differences between them are mainly dependent on the vocabulary size per language. The multilingual models consist of about 100 languages, and the vocabularies per language apper sublinearly proportional to the amount of training data available per language: in case of mBERT, 77% of the word pieces are pure ascii (\u00c1cs, 2019) .",
"cite_spans": [
{
"start": 226,
"end": 253,
"text": "(Kudo and Richardson, 2018)",
"ref_id": "BIBREF9"
},
{
"start": 301,
"end": 330,
"text": "(Schuster and Nakajima, 2012)",
"ref_id": "BIBREF23"
},
{
"start": 714,
"end": 725,
"text": "(\u00c1cs, 2019)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Subword tokenization",
"sec_num": "3.1"
},
{
"text": "The native models, trained on monolingual data, have longer and more meaningful subwords (see the bolded entries in Table 3 ). This greatly facilitates the sharing of train data, a matter of great importance for Uralic languages where there is little text available to begin with.",
"cite_spans": [],
"ref_spans": [
{
"start": 116,
"end": 123,
"text": "Table 3",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Subword tokenization",
"sec_num": "3.1"
},
{
"text": "Both BERT-and RoBERTa-based models first tokenize along whitespaces, but the handling of missing characters differs significantly. In BERTbased models, if there is a character missing from the tokenizer's vocabulary, the model discards the whole segment between whitespaces, labeling it [UNK] . In cross-lingual cases many words are lost since monolingual models tend to lack the extra characters of a different language. In contrast, XLM-RoBERTa deletes the unknown characters, but the string that remains between whitespaces is segmented, so the loss of information is not as severe. Table 3 summarizes different measures in language-model pairs. As a general observation, Latin script models (FinBERT, HuBERT, Est-BERT) are unusable on Cyrillic text, as seen e.g. on Erzya, where Latin script models produce [UNK] token for 97.5% of the word types. This is also seen for Northern S\u00e1mi and Hungarian, which have many non-ascii characters (\u00e1, \u00e9, \u00ed, \u00f3, \u00f6, \u0151, \u00fa, \u00fc, \u0171 for Hungarian, \u010d, \u0111, \u014b, \u0161, \u0167, \u017e for Northern S\u00e1mi) see the Hungarian-EstBert/FinBERT pairs and the Northern S\u00e1mi-FinBERT/HuBERT pairs. The mean subword length generally lies between 3.0 and 3.5 for most pairs -naturally, the corresponding language-model pairs have much higher mean subword length, 5.0 to even 5.9. This range is true not only for Latin script languages, but for Cyrillic script languages as well, as indicated by Erzya, which has a mean subword length of 3.1 to 3.4 on the multilingual models and on RuBERT.",
"cite_spans": [
{
"start": 287,
"end": 292,
"text": "[UNK]",
"ref_id": null
}
],
"ref_spans": [
{
"start": 586,
"end": 593,
"text": "Table 3",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Subword tokenization",
"sec_num": "3.1"
},
{
"text": "Fertility (\u00c1cs, 2019) is defined as the average number of BERT word pieces found in a single real word type. EstBERT on Estonian and FinBERT on Finnish have very similar fertility values (2.1 and 1.9), but HuBERT on Hungarian has much higher fertility. This is mainly caused by the different vocabulary sizes -the Finnic models have 50000 subwords in their vocabulary, HuBERT only contains 32000 subwords. The rest of the fertility values are mostly over 3. In extreme cases, a word is segmented into letters, which is the case for EngBERT on Erzya, but the non-Hungarian models on Hungarian also produce very high fertility values. ",
"cite_spans": [
{
"start": 10,
"end": 21,
"text": "(\u00c1cs, 2019)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Subword tokenization",
"sec_num": "3.1"
},
{
"text": "Morphological tasks are generally easy for most models and we see reasonable accuracy from crosslingual models as illustrated by Figure 2 . Mean accuracies, especially after finetuning, are generally above 90%, except, unsurprisingly, for the randomly initialized models.",
"cite_spans": [],
"ref_spans": [
{
"start": 129,
"end": 137,
"text": "Figure 2",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Morphology",
"sec_num": "4.1"
},
{
"text": "We first start by examining the choice of subword on morphological tasks. We try probing the first and the last subword and we find that there is a substantial gap in favor of the last subword. This is unsurprising considering that Uralic languages are mainly suffixing. This gap on average shrinks from 0.21 to 0.032 when we finetune the models on the probing data ( Figure 2 shows this gap in green). Without finetuning there is only one task, \u27e8Hungarian, Degree, ADJ\u27e9, where probing the first subword is better than probing the last one for some models. This is explained by the fact that the superlative in Hungarian is formed from the comparative by a prefix.",
"cite_spans": [],
"ref_spans": [
{
"start": 368,
"end": 376,
"text": "Figure 2",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Subword choice",
"sec_num": null
},
{
"text": "Monolingual models are only slightly better than the two multilingual models, XLM-RoBERTa in particular. We run paired t-tests on the accuracy of each model pair over the 11 (et, hu) or 16 (fi) morphological tasks in a particular language and find that the difference between the monolingual model and XLM-RoBERTa is never significant, and for Estonian, neither is the difference between Est-BERT and mBERT.",
"cite_spans": [
{
"start": 174,
"end": 182,
"text": "(et, hu)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Subword choice",
"sec_num": null
},
{
"text": "Cross-lingual transfer works only if we finetune the models. Interestingly, language relatedness does not seem to play a role here. FinBERT transfers worse to Estonian than HuBERT, and EstBERT transfers worse to Finnish than HuBERT. Interestingly, EngBERT transfers better to all three models than the other native BERTs, and for Finnish and Hungarian it is actually on par with mBERT.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Subword choice",
"sec_num": null
},
{
"text": "Diacritics As seen from the first panel of Table 3, EstBERT and FinBERT replace words with unknown characters with [UNK] to such an extent that a large proportion of types end up being filtered. We try to mitigate this issue by preemptively removing all diacritics from the input. It appears that this has little effect on the original language, but crosslingual transfer is improved for Finnish. In the sequence tagging tasks that we now turn to, we remove the diacritics when we evaluate EstBERT or FinBERT in a cross-lingual setting. We extend our studies to all Uralic languages with any training data (see Table 1 ) and we limit the discussion to finetuned models since cross-lingual transfer does not work without finetuning. We split the languages into two groups, Latin and Cyrillic, and we only test models with explicit support for the script that the language uses. Multilingual models support both scripts. Figures 3 and 4 show the results by language.",
"cite_spans": [
{
"start": 115,
"end": 120,
"text": "[UNK]",
"ref_id": null
}
],
"ref_spans": [
{
"start": 611,
"end": 618,
"text": "Table 1",
"ref_id": null
},
{
"start": 919,
"end": 934,
"text": "Figures 3 and 4",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Subword choice",
"sec_num": null
},
{
"text": "We generally find the best performance in the three languages with native support: Estonian, Finnish and Hungarian. Monolingual models perform the best in their respective language but the two multilingual models are also very capable. Cross-lingual transfer does not seem to benefit from language relatedness, EngBERT transfers just as well as other monolingual models. Even extremely close relatives such as Livvi and Finnish do not transfer better than XLM-RoBERTa to Livvi. On the other hand, FinBERT is the best for Karelian POS, another close relative of Finnish. The writing system and shared vocabulary also seem to play an important role, as seen from RuBERT's usefulness on unrelated but Cyrillic-using Uralic languages, see Figure 4 . XLM-RoBERTa is generally a strong model for cross-lingual transfer for all Uralic languages. We suspect that this is due to its large subword vocabulary, which may provide a better generalization basis for capturing the orthographic cues that are often highly indicative in agglutinative languages.",
"cite_spans": [],
"ref_spans": [
{
"start": 735,
"end": 743,
"text": "Figure 4",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "National languages",
"sec_num": null
},
{
"text": "North S\u00e1mi Both POS and NER in North S\u00e1mi are relatively easy as long as the orthographic cues can be captured (i.e. the Latin script is supported). rand-mBERT is suprisingly successful at NER in North S\u00e1mi, suggesting that orthograpic cues (rand-mBERT uses mBERT's tokenizer) are highly predictive of named entities in North S\u00e1mi.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "National languages",
"sec_num": null
},
{
"text": "Altogether we find that it is possible, and relatively easy, to transfer models to new languages with finetuning on very limited training data, though extremely limited data still hinders progress: compare Erzya (1680 train sentences) to Moksha (164 train sentences) on Fig. 4 . EngBERT and RuBERT, which we introduced as a control for language transfer among genetically unrelated languages, transfer quite well: in particular the Latin-script EngBERT transfers better to Hungarian than FinBERT or EstBERT.",
"cite_spans": [],
"ref_spans": [
{
"start": 270,
"end": 276,
"text": "Fig. 4",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "We note that we did not perform monolingual hyperparameter search or any preprocessing, and there is probably room for improvement for each of these languages. The biggest immediate gains are expected from extending the UD and WikiAnn datasets, and from careful handling of low-level characterset and subword tokenization issues. There are many Uralic languages that still lack basic resources, in particular the entire Samoyedic branch, Mari, and Ob-Ugric languages, are currently out of scope. Another avenue of research could be to work towards a stronger mBERT interlingua, or perhaps one for each script family, as the charset issues are clearly relevant.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "Our data, code and the full result tables will be available along with the final submission.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "\u00b2WikiAnn also has Udmurt data, but the transcription is problematic: Latin and Cyrillic are used inconsistently, Wikipedia Markup is parsed incorrectly etc.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "This work was partially supported by the Ministry of Innovation and the National Research, Development and Innovation Office within the framework of the Artificial Intelligence National Laboratory Programme.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgements",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Subword pooling makes a difference",
"authors": [
{
"first": "Judit",
"middle": [],
"last": "\u00c1cs",
"suffix": ""
},
{
"first": "\u00c1kos",
"middle": [],
"last": "K\u00e1d\u00e1r",
"suffix": ""
},
{
"first": "Andras",
"middle": [],
"last": "Kornai",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
"volume": "",
"issue": "",
"pages": "2284--2295",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Judit \u00c1cs, \u00c1kos K\u00e1d\u00e1r, and Andras Kornai. 2021. Sub- word pooling makes a difference. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Vol- ume, pages 2284-2295, Online. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "When word embeddings become endangered. Multilingual Facilitation",
"authors": [
{
"first": "Khalid",
"middle": [],
"last": "Alnajjar",
"suffix": ""
}
],
"year": 2021,
"venue": "",
"volume": "",
"issue": "",
"pages": "275--288",
"other_ids": {
"DOI": [
"10.31885/9789515150257.24"
]
},
"num": null,
"urls": [],
"raw_text": "Khalid Alnajjar. 2021. When word embeddings become endangered. Multilingual Facilitation, page 275-288.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Xnli: Evaluating crosslingual sentence representations",
"authors": [
{
"first": "Alexis",
"middle": [],
"last": "Conneau",
"suffix": ""
},
{
"first": "Ruty",
"middle": [],
"last": "Rinott",
"suffix": ""
},
{
"first": "Guillaume",
"middle": [],
"last": "Lample",
"suffix": ""
},
{
"first": "Adina",
"middle": [],
"last": "Williams",
"suffix": ""
},
{
"first": "Samuel",
"middle": [
"R"
],
"last": "Bowman",
"suffix": ""
},
{
"first": "Holger",
"middle": [],
"last": "Schwenk",
"suffix": ""
},
{
"first": "Veselin",
"middle": [],
"last": "Stoyanov",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad- ina Williams, Samuel R. Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. Xnli: Evaluating cross- lingual sentence representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Association for Computational Linguistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Identifying elements essential for BERT's multilinguality",
"authors": [
{
"first": "Philipp",
"middle": [],
"last": "Dufter",
"suffix": ""
},
{
"first": "Hinrich",
"middle": [],
"last": "Sch\u00fctze",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "4423--4437",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Philipp Dufter and Hinrich Sch\u00fctze. 2020. Identifying elements essential for BERT's multilinguality. In Pro- ceedings of the 2020 Conference on Empirical Meth- ods in Natural Language Processing (EMNLP), pages 4423-4437, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Building the essential resources for Finnish: the Turku Dependency Treebank. Language Resources and Evaluation",
"authors": [
{
"first": "Katri",
"middle": [],
"last": "Haverinen",
"suffix": ""
},
{
"first": "Jenna",
"middle": [],
"last": "Nyblom",
"suffix": ""
},
{
"first": "Timo",
"middle": [],
"last": "Viljanen",
"suffix": ""
},
{
"first": "Veronika",
"middle": [],
"last": "Laippala",
"suffix": ""
},
{
"first": "Samuel",
"middle": [],
"last": "Kohonen",
"suffix": ""
},
{
"first": "Anna",
"middle": [],
"last": "Missil\u00e4",
"suffix": ""
},
{
"first": "Stina",
"middle": [],
"last": "Ojala",
"suffix": ""
},
{
"first": "Tapio",
"middle": [],
"last": "Salakoski",
"suffix": ""
},
{
"first": "Filip",
"middle": [],
"last": "Ginter",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "48",
"issue": "",
"pages": "493--531",
"other_ids": {
"DOI": [
"10.1007/s10579-013-9244-1"
]
},
"num": null,
"urls": [],
"raw_text": "Katri Haverinen, Jenna Nyblom, Timo Viljanen, Veronika Laippala, Samuel Kohonen, Anna Mis- sil\u00e4, Stina Ojala, Tapio Salakoski, and Filip Ginter. 2014. Building the essential resources for Finnish: the Turku Dependency Treebank. Language Re- sources and Evaluation, 48:493-531. Open access.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Multilingual constituency parsing with self-attention and pre-training",
"authors": [
{
"first": "Nikita",
"middle": [],
"last": "Kitaev",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Cao",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Klein",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "3499--3505",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1340"
]
},
"num": null,
"urls": [],
"raw_text": "Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Mul- tilingual constituency parsing with self-attention and pre-training. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguistics, pages 3499-3505, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "75 languages, 1 model: Parsing universal dependencies universally",
"authors": [
{
"first": "Dan",
"middle": [],
"last": "Kondratyuk",
"suffix": ""
},
{
"first": "Milan",
"middle": [],
"last": "Straka",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "2779--2795",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1279"
]
},
"num": null,
"urls": [],
"raw_text": "Dan Kondratyuk and Milan Straka. 2019. 75 lan- guages, 1 model: Parsing universal dependencies uni- versally. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2779- 2795, Hong Kong, China. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Sentence-Piece: A simple and language independent subword tokenizer and detokenizer for neural text processing",
"authors": [
{
"first": "Taku",
"middle": [],
"last": "Kudo",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Richardson",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
"volume": "",
"issue": "",
"pages": "66--71",
"other_ids": {
"DOI": [
"10.18653/v1/D18-2012"
]
},
"num": null,
"urls": [],
"raw_text": "Taku Kudo and John Richardson. 2018. Sentence- Piece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empiri- cal Methods in Natural Language Processing: System Demonstrations, pages 66-71, Brussels, Belgium. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Adaptation of deep bidirectional multilingual transformers for russian language",
"authors": [
{
"first": "Yuri",
"middle": [],
"last": "Kuratov",
"suffix": ""
},
{
"first": "Mikhail",
"middle": [],
"last": "Arkhipov",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yuri Kuratov and Mikhail Arkhipov. 2019. Adapta- tion of deep bidirectional multilingual transformers for russian language.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Decoupled weight decay regularization",
"authors": [
{
"first": "Ilya",
"middle": [],
"last": "Loshchilov",
"suffix": ""
},
{
"first": "Frank",
"middle": [],
"last": "Hutter",
"suffix": ""
}
],
"year": 2019,
"venue": "ICLR",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In ICLR.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Natural Language Processing Methods for Language Modeling",
"authors": [
{
"first": "Nemeskey",
"middle": [],
"last": "D\u00e1vid M\u00e1rk",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D\u00e1vid M\u00e1rk Nemeskey. 2020. Natural Language Pro- cessing Methods for Language Modeling. Ph.D. thesis, E\u00f6tv\u00f6s Lor\u00e1nd University.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Universal Dependencies v2: An evergrowing multilingual treebank collection",
"authors": [
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Marie-Catherine",
"middle": [],
"last": "De Marneffe",
"suffix": ""
},
{
"first": "Filip",
"middle": [],
"last": "Ginter",
"suffix": ""
},
{
"first": "Jan",
"middle": [],
"last": "Haji\u010d",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
},
{
"first": "Sampo",
"middle": [],
"last": "Pyysalo",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "Francis",
"middle": [],
"last": "Tyers",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Zeman",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 12th Language Resources and Evaluation Conference",
"volume": "",
"issue": "",
"pages": "4034--4043",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin- ter, Jan Haji\u010d, Christopher D. Manning, Sampo Pyysalo, Sebastian Schuster, Francis Tyers, and Daniel Zeman. 2020. Universal Dependencies v2: An evergrowing multilingual treebank collection. In Pro- ceedings of the 12th Language Resources and Evalua- tion Conference, pages 4034-4043, Marseille, France. European Language Resources Association.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Cross-lingual name tagging and linking for 282 languages",
"authors": [
{
"first": "Xiaoman",
"middle": [],
"last": "Pan",
"suffix": ""
},
{
"first": "Boliang",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [],
"last": "May",
"suffix": ""
},
{
"first": "Joel",
"middle": [],
"last": "Nothman",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Knight",
"suffix": ""
},
{
"first": "Heng",
"middle": [],
"last": "Ji",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "1946--1958",
"other_ids": {
"DOI": [
"10.18653/v1/P17-1178"
]
},
"num": null,
"urls": [],
"raw_text": "Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth- man, Kevin Knight, and Heng Ji. 2017. Cross-lingual name tagging and linking for 282 languages. In Pro- ceedings of the 55th Annual Meeting of the Associa- tion for Computational Linguistics (Volume 1: Long Papers), pages 1946-1958, Vancouver, Canada. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "The first Komi-Zyrian Universal Dependencies treebanks",
"authors": [
{
"first": "Niko",
"middle": [],
"last": "Partanen",
"suffix": ""
},
{
"first": "Rogier",
"middle": [],
"last": "Blokland",
"suffix": ""
},
{
"first": "Kyungtae",
"middle": [],
"last": "Lim",
"suffix": ""
},
{
"first": "Thierry",
"middle": [],
"last": "Poibeau",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Rie\u00dfler",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)",
"volume": "",
"issue": "",
"pages": "126--132",
"other_ids": {
"DOI": [
"10.18653/v1/W18-6015"
]
},
"num": null,
"urls": [],
"raw_text": "Niko Partanen, Rogier Blokland, KyungTae Lim, Thierry Poibeau, and Michael Rie\u00dfler. 2018. The first Komi-Zyrian Universal Dependencies treebanks. In Proceedings of the Second Workshop on Universal Dependencies (UDW 2018), pages 126-132, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Building minority dependency treebanks, dictionaries and computational grammars at the same time-an experiment in karelian treebanking",
"authors": [
{
"first": "",
"middle": [],
"last": "Tommi A Pirinen",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Third Workshop on Universal Dependencies",
"volume": "",
"issue": "",
"pages": "132--136",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tommi A Pirinen. 2019. Building minority dependency treebanks, dictionaries and computational grammars at the same time-an experiment in karelian tree- banking. In Proceedings of the Third Workshop on Universal Dependencies (UDW, SyntaxFest 2019), pages 132-136.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Universal Dependencies for Finnish",
"authors": [
{
"first": "Sampo",
"middle": [],
"last": "Pyysalo",
"suffix": ""
},
{
"first": "Jenna",
"middle": [],
"last": "Kanerva",
"suffix": ""
},
{
"first": "Anna",
"middle": [],
"last": "Missil\u00e4",
"suffix": ""
},
{
"first": "Veronika",
"middle": [],
"last": "Laippala",
"suffix": ""
},
{
"first": "Filip",
"middle": [],
"last": "Ginter",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of NoDaLiDa",
"volume": "",
"issue": "",
"pages": "163--172",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sampo Pyysalo, Jenna Kanerva, Anna Missil\u00e4, Veronika Laippala, and Filip Ginter. 2015. Universal Depen- dencies for Finnish. In Proceedings of NoDaLiDa 2015, pages 163-172. NEALT.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "The Livonian-Estonian-Latvian Dictionary as a threshold to the era of language technological applications",
"authors": [
{
"first": "Jack",
"middle": [],
"last": "Rueter",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceeding volume",
"volume": "5",
"issue": "",
"pages": "251--259",
"other_ids": {
"DOI": [
"10.12697/jeful.2014.5.1.14"
]
},
"num": null,
"urls": [],
"raw_text": "Jack Rueter. 2014. The Livonian-Estonian-Latvian Dic- tionary as a threshold to the era of language techno- logical applications. Journal of Estonian and Finno- Ugric Linguistics, 5(1):251-259. ESUKA -JEFUL 2013, 5-1: 253-261 Volume: Proceeding volume:.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Erme ud moksha",
"authors": [
{
"first": "Jack",
"middle": [],
"last": "Rueter",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.5281/zenodo.1156112"
]
},
"num": null,
"urls": [],
"raw_text": "Jack Rueter. 2018. Erme ud moksha.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "On the questions in developing computational infrastructure for Komi-permyak",
"authors": [
{
"first": "Jack",
"middle": [],
"last": "Rueter",
"suffix": ""
},
{
"first": "Niko",
"middle": [],
"last": "Partanen",
"suffix": ""
},
{
"first": "Larisa",
"middle": [],
"last": "Ponomareva",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Sixth International Workshop on Computational Linguistics of Uralic Languages",
"volume": "",
"issue": "",
"pages": "15--25",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jack Rueter, Niko Partanen, and Larisa Ponomareva. 2020. On the questions in developing computational infrastructure for Komi-permyak. In Proceedings of the Sixth International Workshop on Computational Linguistics of Uralic Languages, pages 15-25, Wien, Austria. Association for Computational Linguistics.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Towards an opensource universal-dependency treebank for erzya",
"authors": [
{
"first": "Jack",
"middle": [],
"last": "Rueter",
"suffix": ""
},
{
"first": "Francis",
"middle": [],
"last": "Tyers",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Fourth International Workshop on Computational Linguistics of Uralic Languages",
"volume": "",
"issue": "",
"pages": "106--118",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jack Rueter and Francis Tyers. 2018. Towards an open- source universal-dependency treebank for erzya. In Proceedings of the Fourth International Workshop on Computational Linguistics of Uralic Languages, pages 106-118.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Japanese and Korean voice search",
"authors": [
{
"first": "Mike",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "Kaisuke",
"middle": [],
"last": "Nakajima",
"suffix": ""
}
],
"year": 2012,
"venue": "2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
"volume": "",
"issue": "",
"pages": "5149--5152",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mike Schuster and Kaisuke Nakajima. 2012. Japanese and Korean voice search. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5149-5152. IEEE.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Annotation schemes in north s\u00e1mi dependency parsing",
"authors": [
{
"first": "Mariya",
"middle": [],
"last": "Sheyanova",
"suffix": ""
},
{
"first": "Francis",
"middle": [
"M"
],
"last": "Tyers",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 3rd International Workshop for Computational Linguistics of Uralic Languages",
"volume": "",
"issue": "",
"pages": "66--75",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mariya Sheyanova and Francis M. Tyers. 2017. An- notation schemes in north s\u00e1mi dependency parsing. In Proceedings of the 3rd International Workshop for Computational Linguistics of Uralic Languages, pages 66-75.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Estbert: A pretrained language-specific bert for estonian",
"authors": [
{
"first": "Claudia",
"middle": [],
"last": "Hasan Tanvir",
"suffix": ""
},
{
"first": "Sandra",
"middle": [],
"last": "Kittask",
"suffix": ""
},
{
"first": "Kairit",
"middle": [],
"last": "Eiche",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Sirts",
"suffix": ""
}
],
"year": 2021,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hasan Tanvir, Claudia Kittask, Sandra Eiche, and Kairit Sirts. 2021. Estbert: A pretrained language-specific bert for estonian.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Attention is all you need",
"authors": [
{
"first": "Ashish",
"middle": [],
"last": "Vaswani",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Shazeer",
"suffix": ""
},
{
"first": "Niki",
"middle": [],
"last": "Parmar",
"suffix": ""
},
{
"first": "Jakob",
"middle": [],
"last": "Uszkoreit",
"suffix": ""
},
{
"first": "Llion",
"middle": [],
"last": "Jones",
"suffix": ""
},
{
"first": "Aidan",
"middle": [
"N"
],
"last": "Gomez",
"suffix": ""
},
{
"first": "Illia",
"middle": [],
"last": "Kaiser",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Polosukhin",
"suffix": ""
}
],
"year": 2017,
"venue": "Advances in Neural Information Processing Systems",
"volume": "30",
"issue": "",
"pages": "5998--6008",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141 ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar- nett, editors, Advances in Neural Information Process- ing Systems 30, pages 5998-6008. Curran Associates, Inc.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Zolt\u00e1n Alexin, and J\u00e1nos Csirik",
"authors": [
{
"first": "Veronika",
"middle": [],
"last": "Vincze",
"suffix": ""
},
{
"first": "D\u00f3ra",
"middle": [],
"last": "Szauter",
"suffix": ""
},
{
"first": "Attila",
"middle": [],
"last": "Alm\u00e1si",
"suffix": ""
},
{
"first": "Gy\u00f6rgy",
"middle": [],
"last": "M\u00f3ra",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC'10)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Veronika Vincze, D\u00f3ra Szauter, Attila Alm\u00e1si, Gy\u00f6rgy M\u00f3ra, Zolt\u00e1n Alexin, and J\u00e1nos Csirik. 2010. Hun- garian dependency treebank. In Proceedings of the Seventh conference on International Language Re- sources and Evaluation (LREC'10), Valletta, Malta. European Language Resources Association (ELRA).",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Multilingual is not enough: BERT for Finnish",
"authors": [
{
"first": "A",
"middle": [],
"last": "Virtanen",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Kanerva",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Ilo",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Luoma",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Luotolahti",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Salakoski",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Ginter",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Pyysalo",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. 2019. Multi- lingual is not enough: BERT for Finnish.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "A broad-coverage challenge corpus for sentence understanding through inference",
"authors": [
{
"first": "Adina",
"middle": [],
"last": "Williams",
"suffix": ""
},
{
"first": "Nikita",
"middle": [],
"last": "Nangia",
"suffix": ""
},
{
"first": "Samuel",
"middle": [],
"last": "Bowman",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "1112--1122",
"other_ids": {
"DOI": [
"10.18653/v1/N18-1101"
]
},
"num": null,
"urls": [],
"raw_text": "Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sen- tence understanding through inference. In Proceed- ings of the 2018 Conference of the North American Chapter of the Association for Computational Linguis- tics: Human Language Technologies, Volume 1 (Long Papers), pages 1112-1122, New Orleans, Louisiana. Association for Computational Linguistics.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Transformers: State-of-the-art natural language processing",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Wolf",
"suffix": ""
},
{
"first": "Lysandre",
"middle": [],
"last": "Debut",
"suffix": ""
},
{
"first": "Victor",
"middle": [],
"last": "Sanh",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Chaumond",
"suffix": ""
},
{
"first": "Clement",
"middle": [],
"last": "Delangue",
"suffix": ""
},
{
"first": "Anthony",
"middle": [],
"last": "Moi",
"suffix": ""
},
{
"first": "Pierric",
"middle": [],
"last": "Cistac",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Rault",
"suffix": ""
},
{
"first": "Remi",
"middle": [],
"last": "Louf",
"suffix": ""
},
{
"first": "Morgan",
"middle": [],
"last": "Funtowicz",
"suffix": ""
},
{
"first": "Joe",
"middle": [],
"last": "Davison",
"suffix": ""
},
{
"first": "Sam",
"middle": [],
"last": "Shleifer",
"suffix": ""
},
{
"first": "Clara",
"middle": [],
"last": "Patrick Von Platen",
"suffix": ""
},
{
"first": "Yacine",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Jernite",
"suffix": ""
},
{
"first": "Canwen",
"middle": [],
"last": "Plu",
"suffix": ""
},
{
"first": "Teven",
"middle": [
"Le"
],
"last": "Xu",
"suffix": ""
},
{
"first": "Sylvain",
"middle": [],
"last": "Scao",
"suffix": ""
},
{
"first": "Mariama",
"middle": [],
"last": "Gugger",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Drame",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
"volume": "",
"issue": "",
"pages": "38--45",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-demos.6"
]
},
"num": null,
"urls": [],
"raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers: State-of-the-art natural language processing. In Pro- ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstra- tions, pages 38-45, Online. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT",
"authors": [
{
"first": "Shijie",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Dredze",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "833--844",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1077"
]
},
"num": null,
"urls": [],
"raw_text": "Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 833-844, Hong Kong, China. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Are all languages created equal in multilingual BERT?",
"authors": [
{
"first": "Shijie",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Dredze",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 5th Workshop on Representation Learning for NLP",
"volume": "",
"issue": "",
"pages": "120--130",
"other_ids": {
"DOI": [
"10.18653/v1/2020.repl4nlp-1.16"
]
},
"num": null,
"urls": [],
"raw_text": "Shijie Wu and Mark Dredze. 2020. Are all languages created equal in multilingual BERT? In Proceedings of the 5th Workshop on Representation Learning for NLP, pages 120-130, Online. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Exploring bert's vocabulary",
"authors": [
{
"first": "Judit",
"middle": [],
"last": "\u00c1cs",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Judit \u00c1cs. 2019. Exploring bert's vocabulary.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"type_str": "figure",
"text": "Mean accuracy of morphological tasks by language. The bars are grouped in two, the left one is the result of probing the first subword, the right one is the results of probing the last subword. Blue bars are without finetuning, green bars are with finetuning. Monolingual models are highlighted.",
"uris": null
},
"FIGREF2": {
"num": null,
"type_str": "figure",
"text": "POS and NER results on languages that use the Latin alphabet.",
"uris": null
},
"FIGREF3": {
"num": null,
"type_str": "figure",
"text": "POS and NER results on languages that use the Cyrillic alphabet.",
"uris": null
},
"TABREF2": {
"html": null,
"text": "List of models we evaluate.",
"type_str": "table",
"content": "<table><tr><td/><td colspan=\"7\">mBERT RoBERTa EstBERT FinBERT HuBERT RuBERT EngBERT</td></tr><tr><td>Vocab. size</td><td>120k</td><td>250k</td><td>50k</td><td>50k</td><td>32k</td><td>120k</td><td>29k</td></tr><tr><td>Missing [et] (%)</td><td>.0</td><td>.0</td><td>.2</td><td>.0</td><td>.5</td><td>.1</td><td>.2</td></tr><tr><td>Missing [fi] (%)</td><td>.0</td><td>.0</td><td>.0</td><td>.0</td><td>.4</td><td>.0</td><td>.0</td></tr><tr><td>Missing [hu] (%)</td><td>.1</td><td>.0</td><td>21.5</td><td>48.3</td><td>.1</td><td>2.7</td><td>.2</td></tr><tr><td>Missing [sme] (%)</td><td>.2</td><td>.0</td><td>15.0</td><td>47.4</td><td>5.1</td><td>4.8</td><td>.2</td></tr><tr><td>Missing [myv] (%)</td><td>.0</td><td>.0</td><td>97.5</td><td>97.5</td><td>97.5</td><td>.0</td><td>.0</td></tr><tr><td>Subword length [et]</td><td>3.7\u00b11.4</td><td>4.2\u00b11.7</td><td>5.8\u00b12.6</td><td>3.7\u00b11.4</td><td colspan=\"2\">3.1\u00b11.2 3.1\u00b11.2</td><td>3.5\u00b11.4</td></tr><tr><td>Subword length [fi]</td><td>3.8\u00b11.4</td><td>4.5\u00b11.9</td><td>3.8\u00b11.4</td><td>5.9\u00b12.5</td><td colspan=\"2\">3.1\u00b11.1 3.1\u00b11.1</td><td>3.4\u00b11.4</td></tr><tr><td>Subword length [hu]</td><td>3.5\u00b11.5</td><td>4.2\u00b12.0</td><td>3.3\u00b11.2</td><td>3.1\u00b11.1</td><td colspan=\"2\">5.0\u00b12.4 3.0\u00b11.1</td><td>3.3\u00b11.4</td></tr><tr><td>Subword length [sme]</td><td>3.2\u00b11.0</td><td>3.4\u00b11.1</td><td>3.2\u00b11.1</td><td>3.2\u00b11.1</td><td colspan=\"2\">3.1\u00b11.2 2.9\u00b11.0</td><td>3.0\u00b11.0</td></tr><tr><td>Subword length [myv]</td><td>3.1\u00b11.2</td><td>3.2\u00b11.0</td><td>1.0\u00b10.0</td><td>1.0\u00b10.0</td><td colspan=\"2\">1.0\u00b10.0 3.4\u00b11.2</td><td>1.1\u00b10.4</td></tr><tr><td>Character length [et]</td><td>9.2</td><td>9.2</td><td>9.2</td><td>9.2</td><td>9.2</td><td>9.2</td><td>9.2</td></tr><tr><td>Character length [fi]</td><td>9.3</td><td>9.3</td><td>9.3</td><td>9.3</td><td>9.3</td><td>9.3</td><td>9.3</td></tr><tr><td>Character length [hu]</td><td>9.8</td><td>9.8</td><td>9.6</td><td>8.8</td><td>9.8</td><td>9.8</td><td>9.9</td></tr><tr><td>Character length [sme]</td><td>8.5</td><td>8.5</td><td>8.3</td><td>7.6</td><td>8.5</td><td>8.4</td><td>8.5</td></tr><tr><td>Character length [myv]</td><td>7.3</td><td>7.3</td><td>1.8</td><td>1.8</td><td>1.7</td><td>7.3</td><td>7.3</td></tr><tr><td>Fertility [et]</td><td>3.4</td><td>2.8</td><td>2.1</td><td>3.6</td><td>4.4</td><td>4.3</td><td>4.3</td></tr><tr><td>Fertility [fi]</td><td>3.3</td><td>2.7</td><td>3.5</td><td>1.9</td><td>4.6</td><td>4.4</td><td>4.5</td></tr><tr><td>Fertility [hu]</td><td>4.0</td><td>3.2</td><td>5.2</td><td>4.5</td><td>2.8</td><td>5.4</td><td>5.6</td></tr><tr><td>Fertility [sme]</td><td>3.7</td><td>3.6</td><td>4.1</td><td>3.3</td><td>4.5</td><td>4.6</td><td>4.7</td></tr><tr><td>Fertility [myv]</td><td>3.6</td><td>3.3</td><td>1.1</td><td>1.1</td><td>1.1</td><td>3.0</td><td>7.2</td></tr></table>",
"num": null
},
"TABREF3": {
"html": null,
"text": "Major characteristics of cross-language tokenization. Boldface font marks the corresponding language-model pairs.",
"type_str": "table",
"content": "<table/>",
"num": null
},
"TABREF5": {
"html": null,
"text": "List of morphological probing tasks.",
"type_str": "table",
"content": "<table/>",
"num": null
}
}
}
} |