File size: 82,194 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:24:37.949234Z"
    },
    "title": "Large-scale text pre-training helps with dialogue act recognition, but not without fine-tuning",
    "authors": [
        {
            "first": "Bill",
            "middle": [],
            "last": "Noble",
            "suffix": "",
            "affiliation": {
                "laboratory": "Centre for Linguistic Theory and Studies in Probability",
                "institution": "University of Gothenburg",
                "location": {}
            },
            "email": "bill.noble@gu.se"
        },
        {
            "first": "Vladislav",
            "middle": [],
            "last": "Maraev",
            "suffix": "",
            "affiliation": {
                "laboratory": "Centre for Linguistic Theory and Studies in Probability",
                "institution": "University of Gothenburg",
                "location": {}
            },
            "email": "vladislav.maraev@gu.se"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We use dialogue act recognition (DAR) to investigate how well BERT represents utterances in dialogue, and how fine-tuning and large-scale pre-training contribute to its performance. We find that while both the standard BERT pre-training and pretraining on dialogue-like data are useful, task-specific finetuning is essential for good performance.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We use dialogue act recognition (DAR) to investigate how well BERT represents utterances in dialogue, and how fine-tuning and large-scale pre-training contribute to its performance. We find that while both the standard BERT pre-training and pretraining on dialogue-like data are useful, task-specific finetuning is essential for good performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Large-scale neural language models trained on massive corpora of text data have achieved state-ofthe-art results on a variety of traditional NLP tasks. Given that dialogue, especially spoken dialogue, is radically different from the kind of data these language models are pre-trained on, it is uncertain whether they would be useful for dialogue-oriented tasks. In the example from the Switchboard corpus, shown in Table 1 , it is evident that the structure of dialogue is quite different from that of written text. Not only is the internal structure of contributions different-with features such as disfluencies, repair, incomplete sentences, and various vocal soundsbut the sequential structure of the discourse is different as well.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 415,
                        "end": 422,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In this paper, we investigate how well one such large-scale language model, BERT (Devlin et al., 2019) , represents utterances in dialogue. We use dialogue act recognition (DAR) as a proxy task, since both the internal content and the sequential structure of utterances has bearing on this task",
                "cite_spans": [
                    {
                        "start": 81,
                        "end": 102,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We have two main contributions. First we find that while standard BERT pre-training is useful, the model performs poorly without fine-tuning ( \u00a73.1). Second, we find that further pre-training with data from the target domain shows promise for dialogue, but the results are mixed when pre-training with a larger corpus of dialogical data from outside the target domain ( \u00a73.2). Example from the SWDA corpus (sw2827).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Dialogue acts:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "sd-Statement-non- opinion, sv-Statement-opinion, bd-Downplayer, b-Backchannel, x-Non-verbal.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "1 Background",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The concept of a dialogue act is based on that of speech acts (Austin and Urmson, 2009) . Breaking with classical semantic theory, speech act theory considers not only the propositional content of an utterance but also the actions, such as promising or apologizing, it carries out. Dialogue acts extend the concept of the speech act, with a focus on the interactional nature of most speech.",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 87,
                        "text": "(Austin and Urmson, 2009)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dialogue Act Recognition",
                "sec_num": "1.1"
            },
            {
                "text": "DAR is the task of labeling utterances with the dialogue act they perform from a given set of dialogue act tags. As with other sequence labeling tasks in NLP, some notion of context is helpful in DAR. One of the first performant machine learning models for DAR was a Hidden Markov Model that used various lexical and prosodic features as input (Stolcke et al., 2000) . Most successful neural approaches also model some notion of context (e.g., Kalchbrenner and Blunsom, 2013; Tran et al., 2017a; Bothe et al., 2018b,a; Zhao and Kawahara, 2018) .",
                "cite_spans": [
                    {
                        "start": 344,
                        "end": 366,
                        "text": "(Stolcke et al., 2000)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 444,
                        "end": 475,
                        "text": "Kalchbrenner and Blunsom, 2013;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 476,
                        "end": 495,
                        "text": "Tran et al., 2017a;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 496,
                        "end": 518,
                        "text": "Bothe et al., 2018b,a;",
                        "ref_id": null
                    },
                    {
                        "start": 519,
                        "end": 543,
                        "text": "Zhao and Kawahara, 2018)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dialogue Act Recognition",
                "sec_num": "1.1"
            },
            {
                "text": "Transfer learning techniques allow a model trained on one task-often unsupervised-to be applied to another. Since annotating natural language data is expensive, there is a lot of interest in transfer learning for natural language processing. Word vectors (e.g., Mikolov et al., 2013; Pennington et al., 2014) are a ubiquitous example of transfer learning in NLP. We note, however, that pre-trained word vectors are not always useful when applied to dialogue (Cerisara et al., 2017) .",
                "cite_spans": [
                    {
                        "start": 262,
                        "end": 283,
                        "text": "Mikolov et al., 2013;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 284,
                        "end": 308,
                        "text": "Pennington et al., 2014)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 458,
                        "end": 481,
                        "text": "(Cerisara et al., 2017)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transfer learning for NLP",
                "sec_num": "1.2"
            },
            {
                "text": "BERT, a multi-layer transformer model (Devlin et al., 2019) , is pre-trained on two unsupervised tasks: masked token prediction and next sentence prediction. In masked token prediction, some percentage of words are randomly replaced with a mask token. The model is trained to predict the identity of the original token based on the context sentence. In next sentence prediction, the model is given two sentences and trained to predict whether the second sentence follows the first in the original text or if it was randomly chosen from elsewhere in the corpus. After pre-training, BERT can be applied to a supervised task by adding additional un-trained layers that take the hidden state of one or more of BERT's layers as input.",
                "cite_spans": [
                    {
                        "start": 38,
                        "end": 59,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transfer learning for NLP",
                "sec_num": "1.2"
            },
            {
                "text": "There is some previous work applying BERT to dialogue. Bao et al. (2020) and Chen et al. (2019) both use BERT for dialogue generation tasks. Similarly, Vig and Ramea (2019) find BERT useful for selecting a response from a list of candidate responses in a dialogue. Mehri et al. (2019) evaluate BERT in various dialogue tasks including DAR, and find that a model incorporating BERT outperforms a baseline model. Finally, Chakravarty et al. (2019) use BERT for dialogue act classification for a proprietary domain and achieves promising results, and Ribeiro et al. (2019) surpass the previous state-of-the-art on generic dialogue act recognition for Switchboard and MRDA corpora. This paper aims to supplement the findings of previous work by investigating how much of BERT's success for dialogue tasks is due to its extensive pre-training and how much is due to task-specific fine-tuning.",
                "cite_spans": [
                    {
                        "start": 55,
                        "end": 72,
                        "text": "Bao et al. (2020)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 77,
                        "end": 95,
                        "text": "Chen et al. (2019)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 265,
                        "end": 284,
                        "text": "Mehri et al. (2019)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 548,
                        "end": 569,
                        "text": "Ribeiro et al. (2019)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transfer learning for NLP",
                "sec_num": "1.2"
            },
            {
                "text": "Fine-tuning vs. further in-domain pre-training We experiment with the following two transfer learning strategies (Sun et al., 2019) : further pretraining, in which the model is trained in an un-supervised way, similar to its initial training scheme, but on data that is in-domain for the target task; and single-task fine-tuning, in which the Whether or not the encoder model has undergone further in-domain pre-training, there remains a choice of whether to fine-tune during task training, or simply extract features from the encoder model without training it (i.e., freezing). Freezing the encoder model is more efficient, since the gradient of the loss function need only be computed for the task-specific layers. However, fine-tuning can lead to better performance since the encoding itself is adapted to the target task and domain. Peters et al. (2019) investigate when it is best to fine-tune BERT for sentence classification tasks and find that when the target task is very similar to the pre-training task, fine-tuning provides less of a performance boost. We note that there is some conceptual relationship between DAR and next sentence prediction, since the dialogue act constrains (or at least is predictive of) the dialogue act that follows it. That said, the discourse strucutre of the encyclopedia and book data that makes up BERT's pre-training corpus is probably quite different from that of natural dialogue.",
                "cite_spans": [
                    {
                        "start": 113,
                        "end": 131,
                        "text": "(Sun et al., 2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 837,
                        "end": 857,
                        "text": "Peters et al. (2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transfer learning for NLP",
                "sec_num": "1.2"
            },
            {
                "text": "We perform experiments on the Switchboard Dialogue Act Corpus (SWDA), which is a subset of the larger Switchboard corpus, and the dialogue acttagged portion of the AMI Meeting Corpus (AMI-DA). SWDA is tagged with a set of 220 dialogue act tags which, following Jurafsky et al. (1997) , we cluster into a smaller set of 42 tags. AMI uses a smaller tagset of 16 dialogue acts (Carletta, 2007) . See Table 2 for details.",
                "cite_spans": [
                    {
                        "start": 261,
                        "end": 283,
                        "text": "Jurafsky et al. (1997)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 374,
                        "end": 390,
                        "text": "(Carletta, 2007)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 397,
                        "end": 404,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2"
            },
            {
                "text": "Preprocessing We make an effort to normalize transcription conventions across SWDA and AMI.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2"
            },
            {
                "text": "We remove disfluency annotations and slashes from the end of utterances in SWDA. In both corpora, acronyms are tokenized as individual letters. All utterances are lower-cased.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2"
            },
            {
                "text": "Utterances are tokenized with BERT's word piece tokenizer with a vocabulary of 30,000. To this vocabulary we added five speaker tokens and prepend each utterance with a speaker token that uniquely identifies the corresponding speaker within that dialogue.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2"
            },
            {
                "text": "We also experiment with three unlabeled dialogue corpora, which we use to provide further pretraining for the BERT encoder.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-training corpora",
                "sec_num": "2.1"
            },
            {
                "text": "The first two corpora are constructed from the same source as the dialogue act corpora. We use the SWDA portion of the un-labeled Switchboard corpus (SWBD) and the entire AMI corpus (including the 32 dialogues with no human-annotated DA tags that are not included in the DAR training set). In both cases, we exclude dialogues that are reserved for DAR testing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-training corpora",
                "sec_num": "2.1"
            },
            {
                "text": "We also experiment with a much larger a corpus (350M tokens) constructed from OpenSubtitles (Lison and Tiedemann, 2016). Because utterances are not labeled with speaker, we randomly assigned a speaker token to each utterance to maintain the format of the other dialogue corpora.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-training corpora",
                "sec_num": "2.1"
            },
            {
                "text": "The pre-training corpora were prepared for the combined masked language modeling and next sentence (utterance) prediction task, as described by Devlin et al. (2019) . For the smaller SWBD and AMI corpora, we generate and train on multiple epochs of data. Since there is randomness in the data preparation (e.g., which distractor sentences are chosen and which tokens are masked), we generate each training epoch separately. 1",
                "cite_spans": [
                    {
                        "start": 144,
                        "end": 164,
                        "text": "Devlin et al. (2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-training corpora",
                "sec_num": "2.1"
            },
            {
                "text": "We use a simple neural architecture with two components: an encoder that vectorizes utterances (BERT), and single-layer RNN sequence model that takes the utterance representations as input. 2 At each time step, the RNN takes the encoded utterance as input and its hidden state is passed to a linear layer with softmax over dialogue act tags. 3 Conceptually, the encoded utterance represents the context-agnostic features of the utterance, and the hidden state of the RNN represents the full discourse context.",
                "cite_spans": [
                    {
                        "start": 190,
                        "end": 191,
                        "text": "2",
                        "ref_id": null
                    },
                    {
                        "start": 342,
                        "end": 343,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "For the BERT utterance encoder, we use the BERT BASE model with hidden size of 768 and 12 transformer layers and self-attention heads (Devlin et al., 2019, \u00a73.1) . In our implementation, we use the un-cased model provided by Wolf et al. (2020) . The RNN has a hidden layer size of 100.",
                "cite_spans": [
                    {
                        "start": 134,
                        "end": 161,
                        "text": "(Devlin et al., 2019, \u00a73.1)",
                        "ref_id": null
                    },
                    {
                        "start": 225,
                        "end": 243,
                        "text": "Wolf et al. (2020)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "First, we analyze how pre-training affects BERT's performance as an utterance encoder. To do so, we consider the performance of DAR models with three different utterance encoders:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-training vs. fine-tuning",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 BERT-FT -pre-trained + DAR fine-tuning \u2022 BERT-FZ -pre-trained, frozen during DAR \u2022 BERT-RI -random init. + DAR fine-tuning BERT-FT is more accurate than BERT-RI by several percentage points on both DA corpora, suggesting that BERT's extensive pre-training does provide some useful information for DAR (Table 3). This performance boost is much more pronounced in the macro-averaged F1 score, 4 which is explained by the fact that at the tag level, pretraining has a larger impact on less frequent tags (see Figure 1 in the supplementary materials) .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 508,
                        "end": 548,
                        "text": "Figure 1 in the supplementary materials)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Pre-training vs. fine-tuning",
                "sec_num": "3.1"
            },
            {
                "text": "The BERT-FZ performs very poorly compared to either BERT-FT or BERT-RI, however. It is heavily biased towards the most frequent tags, which explains its especially poor macro-F1 score (Table 3 ). In SWDA, for example, the model with a frozen encoder predicts one of the two most common tags (Statement-non-opinion or Acknowledge) 86% of the time, whereas those two tags account for only 51% of the ground truth tags. BERT-FT is much less biased; it predicts the two most common tags only 59% of the time.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 184,
                        "end": 192,
                        "text": "(Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Pre-training vs. fine-tuning",
                "sec_num": "3.1"
            },
            {
                "text": "Next, we assess the effect of additional dialogue pre-training on BERT's performance as an utter-ance encoder. 5 Sun et al. (2019) has reported that performing additional pre-training on unlabeled in-domain data improves performance on classification tasks. We want to see if BERT can benefit from pre-training on dialogue data, including from data outside the immediate target domain.",
                "cite_spans": [
                    {
                        "start": 111,
                        "end": 112,
                        "text": "5",
                        "ref_id": null
                    },
                    {
                        "start": 113,
                        "end": 130,
                        "text": "Sun et al. (2019)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Impact of dialogue pre-training",
                "sec_num": "3.2"
            },
            {
                "text": "For each of the target corpora (SWDA and AMI-DA), we compare four different pre-training conditions: The in-domain corpus (ID), consisting of the AMI pre-training corpus for the AMI-DA model and the SWBD pre-traning corpus for the SWDA model; the cross-domain corpus (CC), consisting of both the AMI and SWBD pre-training corpora; and finally the OpenSubtitles corpus (OS). As before, we experiment with both frozen and fine-tuned models at the task training stage.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Impact of dialogue pre-training",
                "sec_num": "3.2"
            },
            {
                "text": "We performed 10 epochs of pre-training on the in-domain models and 5 epochs of pre-training on the cross-domain models so that the total amount of training data was comparable. The OpenSubtitles models were trained for only one epoch but with much more total training time.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Impact of dialogue pre-training",
                "sec_num": "3.2"
            },
            {
                "text": "In the fine-tuned condition, additional pretraining offers a modest boost in overall accuracy and a substantial boost to the macro-F1 scores, with the cross-domain corpus providing the largest boost. In the frozen condition, only the very large OpenSubtitles corpus is helpful, suggesting that when adapting BERT to dialogue, the size of the corpus is more important than its quality or fidelity to the target domain. Still, pre-training provides nowhere near the performance improvement achieved by fine-tuning on the target task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Impact of dialogue pre-training",
                "sec_num": "3.2"
            },
            {
                "text": "A key aspiration of transfer learning is to expose the model to phenomena that are too infrequent to learn from labeled training data alone. We show some evidence of that here. Pre-trained BERT-FT performs better on infrequent dialogue acts than BERT-RI, suggesting it draws on the extensive pre-training to represent infrequent features of those utterances. Indeed, a simple lexical probe supports this explanation: in utterances where the pre-trained model is correct and the randomly initialized model is not, the rarest word is 1.9 times rarer on average than is typical of corpus as a whole. Table 3 : Comparison of macro-F1 and accuracy with further in-domain (ID), cross-domain corpus (CC), and OpenSubtitles (OS) dialogue pre-training, for the frozen (FZ) and fine-tuned (FT) conditions. BERT-RI uses a randomly initialized utterance encoder with no pre-training but with fine-tuning.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 597,
                        "end": 604,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "4"
            },
            {
                "text": "In spite of that, the representations learned through pre-training are simply not performant without task-specific fine-tuning, suggesting that they are fundamentally lacking in information that is important for the dialogue context. We should note that this is in stark contrast to many other non-dialogical semantic tasks, where frozen BERT performs on par or better than the fine-tuned model (Peters et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 395,
                        "end": 416,
                        "text": "(Peters et al., 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "4"
            },
            {
                "text": "By performing additional pre-training on a large dialogue-like corpus (OpenSubtitles), we were able to raise the performance of the frozen encoder by a small amount. This deserves further investigation. Bao et al. (2020) find that further pre-training BERT on a large-scale Reddit and Twitter corpus is helpful for response selection, but given the unimpressive results with subtitles, it remains an open question how well the text chat and social media domains transfer to natural dialogue.",
                "cite_spans": [
                    {
                        "start": 203,
                        "end": 220,
                        "text": "Bao et al. (2020)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "4"
            },
            {
                "text": "There is also abundant room to investigate how speech-related information, such as laughter, prosody, and disfluencies can be incorporated into a DAR model that uses pre-trained features. Stolcke et al. (2000) showed, for example, that dialogue acts can have specific prosodic manifestations that can be used to improve dialogue act classification. Incorporating such information is crucial if models pre-trained on large-scale text corpora are to be adapted for use in dialogue applications.",
                "cite_spans": [
                    {
                        "start": 188,
                        "end": 209,
                        "text": "Stolcke et al. (2000)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "4"
            },
            {
                "text": "For details, see the finetuning example from Hugging Face.2 We have experimented with LSTM as the sequence model, but the accuracy was not significantly different compared to RNN. It can be explained by the absence of longer distance dependencies on this level of our model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Other work has shown that DAR benefits from more sophisticated decoding, such as conditional random field(Chen et al., 2018) and uncertainty propagation (Tran et al., 2017b).4 We report both accuracy (which is equal to microaveraged or class-weighted F1) and macro-F1, which is the unweighted average of the F1 scores of each class.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In-domain pre-training is sometimes referred to as finetuning, but we reserve that term for task-specific training on labeled data.6 Kozareva and Ravi (2019)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "A c k n o w le d g e ( B a c k c h a n n e l) S ta te m e n to p in io n S e g m e n t ( m u lt iu tt e r a n c e ) A b a n ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "annex",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "How to Do Things with Words: The William James Lectures Delivered at Harvard University in 1955",
                "authors": [
                    {
                        "first": "John",
                        "middle": [
                            "L"
                        ],
                        "last": "Austin",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "O"
                        ],
                        "last": "Urmson",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John L. Austin and James O. Urmson. 2009. How to Do Things with Words: The William James Lec- tures Delivered at Harvard University in 1955, 2. ed., [repr.] edition. Harvard Univ. Press, Cambridge, Mass. OCLC: 935786421.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable",
                "authors": [
                    {
                        "first": "Siqi",
                        "middle": [],
                        "last": "Bao",
                        "suffix": ""
                    },
                    {
                        "first": "Huang",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Fan",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Hua",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Haifeng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "85--96",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.9"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng Wang. 2020. PLATO: Pre-trained Dialogue Genera- tion Model with Discrete Latent Variable. In Pro- ceedings of the 58th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 85-96, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Conversational analysis using utterance-level attention-based bidirectional recurrent neural networks",
                "authors": [
                    {
                        "first": "Chandrakant",
                        "middle": [],
                        "last": "Bothe",
                        "suffix": ""
                    },
                    {
                        "first": "Sven",
                        "middle": [],
                        "last": "Magg",
                        "suffix": ""
                    },
                    {
                        "first": "Cornelius",
                        "middle": [],
                        "last": "Weber",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Wermter",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proc",
                "volume": "",
                "issue": "",
                "pages": "996--1000",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chandrakant Bothe, Sven Magg, Cornelius Weber, and Stefan Wermter. 2018a. Conversational analysis us- ing utterance-level attention-based bidirectional re- current neural networks. Proc. Interspeech 2018, pages 996-1000.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A Context-based Approach for Dialogue Act Recognition using Simple Recurrent Neural Networks",
                "authors": [
                    {
                        "first": "Chandrakant",
                        "middle": [],
                        "last": "Bothe",
                        "suffix": ""
                    },
                    {
                        "first": "Cornelius",
                        "middle": [],
                        "last": "Weber",
                        "suffix": ""
                    },
                    {
                        "first": "Sven",
                        "middle": [],
                        "last": "Magg",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Wermter",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chandrakant Bothe, Cornelius Weber, Sven Magg, and Stefan Wermter. 2018b. A Context-based Approach for Dialogue Act Recognition using Simple Re- current Neural Networks. In Proceedings of the Eleventh International Conference on Language Re- sources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Unleashing the killer corpus: Experiences in creating the multi-everything AMI Meeting Corpus. Language Resources and Evaluation",
                "authors": [
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Carletta",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "41",
                "issue": "",
                "pages": "181--190",
                "other_ids": {
                    "DOI": [
                        "10.1007/s10579-007-9040-x"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jean Carletta. 2007. Unleashing the killer corpus: Experiences in creating the multi-everything AMI Meeting Corpus. Language Resources and Evalu- ation, 41(2):181-190.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "On the effects of using word2vec representations in neural networks for dialogue act recognition",
                "authors": [
                    {
                        "first": "Christophe",
                        "middle": [],
                        "last": "Cerisara",
                        "suffix": ""
                    },
                    {
                        "first": "Pavel",
                        "middle": [],
                        "last": "Kr\u00e1l",
                        "suffix": ""
                    },
                    {
                        "first": "Ladislav",
                        "middle": [],
                        "last": "Lenc",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Computer Speech & Language",
                "volume": "47",
                "issue": "",
                "pages": "175--193",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.csl.2017.07.009"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Christophe Cerisara, Pavel Kr\u00e1l, and Ladislav Lenc. 2017. On the effects of using word2vec representa- tions in neural networks for dialogue act recognition. Computer Speech & Language, 47:175-193.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Dialog acts classification for question-answer corpora",
                "authors": [
                    {
                        "first": "Saurabh",
                        "middle": [],
                        "last": "Chakravarty",
                        "suffix": ""
                    },
                    {
                        "first": "Raja",
                        "middle": [],
                        "last": "Venkata Satya Phanindra Chava",
                        "suffix": ""
                    },
                    {
                        "first": "Edward A",
                        "middle": [],
                        "last": "Fox",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ASAIL@ ICAIL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saurabh Chakravarty, Raja Venkata Satya Phanindra Chava, and Edward A Fox. 2019. Dialog acts clas- sification for question-answer corpora. In ASAIL@ ICAIL.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Semantically Conditioned Dialog Response Generation via Hierarchical Disentangled Self-Attention",
                "authors": [
                    {
                        "first": "Wenhu",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Jianshu",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Pengda",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Xifeng",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [
                            "Yang"
                        ],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3696--3709",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1360"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan, and William Yang Wang. 2019. Semantically Con- ditioned Dialog Response Generation via Hierarchi- cal Disentangled Self-Attention. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics, pages 3696-3709, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Dialogue Act Recognition via CRF-Attentive Structured Network",
                "authors": [
                    {
                        "first": "Zheqian",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Rongqin",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhou",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Deng",
                        "middle": [],
                        "last": "Cai",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaofei",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR '18",
                "volume": "",
                "issue": "",
                "pages": "225--234",
                "other_ids": {
                    "DOI": [
                        "10.1145/3209978.3209997"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zheqian Chen, Rongqin Yang, Zhou Zhao, Deng Cai, and Xiaofei He. 2018. Dialogue Act Recognition via CRF-Attentive Structured Network. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR '18, pages 225-234, New York, NY, USA. Association for Computing Machinery.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Un- derstanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Switchboard SWBD-DAMSL Shallow-Discourse-Function Annotation Coders Manual",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    },
                    {
                        "first": "Liz",
                        "middle": [],
                        "last": "Shriberg",
                        "suffix": ""
                    },
                    {
                        "first": "Debra",
                        "middle": [],
                        "last": "Biasca",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Jurafsky, Liz Shriberg, and Debra Biasca. 1997. Switchboard SWBD-DAMSL Shallow-Discourse- Function Annotation Coders Manual.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Recurrent Convolutional Neural Networks for Discourse Compositionality",
                "authors": [
                    {
                        "first": "Nal",
                        "middle": [],
                        "last": "Kalchbrenner",
                        "suffix": ""
                    },
                    {
                        "first": "Phil",
                        "middle": [],
                        "last": "Blunsom",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Workshop on Continuous Vector Space Models and Their Compositionality",
                "volume": "",
                "issue": "",
                "pages": "119--126",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent Convolutional Neural Networks for Discourse Com- positionality. In Proceedings of the Workshop on Continuous Vector Space Models and Their Compo- sitionality, pages 119-126.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "ProSeqo: Projection Sequence Networks for On-Device Text Classification",
                "authors": [
                    {
                        "first": "Zornitsa",
                        "middle": [],
                        "last": "Kozareva",
                        "suffix": ""
                    },
                    {
                        "first": "Sujith",
                        "middle": [],
                        "last": "Ravi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "3894--3903",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1402"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zornitsa Kozareva and Sujith Ravi. 2019. ProSeqo: Projection Sequence Networks for On-Device Text Classification. In Proceedings of the 2019 Confer- ence on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 3894-3903, Hong Kong, China. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "OpenSubti-tles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles",
                "authors": [
                    {
                        "first": "Pierre",
                        "middle": [],
                        "last": "Lison",
                        "suffix": ""
                    },
                    {
                        "first": "Jorg",
                        "middle": [],
                        "last": "Tiedemann",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 10th International Conference on Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pierre Lison and Jorg Tiedemann. 2016. OpenSubti- tles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation, page 7.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Pretraining Methods for Dialog Context Representation Learning",
                "authors": [
                    {
                        "first": "Shikib",
                        "middle": [],
                        "last": "Mehri",
                        "suffix": ""
                    },
                    {
                        "first": "Evgeniia",
                        "middle": [],
                        "last": "Razumovskaia",
                        "suffix": ""
                    },
                    {
                        "first": "Tiancheng",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Maxine",
                        "middle": [],
                        "last": "Eskenazi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3836--3845",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1373"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shikib Mehri, Evgeniia Razumovskaia, Tiancheng Zhao, and Maxine Eskenazi. 2019. Pretraining Methods for Dialog Context Representation Learn- ing. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3836-3845, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Distributed Representations of Words and Phrases and their Compositionality. NIPS Proceedings",
                "authors": [
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Greg",
                        "middle": [
                            "S"
                        ],
                        "last": "Corrado",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor- rado, and Jeff Dean. 2013. Distributed Representa- tions of Words and Phrases and their Compositional- ity. NIPS Proceedings, page 9.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Glove: Global Vectors for Word Representation",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Pennington",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "1532--1543",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/D14-1162"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Con- ference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532-1543, Doha, Qatar. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [
                            "E"
                        ],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Ruder",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)",
                "volume": "",
                "issue": "",
                "pages": "7--14",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-4302"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. 2019. To Tune or Not to Tune? Adapt- ing Pretrained Representations to Diverse Tasks. In Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pages 7-14, Florence, Italy. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Deep dialog act recognition using multiple token, segment, and context information representations",
                "authors": [
                    {
                        "first": "Eug\u00e9nio",
                        "middle": [],
                        "last": "Ribeiro",
                        "suffix": ""
                    },
                    {
                        "first": "Ricardo",
                        "middle": [],
                        "last": "Ribeiro",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Martins De Matos",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Journal of Artificial Intelligence Research",
                "volume": "66",
                "issue": "",
                "pages": "861--899",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eug\u00e9nio Ribeiro, Ricardo Ribeiro, and David Martins de Matos. 2019. Deep dialog act recognition using multiple token, segment, and context information representations. Journal of Artificial Intelligence Re- search, 66:861-899.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech",
                "authors": [
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Stolcke",
                        "suffix": ""
                    },
                    {
                        "first": "Klaus",
                        "middle": [],
                        "last": "Ries",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "Coccaro",
                        "suffix": ""
                    },
                    {
                        "first": "Elizabeth",
                        "middle": [],
                        "last": "Shriberg",
                        "suffix": ""
                    },
                    {
                        "first": "Rebecca",
                        "middle": [],
                        "last": "Bates",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Taylor",
                        "suffix": ""
                    },
                    {
                        "first": "Rachel",
                        "middle": [],
                        "last": "Martin",
                        "suffix": ""
                    },
                    {
                        "first": "Carol",
                        "middle": [],
                        "last": "Van Ess-Dykema",
                        "suffix": ""
                    },
                    {
                        "first": "Marie",
                        "middle": [],
                        "last": "Meteer",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Computational Linguistics",
                "volume": "26",
                "issue": "3",
                "pages": "339--373",
                "other_ids": {
                    "DOI": [
                        "10.1162/089120100561737"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza- beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul Taylor, Rachel Martin, Carol Van Ess-Dykema, and Marie Meteer. 2000. Dialogue Act Modeling for Au- tomatic Tagging and Recognition of Conversational Speech. Computational Linguistics, 26(3):339-373.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "How to Fine-Tune BERT for Text Classification?",
                "authors": [
                    {
                        "first": "Chi",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Xipeng",
                        "middle": [],
                        "last": "Qiu",
                        "suffix": ""
                    },
                    {
                        "first": "Yige",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Xuanjing",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Chinese Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "194--206",
                "other_ids": {
                    "DOI": [
                        "10.1007/978-3-030-32381-3_16"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to Fine-Tune BERT for Text Classi- fication? In Chinese Computational Linguistics, Lecture Notes in Computer Science, pages 194-206, Cham. Springer International Publishing.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "A Hierarchical Neural Model for Learning Sequences of Dialogue Acts",
                "authors": [
                    {
                        "first": "Ingrid",
                        "middle": [],
                        "last": "Quan Hung Tran",
                        "suffix": ""
                    },
                    {
                        "first": "Gholamreza",
                        "middle": [],
                        "last": "Zukerman",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Haffari",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "428--437",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/E17-1041"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Quan Hung Tran, Ingrid Zukerman, and Gholamreza Haffari. 2017a. A Hierarchical Neural Model for Learning Sequences of Dialogue Acts. In Proceed- ings of the 15th Conference of the European Chap- ter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 428-437, Valencia, Spain. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Preserving Distributional Information in Dialogue Act Classification",
                "authors": [
                    {
                        "first": "Ingrid",
                        "middle": [],
                        "last": "Quan Hung Tran",
                        "suffix": ""
                    },
                    {
                        "first": "Gholamreza",
                        "middle": [],
                        "last": "Zukerman",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Haffari",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2151--2156",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1229"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Quan Hung Tran, Ingrid Zukerman, and Gholamreza Haffari. 2017b. Preserving Distributional Informa- tion in Dialogue Act Classification. In Proceed- ings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2151-2156, Copenhagen, Denmark. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Comparison of Transfer-Learning Approaches for Response Selection in Multi-Turn Conversations",
                "authors": [
                    {
                        "first": "Jesse",
                        "middle": [],
                        "last": "Vig",
                        "suffix": ""
                    },
                    {
                        "first": "Kalai",
                        "middle": [],
                        "last": "Ramea",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Workshop on Dialog System Technology Challenges",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jesse Vig and Kalai Ramea. 2019. Comparison of Transfer-Learning Approaches for Response Selec- tion in Multi-Turn Conversations. In Proceedings of the Workshop on Dialog System Technology Chal- lenges, page 7, Honolulu, Hawaii.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Transformers: State-of-the-Art Natural Language Processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "Remi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Joe",
                        "middle": [],
                        "last": "Davison",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Shleifer",
                        "suffix": ""
                    },
                    {
                        "first": "Clara",
                        "middle": [],
                        "last": "Patrick Von Platen",
                        "suffix": ""
                    },
                    {
                        "first": "Yacine",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Jernite",
                        "suffix": ""
                    },
                    {
                        "first": "Canwen",
                        "middle": [],
                        "last": "Plu",
                        "suffix": ""
                    },
                    {
                        "first": "Teven",
                        "middle": [
                            "Le"
                        ],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Sylvain",
                        "middle": [],
                        "last": "Scao",
                        "suffix": ""
                    },
                    {
                        "first": "Mariama",
                        "middle": [],
                        "last": "Gugger",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Drame",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "38--45",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-demos.6"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Trans- formers: State-of-the-Art Natural Language Process- ing. In Proceedings of the 2020 Conference on Em- pirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "A unified neural architecture for joint dialog act segmentation and recognition in spoken dialog system",
                "authors": [
                    {
                        "first": "Tianyu",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Tatsuya",
                        "middle": [],
                        "last": "Kawahara",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "201--208",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianyu Zhao and Tatsuya Kawahara. 2018. A unified neural architecture for joint dialog act segmentation and recognition in spoken dialog system. In Pro- ceedings of the 19th Annual SIGdial Meeting on Dis- course and Dialogue, pages 201-208.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF1": {
                "html": null,
                "content": "<table/>",
                "num": null,
                "type_str": "table",
                "text": ""
            },
            "TABREF3": {
                "html": null,
                "content": "<table><tr><td>: Comparison between Switchboard and the</td></tr><tr><td>AMI Meeting Corpus</td></tr><tr><td>model's encoder layers are optimized during train-</td></tr><tr><td>ing for the target task.</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": ""
            },
            "TABREF4": {
                "html": null,
                "content": "<table><tr><td/><td colspan=\"2\">SWDA</td><td colspan=\"2\">AMI-DA</td></tr><tr><td/><td>F1</td><td>acc.</td><td>F1</td><td>acc.</td></tr><tr><td>BERT-FZ</td><td colspan=\"4\">7.75 55.61 14.86 48.34</td></tr><tr><td>BERT+ID-FZ</td><td colspan=\"4\">6.46 52.30 14.48 48.18</td></tr><tr><td>BERT+CC-FZ</td><td colspan=\"4\">5.76 51.14 11.34 40.48</td></tr><tr><td>BERT+OS-FZ</td><td colspan=\"4\">9.60 57.67 17.03 51.03</td></tr><tr><td>BERT-RI</td><td colspan=\"4\">32.18 73.80 34.88 60.89</td></tr><tr><td>Majority class</td><td colspan=\"2\">0.78 33.56</td><td colspan=\"2\">1.88 28.27</td></tr><tr><td>SotA</td><td/><td>-83.1 6</td><td>-</td><td>-</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "BERT-FT 36.75 76.60 43.42 64.93 BERT+ID-FT 43.63 77.01 46.70 68.88 BERT+CC-FT 47.78 77.35 48.86 68.79 BERT+OS-FT 41.42 76.95 48.65 68.07"
            }
        }
    }
}