File size: 150,332 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:24:39.322551Z"
    },
    "title": "Automatic Assignment of Semantic Frames in Disaster Response Team Communication Dialogues",
    "authors": [
        {
            "first": "Natalia",
            "middle": [],
            "last": "Skachkova",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "DFKI",
                "location": {
                    "postCode": "66123",
                    "settlement": "Saarbr\u00fccken",
                    "country": "Germany"
                }
            },
            "email": "natalia.skachkova@dfki.de"
        },
        {
            "first": "Ivana",
            "middle": [],
            "last": "Kruijff-Korbayov\u00e1",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "DFKI",
                "location": {
                    "postCode": "66123",
                    "settlement": "Saarbr\u00fccken",
                    "country": "Germany"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We investigate frame semantics as a meaning representation framework for team communication in a disaster response scenario. We focus on the automatic frame assignment and retrain PAFIBERT, which is one of the state-ofthe-art frame classifiers, on English and German disaster response team communication data, obtaining accuracy around 90%. We examine the performance of both models and discuss their adjustments, such as sampling of additional training instances from an unrelated domain and adding extra lexical and discourse features to input token representations. We show that sampling has some positive effect on the German frame classifier, discuss an unexpected impact of extra features on the models' behaviour and perform a careful error analysis.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We investigate frame semantics as a meaning representation framework for team communication in a disaster response scenario. We focus on the automatic frame assignment and retrain PAFIBERT, which is one of the state-ofthe-art frame classifiers, on English and German disaster response team communication data, obtaining accuracy around 90%. We examine the performance of both models and discuss their adjustments, such as sampling of additional training instances from an unrelated domain and adding extra lexical and discourse features to input token representations. We show that sampling has some positive effect on the German frame classifier, discuss an unexpected impact of extra features on the models' behaviour and perform a careful error analysis.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In this paper we employ the theory of frame semantics as a meaning representation framework for dialogues from the domain of disaster response. Our work is part of a larger research project developing methods to capture and interpret verbal team communication in disaster response scenarios and use the extracted run-time mission knowledge for mission process assistance, as described in (Willms et al., 2019) . Team communication interpretation encompasses several aspects, some of which have been addressed in earlier publications of our team: (Anikina and Kruijff-Korbayova, 2019) present dialogue act classification results; (Skachkova and Kruijff-Korbayova, 2020) provide an analysis of contextual reference phenomena. The present paper complements this by results on semantic frame assignment. To our knowledge, our work is the first to use semantic frames in the domain of disaster response, and one of the few attempts implementing a frame classifier for dialogue.",
                "cite_spans": [
                    {
                        "start": 388,
                        "end": 409,
                        "text": "(Willms et al., 2019)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 546,
                        "end": 583,
                        "text": "(Anikina and Kruijff-Korbayova, 2019)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 629,
                        "end": 668,
                        "text": "(Skachkova and Kruijff-Korbayova, 2020)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Frame semantics is a paradigm defining the meaning of words through the context they are used in (Fillmore, 1976) . This assumes that, depending on context, a word (or an expression) is able to evoke in our minds a certain event or situation together with a set of slots called frame elements associated with it, even if some of these slots were not explicitly filled in the sentence.",
                "cite_spans": [
                    {
                        "start": 97,
                        "end": 113,
                        "text": "(Fillmore, 1976)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Using frame semantics as a meaning representation requires frame semantic parsing, namely identifying frame-evoking elements (targets) and the corresponding frames, as well as recognizing certain spans as frame elements and classifying them. In this paper we address the task of automatic semantic frame assignment, given a target. The novelty is that we work on English and German dialogues in robot-assisted disaster response teams.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We use the TRADR corpus (Kruijff-Korbayov\u00e1 et al., 2015) , which contains transcribed communication in teams of firefighters using robots for incident site reconnaissance during a series of exercises that simulated situations after a disaster, such as a fire, explosion, etc. Towards the aim of creating structured representations of the events and activities during a first response mission by means of semantic frames, we experiment with some existing models. We start with a simple sequence classification approach that assumes finetuning of a pretrained BERT model (Devlin et al., 2019) on the TRADR corpus. Next, we use one of the existing state-of-the-art frame classifiers called PAFIBERT (Tan and Na, 2019) . We re-implement and train it on the English FrameNet (Baker et al., 1998) data, and evaluate the model on English TRADR dialogues. We also experiment with retraining PAFIBERT on the TRADR data, despite the small corpus size. In addition, we investigate a possibility of training a frame classifier on mixed data -FrameNet or SALSA (Burchardt et al., 2006) plus TRADR -and consider three sampling approaches. Finally, we examine whether enriching the input with lexical and discourse features has an effect on the classifier performance. In contrast to many papers that report standard accuracy or F-score to measure the performance of a frame classifier, we use the index of balanced accuracy metric (Garc\u00eda et al., 2009) designed specifically for imbalanced data.",
                "cite_spans": [
                    {
                        "start": 24,
                        "end": 56,
                        "text": "(Kruijff-Korbayov\u00e1 et al., 2015)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 569,
                        "end": 590,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 696,
                        "end": 714,
                        "text": "(Tan and Na, 2019)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 770,
                        "end": 790,
                        "text": "(Baker et al., 1998)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 1048,
                        "end": 1072,
                        "text": "(Burchardt et al., 2006)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1417,
                        "end": 1438,
                        "text": "(Garc\u00eda et al., 2009)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In Section 2 we give a brief overview of the theory of frame semantics. In Section 3 we introduce the most notable frameworks designed to perform automatic frame assignment or frame-semantic parsing. In Section 4 we examine the distribution of semantic frames and the role of ambiguous targets in the TRADR corpus, compare our data with FrameNet and SALSA, and explain how we prepared and split all the data into training, validation and test sets. Section 5 describes the experiments and their results. In Section 6 we make a conclusion and indicate possible further steps.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "According to Petruck (2019), frame semantics is a research program in empirical semantics which emphasizes the continuities between language and experience, and provides a framework for presenting the results of that research.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Frame Semantics",
                "sec_num": "2"
            },
            {
                "text": "The theory of frame semantics goes back to the 1970s. One of the pioneers in this area was Charles J. Fillmore. He suggested that a language description should include not only lexicon and grammar, but also a set of 'frames' that incorporate the semantics of the language elements (Fillmore, 1976) . Fillmore (1982) uses the word 'frame' as a general cover term for such concepts as 'schema', 'script', 'scenario', or 'cognitive model'. He defines a frame as a system of concepts which are related to each other, and states that one cannot understand a concept without understanding the whole structure it is a part of. Frame semantics tries to describe and formalize such structures.",
                "cite_spans": [
                    {
                        "start": 281,
                        "end": 297,
                        "text": "(Fillmore, 1976)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 300,
                        "end": 315,
                        "text": "Fillmore (1982)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Frame Semantics",
                "sec_num": "2"
            },
            {
                "text": "The FrameNet project (Baker et al., 1998) is considered one of the first practical realizations of the theory of frame semantics for English. One of its achievements was the creation of a lexical database that covers more than 13,000 word senses, is both human-and machine-readable and available online. Besides, more than 200,000 sentences were annotated with about 1,200 semantic frames, and are now known as the FrameNet corpus.",
                "cite_spans": [
                    {
                        "start": 21,
                        "end": 41,
                        "text": "(Baker et al., 1998)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Frame Semantics",
                "sec_num": "2"
            },
            {
                "text": "Examples 2.1 and 2.2 present a definition of the Inspecting frame and its frame elements (FEs), an-notated with respect to the target inspected. Note that FEs can be 'core' (i.e. essential to the meaning of a frame) and 'non-core' (i.e. not uniquely characterizing). Usually, core FEs are part of the frame definition, like INSPECTOR and GROUND in Example 2.2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Frame Semantics",
                "sec_num": "2"
            },
            {
                "text": "Example 2.1 'Inspecting' Frame Definition An INSPECTOR directs his/her perceptual attention to a GROUND to ascertain whether the GROUND is intact or whether an UNWANTED ENTITY is present. Alternatively, the desired outcome of the inspection may be presented as a PURPOSE. Databases similar to FrameNet were also created for other languages. In Section 4 we compare the FrameNet corpus and its German counterpart SALSA with the TRADR data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Frame Semantics",
                "sec_num": "2"
            },
            {
                "text": "Frame semantics is not one of the most common meaning representation frameworks. However, research in the area of frame-semantic parsing has increased since frame-semantic structure extraction was included as a task in SemEval'07 (Baker et al., 2007) . Most of the existing works present models trained on text data. Some of the projects deal only with automatic frame assignment, others have a bigger goal, namely, recognizing targets, frames and frame elements. In what follows we will focus on automatic frame assignment.",
                "cite_spans": [
                    {
                        "start": 230,
                        "end": 250,
                        "text": "(Baker et al., 2007)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "Most of the early frameworks are based on the idea of learning the frame labels from frameevoking targets represented as rather elaborated sets of features, which include the target's lemma, its part of speech, etc. Many features rely on dependency syntax. For non-ambiguous targets a frame can be retrieved using a simple mapping. If the target is ambiguous, the correct label is learned using a Naive Bayes classifier, e.g., as shown by Erk (2005) , or an SVM classifier like in the framework called LTH (Johansson and Nugues, 2007) , or a discriminative probabilistic (log-linear) model like in SEMAFOR by Das et al. (2010) .",
                "cite_spans": [
                    {
                        "start": 439,
                        "end": 449,
                        "text": "Erk (2005)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 506,
                        "end": 534,
                        "text": "(Johansson and Nugues, 2007)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 609,
                        "end": 626,
                        "text": "Das et al. (2010)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "The success of neural networks for many NLP tasks resulted in a gradual switch from the featurebased approaches to embeddings and a broader usage of neural networks for the task of automatic frame assignment. One of the first semantic parsers to use embeddings was developed by Hermann et al. (2014) . They represent targets as vectors, certain parts of which are reserved for certain argument representations. All frame labels are also vectors, and the classifier learns to minimize the distance between the targets and the correct labels. Other frameworks based on embeddings and various types of neural networks include Simple-FrameId (Hartmann et al., 2017 ) -a two-layer network which also allows to perform frame filtering using mappings of certain lexical units to certain frames from the FrameNet database; a framework by Yang and Mitchell (2017) that performs frame identification using a simple multi-layer network; TSABCNN (Zhao et al., 2018) , which uses word2vec embeddings and convolutional neural networks.",
                "cite_spans": [
                    {
                        "start": 278,
                        "end": 299,
                        "text": "Hermann et al. (2014)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 638,
                        "end": 660,
                        "text": "(Hartmann et al., 2017",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 830,
                        "end": 854,
                        "text": "Yang and Mitchell (2017)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 934,
                        "end": 953,
                        "text": "(Zhao et al., 2018)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "Recently, there appeared frameworks that rely on BERT embeddings and pretrained models. E.g., PAFIBERT (Tan and Na, 2019) fine-tunes the pretrained BERT model using an attention mechanism to give weights to words that make up the context of the target. An interesting alternative approach was presented by Kalyanpur et al. (2020) . They interpret frame-semantic parsing as a sequence-tosequence generation problem. Their approach is based on the encoder-decoder architecture, namely on the T5 model, which is available via the Hug-gingFace library (Wolf et al., 2020) . Ribeiro et al. (2020) treat automatic frame assignment as a clustering problem. They focus on verbal frame-evoking targets and represent them using contextualized ELMo embeddings. The targets are treated as nodes in a graph, and clustered using the Chinese Whispers algorithm (Biemann, 2006) . A new instance is classified by determining the closest cluster.",
                "cite_spans": [
                    {
                        "start": 103,
                        "end": 121,
                        "text": "(Tan and Na, 2019)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 306,
                        "end": 329,
                        "text": "Kalyanpur et al. (2020)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 548,
                        "end": 567,
                        "text": "(Wolf et al., 2020)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 570,
                        "end": 591,
                        "text": "Ribeiro et al. (2020)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 846,
                        "end": 861,
                        "text": "(Biemann, 2006)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "All the above frameworks were trained on text data. We found only two frame-semantic parsers designed specifically for dialogue. One of them was created in the course of the LUNA project (Raymond et al., 2008) and focuses mostly on frame element classification (Coppola et al., 2008) . The other was presented by Trione et al. (2015) . Its main goal is actually to speed up the manual annotation process, not pure frame-semantic parsing. Frames are detected with the help of a hand-crafted set of lexical triggers, which includes 200 most frequent words from 7 domains.",
                "cite_spans": [
                    {
                        "start": 187,
                        "end": 209,
                        "text": "(Raymond et al., 2008)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 261,
                        "end": 283,
                        "text": "(Coppola et al., 2008)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 313,
                        "end": 333,
                        "text": "Trione et al. (2015)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "A comparison of the frameworks mentioned above, as well as the results of their evaluation on the test data can be found in Appendix D. We do not place them here for space reasons.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "For the experiments on the TRADR data presented in this paper we have chosen the PAFI-BERT approach (Tan and Na, 2019) . PAFIBERT is one of the state-of-the-art frame classifiers, it showed about 89% accuracy when evaluated on the FrameNet test set, and it is easy to re-implement.",
                "cite_spans": [
                    {
                        "start": 100,
                        "end": 118,
                        "text": "(Tan and Na, 2019)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "The TRADR corpus consists of 15 files with dialogues, six files contain dialogues in English, and nine -in German. Six German dialogues were translated into English in order to get more English training data. TRADR dialogues comprise the communication in first responder teams using robots for disaster site reconnaissance. Each team consists of several operators (OP) who control ground and airborne robots, a team leader (TL) and sometimes also a mission commander (MC). Table 1 shows the distribution of dialogue turns, utterances and tokens between the mission participants in both English and German TRADR dialogues. Also, average numbers of utterances per turn and tokens per utterance are given. We see that both English and German parts of the data contain approximately the same number of dialogue turns, however the turns in the English dialogues are slightly longer, and as a result the English part of the corpus is 1.5 times larger. The utterances are usually rather short -7-9 tokens on average, as the team participants try to be brief and precise. We annotated the utterances in the English TRADR dialogues with frame-evoking targets, corresponding lexical units (LUs), frames and parent frames. Frame elements were not annotated. The German TRADR data was annotated similarly, except that we replaced targets and LUs with 'tar-get related elements', which represent the whole phrase that the target is a part of. We assumed that each utterance can potentially have several targets or groups of frame related elements. As a result, the number of frame instances in the TRADR corpus is larger than the number of utterances given in Table 1 . While annotating our data with semantic frames we tried to follow the FrameNet annotation guidelines (Ruppenhofer et al., 2006) . Due to the specifics of our domain, many FrameNet frame definitions had to be adapted. Also, ten new frames were introduced. The English and German parts of the corpus were annotated by two different annotators. To check the reliability of the annotation, one dialogue in German (534 frame instances) was also annotated by the person responsible for the annotation of the English dialogues. Inter-annotator agreement measured using Cohen's Kappa (Carletta, 1996) reached 0.73, which is considered reliable. A team communication example annotated with semantic frames, as well as the definitions of the new frames are available in Appendix C. We are making the annotated data available online. 1 In total, the English and German parts of the TRADR corpus contain 4,191 and 3,519 frame instances, respectively. These instances are distributed between 190 (English) and 152 (German) different frame labels. The distribution of the frame labels is not uniform.Thus, in English TRADR almost 60% of all the instances belong to the top ten most frequent frames, and 137 out of 190 frames have only ten or less samples, which all together make up about 10% of the data. In German TRADR the instances of the top ten most frequent frames make up approximately 58%, and instances of 105 infrequent frames -almost 11% of the data. The fact that the TRADR data is highly imbalanced motivates the choice of performance metrics for the evaluation of the frame classifiers that will be discussed in the next section.",
                "cite_spans": [
                    {
                        "start": 1758,
                        "end": 1784,
                        "text": "(Ruppenhofer et al., 2006)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 2233,
                        "end": 2249,
                        "text": "(Carletta, 1996)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 2480,
                        "end": 2481,
                        "text": "1",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 473,
                        "end": 480,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 1647,
                        "end": 1654,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Data for experiments",
                "sec_num": "4"
            },
            {
                "text": "The English TRADR data counts 434 different LUs. Their distribution is also not uniform: the top ten most common LUs occur in about 40% of all the utterances and at the same time make only slightly more than 2% of the total of different LUs. All LUs are distributed between seven different POS tags. 75% of the utterances contain verbal targets. The second frequent POS tag is an interjection -almost 8% of all the targets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data for experiments",
                "sec_num": "4"
            },
            {
                "text": "Only about 15% of all LUs in English TRADR are ambiguous. However, they are realized in nearly 53% of utterances containing targets. Simple calculations show that on average a single LU evokes 1.24 frames. So, while the ambiguous LUs are not very frequent in comparison to non-ambiguous ones, the frames that they evoke are frequent, and this may become a problem for the frame classifier, as it is not always possible to perform frame disambiguation using the utterance context.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data for experiments",
                "sec_num": "4"
            },
            {
                "text": "Besides TRADR we also use the FrameNet and SALSA datasets for our experiments, so it is necessary to compare them with our data. The differences between the corpora are summarized in Table 14 , presented in Appendix. Note that for the experiments all duplicate sentences/utterances (i.e. equal strings with equal labels), as well as elliptical utterances and communication fragments (in TRADR) were removed. The numbers in Table 14 are based on the cleaned versions of the corpora. The only exception is the average utterance length in the TRADR corpus, that was calculated based on the original data in Table 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 183,
                        "end": 191,
                        "text": "Table 14",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 423,
                        "end": 431,
                        "text": "Table 14",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 604,
                        "end": 611,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Data for experiments",
                "sec_num": "4"
            },
            {
                "text": "The FrameNet and SALSA data are very different from TRADR, cf. Table 14 . First, they are much larger and come from other domains (note that the domains of FrameNet and SALSA are quite close to each other). Both FrameNet and SALSA include many more frames than TRADR, and despite the fact that many frames are common for all the corpora (e.g., about 93% of frame labels in English TRADR also occur in FrameNet), the frame distributions are very different. The fact that less than 65% of TRADR LUs are common with FrameNet LUs, which are much more numerous, supports this. Both FrameNet and SALSA are also imbalanced and FrameNet contains ambiguous targets. All the datasets were shuffled and randomly split into training, validation and test data as shown in Table 2 . Note that the number of classes (frame labels) is smaller than given in Table 14 , as all the frames that have less than five instances were removed. This was necessary to perform 5-fold cross-validation. Note that we have two English TRADR test sets. The second one is a subset of the first one, and contains the instances of 50 frames common to both FrameNet and TRADR. It is needed to test the PAFIBERT model trained on FrameNet.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 63,
                        "end": 71,
                        "text": "Table 14",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 759,
                        "end": 766,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 841,
                        "end": 849,
                        "text": "Table 14",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Data for experiments",
                "sec_num": "4"
            },
            {
                "text": "In this section we will present semantic frame classifiers for both English and German TRADR dialogues. Our main focus is on the English data. We introduce several models, split into basic and adjusted, and discuss their performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Discussion",
                "sec_num": "5"
            },
            {
                "text": "As all our datasets have hundreds of classes and are highly imbalanced, many typical performance metrics, e.g., accuracy, precision, F-score, are not reliable (Tharwat, 2020) . Instead, we use the index of balanced accuracy (IBA) metric as our main performance measure, calculated using the Python imbalanced-learn package (Lema\u00eetre et al., 2017) . The package also outputs the scores of the common metrics, such as recall, precision and F-score, and we show them for the sake of comparison, as most papers on automatic frame assignment report either accuracy, or these metrics. All the metrics are calculated using macro-averaging.",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 174,
                        "text": "(Tharwat, 2020)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 323,
                        "end": 346,
                        "text": "(Lema\u00eetre et al., 2017)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Discussion",
                "sec_num": "5"
            },
            {
                "text": "The first group includes four models. The first one is a naive baseline, represented by the BertForSe-quenceClassification model from the Transformers library (Wolf et al., 2020) fine-tuned on English TRADR. BertForSequenceClassification was chosen as the most straightforward way to perform sequence classification. It is a pretrained BERT model with an additional linear layer on top of the pooled output. The other three models reproduce the architecture of PAFIBERT. The implementation details can be found in the original paper by Tan and Na (2019) . One of the models was trained on the FrameNet data, another -purely on English TRADR data, the last one -on German TRADR data.",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 178,
                        "text": "(Wolf et al., 2020)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 536,
                        "end": 553,
                        "text": "Tan and Na (2019)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic models",
                "sec_num": "5.1"
            },
            {
                "text": "All four models were trained with 5-fold crossvalidation. As both English and German TRADR datasets are small, different splits into training and test parts may result in noticeable performance variance. We used cross-validation to get a more reliable estimation of the performance of the models, not for hyper-parameter search. All hyperparameters were taken from the original paper. Following Tan and Na (2019) , training was performed for 8 epochs per fold using an adaptive learning rate that starts with 3e-5 and an AdamW optimizer. In the course of cross-validation we always saved the model with the best IBA validation score. Next, the model was evaluated on the test data.",
                "cite_spans": [
                    {
                        "start": 395,
                        "end": 412,
                        "text": "Tan and Na (2019)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic models",
                "sec_num": "5.1"
            },
            {
                "text": "The performance of the basic models is summarized in Table 3 . We see that BertForSequence-Classification demonstrates rather unsatisfactory performance -IBA only 32% -37%. The reason for this is the fact that simple fine-tuning does not integrate information about the frame-evoking targets and their contexts, so that it is impossible for the model to guess what tokens in the sequence it has to focus on. It is obvious that in order to improve the performance, we need to tell the model which tokens in each utterance it should pay attention to, and PAFIBERT provides a convenient way to do so. As Table 3 shows, PAFIBERT trained on the FrameNet data has IBA of 91% when evaluated on the test set coming from the same distribution. This score is actually even slightly better than the standard accuracy of 89% reported by Tan and Na (2019) . However, when tested on TRADR data, the model shows much worse results, namely, only 51% IBA, despite the fact that the majority of the 50 frames from the given test set have enough instances in the training set.",
                "cite_spans": [
                    {
                        "start": 825,
                        "end": 842,
                        "text": "Tan and Na (2019)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 53,
                        "end": 60,
                        "text": "Table 3",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 601,
                        "end": 608,
                        "text": "Table 3",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Basic models",
                "sec_num": "5.1"
            },
            {
                "text": "The main reasons why this classifier fails on the TRADR data are as follows. First of all, due to the fact that FrameNet is very fine-grained, many TRADR instances got classified as belonging to very specific frames which we did not use when annotating the TRADR data, like 'Interior profile relation' and 'Non gradable proximity' (we used their parent frame 'Locative relation' instead). Another reason is that TRADR instances of certain frames have targets that, due to domain differences, are not typical for these frames in FrameNet. For instance, all TRADR samples of 'Create representation' frame were misclassified, because the model expected 'draw', 'carve' or 'sketch' as targets, but got 'take/make a picture' and labeled the input utterances as 'Physical artwork' instead. Finally, there is also a problem of ambiguity. For example, the target 'change' can evoke both 'Replacing' and 'Cause change' frames, and the target 'lie' -'Posture' and 'Being located'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic models",
                "sec_num": "5.1"
            },
            {
                "text": "So, the error analysis shows that the PAFIBERT model trained on FrameNet is domain-specific, it does not generalize well, and we cannot simply reuse it for TRADR data without special modifications or further fine-tuning.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic models",
                "sec_num": "5.1"
            },
            {
                "text": "Now let us have a look at the performance of the PAFIBERT models trained on English and German TRADR. Despite the relatively small size of the training data, the models manage to achieve IBA scores of about 88% (English) and 83% (German). The English model also demonstrates quite good performance (86% IBA) on the subset of the main English TRADR test set, used to evaluate PAFIB-ERT trained on the FrameNet data. Notice that the IBA metric is fairer than standard accuracy: despite the fact that the subset of the TRADR test set does not contain the instances of the most frequent domain-specific 'Communication by protocol' and 'Communication response message' frames, which are easier to recognize due to their shortness and typical structure, the IBA score for this test set is only 2% lower. In order to understand why we have 5% difference in performance between the English and German frame classifiers trained on TRADR, we performed error analysis. The results are summarized in Table 4 . We see that the majority of errors happens because of ambiguous targets, and the proportion of such errors is about 10% higher among the errors made by the English frame classifier. At the same time the German frame classifier makes much more the so-called silly mistakes, which encompass the cases when the assigned frame has nothing to do with the given target. We attribute the worse performance of the German classifier mostly to the fact that instead of targets we used 'frame related elements', which sometimes contain several tokens and can be confusing for the classifier. Differences between the languages (i.e. in morphology, syntax, semantics) may also be important. E.g., verbs with separable prefixes, like 'zur\u00fcckkehren' or 'vorbeikommen', as targets may lead to errors, as the prefixes often get disregarded. Finally, because of small test sizes, the role of chance (in)correct assignments may get exaggerated.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 988,
                        "end": 995,
                        "text": "Table 4",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Basic models",
                "sec_num": "5.1"
            },
            {
                "text": "Aiming at performance improvement, we experimented with several adjustments of the PAFIBERT model trained on TRADR. Below we discuss the results and analyse the errors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "Sampling We performed a series of experiments with sampling additional training examples from the subsets of the FrameNet and SALSA corpora, which contain only instances of those frames that occur in TRADR. The FrameNet subset for sampling has 21,492 instances (about 12% of the whole FrameNet corpus), the SALSA subset -2,486 (about 7% of the corpus). The experiments can be split into two groups. The first group includes training models with different portions of blindly sampled data. The second part involves experiments with informed sampling. Each model is trained on a mixture of TRADR and sampled data, and validated solely on TRADR data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "In the blind sampling scenario we train ten models gradually increasing the amount of additional training examples randomly chosen from the FrameNet or SALSA subsets. The results for the English frame classifier are in Table 5 . We see that there is no clear correlation between the sampled data size and performance. Three models demonstrate an improvement by 1% in comparison with the basic model, however, this difference is insignificant according to the McNe-mar's test. A lack of positive influence of the blind sampling can be caused by the fact that the subset of the FrameNet data used for sampling only contains a small amount of really useful instances. If only a part of the subset is sampled, these instances have high chances to be left out due the randomization of the sampling procedure. In case the whole subset is sampled, the additional instances may dominate the original ones, as the FrameNet subset for sampling is much larger than TRADR.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 219,
                        "end": 226,
                        "text": "Table 5",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "In contrast to this, the effect of the blind random sampling on the German frame classifier is clearly positive. As Table 6 shows, having more training data leads to the IBA score increase by 4%. To get an explanation why blind sampling has a different impact on the two classifiers, we plot the learning curves that show how training and validation losses depend on the proportion of sampled data. As Figure 1 shows, adding training instances from FrameNet and SALSA does not lead to validation loss decrease and better generalization ability of the models. Notice that even without sampling the gap between the two curves in each plot is large, with training losses being close to zero, which is usually interpreted as overfitting. This finding lead us to check the learning curves of PAFIBERT trained on the much larger FrameNet data. The overfitting problem occurs in that case, too (see Appendix A). To tackle the overfitting issue, we tried out several experiments with increased dropout rate and fewer training epochs, but they only led to the IBA score decrease. We conclude that some fundamental changes in PAFIBERT's architecture would be needed to avoid overfitting.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 116,
                        "end": 123,
                        "text": "Table 6",
                        "ref_id": "TABREF12"
                    },
                    {
                        "start": 402,
                        "end": 410,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "In both plots in Figure 1 the validation loss grows together with the number of sampled examples. This means that even if the models continue making correct predictions, their confidence sinks. In case of the German frame classifier this growth is not so rapid, which can probably be explained by the fact that the SALSA subset for sampling is much smaller than the corresponding FrameNet subset. Knowing that IBA is actually improving, we hypothesize that sampled data from an unrelated domain can be helpful, but the right amount of these instances and their quality criteria are rather difficult to determine. The main disadvantage of blind sampling is that the instances are picked out regardless of their distribution in both original training data and data held out for sampling, which may aggravate the imbalance problem.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 17,
                        "end": 25,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "To overcome this, we tried two approaches using informed sampling. One is balancing sampling. It assumes sampling for each class no more than the maximum number of instances of the most common frame in the TRADR training data. The approach is supposed to deal with the class imbalance problem. However, this method also has a potential disadvantage. In case the number of original TRADR utterances is small, and the number of sampled instances is much larger, with their targets being different from those in the original utterances, the model will be biased towards the dominating training samples and thus prone to misclassification of the TRADR test examples. To avoid this we introduce equal sampling, which has an additional constraint that the number of sampled examples cannot exceed the number of the original ones.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "The scores in Table 7 show that the informed sampling does not produce the expected positive effect on the English frame classifier. So, we see that sampling failed to produce any positive effect on the English frame classifier, but worked for the German one. We hypothesize that this happens to a large extent because sampling mostly helps to resolve simple mistakes, but is less effective in cases where disambiguation is necessary. More complex morphology of German may also be a reason why additional training examples proved to be more useful.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 14,
                        "end": 21,
                        "text": "Table 7",
                        "ref_id": "TABREF14"
                    }
                ],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "Extra features Our next goal is to check if extending BERT embeddings with extra features has any positive impact on the performance of PAFIB-ERT. We divide the features into two groups: lexical features that include POS tags and subword masks, and discourse features represented by speaker tags and dialogue acts. Our modifications of the original architecture by Tan and Na (2019) are given in Appendix, Figures 3 and 4 .",
                "cite_spans": [
                    {
                        "start": 365,
                        "end": 382,
                        "text": "Tan and Na (2019)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 406,
                        "end": 421,
                        "text": "Figures 3 and 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "The introduction of lexical features is motivated by the following reasons. First, we have cases, when the POS tag of a target may be important to differentiate one frame from another. E.g., in the utterance \"Can you position yourself onto the track?\" the target 'position' is a verb and evokes the 'Placing' frame, while in the utterance \"What's your current position?\" 'position' is a noun that induces the frame 'Locale by collocation'. Second, BERT tokenization splits the tokens that are not included in the tokenizer vocabulary, and sometimes it happens that some parts of a token lie outside of the target's context window.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "POS tagging was done with a tagger from the Python SpaCy library (Honnibal and Montani, 2017) . There are 19 coarse-grained tags that follow the Universal Dependencies scheme. We add two more tags to this set: SPECIAL to mark special tokens used by BERT and separate them from 'normal' ones, and PAD for padded tokens. If a token gets split by the tokenizer, each sub-token is assigned the POS tag of the original word. Our subword masks are bit vectors where all sub-tokens are marked with ones, and intact tokens -with zeros.",
                "cite_spans": [
                    {
                        "start": 65,
                        "end": 93,
                        "text": "(Honnibal and Montani, 2017)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "Embeddings for lexical features are trained together with the model. They are concatenated with the BERT model output, namely with (sub)token vectors, and used as input for the position-based attention layer of PAFIBERT. As (sub)token representations get longer, we have to increase the size of the first linear layer of PAFIBERT accordingly.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "The second group of additional features includes discourse features, namely the speaker tag and dialogue act type, which also can be useful for frame disambiguation. E.g., given a short utterance \"Try it\" with the target 'try', the classifier may have difficulties labeling it, because to assign the correct frame it needs to know the perspective, i.e. the speaker. If the speaker is the team leader, then the correct frame is 'Attempt suasion', if it is an operator, then it should be the 'Attempt' frame. The information about the dialogue act type can be used to strengthen the impact of the speaker tag, because there exist a strong correlation between the speaker and the dialogue act in the tradr dialogues (Anikina and Kruijff-Korbayov\u00e1, 2019) .",
                "cite_spans": [
                    {
                        "start": 713,
                        "end": 750,
                        "text": "(Anikina and Kruijff-Korbayov\u00e1, 2019)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "Following Anikina and Kruijff-Korbayov\u00e1 (2019), we use three labels to encode the speakers: MC for the mission commander, TL for the team leader and OPERATOR for the rest of the team.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "As for dialogue acts, we use 12 labels based on the ISO-24617-2 guidelines Bunt (2019) , with a few modifications. Eight tags correspond to those used in Anikina and Kruijff-Korbayov\u00e1 (2019) : 'Affirmative ', 'Confirm', 'Contact', 'Disconfirm', 'Inform', 'Negative', 'Question' and 'Request' . The other four labels are 'Communication Management', 'Time Management', 'Discourse Structuring' and 'Social Obligations'.",
                "cite_spans": [
                    {
                        "start": 75,
                        "end": 86,
                        "text": "Bunt (2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 154,
                        "end": 190,
                        "text": "Anikina and Kruijff-Korbayov\u00e1 (2019)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 206,
                        "end": 291,
                        "text": "', 'Confirm', 'Contact', 'Disconfirm', 'Inform', 'Negative', 'Question' and 'Request'",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "Embeddings for discourse features are trained jointly with the model. Since they characterize the whole utterance and not separate (sub)tokens, we concatenate them with the output of the PAFIBERT position-based attention layer. We increase the size of the first linear layer in the model accordingly.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "The performance of the English frame classifier trained on the data enriched with lexical and dialogue features is given in Table 9 . We test the features separately and in combinations. We see that taken separately, the features do not bring any improvement, and sometimes the scores are actually slightly worse than the score achieved by the basic classifier. The combination of POS tags and subword masks seems to increase the performance by 1%, but the difference is insignificant according to the McNemar's test. As for the German frame classifier, we tested only the impact of extra lexical features. Dialogue features were not used, as the current data does not include speaker and dialogue act annotations. The results were similar to those demonstrated by the English frame classifier with extra lexical features. We do not include them here due to space constraints. They are available in Appendix B.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 124,
                        "end": 131,
                        "text": "Table 9",
                        "ref_id": "TABREF17"
                    }
                ],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "It is difficult to say why neither lexical nor discourse features lead to performance improvement. One of possible reason is that our learned feature embeddings are rather short (2-4 neurons) in comparison with input embeddings (768 neurons) or context-target embeddings (1536 neurons), so their impact on the whole (sub)token/utterance representations is actually negligible or even confusing. We think that in order to get a better estimation of the role of additional features, some further experiments with more data are necessary.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjustments of PAFIBERT",
                "sec_num": "5.2"
            },
            {
                "text": "We investigated the potential of frame semantics as a meaning representation framework for English and German dialogues in the domain of robotassisted disaster response team communication. We found semantic frames convenient for capturing the meaning of an utterance depending on the target -the approach is span-based and does not require complex data annotation or pre-processing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "We reused the PAFIBERT model on the TRADR data and achieved an IBA score of 88%-90% on the test sets. Our results are comparable with those reported by Tan and Na (2019) , who trained their models on the much larger FrameNet corpus. However, being a powerful model, PAFIBERT memorized the small TRADR training data, leading to overfitting and thus lack of generalization.",
                "cite_spans": [
                    {
                        "start": 152,
                        "end": 169,
                        "text": "Tan and Na (2019)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "We also studied the impact of sampling additional training instances from an unrelated domain on the classifier's performance, and found that it was useful only for the German frame classifier. Error analysis indicates that sampling is beneficial for handling silly errors, but rather ineffective for cases that require disambiguation. We did not perform any experiments with over-and/or undersampling which imply sampling from the original dataset and are often used with imbalanced data. This can be a subject for further research. Especially interesting is an approach that assumes generating synthetic training instances, e.g., embeddings incorporating the targets with their contexts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "In contrast to our expectations, both lexical and discourse features failed to demonstrate a positive influence on the models' performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "Error analysis showed that the largest group of errors is due to ambiguous targets, many of which evoke semantically close frames. The problem of disambiguation requires more research in order to improve the performance of the models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "(BMBF), grant No. I3N14856. 2 We would like to thank our A-DRZ colleagues for discussions, Daria Fedorova for data annotation and the IWCS 2021 reviewers for valuable comments which we hope helped us to improve the paper.",
                "cite_spans": [
                    {
                        "start": 28,
                        "end": 29,
                        "text": "2",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "A PAFIBERT: training and validation losses Figure 2 shows the changes of training and validation losses with each training epoch of our reimplementation of the original PAFIBERT according to Tan and Na (2019) . One can see that the model is powerful enough to memorize the training data by the end of the training, but, judging by the gap between the two curves, it has difficulties in generalizing and making confident predictions. Starting from the second epoch, the validation loss almost does not change, and it is also larger than the validation loss of the frame classifiers trained on TRADR, which can probably be attributed to the fact that FrameNet has many more classes than TRADR. Table 10 shows the performance of the German frame classifier with extra lexical features. Extending token embeddings with the corresponding POS tag embeddings seems to have a small positive effect on the IBA score, however, it is not significant according to the McNemar's test. Adding subword mask embeddings as well as using the combination of two extra features also does not seem to influence the performance of the classifier. Finally, we try extending token embeddings with POS tag embeddings together with the equal sampling from SALSA. However, the equal sampling, which earlier helped us achieve the IBA score of 90%, fails to provide the anticipated positive effect -the current score is only 84%, and the McNemar's test interprets the improvement as insignificant. We conclude that adding lexical features confuses the frame classifier, so that sampling looses its positive effect on the accuracy. Table 11 shows one of the TRADR dialogues. The first column presents the speakers, the secondthe utterances that sometimes also contain output from the Transcriber tool (Barras et al., 1998) (e.g., [ent=unk.skippable] ), the third -the assigned frames depending on the targets (given in bold). According to our annotation approach, each utterance may contain several targets and thus evoke several frames. To make the dependencies between the targets and the corresponding frames clear, we annotated only one target-frame pair per row. This resulted in creating copies of the utterances containing several targets. They are given in italics.",
                "cite_spans": [
                    {
                        "start": 191,
                        "end": 208,
                        "text": "Tan and Na (2019)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 1771,
                        "end": 1819,
                        "text": "(Barras et al., 1998) (e.g., [ent=unk.skippable]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 43,
                        "end": 51,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 692,
                        "end": 700,
                        "text": "Table 10",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 1602,
                        "end": 1610,
                        "text": "Table 11",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "Most of the targets in the example dialogue are verbs which reflects our focus on various activities performed as part of the rescue mission. The team communication example also illustrates two out of ten frames that we had to introduce during the annotation, as the FrameNet database (FrameNet, 2021) is not exhaustive, and it was not always possible to adapt the available frames to new phenomena. These two frames are 'Communication by protocol' and 'Communication response message'. They are domainspecific and are actually the most frequent in the whole TRADR corpus. Other eight frames that were introduced are rare. Table 12 contains the definitions and examples of all the new frames that we introduced. Frame elements are given in CAPITAL letters. We have not worked out their definitions yet. This is planned for future work.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 623,
                        "end": 631,
                        "text": "Table 12",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "The presented dialogue also has instances of the FrameNet frames that we adapted. Assigning the frame labels, sometimes it was impossible to follow the frame definitions given in the FrameNet database strictly. Considering that FrameNet is not exhaustive and that we were cautious to introduce too many new frames, we had to interpret certain frame definitions in a more relaxed way. E.g., FrameNet defines the frame 'Existence' as \"An Entity is declared to exist, generally irrespective of its position or even the possibility of its position being specified. ... This frame is to be contrasted with Presence, which describes the existence of an Entity in a particular (and salient) spacio-temporal context, and which also entails the presence of an observer who can detect the existence of the Entity in that context.\" We used Existence in a more straightforward way, namely with a reference to some news, findings, updates, etc. are present/available at a certain moment. Other adapted frames present in the dialogue are Presence and Identity. We do not present a full list of the adapted frames here, as there are quite many of them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "Notice that some utterances in the dialogue do not contain targets, as they are elliptical. In such cases we usually try to infer the missing elements, and assign the frame label that corresponds to the 'restored' utterance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "D Approaches to automatic frame assignment: a summary Table 13 summarizes the characteristics of most of the frameworks mentioned in Section 3. The frameworks are given in chronological order, which helps illustrate the shift from the rule-and/or featurebased approaches to the embeddings-based ones, as well as the replacement of more 'traditional' classifiers with neural networks. The introduction of embeddings allowed to avoid manual feature engineering, and helped achieve better or comparable results with much less effort. However, the embeddings (even contextual ones, like ELMo or BERT) are still not able to deal with sense ambiguity effectively, which is one of the main problems in automatic frame assignment task. The last row shows the performance of the frameworks. Those that have scores given were trained on the FrameNet corpus (versions may differ) and evaluated on one of the most commonly used Das test set (Das and Smith, 2011) , which represents a part of FrameNet 1.5 data. Unfortunately, it is not always possible to compare the frameworks directly, as some researchers report F-score as a performance measure, others -accuracy. Five frameworks were evaluated on different test data, and we therefore omit their scores. Activity ongoing Andreas from Markus, priority on continuing person search.",
                "cite_spans": [
                    {
                        "start": 929,
                        "end": 950,
                        "text": "(Das and Smith, 2011)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 54,
                        "end": 62,
                        "text": "Table 13",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "Activity ongoing Frame assignment accuracy n/a n/a n/a 82.97 * 88.41 87.63 70.9 * \u2020 88.2 89.72 89.57 n/a n/a Table 13 : Comparison of various frame-semantic parsing frameworks; scores marked with '*' stand for F-score (the authors do not report accuracy); 'n/a' means that the authors used a test set different from Das and Smith (2011) ; \u2020 stands for joint evaluation of frame assignment and argument identification ",
                "cite_spans": [
                    {
                        "start": 316,
                        "end": 336,
                        "text": "Das and Smith (2011)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 109,
                        "end": 117,
                        "text": "Table 13",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "The TRADR data and the semantic frame annotations can be obtained at http://talkingrobots.dfki.de/.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work is part of the project \"A-DRZ: Setting up the German Rescue Robotics Center\", funded by the German Ministry of Education and Research",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            },
            {
                "text": "Be piece of Inherits from:Being included Definition: A PART is considered to be a constituent of some entity described by the WHOLE. The relation is seen from the point of view of the PART.Examples: I can also see [PART fragments] ",
                "cite_spans": [
                    {
                        "start": 214,
                        "end": 230,
                        "text": "[PART fragments]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "annex",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Dialogue act classification in team communication for robot assisted disaster response",
                "authors": [
                    {
                        "first": "Tatiana",
                        "middle": [],
                        "last": "Anikina",
                        "suffix": ""
                    },
                    {
                        "first": "Ivana",
                        "middle": [],
                        "last": "Kruijff-Korbayova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "399--410",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-5946"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tatiana Anikina and Ivana Kruijff-Korbayova. 2019. Dialogue act classification in team communication for robot assisted disaster response. In Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue, pages 399-410, Stockholm, Sweden. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Dialogue act classification in team communication for robot assisted disaster response",
                "authors": [
                    {
                        "first": "Tatiana",
                        "middle": [],
                        "last": "Anikina",
                        "suffix": ""
                    },
                    {
                        "first": "Ivana",
                        "middle": [],
                        "last": "Kruijff-Korbayov\u00e1",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of SIGDIAL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tatiana Anikina and Ivana Kruijff-Korbayov\u00e1. 2019. Dialogue act classification in team communication for robot assisted disaster response. In Proceedings of SIGDIAL 2019.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "SemEval-2007 Task 19: Frame semantic structure extraction",
                "authors": [
                    {
                        "first": "Collin",
                        "middle": [
                            "F"
                        ],
                        "last": "Baker",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Ellsworth",
                        "suffix": ""
                    },
                    {
                        "first": "Katrin",
                        "middle": [],
                        "last": "Erk",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007)",
                "volume": "",
                "issue": "",
                "pages": "99--104",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Collin F. Baker, Michael Ellsworth, and Katrin Erk. 2007. SemEval-2007 Task 19: Frame semantic structure extraction. In Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007), pages 99-104.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "The Berkeley FrameNet project",
                "authors": [
                    {
                        "first": "Collin",
                        "middle": [
                            "F"
                        ],
                        "last": "Baker",
                        "suffix": ""
                    },
                    {
                        "first": "Charles",
                        "middle": [
                            "J"
                        ],
                        "last": "Fillmore",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [
                            "B"
                        ],
                        "last": "Lowe",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "COLING-ACL '98: Proceedings of the Conference",
                "volume": "",
                "issue": "",
                "pages": "86--90",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Collin F. Baker, Charles J. Fillmore, and John B. Lowe. 1998. The Berkeley FrameNet project. In COLING- ACL '98: Proceedings of the Conference, pages 86- 90, Montreal, Canada.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Transcriber: a free tool for segmenting, labeling and transcribing speech",
                "authors": [
                    {
                        "first": "Claude",
                        "middle": [],
                        "last": "Barras",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Geoffrois",
                        "suffix": ""
                    },
                    {
                        "first": "Zhibiao",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Liberman",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "First International Conference on Language Resources and Evaluation (LREC)",
                "volume": "",
                "issue": "",
                "pages": "1373--1376",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Claude Barras, Edouard Geoffrois, Zhibiao Wu, and Mark Liberman. 1998. Transcriber: a free tool for segmenting, labeling and transcribing speech. In First International Conference on Language Re- sources and Evaluation (LREC), pages 1373-1376.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Chinese whispers -an efficient graph clustering algorithm and its application to natural language processing problems",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Biemann",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of TextGraphs: the First Workshop on Graph Based Methods for Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "73--80",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chris Biemann. 2006. Chinese whispers -an efficient graph clustering algorithm and its application to nat- ural language processing problems. In Proceedings of TextGraphs: the First Workshop on Graph Based Methods for Natural Language Processing, pages 73-80, New York City. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Guidelines for using ISO standard 24617-2",
                "authors": [
                    {
                        "first": "Harry",
                        "middle": [],
                        "last": "Bunt",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Harry Bunt. 2019. Guidelines for using ISO standard 24617-2. [s.n.].",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "The SALSA corpus: a German corpus resource for lexical semantics",
                "authors": [
                    {
                        "first": "Aljoscha",
                        "middle": [],
                        "last": "Burchardt",
                        "suffix": ""
                    },
                    {
                        "first": "Katrin",
                        "middle": [],
                        "last": "Erk",
                        "suffix": ""
                    },
                    {
                        "first": "Anette",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    },
                    {
                        "first": "Andrea",
                        "middle": [],
                        "last": "Kowalski",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Pad\u00f3",
                        "suffix": ""
                    },
                    {
                        "first": "Manfred",
                        "middle": [],
                        "last": "Pinkal",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "969--974",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aljoscha Burchardt, Katrin Erk, Anette Frank, An- drea Kowalski, Sebastian Pad\u00f3, and Manfred Pinkal. 2006. The SALSA corpus: a German corpus re- source for lexical semantics. In LREC, pages 969- 974.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Assessing agreement on classification tasks: The kappa statistic",
                "authors": [
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Carletta",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Comput. Linguist",
                "volume": "22",
                "issue": "2",
                "pages": "249--254",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jean Carletta. 1996. Assessing agreement on classifi- cation tasks: The kappa statistic. Comput. Linguist., 22(2):249-254.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Automatic Framenet-based annotation of conversational speech",
                "authors": [
                    {
                        "first": "Bonaventura",
                        "middle": [],
                        "last": "Coppola",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Moschitti",
                        "suffix": ""
                    },
                    {
                        "first": "Sara",
                        "middle": [],
                        "last": "Tonelli",
                        "suffix": ""
                    },
                    {
                        "first": "Giuseppe",
                        "middle": [],
                        "last": "Riccardi",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "IEEE Spoken Language Technology Workshop",
                "volume": "",
                "issue": "",
                "pages": "73--76",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bonaventura Coppola, Alessandro Moschitti, Sara Tonelli, and Giuseppe Riccardi. 2008. Automatic Framenet-based annotation of conversational speech. In 2008 IEEE Spoken Language Technology Work- shop, pages 73-76.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Probabilistic frame-semantic parsing",
                "authors": [
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Nathan",
                        "middle": [],
                        "last": "Schneider",
                        "suffix": ""
                    },
                    {
                        "first": "Desai",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "948--956",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dipanjan Das, Nathan Schneider, Desai Chen, and Noah A. Smith. 2010. Probabilistic frame-semantic parsing. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Lin- guistics, pages 948-956, Los Angeles, California. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Semisupervised frame-semantic parsing for unknown predicates",
                "authors": [
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Noah",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "1435--1444",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dipanjan Das and Noah A Smith. 2011. Semi- supervised frame-semantic parsing for unknown predicates. In Proceedings of the 49th Annual Meet- ing of the Association for Computational Linguistics: Human Language Technologies, pages 1435-1444.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Frame assignment as word sense disambiguation",
                "authors": [
                    {
                        "first": "Katrin",
                        "middle": [],
                        "last": "Erk",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of IWCS",
                "volume": "6",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Katrin Erk. 2005. Frame assignment as word sense dis- ambiguation. In Proceedings of IWCS, volume 6.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Frame semantics and the nature of language",
                "authors": [
                    {
                        "first": "Charles",
                        "middle": [
                            "J"
                        ],
                        "last": "Fillmore",
                        "suffix": ""
                    }
                ],
                "year": 1976,
                "venue": "Annals of the New York Academy of Sciences",
                "volume": "280",
                "issue": "1",
                "pages": "20--32",
                "other_ids": {
                    "DOI": [
                        "10.1111/j.1749-6632.1976.tb25467.x"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Charles J. Fillmore. 1976. Frame semantics and the na- ture of language. Annals of the New York Academy of Sciences, 280(1):20-32.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Frame semantics",
                "authors": [
                    {
                        "first": "Charles",
                        "middle": [
                            "J"
                        ],
                        "last": "Fillmore",
                        "suffix": ""
                    }
                ],
                "year": 1982,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "111--137",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Charles J. Fillmore. 1982. Frame semantics, pages 111-137. Hanshin Publishing Co., Seoul, South Ko- rea.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "The official website for the FrameNet project",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Framenet",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "2021--2023",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "FrameNet. 2021. The official website for the FrameNet project. https://framenet.icsi.berkeley. edu/fndrupal/. Accessed: 2021-02-03.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Index of balanced accuracy: A performance measure for skewed class distributions",
                "authors": [
                    {
                        "first": "Vicente",
                        "middle": [],
                        "last": "Garc\u00eda",
                        "suffix": ""
                    },
                    {
                        "first": "Alberto",
                        "middle": [],
                        "last": "Ram\u00f3n",
                        "suffix": ""
                    },
                    {
                        "first": "Jos\u00e9 Salvador",
                        "middle": [],
                        "last": "Mollineda",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "S\u00e1nchez",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Iberian conference on pattern recognition and image analysis",
                "volume": "",
                "issue": "",
                "pages": "441--448",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vicente Garc\u00eda, Ram\u00f3n Alberto Mollineda, and Jos\u00e9 Salvador S\u00e1nchez. 2009. Index of balanced ac- curacy: A performance measure for skewed class distributions. In Iberian conference on pattern recognition and image analysis, pages 441-448. Springer.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Out-of-domain FrameNet semantic role labeling",
                "authors": [
                    {
                        "first": "Silvana",
                        "middle": [],
                        "last": "Hartmann",
                        "suffix": ""
                    },
                    {
                        "first": "Ilia",
                        "middle": [],
                        "last": "Kuznetsov",
                        "suffix": ""
                    },
                    {
                        "first": "Teresa",
                        "middle": [],
                        "last": "Martin",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "471--482",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Silvana Hartmann, Ilia Kuznetsov, Teresa Martin, and Iryna Gurevych. 2017. Out-of-domain FrameNet se- mantic role labeling. In Proceedings of the 15th Conference of the European Chapter of the Associa- tion for Computational Linguistics: Volume 1, Long Papers, pages 471-482, Valencia, Spain. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Semantic frame identification with distributed word representations",
                "authors": [
                    {
                        "first": "Karl",
                        "middle": [],
                        "last": "Moritz Hermann",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    },
                    {
                        "first": "Kuzman",
                        "middle": [],
                        "last": "Ganchev",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1448--1458",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P14-1136"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Karl Moritz Hermann, Dipanjan Das, Jason Weston, and Kuzman Ganchev. 2014. Semantic frame iden- tification with distributed word representations. In Proceedings of the 52nd Annual Meeting of the As- sociation for Computational Linguistics (Volume 1: Long Papers), pages 1448-1458, Baltimore, Mary- land. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "SpaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Honnibal",
                        "suffix": ""
                    },
                    {
                        "first": "Ines",
                        "middle": [],
                        "last": "Montani",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew Honnibal and Ines Montani. 2017. SpaCy 2: Natural language understanding with Bloom embed- dings, convolutional neural networks and incremen- tal parsing. To appear.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "LTH: Semantic structure extraction using nonprojective dependency trees",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Johansson",
                        "suffix": ""
                    },
                    {
                        "first": "Pierre",
                        "middle": [],
                        "last": "Nugues",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007)",
                "volume": "",
                "issue": "",
                "pages": "227--230",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Johansson and Pierre Nugues. 2007. LTH: Semantic structure extraction using nonprojective dependency trees. In Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007), pages 227-230, Prague, Czech Re- public. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Open-domain frame semantic parsing using transformers",
                "authors": [
                    {
                        "first": "Aditya",
                        "middle": [],
                        "last": "Kalyanpur",
                        "suffix": ""
                    },
                    {
                        "first": "Or",
                        "middle": [],
                        "last": "Biran",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Breloff",
                        "suffix": ""
                    },
                    {
                        "first": "Jennifer",
                        "middle": [],
                        "last": "Chu-Carroll",
                        "suffix": ""
                    },
                    {
                        "first": "Ariel",
                        "middle": [],
                        "last": "Diertani",
                        "suffix": ""
                    },
                    {
                        "first": "Owen",
                        "middle": [],
                        "last": "Rambow",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Sammons",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aditya Kalyanpur, Or Biran, Tom Breloff, Jennifer Chu-Carroll, Ariel Diertani, Owen Rambow, and Mark Sammons. 2020. Open-domain frame seman- tic parsing using transformers.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "TRADR project: Long-term humanrobot teaming for robot assisted disaster response. KI -K\u00fcnstliche Intelligenz",
                "authors": [
                    {
                        "first": "Ivana",
                        "middle": [],
                        "last": "Kruijff-Korbayov\u00e1",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [],
                        "last": "Colas",
                        "suffix": ""
                    },
                    {
                        "first": "Mario",
                        "middle": [],
                        "last": "Gianni",
                        "suffix": ""
                    },
                    {
                        "first": "Fiora",
                        "middle": [],
                        "last": "Pirri",
                        "suffix": ""
                    },
                    {
                        "first": "Joachim",
                        "middle": [],
                        "last": "De Greeff",
                        "suffix": ""
                    },
                    {
                        "first": "Koen",
                        "middle": [],
                        "last": "Hindriks",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Neerincx",
                        "suffix": ""
                    },
                    {
                        "first": "Tom\u00e1\u0161",
                        "middle": [],
                        "last": "Petter\u00f6gren",
                        "suffix": ""
                    },
                    {
                        "first": "Rainer",
                        "middle": [],
                        "last": "Svoboda",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Worst",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "29",
                "issue": "",
                "pages": "193--201",
                "other_ids": {
                    "DOI": [
                        "10.1007/s13218-015-0352-5"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ivana Kruijff-Korbayov\u00e1, Francis Colas, Mario Gianni, Fiora Pirri, Joachim de Greeff, Koen Hindriks, Mark Neerincx, Petter\u00d6gren, Tom\u00e1\u0161 Svoboda, and Rainer Worst. 2015. TRADR project: Long-term human- robot teaming for robot assisted disaster response. KI -K\u00fcnstliche Intelligenz, 29(2):193-201.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning",
                "authors": [
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Lema\u00eetre",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando",
                        "middle": [],
                        "last": "Nogueira",
                        "suffix": ""
                    },
                    {
                        "first": "Christos",
                        "middle": [
                            "K"
                        ],
                        "last": "Aridas",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Journal of Machine Learning Research",
                "volume": "18",
                "issue": "17",
                "pages": "1--5",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guillaume Lema\u00eetre, Fernando Nogueira, and Chris- tos K. Aridas. 2017. Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17):1-5.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Meaning representation of null instantiated semantic roles in FrameNet",
                "authors": [
                    {
                        "first": "R L",
                        "middle": [],
                        "last": "Miriam",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Petruck",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the First International Workshop on Designing Meaning Representations",
                "volume": "",
                "issue": "",
                "pages": "121--127",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-3313"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Miriam R L Petruck. 2019. Meaning representation of null instantiated semantic roles in FrameNet. In Pro- ceedings of the First International Workshop on De- signing Meaning Representations, pages 121-127, Florence, Italy. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Active Annotation in the LUNA Italian Corpus of Spontaneous Dialogues",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Raymond",
                        "suffix": ""
                    },
                    {
                        "first": "Kepa Joseba",
                        "middle": [],
                        "last": "Rodriguez",
                        "suffix": ""
                    },
                    {
                        "first": "Giuseppe",
                        "middle": [],
                        "last": "Riccardi",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Raymond, Kepa Joseba Rodriguez, and Giuseppe Riccardi. 2008. Active Annotation in the LUNA Italian Corpus of Spontaneous Dialogues. In LREC.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Semantic frame induction as a community detection problem",
                "authors": [
                    {
                        "first": "Eug\u00e9nio",
                        "middle": [],
                        "last": "Ribeiro",
                        "suffix": ""
                    },
                    {
                        "first": "Andreia",
                        "middle": [],
                        "last": "Sofia Teixeira",
                        "suffix": ""
                    },
                    {
                        "first": "Ricardo",
                        "middle": [],
                        "last": "Ribeiro",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Martins De Matos",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eug\u00e9nio Ribeiro, Andreia Sofia Teixeira, Ricardo Ribeiro, and David Martins de Matos. 2020. Seman- tic frame induction as a community detection prob- lem.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "FrameNet II: Extended Theory and Practice",
                "authors": [
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Ruppenhofer",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Ellsworth",
                        "suffix": ""
                    },
                    {
                        "first": "Miriam",
                        "middle": [
                            "R L"
                        ],
                        "last": "Petruck",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "R"
                        ],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "International Computer Science Institute",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Josef Ruppenhofer, Michael Ellsworth, Miriam R.L. Petruck, Christopher R. Johnson, and Jan Schef- fczyk. 2006. FrameNet II: Extended Theory and Practice. International Computer Science Institute, Berkeley, California. Distributed with the FrameNet data.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Reference in team communication for robot-assisted disaster response: An initial analysis",
                "authors": [
                    {
                        "first": "Natalia",
                        "middle": [],
                        "last": "Skachkova",
                        "suffix": ""
                    },
                    {
                        "first": "Ivana",
                        "middle": [],
                        "last": "Kruijff-Korbayova",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Third Workshop on Computational Models of Reference, Anaphora and Coreference",
                "volume": "",
                "issue": "",
                "pages": "122--132",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Natalia Skachkova and Ivana Kruijff-Korbayova. 2020. Reference in team communication for robot-assisted disaster response: An initial analysis. In Proceed- ings of the Third Workshop on Computational Mod- els of Reference, Anaphora and Coreference, pages 122-132, Barcelona, Spain (online). Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Positional attention-based frame identification with BERT: A deep learning approach to target disambiguation and semantic frame selection",
                "authors": [
                    {
                        "first": "Sang-Sang",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Jin-Cheon",
                        "middle": [],
                        "last": "Na",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.14549"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sang-Sang Tan and Jin-Cheon Na. 2019. Positional attention-based frame identification with BERT: A deep learning approach to target disambiguation and semantic frame selection. arXiv preprint arXiv:1910.14549.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Classification assessment methods. Applied Computing and Informatics",
                "authors": [
                    {
                        "first": "Alaa",
                        "middle": [],
                        "last": "Tharwat",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alaa Tharwat. 2020. Classification assessment meth- ods. Applied Computing and Informatics.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Rapid FrameNet annotation of spoken conversation transcripts",
                "authors": [
                    {
                        "first": "Jeremy",
                        "middle": [],
                        "last": "Trione",
                        "suffix": ""
                    },
                    {
                        "first": "Frederic",
                        "middle": [],
                        "last": "Bechet",
                        "suffix": ""
                    },
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Benoit Favre",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nasr",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 11th Joint ACL-ISO Workshop on Interoperable Semantic Annotation (ISA-11)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jeremy Trione, Frederic Bechet, Benoit Favre, and Alexis Nasr. 2015. Rapid FrameNet annotation of spoken conversation transcripts. In Proceedings of the 11th Joint ACL-ISO Workshop on Interoperable Semantic Annotation (ISA-11), London, UK. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Team communication processing and process analytics for supporting robot-assisted emergency response",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Willms",
                        "suffix": ""
                    },
                    {
                        "first": "Constantin",
                        "middle": [],
                        "last": "Houy",
                        "suffix": ""
                    },
                    {
                        "first": "Jana-Rebecca",
                        "middle": [],
                        "last": "Rehse",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Fettke",
                        "suffix": ""
                    },
                    {
                        "first": "Ivana",
                        "middle": [],
                        "last": "Kruijff-Korbayov\u00e1",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)",
                "volume": "",
                "issue": "",
                "pages": "216--221",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Willms, Constantin Houy, Jana-Rebecca Rehse, Peter Fettke, and Ivana Kruijff-Korbayov\u00e1. 2019. Team communication processing and process analytics for supporting robot-assisted emergency re- sponse. In 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages 216-221. IEEE.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "HuggingFace's Transformers: State-of-the",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "R\u00e9mi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Joe",
                        "middle": [],
                        "last": "Davison",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Shleifer",
                        "suffix": ""
                    },
                    {
                        "first": "Clara",
                        "middle": [],
                        "last": "Patrick Von Platen",
                        "suffix": ""
                    },
                    {
                        "first": "Yacine",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Jernite",
                        "suffix": ""
                    },
                    {
                        "first": "Canwen",
                        "middle": [],
                        "last": "Plu",
                        "suffix": ""
                    },
                    {
                        "first": "Teven",
                        "middle": [
                            "Le"
                        ],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Sylvain",
                        "middle": [],
                        "last": "Scao",
                        "suffix": ""
                    },
                    {
                        "first": "Mariama",
                        "middle": [],
                        "last": "Gugger",
                        "suffix": ""
                    },
                    {
                        "first": "Quentin",
                        "middle": [],
                        "last": "Drame",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Lhoest",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R\u00e9mi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. HuggingFace's Transformers: State-of-the-art natu- ral language processing.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "A joint sequential and relational model for frame-semantic parsing",
                "authors": [
                    {
                        "first": "Bishan",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1247--1256",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bishan Yang and Tom Mitchell. 2017. A joint sequen- tial and relational model for frame-semantic parsing. In Proceedings of the 2017 Conference on Empiri- cal Methods in Natural Language Processing, pages 1247-1256.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "TSABCNN: Two-stage attention-based convolutional neural network for frame identification",
                "authors": [
                    {
                        "first": "Hongyan",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Ru",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Duan",
                        "suffix": ""
                    },
                    {
                        "first": "Zepeng",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Shaoru",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data",
                "volume": "",
                "issue": "",
                "pages": "289--301",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hongyan Zhao, Ru Li, Fei Duan, Zepeng Wu, and Shaoru Guo. 2018. TSABCNN: Two-stage attention-based convolutional neural network for frame identification. In Chinese Computational Lin- guistics and Natural Language Processing Based on Naturally Annotated Big Data, pages 289-301, Cham. Springer International Publishing.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Andreas from Markus, come in. Communication by protocol OP Yes, Andreas come in. Communication by protocol",
                "authors": [
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Tl",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "TL Andreas, Andreas from Markus, come in. Communication by protocol OP Yes, Andreas come in. Communication by protocol ...",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "OP Yes, for information, I am ready",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "OP Yes, for information, I am ready [EHM].",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Activity ready state Shall I go ahead with my search command, or begin? Desirable event",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Activity ready state Shall I go ahead with my search command, or begin? Desirable event",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Shall I go ahead with my search command, or begin? Activity ongoing",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shall I go ahead with my search command, or begin? Activity ongoing",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Shall I go ahead with my search command, or begin? Activity start TL Yes, begin immediately without possible -least possible time delay, to [EHM] have a higher chance for person rescue",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shall I go ahead with my search command, or begin? Activity start TL Yes, begin immediately without possible -least possible time delay, to [EHM] have a higher chance for person rescue. Activity start",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Yes, begin immediately without possible -least possible time delay, to [EHM] have a higher chance for person rescue. Likelihood OP Yes, understood, I begin with the search. Communication response message Yes, understood, I begin with the search. Activity start",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yes, begin immediately without possible -least possible time delay, to [EHM] have a higher chance for person rescue. Likelihood OP Yes, understood, I begin with the search. Communication response message Yes, understood, I begin with the search. Activity start ...",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Communication by protocol OP Yes, Andreas, come in. Communication by protocol TL [ent=unk.skippable] Are there already any noteworthy findings?",
                "authors": [],
                "year": null,
                "venue": "TL Andreas from Markus",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "TL Andreas from Markus, come in. [ent=unk.skippable] Communication by protocol OP Yes, Andreas, come in. Communication by protocol TL [ent=unk.skippable] Are there already any noteworthy find- ings? [ent=unk.skippable]",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Communication response message Negative. No noteworthy findings",
                "authors": [
                    {
                        "first": "O",
                        "middle": [
                            "P"
                        ],
                        "last": "Existence",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Negative",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Existence OP Negative. No noteworthy findings. [ent=unk.skippable] Communication response message Negative. No noteworthy findings. [ent=unk.skippable] Existence TL Yes, understood. Communication response message [ent=unk.skippable] Daniel, Daniel from Markus, come in. Communication by protocol [ent=unk.skippable] Andreas from Markus, come in. Communication by protocol ...",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Markus from Andreas, come in. Communication by protocol TL Andreas, come in. Communication by protocol OP On first floor in the smoke found a barrel, green",
                "authors": [
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Op",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "OP Andreas, Markus from Andreas, come in. Communication by protocol TL Andreas, come in. Communication by protocol OP On first floor in the smoke found a barrel, green, labeled as environmentally hazardous material.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "uris": null,
                "text": "Learning curves of English and German frame classifies with blind sampling",
                "type_str": "figure"
            },
            "FIGREF1": {
                "num": null,
                "uris": null,
                "text": "Traning and validation losses of the original PAFIBERT model B German frame classifier with lexical features",
                "type_str": "figure"
            },
            "FIGREF2": {
                "num": null,
                "uris": null,
                "text": "Adding lexical features (dashed borders) to PAFIBERT Adding lexical and discourse features (dashed borders) to PAFIBERT",
                "type_str": "figure"
            },
            "TABREF2": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "text": "TRADR corpus overview",
                "html": null
            },
            "TABREF4": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "text": "Training, validation & test data sizes",
                "html": null
            },
            "TABREF6": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "text": "",
                "html": null
            },
            "TABREF8": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "text": "",
                "html": null
            },
            "TABREF10": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "text": "Blind random sampling from FrameNet",
                "html": null
            },
            "TABREF12": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "text": "",
                "html": null
            },
            "TABREF14": {
                "content": "<table><tr><td>Sampling type</td><td>PRE REC</td><td>F1</td><td>IBA0.1</td></tr><tr><td>Balancing:</td><td colspan=\"3\">0.89 0.89 0.88 0.88</td></tr><tr><td>2,375 inst. (\u2248 96%)</td><td/><td/><td/></tr><tr><td>Equal:</td><td colspan=\"3\">0.91 0.91 0.90 0.90</td></tr><tr><td>611 inst. (\u2248 25%)</td><td/><td/><td/></tr><tr><td>Basic model (DE)</td><td colspan=\"3\">0.84 0.84 0.83 0.83</td></tr></table>",
                "type_str": "table",
                "num": null,
                "text": "Informed random sampling from FrameNet However, asTable 8demonstrates, in case of the German frame classifier the informed sampling clearly has a positive influence. Its significance was confirmed by the corresponding McNemar's tests. Balancing sampling helps to reduce the number of silly errors, as well as errors caused by ambiguous target expressions. The latter reduction is mostly due to a better recognition of ambiguous target expressions represented by single tokens, reflexive verbs and verbs with separable prefixes. The difference in performance between the balancing and equal sampling approaches was insignificant according to McNemar's test.",
                "html": null
            },
            "TABREF15": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "text": "Informed random sampling from SALSA",
                "html": null
            },
            "TABREF17": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "text": "Extra features: English frame classifier",
                "html": null
            },
            "TABREF19": {
                "content": "<table><tr><td>C Team communication example</td></tr></table>",
                "type_str": "table",
                "num": null,
                "text": "Extra features: German frame classifier",
                "html": null
            },
            "TABREF20": {
                "content": "<table><tr><td/><td>Fluidic motion</td></tr><tr><td/><td>Capability</td></tr><tr><td>Yeah. It is a 200 liter barrel, whether anything is leaking I</td><td>Becoming aware</td></tr><tr><td>cannot currently tell.</td><td/></tr><tr><td>TL [EHM] Any thermal emission?</td><td>Presence</td></tr><tr><td>OP No thermal emission.</td><td>Presence</td></tr><tr><td>TL Okay.</td><td/></tr></table>",
                "type_str": "table",
                "num": null,
                "text": "Locating TL Yeah, can you [unintelligible] whether anything is leaking? Capability Yeah, can you [unintelligible] whether anything is leaking? Fluidic motion OP Yeah. It is a 200 liter barrel, whether anything is leaking I cannot currently tell. Identity Yeah. It is a 200 liter barrel, whether anything is leaking I cannot currently tell. Yeah. It is a 200 liter barrel, whether anything is leaking I cannot currently tell. Priority on continuing person search.",
                "html": null
            },
            "TABREF21": {
                "content": "<table><tr><td/><td/><td/><td/><td/><td/><td colspan=\"2\">Framework</td><td/><td/><td/><td/><td/></tr><tr><td>Characteristic features</td><td>Erk (2005)</td><td>LTH (2007)</td><td>LUNA (2008)</td><td>SEMAFOR (2010)</td><td>Hermann et al. (2014)</td><td>SimpleFrameId (2017)</td><td>Open-Sesame (2017)</td><td>Yang &amp; Mitchell (2017)</td><td>TSABCNN (2018)</td><td>PAFIBERT (2019)</td><td>Ribeiro et al. (2020)</td><td>Kalyanpur et al. (2020)</td></tr><tr><td>hand-crafted rules</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>hand-crafted features</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>kernels</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>parsing</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>embeddings</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>Naive Bayes classifier</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>SVM</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>conditional log-linear model</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>neural network</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>CRF</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>clustering</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>graph structure</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr></table>",
                "type_str": "table",
                "num": null,
                "text": "English TRADR dialogue annotated with semantic frames",
                "html": null
            },
            "TABREF23": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "text": "Corpora comparison",
                "html": null
            }
        }
    }
}