File size: 102,836 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:33:37.570564Z"
    },
    "title": "Evaluating Transferability of BERT Models on Uralic Languages",
    "authors": [
        {
            "first": "Judit",
            "middle": [],
            "last": "\u00c1cs",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "SZTAKI Institute for Computer Science",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "D\u00e1niel",
            "middle": [],
            "last": "L\u00e9vai",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "E\u00f6tv\u00f6s Lor\u00e1nd University",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Transformer-based language models such as BERT have outperformed previous models on a large number of English benchmarks, but their evaluation is often limited to English or a small number of wellresourced languages. In this work, we evaluate monolingual, multilingual, and randomly initialized language models from the BERT family on a variety of Uralic languages including Estonian, Finnish, Hungarian, Erzya, Moksha, Karelian, Livvi, Komi Permyak, Komi Zyrian, Northern S\u00e1mi, and Skolt S\u00e1mi. When monolingual models are available (currently only et, fi, hu), these perform better on their native language, but in general they transfer worse than multilingual models or models of genetically unrelated languages that share the same character set. Remarkably, straightforward transfer of high-resource models, even without special efforts toward hyperparameter optimization, yields what appear to be state of the art POS and NER tools for the minority Uralic languages where there is sufficient data for finetuning.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Transformer-based language models such as BERT have outperformed previous models on a large number of English benchmarks, but their evaluation is often limited to English or a small number of wellresourced languages. In this work, we evaluate monolingual, multilingual, and randomly initialized language models from the BERT family on a variety of Uralic languages including Estonian, Finnish, Hungarian, Erzya, Moksha, Karelian, Livvi, Komi Permyak, Komi Zyrian, Northern S\u00e1mi, and Skolt S\u00e1mi. When monolingual models are available (currently only et, fi, hu), these perform better on their native language, but in general they transfer worse than multilingual models or models of genetically unrelated languages that share the same character set. Remarkably, straightforward transfer of high-resource models, even without special efforts toward hyperparameter optimization, yields what appear to be state of the art POS and NER tools for the minority Uralic languages where there is sufficient data for finetuning.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "A BERT-\u00e9s m\u00e1s Transformer-alap\u00fa nyelvmodellek sz\u00e1mos angol tesztadaton jobban teljes\u00edtenek, mint a kor\u00e1bbi modellek, azonban ezek a tesztadatok az angolra \u00e9s n\u00e9h\u00e1ny hasonl\u00f3an sok er\u0151forr\u00e1ssal rendelkez\u0151 nyelvre korl\u00e1toz\u00f3dnak. Ebben a cikkben egynyelv\u0171, soknyelv\u0171 \u00e9s random s\u00falyokkal inicializ\u00e1lt BERT modelleket \u00e9rt\u00e9kel\u00fcnk ki a k\u00f6vetkez\u0151 ur\u00e1li nyelvekre: \u00e9szt, finn, magyar, erza, moksa, karjalai, livvi-karjalai, komi-permj\u00e1k, komi-z\u00fcrj\u00e9n, \u00e9szaki sz\u00e1mi \u00e9s kolta sz\u00e1mi. Az egynyelv\u0171 modellek -jelenleg csak \u00e9szt, finn \u00e9s mag-yar \u00e9rhet\u0151 el -ugyan jobban teljes\u00edtenek az adott nyelvre, \u00e1ltal\u00e1ban rosszabbul transzfer\u00e1lhat\u00f3ak, mint a soknyelv\u0171 modellek vagy a nem rokon, de azonos \u00edr\u00e1st haszn\u00e1l\u00f3 egynyelv\u0171 modellek. \u00c9rdekes m\u00f3don a sok er\u0151forr\u00e1son tanult modellek m\u00e9g hiperparam\u00e9ter optimaliz\u00e1l\u00e1s n\u00e9lk\u00fcl is k\u00f6nnyen transzfer\u00e1lhat\u00f3k \u00e9s finomhangol\u00e1sra alkalmas tan\u00edt\u00f3adattal cs\u00facsmin\u0151s\u00e9g\u0171 POS \u00e9s NER taggerek hozhat\u00f3ak l\u00e9tre a kisebbs\u00e9gi ur\u00e1li nyelvekre.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Contextualized language models such as BERT (Devlin et al., 2019) drastically improved the state of the art for a multitude of natural language processing applications. Devlin et al. (2019) originally released 4 English and 2 multilingual pretrained versions of BERT (mBERT for short) that support over 100 languages including three Uralic languages: Estonian [et] , Finnish [fi] , and Hungarian [hu] . BERT was quickly followed by other large pretrained Transformer (Vaswani et al., 2017) based models such as RoBERTa (Liu et al., 2019) and multilingual models such as XLM-RoBERTa (Conneau et al., 2019) . Huggingface released the Transformers library (Wolf et al., 2020) , a Py-Torch implementation of Transformer-based language models along with a repository for pretrained models from community contribution\u00b9. This list now contains over 1000 entries, many of which are domain-specific or monolingual models.",
                "cite_spans": [
                    {
                        "start": 44,
                        "end": 65,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 169,
                        "end": 189,
                        "text": "Devlin et al. (2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 360,
                        "end": 364,
                        "text": "[et]",
                        "ref_id": null
                    },
                    {
                        "start": 375,
                        "end": 379,
                        "text": "[fi]",
                        "ref_id": null
                    },
                    {
                        "start": 396,
                        "end": 400,
                        "text": "[hu]",
                        "ref_id": null
                    },
                    {
                        "start": 467,
                        "end": 489,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 519,
                        "end": 537,
                        "text": "(Liu et al., 2019)",
                        "ref_id": null
                    },
                    {
                        "start": 582,
                        "end": 604,
                        "text": "(Conneau et al., 2019)",
                        "ref_id": null
                    },
                    {
                        "start": 653,
                        "end": 672,
                        "text": "(Wolf et al., 2020)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Despite the wealth of multilingual and monolingual models, most evaluation methods are limited to English, especially for the early models. Devlin et al. (2019) showed that the original mBERT outperformed existing models on the XNLI dataset (Conneau et al., 2018) , a translation of the MultiNLI to 15 languages. mBERT was further evaluated by Wu and Dredze (2019) for 5 tasks in 39 languages, which they later expanded to over 50 languages for partof-speech (POS) tagging, named entity recognition (NER) and dependency parsing (Wu and Dredze, 2020) . mBERT has been applied to a variety of multilingual tasks such as dependency (Kondratyuk and Straka, 2019) and constituency parsing (Kitaev et al., 2019) . The surprisingly effective multilinguality of mBERT was further explored by Dufter and Sch\u00fctze (2020) .",
                "cite_spans": [
                    {
                        "start": 140,
                        "end": 160,
                        "text": "Devlin et al. (2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 241,
                        "end": 263,
                        "text": "(Conneau et al., 2018)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 344,
                        "end": 364,
                        "text": "Wu and Dredze (2019)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 528,
                        "end": 549,
                        "text": "(Wu and Dredze, 2020)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 629,
                        "end": 658,
                        "text": "(Kondratyuk and Straka, 2019)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 684,
                        "end": 705,
                        "text": "(Kitaev et al., 2019)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 784,
                        "end": 809,
                        "text": "Dufter and Sch\u00fctze (2020)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Uralic languages have received relatively moderate interest from the language modeling community. Aside from the three national languages, no other Uralic language is supported by any of the multilingual models, nor does any have a monolingual model. There are no Uralic languages among the 15 languages of XNLI. Wu and Dredze (2020) do explore all 100 languages that mBERT supports but do not go into monolingual details. Alnajjar (2021) transfer existing BERT models to minority Uralic languages, the only work that focuses solely on Uralic languages.",
                "cite_spans": [
                    {
                        "start": 313,
                        "end": 333,
                        "text": "Wu and Dredze (2020)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper we evaluate multilingual and monolingual models on Uralic languages. We consider three evaluation tasks: morphological probing, POS tagging and NER. We also use the models in a crosslingual setting, in other words, we test how monolingual models perform on related languages. We show that \u2022 these language models are very good at all three tasks when finetuned on a small amount of task specific data,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 for morphological tasks, when native BERT models are available (et, fi, hu), these outperform the others on their native language, though the advantage over XLM-RoBERTa is not statistically significant,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 for POS and NER, the use of native models from related, even closely related languages, rarely brings improvement over the multilingual models or even English models,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 as long as the alphabet that the language uses is covered in the vocabulary of the model, we can transfer mBERT (or RuBERT) to the NER and POS tasks with surprisingly little finetuning data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We evaluate the models through three tasks: morphological probing, POS tagging and NER. Uralic languages have rich inflectional morphology and largely free word order. Morphology plays a key role in parsing sentences. Morphological probing tries to recover morphological tags from the sentence representation from these models. For assessing the sentence level behavior of the models we chose two token-level sentence tagging tasks, POS and NER. Part of speech tagging is a common subtask of downstream NLP applications such as dependency parsing. Named entity recognition is indispensable for various high level semantic applications such as building knowledge graphs. Our model architecture is identical for POS and NER.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "2"
            },
            {
                "text": "Probing is a popular evaluation method for black box models. Our approach is illustrated in Figure 1 . The input of a probing classifier is a sentence and a target position (a token in the sentence). We feed the sentence to the contextualized model and extract the representation corresponding to the target token. Early experiments showed that lower layers retain more morphological information than higher layers so instead of using the top layer, we take the weighted average of all Transformer layers and the embedding layer. The layer weights are learned along with the other parameters of the neural network. We train a small classifier on top of this representation that predicts a morphological tag. We expose the classifier to a limited amount of training data (2000 training and 200 validation instances). If the classifier performs well on unseen data, we conclude that the representation includes the relevant morphological information.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 92,
                        "end": 100,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Morphological probing",
                "sec_num": "2.1"
            },
            {
                "text": "We generate the probing data for Estonian and Finnish from the Universal Dependencies (UD) Treebanks (Nivre et al., 2020; Haverinen et al., 2014; Pyysalo et al., 2015; Vincze et al., 2010) and from the automatically tagged Webcorpus 2.0 for Hungarian since the Hungarian UD is very small. Unfortunately we could not extend the list of languages to other Uralic languages because their treebanks are too small to sample enough data.",
                "cite_spans": [
                    {
                        "start": 101,
                        "end": 121,
                        "text": "(Nivre et al., 2020;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 122,
                        "end": 145,
                        "text": "Haverinen et al., 2014;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 146,
                        "end": 167,
                        "text": "Pyysalo et al., 2015;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 168,
                        "end": 188,
                        "text": "Vincze et al., 2010)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Morphological probing",
                "sec_num": "2.1"
            },
            {
                "text": "The sampling method is constrained so that the target words have no overlap between train, validation and test, and we limit class imbalance to 3-to-1 which resulted in filtering some rare values. We subword tokenizer You have patience .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Morphological probing",
                "sec_num": "2.1"
            },
            {
                "text": "[CLS] You have pati ##ence .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Morphological probing",
                "sec_num": "2.1"
            },
            {
                "text": "[SEP]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Morphological probing",
                "sec_num": "2.1"
            },
            {
                "text": "contextualized model",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Morphological probing",
                "sec_num": "2.1"
            },
            {
                "text": "\u2211 w i x i MLP P (label)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Morphological probing",
                "sec_num": "2.1"
            },
            {
                "text": "Figure 1: Probing architecture. Input is tokenized into subwords and a weighted average of the mBERT layers taken on the last subword of the target word is used for classification by an MLP. Only the MLP parameters and the layer weights w i are trained.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Morphological probing",
                "sec_num": "2.1"
            },
            {
                "text": "were able to generate enough probing data for 11 Estonian, 16 Finnish and 11 Hungarian tasks, see Table 4 for the full list of these.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 98,
                        "end": 105,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Morphological probing",
                "sec_num": "2.1"
            },
            {
                "text": "Our setup for the two sequence tagging tasks is similar to that of the morphological probes except we train a shared classifier on top of all token representations. We use the vector corresponding to the first subword in both tasks. Although this may be suboptimal in morphology, \u00c1cs et al. (2021) showed that the difference is smaller for POS and NER. We also finetune the models which seems to close the gap between first and last subword pooling for morphology, see 4.1. For sequence tagging tasks, unlike for morphology, we found that the weighted average of all layers is suboptimal compared to simply using the top layer, so the experiments presented here all use the top layer.",
                "cite_spans": [
                    {
                        "start": 280,
                        "end": 297,
                        "text": "\u00c1cs et al. (2021)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sequence tagging tasks",
                "sec_num": "2.2"
            },
            {
                "text": "We sample 2000 train, 200 validation and 200 test sentences as POS training data from the largest UD treebank in Estonian and Finnish, and from Webcorpus 2.0 for Hungarian. Aside from these three, Erzya [ Although none of these languages are officially supported by any of the language models we evaluate, we train crosslingual models and find that the models have remarkable crosslingual capabilities. Our NER data is sampled from WikiAnn (Pan et al., 2017) . WikiAnn has data in Erzya, Estonian, Finnish, Hungarian, Komi Permyak, Komi Zyrian, Moksha, and Northern S\u00e1mi.\u00b2 Similarly to the POS training data, we sample 2000 training, 200 validation and 200 test sentences when available, see Table 1 for actual training set sizes.",
                "cite_spans": [
                    {
                        "start": 203,
                        "end": 204,
                        "text": "[",
                        "ref_id": null
                    },
                    {
                        "start": 440,
                        "end": 458,
                        "text": "(Pan et al., 2017)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 692,
                        "end": 699,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Sequence tagging tasks",
                "sec_num": "2.2"
            },
            {
                "text": "We train all classifiers with identical hyperparameters. The classifiers have one hidden layer with 50 neurons and ReLU activation. The input and the output dimensions are determined by the choice of language model and the number of target labels. The classifiers have 40 to 60k trainable parameters which are randomly initialized and updated using the backpropagation algorithm. We run experiments both with and without finetuning the language models. Finetuning involves updating both the language model (all 110M parameters) and the classification layer (end-to-end training).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training details",
                "sec_num": "2.3"
            },
            {
                "text": "All models are trained using the AdamW optimizer (Loshchilov and Hutter, 2019) with lr = 0.0001, \u03b2 1 = 0.9, \u03b2 2 = 0.999. We use 0.2 dropout for regularization and early stopping based on the development set. We set the batch size to 128 when not finetuning the models, and we use batch size 8, 12 or 20 when we finetune them.",
                "cite_spans": [
                    {
                        "start": 49,
                        "end": 78,
                        "text": "(Loshchilov and Hutter, 2019)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training details",
                "sec_num": "2.3"
            },
            {
                "text": "The evaluated models, all from the BERT/RoBERTa family, differ only in the choice of training data and the training objective. They all have 12 Transformer layers, with 12 heads, and 768 hidden dimensions, for a total of 110M parameters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training details",
                "sec_num": "2.3"
            },
            {
                "text": "Our goal is twofold: we want to assess monolingual models against multilingual models, and we want to evaluate the models on 'unsupported' languages, both typologically related and unrelated. We pick two multilingual models, mBERT and XLM-RoBERTa. Our choices for monolingual models are EstBERT for Estonian, FinBERT for Finnish and HuBERT for Hungarian (See Table 2 ). As a control, we also test the English BERT as a general test for cross-language transfer. Since many Uralic speaking communities are in Russia and the languages are heavily influenced by Russian, we test RuBERT on these languages. Finally, we also test a randomly initialized mBERT. We do this because the capacity of the BERT-base models is so large that they may memorize the probing data alone. Many models have cased and uncased version, the latter often removing diacritics along with lowercasing. Since diacritics play an important role in many Uralic languages, we only use the cased models. We return to this issue in 3.1.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 359,
                        "end": 366,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "The models evaluated",
                "sec_num": "3"
            },
            {
                "text": "The models along with their string identifier are summarized in Table 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 64,
                        "end": 71,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "The models evaluated",
                "sec_num": "3"
            },
            {
                "text": "Subword tokenization is a key component in achieving good performance on morphologically rich languages. There are two different tokenization methods used in the models we compare: XLM-RoBERTa uses the SentencePiece algorithm (Kudo and Richardson, 2018) , the other models use the WordPiece algorithm (Schuster and Nakajima, 2012) . The two types of tokenizers are algorithmically very similar, the differences between them are mainly dependent on the vocabulary size per language. The multilingual models consist of about 100 languages, and the vocabularies per language apper sublinearly proportional to the amount of training data available per language: in case of mBERT, 77% of the word pieces are pure ascii (\u00c1cs, 2019) .",
                "cite_spans": [
                    {
                        "start": 226,
                        "end": 253,
                        "text": "(Kudo and Richardson, 2018)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 301,
                        "end": 330,
                        "text": "(Schuster and Nakajima, 2012)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 714,
                        "end": 725,
                        "text": "(\u00c1cs, 2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Subword tokenization",
                "sec_num": "3.1"
            },
            {
                "text": "The native models, trained on monolingual data, have longer and more meaningful subwords (see the bolded entries in Table 3 ). This greatly facilitates the sharing of train data, a matter of great importance for Uralic languages where there is little text available to begin with.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 116,
                        "end": 123,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Subword tokenization",
                "sec_num": "3.1"
            },
            {
                "text": "Both BERT-and RoBERTa-based models first tokenize along whitespaces, but the handling of missing characters differs significantly. In BERTbased models, if there is a character missing from the tokenizer's vocabulary, the model discards the whole segment between whitespaces, labeling it [UNK] . In cross-lingual cases many words are lost since monolingual models tend to lack the extra characters of a different language. In contrast, XLM-RoBERTa deletes the unknown characters, but the string that remains between whitespaces is segmented, so the loss of information is not as severe. Table 3 summarizes different measures in language-model pairs. As a general observation, Latin script models (FinBERT, HuBERT, Est-BERT) are unusable on Cyrillic text, as seen e.g. on Erzya, where Latin script models produce [UNK] token for 97.5% of the word types. This is also seen for Northern S\u00e1mi and Hungarian, which have many non-ascii characters (\u00e1, \u00e9, \u00ed, \u00f3, \u00f6, \u0151, \u00fa, \u00fc, \u0171 for Hungarian, \u010d, \u0111, \u014b, \u0161, \u0167, \u017e for Northern S\u00e1mi) see the Hungarian-EstBert/FinBERT pairs and the Northern S\u00e1mi-FinBERT/HuBERT pairs. The mean subword length generally lies between 3.0 and 3.5 for most pairs -naturally, the corresponding language-model pairs have much higher mean subword length, 5.0 to even 5.9. This range is true not only for Latin script languages, but for Cyrillic script languages as well, as indicated by Erzya, which has a mean subword length of 3.1 to 3.4 on the multilingual models and on RuBERT.",
                "cite_spans": [
                    {
                        "start": 287,
                        "end": 292,
                        "text": "[UNK]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 586,
                        "end": 593,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Subword tokenization",
                "sec_num": "3.1"
            },
            {
                "text": "Fertility (\u00c1cs, 2019) is defined as the average number of BERT word pieces found in a single real word type. EstBERT on Estonian and FinBERT on Finnish have very similar fertility values (2.1 and 1.9), but HuBERT on Hungarian has much higher fertility. This is mainly caused by the different vocabulary sizes -the Finnic models have 50000 subwords in their vocabulary, HuBERT only contains 32000 subwords. The rest of the fertility values are mostly over 3. In extreme cases, a word is segmented into letters, which is the case for EngBERT on Erzya, but the non-Hungarian models on Hungarian also produce very high fertility values. ",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 21,
                        "text": "(\u00c1cs, 2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Subword tokenization",
                "sec_num": "3.1"
            },
            {
                "text": "Morphological tasks are generally easy for most models and we see reasonable accuracy from crosslingual models as illustrated by Figure 2 . Mean accuracies, especially after finetuning, are generally above 90%, except, unsurprisingly, for the randomly initialized models.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 129,
                        "end": 137,
                        "text": "Figure 2",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Morphology",
                "sec_num": "4.1"
            },
            {
                "text": "We first start by examining the choice of subword on morphological tasks. We try probing the first and the last subword and we find that there is a substantial gap in favor of the last subword. This is unsurprising considering that Uralic languages are mainly suffixing. This gap on average shrinks from 0.21 to 0.032 when we finetune the models on the probing data ( Figure 2 shows this gap in green). Without finetuning there is only one task, \u27e8Hungarian, Degree, ADJ\u27e9, where probing the first subword is better than probing the last one for some models. This is explained by the fact that the superlative in Hungarian is formed from the comparative by a prefix.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 368,
                        "end": 376,
                        "text": "Figure 2",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Subword choice",
                "sec_num": null
            },
            {
                "text": "Monolingual models are only slightly better than the two multilingual models, XLM-RoBERTa in particular. We run paired t-tests on the accuracy of each model pair over the 11 (et, hu) or 16 (fi) morphological tasks in a particular language and find that the difference between the monolingual model and XLM-RoBERTa is never significant, and for Estonian, neither is the difference between Est-BERT and mBERT.",
                "cite_spans": [
                    {
                        "start": 174,
                        "end": 182,
                        "text": "(et, hu)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Subword choice",
                "sec_num": null
            },
            {
                "text": "Cross-lingual transfer works only if we finetune the models. Interestingly, language relatedness does not seem to play a role here. FinBERT transfers worse to Estonian than HuBERT, and EstBERT transfers worse to Finnish than HuBERT. Interestingly, EngBERT transfers better to all three models than the other native BERTs, and for Finnish and Hungarian it is actually on par with mBERT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Subword choice",
                "sec_num": null
            },
            {
                "text": "Diacritics As seen from the first panel of Table 3, EstBERT and FinBERT replace words with unknown characters with [UNK] to such an extent that a large proportion of types end up being filtered. We try to mitigate this issue by preemptively removing all diacritics from the input. It appears that this has little effect on the original language, but crosslingual transfer is improved for Finnish. In the sequence tagging tasks that we now turn to, we remove the diacritics when we evaluate EstBERT or FinBERT in a cross-lingual setting. We extend our studies to all Uralic languages with any training data (see Table 1 ) and we limit the discussion to finetuned models since cross-lingual transfer does not work without finetuning. We split the languages into two groups, Latin and Cyrillic, and we only test models with explicit support for the script that the language uses. Multilingual models support both scripts. Figures 3 and 4 show the results by language.",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 120,
                        "text": "[UNK]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 611,
                        "end": 618,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 919,
                        "end": 934,
                        "text": "Figures 3 and 4",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Subword choice",
                "sec_num": null
            },
            {
                "text": "We generally find the best performance in the three languages with native support: Estonian, Finnish and Hungarian. Monolingual models perform the best in their respective language but the two multilingual models are also very capable. Cross-lingual transfer does not seem to benefit from language relatedness, EngBERT transfers just as well as other monolingual models. Even extremely close relatives such as Livvi and Finnish do not transfer better than XLM-RoBERTa to Livvi. On the other hand, FinBERT is the best for Karelian POS, another close relative of Finnish. The writing system and shared vocabulary also seem to play an important role, as seen from RuBERT's usefulness on unrelated but Cyrillic-using Uralic languages, see Figure 4 . XLM-RoBERTa is generally a strong model for cross-lingual transfer for all Uralic languages. We suspect that this is due to its large subword vocabulary, which may provide a better generalization basis for capturing the orthographic cues that are often highly indicative in agglutinative languages.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 735,
                        "end": 743,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "National languages",
                "sec_num": null
            },
            {
                "text": "North S\u00e1mi Both POS and NER in North S\u00e1mi are relatively easy as long as the orthographic cues can be captured (i.e. the Latin script is supported). rand-mBERT is suprisingly successful at NER in North S\u00e1mi, suggesting that orthograpic cues (rand-mBERT uses mBERT's tokenizer) are highly predictive of named entities in North S\u00e1mi.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "National languages",
                "sec_num": null
            },
            {
                "text": "Altogether we find that it is possible, and relatively easy, to transfer models to new languages with finetuning on very limited training data, though extremely limited data still hinders progress: compare Erzya (1680 train sentences) to Moksha (164 train sentences) on Fig. 4 . EngBERT and RuBERT, which we introduced as a control for language transfer among genetically unrelated languages, transfer quite well: in particular the Latin-script EngBERT transfers better to Hungarian than FinBERT or EstBERT.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 270,
                        "end": 276,
                        "text": "Fig. 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "We note that we did not perform monolingual hyperparameter search or any preprocessing, and there is probably room for improvement for each of these languages. The biggest immediate gains are expected from extending the UD and WikiAnn datasets, and from careful handling of low-level characterset and subword tokenization issues. There are many Uralic languages that still lack basic resources, in particular the entire Samoyedic branch, Mari, and Ob-Ugric languages, are currently out of scope. Another avenue of research could be to work towards a stronger mBERT interlingua, or perhaps one for each script family, as the charset issues are clearly relevant.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "Our data, code and the full result tables will be available along with the final submission.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "\u00b2WikiAnn also has Udmurt data, but the transcription is problematic: Latin and Cyrillic are used inconsistently, Wikipedia Markup is parsed incorrectly etc.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was partially supported by the Ministry of Innovation and the National Research, Development and Innovation Office within the framework of the Artificial Intelligence National Laboratory Programme.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Subword pooling makes a difference",
                "authors": [
                    {
                        "first": "Judit",
                        "middle": [],
                        "last": "\u00c1cs",
                        "suffix": ""
                    },
                    {
                        "first": "\u00c1kos",
                        "middle": [],
                        "last": "K\u00e1d\u00e1r",
                        "suffix": ""
                    },
                    {
                        "first": "Andras",
                        "middle": [],
                        "last": "Kornai",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
                "volume": "",
                "issue": "",
                "pages": "2284--2295",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Judit \u00c1cs, \u00c1kos K\u00e1d\u00e1r, and Andras Kornai. 2021. Sub- word pooling makes a difference. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Vol- ume, pages 2284-2295, Online. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "When word embeddings become endangered. Multilingual Facilitation",
                "authors": [
                    {
                        "first": "Khalid",
                        "middle": [],
                        "last": "Alnajjar",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "275--288",
                "other_ids": {
                    "DOI": [
                        "10.31885/9789515150257.24"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Khalid Alnajjar. 2021. When word embeddings become endangered. Multilingual Facilitation, page 275-288.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Xnli: Evaluating crosslingual sentence representations",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "Ruty",
                        "middle": [],
                        "last": "Rinott",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Lample",
                        "suffix": ""
                    },
                    {
                        "first": "Adina",
                        "middle": [],
                        "last": "Williams",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [
                            "R"
                        ],
                        "last": "Bowman",
                        "suffix": ""
                    },
                    {
                        "first": "Holger",
                        "middle": [],
                        "last": "Schwenk",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad- ina Williams, Samuel R. Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. Xnli: Evaluating cross- lingual sentence representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Identifying elements essential for BERT's multilinguality",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Dufter",
                        "suffix": ""
                    },
                    {
                        "first": "Hinrich",
                        "middle": [],
                        "last": "Sch\u00fctze",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "4423--4437",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Dufter and Hinrich Sch\u00fctze. 2020. Identifying elements essential for BERT's multilinguality. In Pro- ceedings of the 2020 Conference on Empirical Meth- ods in Natural Language Processing (EMNLP), pages 4423-4437, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Building the essential resources for Finnish: the Turku Dependency Treebank. Language Resources and Evaluation",
                "authors": [
                    {
                        "first": "Katri",
                        "middle": [],
                        "last": "Haverinen",
                        "suffix": ""
                    },
                    {
                        "first": "Jenna",
                        "middle": [],
                        "last": "Nyblom",
                        "suffix": ""
                    },
                    {
                        "first": "Timo",
                        "middle": [],
                        "last": "Viljanen",
                        "suffix": ""
                    },
                    {
                        "first": "Veronika",
                        "middle": [],
                        "last": "Laippala",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Kohonen",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Missil\u00e4",
                        "suffix": ""
                    },
                    {
                        "first": "Stina",
                        "middle": [],
                        "last": "Ojala",
                        "suffix": ""
                    },
                    {
                        "first": "Tapio",
                        "middle": [],
                        "last": "Salakoski",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Ginter",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "48",
                "issue": "",
                "pages": "493--531",
                "other_ids": {
                    "DOI": [
                        "10.1007/s10579-013-9244-1"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Katri Haverinen, Jenna Nyblom, Timo Viljanen, Veronika Laippala, Samuel Kohonen, Anna Mis- sil\u00e4, Stina Ojala, Tapio Salakoski, and Filip Ginter. 2014. Building the essential resources for Finnish: the Turku Dependency Treebank. Language Re- sources and Evaluation, 48:493-531. Open access.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Multilingual constituency parsing with self-attention and pre-training",
                "authors": [
                    {
                        "first": "Nikita",
                        "middle": [],
                        "last": "Kitaev",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3499--3505",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1340"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Mul- tilingual constituency parsing with self-attention and pre-training. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguistics, pages 3499-3505, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "75 languages, 1 model: Parsing universal dependencies universally",
                "authors": [
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Kondratyuk",
                        "suffix": ""
                    },
                    {
                        "first": "Milan",
                        "middle": [],
                        "last": "Straka",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "2779--2795",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1279"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Dan Kondratyuk and Milan Straka. 2019. 75 lan- guages, 1 model: Parsing universal dependencies uni- versally. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2779- 2795, Hong Kong, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Sentence-Piece: A simple and language independent subword tokenizer and detokenizer for neural text processing",
                "authors": [
                    {
                        "first": "Taku",
                        "middle": [],
                        "last": "Kudo",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Richardson",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "66--71",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-2012"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Taku Kudo and John Richardson. 2018. Sentence- Piece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empiri- cal Methods in Natural Language Processing: System Demonstrations, pages 66-71, Brussels, Belgium. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Adaptation of deep bidirectional multilingual transformers for russian language",
                "authors": [
                    {
                        "first": "Yuri",
                        "middle": [],
                        "last": "Kuratov",
                        "suffix": ""
                    },
                    {
                        "first": "Mikhail",
                        "middle": [],
                        "last": "Arkhipov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yuri Kuratov and Mikhail Arkhipov. 2019. Adapta- tion of deep bidirectional multilingual transformers for russian language.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Decoupled weight decay regularization",
                "authors": [
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Loshchilov",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Hutter",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ICLR",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In ICLR.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Natural Language Processing Methods for Language Modeling",
                "authors": [
                    {
                        "first": "Nemeskey",
                        "middle": [],
                        "last": "D\u00e1vid M\u00e1rk",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D\u00e1vid M\u00e1rk Nemeskey. 2020. Natural Language Pro- cessing Methods for Language Modeling. Ph.D. thesis, E\u00f6tv\u00f6s Lor\u00e1nd University.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Universal Dependencies v2: An evergrowing multilingual treebank collection",
                "authors": [
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Marie-Catherine",
                        "middle": [],
                        "last": "De Marneffe",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Ginter",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Haji\u010d",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "Sampo",
                        "middle": [],
                        "last": "Pyysalo",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Schuster",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [],
                        "last": "Tyers",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Zeman",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 12th Language Resources and Evaluation Conference",
                "volume": "",
                "issue": "",
                "pages": "4034--4043",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin- ter, Jan Haji\u010d, Christopher D. Manning, Sampo Pyysalo, Sebastian Schuster, Francis Tyers, and Daniel Zeman. 2020. Universal Dependencies v2: An evergrowing multilingual treebank collection. In Pro- ceedings of the 12th Language Resources and Evalua- tion Conference, pages 4034-4043, Marseille, France. European Language Resources Association.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Cross-lingual name tagging and linking for 282 languages",
                "authors": [
                    {
                        "first": "Xiaoman",
                        "middle": [],
                        "last": "Pan",
                        "suffix": ""
                    },
                    {
                        "first": "Boliang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "May",
                        "suffix": ""
                    },
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Nothman",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1946--1958",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1178"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth- man, Kevin Knight, and Heng Ji. 2017. Cross-lingual name tagging and linking for 282 languages. In Pro- ceedings of the 55th Annual Meeting of the Associa- tion for Computational Linguistics (Volume 1: Long Papers), pages 1946-1958, Vancouver, Canada. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "The first Komi-Zyrian Universal Dependencies treebanks",
                "authors": [
                    {
                        "first": "Niko",
                        "middle": [],
                        "last": "Partanen",
                        "suffix": ""
                    },
                    {
                        "first": "Rogier",
                        "middle": [],
                        "last": "Blokland",
                        "suffix": ""
                    },
                    {
                        "first": "Kyungtae",
                        "middle": [],
                        "last": "Lim",
                        "suffix": ""
                    },
                    {
                        "first": "Thierry",
                        "middle": [],
                        "last": "Poibeau",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Rie\u00dfler",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)",
                "volume": "",
                "issue": "",
                "pages": "126--132",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-6015"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Niko Partanen, Rogier Blokland, KyungTae Lim, Thierry Poibeau, and Michael Rie\u00dfler. 2018. The first Komi-Zyrian Universal Dependencies treebanks. In Proceedings of the Second Workshop on Universal Dependencies (UDW 2018), pages 126-132, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Building minority dependency treebanks, dictionaries and computational grammars at the same time-an experiment in karelian treebanking",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Tommi A Pirinen",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Third Workshop on Universal Dependencies",
                "volume": "",
                "issue": "",
                "pages": "132--136",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tommi A Pirinen. 2019. Building minority dependency treebanks, dictionaries and computational grammars at the same time-an experiment in karelian tree- banking. In Proceedings of the Third Workshop on Universal Dependencies (UDW, SyntaxFest 2019), pages 132-136.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Universal Dependencies for Finnish",
                "authors": [
                    {
                        "first": "Sampo",
                        "middle": [],
                        "last": "Pyysalo",
                        "suffix": ""
                    },
                    {
                        "first": "Jenna",
                        "middle": [],
                        "last": "Kanerva",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Missil\u00e4",
                        "suffix": ""
                    },
                    {
                        "first": "Veronika",
                        "middle": [],
                        "last": "Laippala",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Ginter",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of NoDaLiDa",
                "volume": "",
                "issue": "",
                "pages": "163--172",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sampo Pyysalo, Jenna Kanerva, Anna Missil\u00e4, Veronika Laippala, and Filip Ginter. 2015. Universal Depen- dencies for Finnish. In Proceedings of NoDaLiDa 2015, pages 163-172. NEALT.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "The Livonian-Estonian-Latvian Dictionary as a threshold to the era of language technological applications",
                "authors": [
                    {
                        "first": "Jack",
                        "middle": [],
                        "last": "Rueter",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceeding volume",
                "volume": "5",
                "issue": "",
                "pages": "251--259",
                "other_ids": {
                    "DOI": [
                        "10.12697/jeful.2014.5.1.14"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jack Rueter. 2014. The Livonian-Estonian-Latvian Dic- tionary as a threshold to the era of language techno- logical applications. Journal of Estonian and Finno- Ugric Linguistics, 5(1):251-259. ESUKA -JEFUL 2013, 5-1: 253-261 Volume: Proceeding volume:.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Erme ud moksha",
                "authors": [
                    {
                        "first": "Jack",
                        "middle": [],
                        "last": "Rueter",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.5281/zenodo.1156112"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jack Rueter. 2018. Erme ud moksha.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "On the questions in developing computational infrastructure for Komi-permyak",
                "authors": [
                    {
                        "first": "Jack",
                        "middle": [],
                        "last": "Rueter",
                        "suffix": ""
                    },
                    {
                        "first": "Niko",
                        "middle": [],
                        "last": "Partanen",
                        "suffix": ""
                    },
                    {
                        "first": "Larisa",
                        "middle": [],
                        "last": "Ponomareva",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Sixth International Workshop on Computational Linguistics of Uralic Languages",
                "volume": "",
                "issue": "",
                "pages": "15--25",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jack Rueter, Niko Partanen, and Larisa Ponomareva. 2020. On the questions in developing computational infrastructure for Komi-permyak. In Proceedings of the Sixth International Workshop on Computational Linguistics of Uralic Languages, pages 15-25, Wien, Austria. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Towards an opensource universal-dependency treebank for erzya",
                "authors": [
                    {
                        "first": "Jack",
                        "middle": [],
                        "last": "Rueter",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [],
                        "last": "Tyers",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Fourth International Workshop on Computational Linguistics of Uralic Languages",
                "volume": "",
                "issue": "",
                "pages": "106--118",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jack Rueter and Francis Tyers. 2018. Towards an open- source universal-dependency treebank for erzya. In Proceedings of the Fourth International Workshop on Computational Linguistics of Uralic Languages, pages 106-118.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Japanese and Korean voice search",
                "authors": [
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Schuster",
                        "suffix": ""
                    },
                    {
                        "first": "Kaisuke",
                        "middle": [],
                        "last": "Nakajima",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "5149--5152",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mike Schuster and Kaisuke Nakajima. 2012. Japanese and Korean voice search. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5149-5152. IEEE.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Annotation schemes in north s\u00e1mi dependency parsing",
                "authors": [
                    {
                        "first": "Mariya",
                        "middle": [],
                        "last": "Sheyanova",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [
                            "M"
                        ],
                        "last": "Tyers",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 3rd International Workshop for Computational Linguistics of Uralic Languages",
                "volume": "",
                "issue": "",
                "pages": "66--75",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mariya Sheyanova and Francis M. Tyers. 2017. An- notation schemes in north s\u00e1mi dependency parsing. In Proceedings of the 3rd International Workshop for Computational Linguistics of Uralic Languages, pages 66-75.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Estbert: A pretrained language-specific bert for estonian",
                "authors": [
                    {
                        "first": "Claudia",
                        "middle": [],
                        "last": "Hasan Tanvir",
                        "suffix": ""
                    },
                    {
                        "first": "Sandra",
                        "middle": [],
                        "last": "Kittask",
                        "suffix": ""
                    },
                    {
                        "first": "Kairit",
                        "middle": [],
                        "last": "Eiche",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sirts",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hasan Tanvir, Claudia Kittask, Sandra Eiche, and Kairit Sirts. 2021. Estbert: A pretrained language-specific bert for estonian.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "30",
                "issue": "",
                "pages": "5998--6008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141 ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar- nett, editors, Advances in Neural Information Process- ing Systems 30, pages 5998-6008. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Zolt\u00e1n Alexin, and J\u00e1nos Csirik",
                "authors": [
                    {
                        "first": "Veronika",
                        "middle": [],
                        "last": "Vincze",
                        "suffix": ""
                    },
                    {
                        "first": "D\u00f3ra",
                        "middle": [],
                        "last": "Szauter",
                        "suffix": ""
                    },
                    {
                        "first": "Attila",
                        "middle": [],
                        "last": "Alm\u00e1si",
                        "suffix": ""
                    },
                    {
                        "first": "Gy\u00f6rgy",
                        "middle": [],
                        "last": "M\u00f3ra",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC'10)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Veronika Vincze, D\u00f3ra Szauter, Attila Alm\u00e1si, Gy\u00f6rgy M\u00f3ra, Zolt\u00e1n Alexin, and J\u00e1nos Csirik. 2010. Hun- garian dependency treebank. In Proceedings of the Seventh conference on International Language Re- sources and Evaluation (LREC'10), Valletta, Malta. European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Multilingual is not enough: BERT for Finnish",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Virtanen",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kanerva",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Ilo",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Luoma",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Luotolahti",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Salakoski",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Ginter",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Pyysalo",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. 2019. Multi- lingual is not enough: BERT for Finnish.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "A broad-coverage challenge corpus for sentence understanding through inference",
                "authors": [
                    {
                        "first": "Adina",
                        "middle": [],
                        "last": "Williams",
                        "suffix": ""
                    },
                    {
                        "first": "Nikita",
                        "middle": [],
                        "last": "Nangia",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1112--1122",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-1101"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sen- tence understanding through inference. In Proceed- ings of the 2018 Conference of the North American Chapter of the Association for Computational Linguis- tics: Human Language Technologies, Volume 1 (Long Papers), pages 1112-1122, New Orleans, Louisiana. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Transformers: State-of-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "Remi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Joe",
                        "middle": [],
                        "last": "Davison",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Shleifer",
                        "suffix": ""
                    },
                    {
                        "first": "Clara",
                        "middle": [],
                        "last": "Patrick Von Platen",
                        "suffix": ""
                    },
                    {
                        "first": "Yacine",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Jernite",
                        "suffix": ""
                    },
                    {
                        "first": "Canwen",
                        "middle": [],
                        "last": "Plu",
                        "suffix": ""
                    },
                    {
                        "first": "Teven",
                        "middle": [
                            "Le"
                        ],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Sylvain",
                        "middle": [],
                        "last": "Scao",
                        "suffix": ""
                    },
                    {
                        "first": "Mariama",
                        "middle": [],
                        "last": "Gugger",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Drame",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "38--45",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-demos.6"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers: State-of-the-art natural language processing. In Pro- ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstra- tions, pages 38-45, Online. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT",
                "authors": [
                    {
                        "first": "Shijie",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Dredze",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "833--844",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1077"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 833-844, Hong Kong, China. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Are all languages created equal in multilingual BERT?",
                "authors": [
                    {
                        "first": "Shijie",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Dredze",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 5th Workshop on Representation Learning for NLP",
                "volume": "",
                "issue": "",
                "pages": "120--130",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.repl4nlp-1.16"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shijie Wu and Mark Dredze. 2020. Are all languages created equal in multilingual BERT? In Proceedings of the 5th Workshop on Representation Learning for NLP, pages 120-130, Online. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Exploring bert's vocabulary",
                "authors": [
                    {
                        "first": "Judit",
                        "middle": [],
                        "last": "\u00c1cs",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Judit \u00c1cs. 2019. Exploring bert's vocabulary.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "type_str": "figure",
                "text": "Mean accuracy of morphological tasks by language. The bars are grouped in two, the left one is the result of probing the first subword, the right one is the results of probing the last subword. Blue bars are without finetuning, green bars are with finetuning. Monolingual models are highlighted.",
                "uris": null
            },
            "FIGREF2": {
                "num": null,
                "type_str": "figure",
                "text": "POS and NER results on languages that use the Latin alphabet.",
                "uris": null
            },
            "FIGREF3": {
                "num": null,
                "type_str": "figure",
                "text": "POS and NER results on languages that use the Cyrillic alphabet.",
                "uris": null
            },
            "TABREF2": {
                "html": null,
                "text": "List of models we evaluate.",
                "type_str": "table",
                "content": "<table><tr><td/><td colspan=\"7\">mBERT RoBERTa EstBERT FinBERT HuBERT RuBERT EngBERT</td></tr><tr><td>Vocab. size</td><td>120k</td><td>250k</td><td>50k</td><td>50k</td><td>32k</td><td>120k</td><td>29k</td></tr><tr><td>Missing [et] (%)</td><td>.0</td><td>.0</td><td>.2</td><td>.0</td><td>.5</td><td>.1</td><td>.2</td></tr><tr><td>Missing [fi] (%)</td><td>.0</td><td>.0</td><td>.0</td><td>.0</td><td>.4</td><td>.0</td><td>.0</td></tr><tr><td>Missing [hu] (%)</td><td>.1</td><td>.0</td><td>21.5</td><td>48.3</td><td>.1</td><td>2.7</td><td>.2</td></tr><tr><td>Missing [sme] (%)</td><td>.2</td><td>.0</td><td>15.0</td><td>47.4</td><td>5.1</td><td>4.8</td><td>.2</td></tr><tr><td>Missing [myv] (%)</td><td>.0</td><td>.0</td><td>97.5</td><td>97.5</td><td>97.5</td><td>.0</td><td>.0</td></tr><tr><td>Subword length [et]</td><td>3.7\u00b11.4</td><td>4.2\u00b11.7</td><td>5.8\u00b12.6</td><td>3.7\u00b11.4</td><td colspan=\"2\">3.1\u00b11.2 3.1\u00b11.2</td><td>3.5\u00b11.4</td></tr><tr><td>Subword length [fi]</td><td>3.8\u00b11.4</td><td>4.5\u00b11.9</td><td>3.8\u00b11.4</td><td>5.9\u00b12.5</td><td colspan=\"2\">3.1\u00b11.1 3.1\u00b11.1</td><td>3.4\u00b11.4</td></tr><tr><td>Subword length [hu]</td><td>3.5\u00b11.5</td><td>4.2\u00b12.0</td><td>3.3\u00b11.2</td><td>3.1\u00b11.1</td><td colspan=\"2\">5.0\u00b12.4 3.0\u00b11.1</td><td>3.3\u00b11.4</td></tr><tr><td>Subword length [sme]</td><td>3.2\u00b11.0</td><td>3.4\u00b11.1</td><td>3.2\u00b11.1</td><td>3.2\u00b11.1</td><td colspan=\"2\">3.1\u00b11.2 2.9\u00b11.0</td><td>3.0\u00b11.0</td></tr><tr><td>Subword length [myv]</td><td>3.1\u00b11.2</td><td>3.2\u00b11.0</td><td>1.0\u00b10.0</td><td>1.0\u00b10.0</td><td colspan=\"2\">1.0\u00b10.0 3.4\u00b11.2</td><td>1.1\u00b10.4</td></tr><tr><td>Character length [et]</td><td>9.2</td><td>9.2</td><td>9.2</td><td>9.2</td><td>9.2</td><td>9.2</td><td>9.2</td></tr><tr><td>Character length [fi]</td><td>9.3</td><td>9.3</td><td>9.3</td><td>9.3</td><td>9.3</td><td>9.3</td><td>9.3</td></tr><tr><td>Character length [hu]</td><td>9.8</td><td>9.8</td><td>9.6</td><td>8.8</td><td>9.8</td><td>9.8</td><td>9.9</td></tr><tr><td>Character length [sme]</td><td>8.5</td><td>8.5</td><td>8.3</td><td>7.6</td><td>8.5</td><td>8.4</td><td>8.5</td></tr><tr><td>Character length [myv]</td><td>7.3</td><td>7.3</td><td>1.8</td><td>1.8</td><td>1.7</td><td>7.3</td><td>7.3</td></tr><tr><td>Fertility [et]</td><td>3.4</td><td>2.8</td><td>2.1</td><td>3.6</td><td>4.4</td><td>4.3</td><td>4.3</td></tr><tr><td>Fertility [fi]</td><td>3.3</td><td>2.7</td><td>3.5</td><td>1.9</td><td>4.6</td><td>4.4</td><td>4.5</td></tr><tr><td>Fertility [hu]</td><td>4.0</td><td>3.2</td><td>5.2</td><td>4.5</td><td>2.8</td><td>5.4</td><td>5.6</td></tr><tr><td>Fertility [sme]</td><td>3.7</td><td>3.6</td><td>4.1</td><td>3.3</td><td>4.5</td><td>4.6</td><td>4.7</td></tr><tr><td>Fertility [myv]</td><td>3.6</td><td>3.3</td><td>1.1</td><td>1.1</td><td>1.1</td><td>3.0</td><td>7.2</td></tr></table>",
                "num": null
            },
            "TABREF3": {
                "html": null,
                "text": "Major characteristics of cross-language tokenization. Boldface font marks the corresponding language-model pairs.",
                "type_str": "table",
                "content": "<table/>",
                "num": null
            },
            "TABREF5": {
                "html": null,
                "text": "List of morphological probing tasks.",
                "type_str": "table",
                "content": "<table/>",
                "num": null
            }
        }
    }
}