File size: 152,906 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:24:32.272632Z"
    },
    "title": "Encoding Explanatory Knowledge for Zero-shot Science Question Answering",
    "authors": [
        {
            "first": "Zili",
            "middle": [],
            "last": "Zhou",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Manchester",
                "location": {
                    "country": "United Kingdom"
                }
            },
            "email": "zili.zhou@manchester.ac.uk"
        },
        {
            "first": "Marco",
            "middle": [],
            "last": "Valentino",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Manchester",
                "location": {
                    "country": "United Kingdom"
                }
            },
            "email": "marco.valentino@manchester.ac.uk"
        },
        {
            "first": "D\u00f3nal",
            "middle": [],
            "last": "Landers",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Manchester Institute",
                "location": {
                    "country": "UK, United Kingdom"
                }
            },
            "email": "donal.landers@digitalecmt.org"
        },
        {
            "first": "Andr\u00e9",
            "middle": [],
            "last": "Freitas",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Manchester",
                "location": {
                    "country": "United Kingdom"
                }
            },
            "email": "andre.freitas@idiap.ch"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper describes N-XKT (Neural encoding based on eXplanatory Knowledge Transfer), a novel method for the automatic transfer of explanatory knowledge through neural encoding mechanisms. We demonstrate that N-XKT is able to improve accuracy and generalization on science Question Answering (QA). Specifically, by leveraging facts from background explanatory knowledge corpora, the N-XKT model shows a clear improvement on zero-shot QA. Furthermore, we show that N-XKT can be fine-tuned on a target QA dataset, enabling faster convergence and more accurate results. A systematic analysis is conducted to quantitatively analyze the performance of the N-XKT model and the impact of different categories of knowledge on the zero-shot generalization task.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper describes N-XKT (Neural encoding based on eXplanatory Knowledge Transfer), a novel method for the automatic transfer of explanatory knowledge through neural encoding mechanisms. We demonstrate that N-XKT is able to improve accuracy and generalization on science Question Answering (QA). Specifically, by leveraging facts from background explanatory knowledge corpora, the N-XKT model shows a clear improvement on zero-shot QA. Furthermore, we show that N-XKT can be fine-tuned on a target QA dataset, enabling faster convergence and more accurate results. A systematic analysis is conducted to quantitatively analyze the performance of the N-XKT model and the impact of different categories of knowledge on the zero-shot generalization task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Contemporary Question Answering (QA) is evolving in the direction of addressing more abstractive reasoning tasks (Thayaparan et al., 2020; Dua et al., 2019; Mihaylov et al., 2018) , supported by multi-hop inference (Khot et al., 2020; Yang et al., 2018) and explanatory scientific facts (Jansen and Ustalov, 2019; Jansen et al., 2018 Jansen et al., , 2016 .",
                "cite_spans": [
                    {
                        "start": 113,
                        "end": 138,
                        "text": "(Thayaparan et al., 2020;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 139,
                        "end": 156,
                        "text": "Dua et al., 2019;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 157,
                        "end": 179,
                        "text": "Mihaylov et al., 2018)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 215,
                        "end": 234,
                        "text": "(Khot et al., 2020;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 235,
                        "end": 253,
                        "text": "Yang et al., 2018)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 287,
                        "end": 313,
                        "text": "(Jansen and Ustalov, 2019;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 314,
                        "end": 333,
                        "text": "Jansen et al., 2018",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 334,
                        "end": 355,
                        "text": "Jansen et al., , 2016",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This trend of aiming to address more complex, multi-evidence and chained inference is pushing the envelope for novel representation and architectural patterns (Ding et al., 2019; Qiu et al., 2019; Asai et al., 2020; Thayaparan et al., 2019; Kundu et al., 2019; Valentino et al., 2021) , which are moving from modelling meaning from immediate distributional semantics patterns into deeper abstractive capabilities. This poses a paradigmatic challenge on the design of QA architectures, which need to operate over high-level semantic patterns and acquire the necessary knowledge to perform abstraction . At the same time, the design of new strategies to incorporate explanatory knowledge into neural representation has the potential to address fundamental data efficiency problems and promote zero-shot generalisation on out-of-distribution examples.",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 178,
                        "text": "(Ding et al., 2019;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 179,
                        "end": 196,
                        "text": "Qiu et al., 2019;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 197,
                        "end": 215,
                        "text": "Asai et al., 2020;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 216,
                        "end": 240,
                        "text": "Thayaparan et al., 2019;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 241,
                        "end": 260,
                        "text": "Kundu et al., 2019;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 261,
                        "end": 284,
                        "text": "Valentino et al., 2021)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Explanation-based Science QA (Jansen et al., 2018) provides a rich framework to evaluate these emerging requirements, as the task typically requires multi-hop reasoning through the composition of explanatory facts. While existing approaches in the field mainly focus on the construction of natural language explanations (Jansen et al., 2018; Jansen and Ustalov, 2019) , this work aims to explore the impact of explanatory knowledge on zero-shot generalisation.",
                "cite_spans": [
                    {
                        "start": 29,
                        "end": 50,
                        "text": "(Jansen et al., 2018)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 320,
                        "end": 341,
                        "text": "(Jansen et al., 2018;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 342,
                        "end": 367,
                        "text": "Jansen and Ustalov, 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we argue that explanation-centred corpora can serve as a resource to boost zero-shot capabilities on Question Answering tasks which demand deeper inference. To this end, we explore the adoption of latent knowledge representations for supporting generalisation on downstream QA tasks requiring multi-hop inference.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our hypothesis is that explanatory scientific knowledge expressed in natural language can be transferred into neural network representations, and subsequently used to achieve knowledge based inference on scientific QA tasks. To validate this hypothesis, this paper proposes a unified approach that frames Question Answering as an explanatory knowledge reasoning problem. The unification between the two tasks allows us to explore the adoption of pre-training strategies over explanatory knowledge bases, and subsequently leverage the same paradigm to generalise on the Question Answering task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "An empirical evaluation is performed on Transformers-based architectures adopting the WorldTree corpus as a knowledge base (Xie et al., 2020; Jansen et al., 2018) and measuring generalisation on ARC and OpenbookQA (Mihaylov et al., 2018) . The main contributions of this paper are as follows:",
                "cite_spans": [
                    {
                        "start": 123,
                        "end": 141,
                        "text": "(Xie et al., 2020;",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 142,
                        "end": 162,
                        "text": "Jansen et al., 2018)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 214,
                        "end": 237,
                        "text": "(Mihaylov et al., 2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 We propose N-XKT, a neural mechanism for encoding and transferring explanatory knowledge for science QA. To the best of our knowledge, N-XKT is the first work tackling science QA tasks through the transfer of external explanatory knowledge via neural encoding mechanisms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 We introduce the explanatory knowledge transfer task on explanation-centred knowledge bases, describing the methodology to implement N-XKT for knowledge acquisition and downstream Question Answering using Transformer-based models as neural encoders.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 We conduct a systematic empirical analysis to demonstrate the effectiveness of N-XKT on improving downstream QA accuracy and overall convergence speed in the training phase. An ablation analysis on different types of knowledge facts is performed to measure the impact of different knowledge categories.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this section we describe several works related to knowledge-based scientific QA.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Explanation Bank Explanation Bank 1 is a core component of the WorldTree corpus (Jansen et al., 2018; Xie et al., 2020) . The dataset provides explanations for multiple-choice science questions in the form of graphs connecting questions and correct answers, where multiple sentences from a knowledge base (KB) are aggregated through lexical overlap between terms. The background knowledge used for the explanations is grouped in semi-structured tables, whose facts range from common-sense to core scientific statements. Explanation Bank has been proposed for the task of explanation regeneration (Jansen and Ustalov, 2019) -i.e. given a multiple-choice science question, regenerate the gold explanation supporting the correct answer. The explanation regeneration task has been framed as an Information Retrieval (IR) problem (Valentino et al., 2021) . In this paper, we aim to leverage the knowledge expressed in the explanations to enhance generalisation and zero-shot capability on multiple-choice scientific question answering.",
                "cite_spans": [
                    {
                        "start": 80,
                        "end": 101,
                        "text": "(Jansen et al., 2018;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 102,
                        "end": 119,
                        "text": "Xie et al., 2020)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 825,
                        "end": 849,
                        "text": "(Valentino et al., 2021)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "1 http://cognitiveai.org/explanationbank/ Bidirectional Encoder Representations from Transformers BERT represents the foundation which defines the state-of-the-art in several NLP tasks (Devlin et al., 2019) . This model adopts a Transformer-based architecture composed of several layers of attention (Vaswani et al., 2017) that are used to learn a deep bidirectional representation of language. BERT-based models have demonstrated remarkable results in Question Answering when directly fine-tuned on the answer prediction task or additionally pre-trained using domain specific knowledge (Clark et al., 2020; Beltagy et al., 2019) . A recent line of research attempts to enrich the input of BERT with background knowledge in the form of explanations in order to boost generalisation and accuracy for challenging QA settings. Here, the explanations are explicitly constructed through the adoption of language models (Rajani et al., 2019) or information retrieval (IR) approaches (Valentino et al., 2021; Yadav et al., 2019) . Conversely, this paper explores mechanisms to implicitly encode explanatory knowledge in the neural representation to improve the capability of performing downstream inference. Specifically, in this work, we adopt Transformers as text neural encoders.",
                "cite_spans": [
                    {
                        "start": 185,
                        "end": 206,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 300,
                        "end": 322,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 587,
                        "end": 607,
                        "text": "(Clark et al., 2020;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 608,
                        "end": 629,
                        "text": "Beltagy et al., 2019)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 977,
                        "end": 1001,
                        "text": "(Valentino et al., 2021;",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 1002,
                        "end": 1021,
                        "text": "Yadav et al., 2019)",
                        "ref_id": "BIBREF40"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Leveraging External Knowledge for Scientific QA Recently, many solutions have been proposed for science QA that leverage either external reference corpora (Khot et al., 2017; Khashabi et al., 2018; or existing knowledge graphs (Li and Clark, 2015; Sachan et al., 2016; Wang et al., 2018; Musa et al., 2019; Zhong et al., 2019) . Generally, previous works rely on Information Retrieval models or on structural embeddings for Knowledge Bases, while our work focuses on directly encoding explanatory knowledge, evaluating it in a downstream scientific QA setting.",
                "cite_spans": [
                    {
                        "start": 155,
                        "end": 174,
                        "text": "(Khot et al., 2017;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 175,
                        "end": 197,
                        "text": "Khashabi et al., 2018;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 227,
                        "end": 247,
                        "text": "(Li and Clark, 2015;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 248,
                        "end": 268,
                        "text": "Sachan et al., 2016;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 269,
                        "end": 287,
                        "text": "Wang et al., 2018;",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 288,
                        "end": 306,
                        "text": "Musa et al., 2019;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 307,
                        "end": 326,
                        "text": "Zhong et al., 2019)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Scientific Question Answering has the distinctive property of requiring the articulation of multi-hop and explanatory reasoning. This can be contrasted with the lexical-retrieval style of factoid Question Answering. Additionally, the explanatory chains required to arrive at the correct answer typically operate at an abstract level, through the combination of definitions and scientific laws (Thayaparan et al., 2020) . This characteristic makes the generalisation process more challenging, as the answer prediction model needs to acquire the ability to perform abstraction from the specific context in the question. This paper hypothesises that it is possible to automatically transfer abstractive knowledge from explanatory facts into neural encoding representation for more accurate scientific QA, and for enabling zero-shot generalization. To this end, we propose N-XKT (Neural encoding based on eXplanatory Knowledge Transfer) which encodes abstractive knowledge into neural representation to improve the effectiveness in both zero-shot QA task and fine-tuning based QA task. The general neural encoding mechanism is evaluated adopting the following training tasks:",
                "cite_spans": [
                    {
                        "start": 393,
                        "end": 418,
                        "text": "(Thayaparan et al., 2020)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "\u03b8F q t , c t l pred l pred q K , a K , l K q Q , a Q , l Q q S , a S , l S",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "1. Explanatory Knowledge Acquisition: In this pre-training task, the N-XKT model encodes the explanatory textual knowledge from a set of explanatory facts into supporting embeddings. This process aims to acquire the necessary explanatory knowledge to test generalization on downstream science QA. We frame this problem as a knowledge base completion task. Specifically, after casting each explanatory fact in the knowledge base into a tuple composed of subject, object, and predicate, the model is trained on completing each fact by alternatively masking each element in the tuple (additional details can be found in section 3.1).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "2. Cloze-style Question Answering: To keep the encoding mechanism consistent with the pre-training explanatory knowledge acquisition task, we cast Multiple-choice Question Answering into a cloze-style QA problem. Specifically, we train the N-XKT model to complete the question with the expected candidate answer. This task aims to acquire additional knowledge for addressing downstream science QA since the patterns in the questions are typically more complex than the background explanatory facts (additional details can be found in section 3.2).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "The training tasks defined above can be used to encode different types and levels of knowledge into the N-XKT model, allowing us to perform a detailed evaluation on both zero-shot and finetuning-based Question Answering tasks. Figure 1 shows a schematic representation of the proposed approach.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 227,
                        "end": 235,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "The WorldTree corpus (Jansen et al., 2018) contains natural language explanatory facts, which are stored in semi-structured tables whose columns correspond to semantic roles. The knowledge base contains a total of 82 tables, where each table represents a different knowledge type, with different arity and argument types. N-XKT can be used as a unified approach for transferring knowledge from heterogeneous explanatory facts via a neural encoding mechanism.",
                "cite_spans": [
                    {
                        "start": 21,
                        "end": 42,
                        "text": "(Jansen et al., 2018)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Explanatory Knowledge Acquisition",
                "sec_num": "3.1"
            },
            {
                "text": "To acquire the explanatory knowledge in a unified way for subsequent transfer learning, we normalize the semi-structured facts using a binary predicate-argument structure as typical practice in standard knowledge-base completion tasks (Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015) . Specifically, for each table, we map the columns into three main components: subject, predicate, and object. After performing the mapping for each table in the knowledge base, we generate triples for all the facts in the knowledge base.",
                "cite_spans": [
                    {
                        "start": 235,
                        "end": 256,
                        "text": "(Bordes et al., 2013;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 257,
                        "end": 275,
                        "text": "Wang et al., 2014;",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 276,
                        "end": 293,
                        "text": "Lin et al., 2015)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Explanatory Knowledge Acquisition",
                "sec_num": "3.1"
            },
            {
                "text": "By framing the explanatory knowledge acquisition task as a knowledge base completion problem, we alternatively mask subjects and objects from the triples and train the model to predict the missing component in the triple by giving in input the remaining ones. Specifically, we simulate a question answering problem adopting either subject or object as an answer, and the other two components in the triple as a question.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Explanatory Knowledge Acquisition",
                "sec_num": "3.1"
            },
            {
                "text": "The neural encoder of N-XKT learns an embedding representation for each pair in input. A softmax layer is added on top of the embedding to predict the probability of the missing component in the triple. The configuration adopted for the N-XKT model is described in equation 1;.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Explanatory Knowledge Acquisition",
                "sec_num": "3.1"
            },
            {
                "text": "\u03b8 K \u2190 argmin \u03b8 L(N-XKT \u03b8 (q K , a K ), l K ) (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Explanatory Knowledge Acquisition",
                "sec_num": "3.1"
            },
            {
                "text": "Here, q K and a K represent the simulated questionanswer pair generated from a generic explanatory fact triple, while l K represents the target labels (i.e. 1 if a is the correct component for completing the triple, 0 otherwise). \u03b8 K is the set of parameters optimised during the explanatory knowledge acquisition stage. The negative samples are generated by replacing each correct answer with a random component extracted from different explanatory facts in the knowledge base.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Explanatory Knowledge Acquisition",
                "sec_num": "3.1"
            },
            {
                "text": "The transformer neural network is used as a textual neural encoder component of N-XKT, where each question-answer pair is compiled into the input token sequence:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Explanatory Knowledge Acquisition",
                "sec_num": "3.1"
            },
            {
                "text": "[CLS][question][SEP ][answer][SEP ] (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Explanatory Knowledge Acquisition",
                "sec_num": "3.1"
            },
            {
                "text": "The final hidden vector C \u2208 R H of the Transformer neural network that corresponds to the first input token ([CLS]) is used as an embedding to perform the final classification.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Explanatory Knowledge Acquisition",
                "sec_num": "3.1"
            },
            {
                "text": "Normally, the explanatory knowledge patterns do not contain the complete information to address downstream Question Answering. However, the questions in WorldTree can be used as additional knowledge to deal with complex structured science questions, allowing N-XKT to learn to recognize more complex patterns.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Cloze-style Question Answering",
                "sec_num": "3.2"
            },
            {
                "text": "To acquire additional knowledge while keeping the encoding mechanism consistent with the pretraining explanatory knowledge acquisition task, we cast Multiple-choice Question Answering into a cloze-style QA problem. The particular encoding configuration of the N-XKT model can be used in fact to address this type of question answering problems, where the model is trained to complete the question with the expected candidate answer. The detailed parameters and inputs adopted for cloze-style QA are described in equation 3:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Cloze-style Question Answering",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03b8 K+Q \u2190 argmin \u03b8 L(N-XKT \u03b8 K (q Q , a Q ), l Q )",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Cloze-style Question Answering",
                "sec_num": "3.2"
            },
            {
                "text": "The setting adopted for cloze-style QA is similar to the one adopted for explanatory knowledge acquisition, but with two main differences: 1) In this case, the question q Q , the answer a Q , and the target label l K are generated from the WorldTree multiple-choice question answering set, where the right candidate answer of each question acts as a positive sample, and the incorrect candidate answers act as the negative samples.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Cloze-style Question Answering",
                "sec_num": "3.2"
            },
            {
                "text": "2) The initial parameters are initially set with \u03b8 K , that is, we adopt the parameters that have been optimised during the explanatory knowledge acquisition stage.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Cloze-style Question Answering",
                "sec_num": "3.2"
            },
            {
                "text": "Given a multiple-choice science question, N-XKT can perform question answering by framing it as a sequence classification problem, where the question is paired with each candidate answer to compute a probability score. The candidate choice with highest score can then be selected as the predicted answer. We evaluate N-XKT in two different settings: zero-shot and fine-tuning-based QA.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Zero-shot and Fine-tuning Settings",
                "sec_num": "3.3"
            },
            {
                "text": "Regarding the zero-shot setting, the N-XKT is trained only on the explanatory knowledge acquisition task and then directly tested on downstream Question Answering. We also evaluate the model trained jointly on explanatory knowledge and science questions in WorldTree, evaluating its generalization capabilities on different multiple-choice Question Answering datasets, such as ARC 2 and OpenBook QA 3 (Mihaylov et al., 2018) . For each pair of question and candidate answer, the scores are computed as described in equation 4. Here, (q T , c T ) represent the test question and a candidate answer, while l T pred is the score predicted by the model.",
                "cite_spans": [
                    {
                        "start": 401,
                        "end": 424,
                        "text": "(Mihaylov et al., 2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Zero-shot and Fine-tuning Settings",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "l T pred = N-XKT \u03b8 K+Q (q T , c T )",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Zero-shot and Fine-tuning Settings",
                "sec_num": "3.3"
            },
            {
                "text": "In the fine-tuning setting, the N-XKT model is additionally fine-tuned on each target QA dataset as in equation 6. Here, (q S , a S ) represents a questionanswer pair from the target QA training set, while l S is the label indicating whether the answer is correct or not.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Zero-shot and Fine-tuning Settings",
                "sec_num": "3.3"
            },
            {
                "text": "\u03b8 F \u2190 argmin \u03b8 L(N-XKT \u03b8 K+Q (q S , a S ), l S ) (5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Zero-shot and Fine-tuning Settings",
                "sec_num": "3.3"
            },
            {
                "text": "As shown in equation 6, we adopt the same configuration as in the zero-shot setting, where the only difference is represented by the fine-tuned parameters set \u03b8 F :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Zero-shot and Fine-tuning Settings",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "l T pred = N-XKT \u03b8 F (q T , c T )",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Zero-shot and Fine-tuning Settings",
                "sec_num": "3.3"
            },
            {
                "text": "We conduct our experiments on four widely used science QA datasets, WorldTree V2.0 (Xie et al., 2020) , ARC Easy and Challenge , and Openbook QA (Mihaylov et al., 2018) . The results tend to confirm our research hypothesis that explanatory knowledge encoding can improve generalization in downstream science Question Answering (QA) tasks. Furthermore, we systematically analyze several factors which may have an impact on the final results, including the use of Transformer-based models with a larger number of parameters (BERT-large), testing the model on QA tasks using different types of explanatory background knowledge, and measuring training and test performance by further fine-tuning the model on other datasets.",
                "cite_spans": [
                    {
                        "start": 83,
                        "end": 101,
                        "text": "(Xie et al., 2020)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 145,
                        "end": 168,
                        "text": "(Mihaylov et al., 2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Evaluation",
                "sec_num": "4"
            },
            {
                "text": "QA dataset size. In order to conduct a thorough quantitative analysis, we use four science QA datasets, WorldTree V2.0 (Xie et al., 2020) , ARC Easy and Challenge , and Openbook QA (Mihaylov et al., 2018) . The number of question-answer pairs in each dataset is listed in Table. 1.",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 137,
                        "text": "(Xie et al., 2020)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 181,
                        "end": 204,
                        "text": "(Mihaylov et al., 2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 272,
                        "end": 278,
                        "text": "Table.",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "4.1"
            },
            {
                "text": "Explanatory knowledge dataset size. We encode different types of explanatory knowledge in the WorldTree corpus into Transformer neural networks. The statistics of the adopted explanatory facts are reported in Table 2 . Because we further analyze the impact of different types of knowledge, the number of each knowledge type is also given in the table.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 209,
                        "end": 216,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "4.1"
            },
            {
                "text": "Hyperparameters configuration. We adjust two major hyperparameters for the training of the model, namely batch size and learning rate. We optimize the parameters considering the following combinations: we adopt training batch sizes in {16, 32}, and learning rate in {1e \u2212 5, 3e \u2212 5, 5e \u2212 5}. The best results are obtained with batch size 32 and learning rate 3e \u2212 5 for the BERT-base model, and batch size 16 and learning rate 1e \u2212 5 for BERT-large (Devlin et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 449,
                        "end": 470,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "4.1"
            },
            {
                "text": "Information Retrieval baseline. We adopt an Information Retrieval (IR) baseline similar to the one described in . Given a question q, for each candidate answer c i \u2208 C = {c 1 , . . . , c n }, the IR solver uses BM25 vectors and cosine similarity to retrieve the top K sentences in the WorldTree corpus that are most similar to the concatenation of q and c i . The score of a candidate answer c i is then obtained by considering the sum of the BM25 relevance scores associated to the retrieved sentences. The predicted answer corresponds to the candidate choice with the highest score. To test the generalisation of this approach on ARC and OpenbookQA, we keep the same background knowledge throughout the experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "4.1"
            },
            {
                "text": "Configuration Setting. We adopt different configurations in the experiments to control for training data, Transformer model, and target QA test dataset fine-tuning. We report the different configurations in the \"Config\" column of Table 6 and Table 7 . The label \"K\" indicates that the model is trained only on the explanatory knowledge acquisition task, \"Q\" means that the model is trained only on the cloze-style QA task using WorldTree as reference dataset, \"K+Q\" means that the model is pre-trained for explanatory knowledge acquisition and then further fine-tuned on cloze-style QA (again using only WorldTree as training dataset). Moreover, \"base\" means using BERT-base as Transformer model, while \"large\" means using BERT-large. Finally, \"FT\" means that the model is additionally finetuned on the target QA dataset's training data.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 230,
                        "end": 249,
                        "text": "Table 6 and Table 7",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "4.1"
            },
            {
                "text": "In Table 6 , we report the performance of N-XKT under different configurations along with the accuracy of the BM25 baseline with K = 5 number of facts. The models are tested across multiple QA datasets including WorldTree, ARC, and Open-bookQA.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 10,
                        "text": "Table 6",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Overall Results on Zero-shot Science Question Answering",
                "sec_num": "4.2"
            },
            {
                "text": "From the results, we derive the following conclusions. First, the proposed N-XKT model can clearly achieve better accuracy than the BM25 baseline since N-XKT uses Transformer-based neural mechanisms to acquire and encode external knowledge. Second, using BERT-large instead of BERTbase as initial Transformer can improve the performance since BERT-large contains more parameters than BERT-base. However, we found that the advantage of using BERT-large is not significant since more parameters implies more resources needed for training. Third, we observe than N-XKT obtains better performance than pre-trained BERT when fine-tuning on the target datasets. : Accuracy comparison between N-XKT and othe approaches. External KB adopted by the models: 1.ARCcorpus , 2.ConceptNet (Speer et al., 2017) , 3.Wikipedia (https://www.wikipedia.org/), 4.SciTail ), 5.SNLI (Bowman et al., 2015 , 6.MultiNLI (Williams et al., 2018) , 7.RACE (Lai et al., 2017) , 8.MCScript (Ostermann et al., 2018) , 9.WorldTree (Jansen et al., 2018 ",
                "cite_spans": [
                    {
                        "start": 775,
                        "end": 795,
                        "text": "(Speer et al., 2017)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 850,
                        "end": 880,
                        "text": "), 5.SNLI (Bowman et al., 2015",
                        "ref_id": null
                    },
                    {
                        "start": 894,
                        "end": 917,
                        "text": "(Williams et al., 2018)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 927,
                        "end": 945,
                        "text": "(Lai et al., 2017)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 959,
                        "end": 983,
                        "text": "(Ostermann et al., 2018)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 998,
                        "end": 1018,
                        "text": "(Jansen et al., 2018",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Overall Results on Zero-shot Science Question Answering",
                "sec_num": "4.2"
            },
            {
                "text": "To understand the impact of different types of explanation on the final accuracy, we breakdown the facts stored in the knowledge base using three different categories (i.e., retrieval, inferencesupporting and complex inference) and rerun the training of the N-XKT model using only one category per time. The adopted categories are provided in the WorldTree corpus and can be described as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
                "sec_num": "4.3"
            },
            {
                "text": "\u2022 Retrieval: facts expressing knowledge about taxonomic relations and/or properties.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
                "sec_num": "4.3"
            },
            {
                "text": "\u2022 Inference-Supporting: Facts expressing knowledge about actions, affordances, requirements.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
                "sec_num": "4.3"
            },
            {
                "text": "\u2022 Complex Inference: Facts expressing knowledge about causality, processes, and if/then relationships.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
                "sec_num": "4.3"
            },
            {
                "text": "The obtained accuracy is showed in Table 7 . The results highlight the importance of using all the explanation categories to achieve the final accuracy for the combined approach. However, the retrieval category seems to have a higher impact on the generalisation. We believe that this result is due to the taxonomic knowledge encoded in the retrieval category (i.e. \"x is a kind of y\"), which facilitates the acquisition of the implicit explanatory capabilities necessary for answering science questions.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 35,
                        "end": 42,
                        "text": "Table 7",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
                "sec_num": "4.3"
            },
            {
                "text": "In Table 7 , we compare the impact of different explanatory knowledge types and get the following conclusion. 1) All three types of explanatory knowledge are helpful for further science QA task. The results using all three types of knowledge are significantly better than the results obtained when using no explanatory knowledge at all (first rown in Table 7) . 2) The model trained on all explanatory knowledge outperforms the models using each individual type of knowledge alone, confirming that different types of knowledge are complementary for achieving the final performance.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 10,
                        "text": "Table 7",
                        "ref_id": "TABREF8"
                    },
                    {
                        "start": 351,
                        "end": 359,
                        "text": "Table 7)",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
                "sec_num": "4.3"
            },
            {
                "text": "Start-of-the-art baselines",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluating Zero-shot N-XKT with",
                "sec_num": "4.4"
            },
            {
                "text": "In Table 5 , we evaluate several start-of-the-art methods as baselines along with N-XKT trained only on the WorldTree. The table reports the accuracy results on ARC and OpenbookQA. In the \"External KB\" column, we list the external Knowledge Bases (KB) adopted by different models. The \"IR-based\" column indicates whether the model adopts Information Retrieval (IR) techniques, and the \"Finetuned\" column indicates whether the approach is fine-tuned on the target dataset. Table 5 is intended to provide a general comparative analysis between N-XKT and the baseline models, most of them fine-tuned on the target datasets. N-XKT is able to achieve comparable performance under a transfer learning setting. The generalization performance of the proposed model is more noticeable for the ARC Challenge dataset, which requires the implicit encoding of more complex explanatory knowledge. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 10,
                        "text": "Table 5",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 472,
                        "end": 479,
                        "text": "Table 5",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluating Zero-shot N-XKT with",
                "sec_num": "4.4"
            },
            {
                "text": "In Figure 2 , we visualize the convergence curve for the fine-tuning over three science QA tasks (ARC Easy, ARC Challenge and OpenBookQA), comparing a pure BERT-based N-XKT model with a pre-trained N-XKT models using different configurations, AFK (pre-trained on explanatory knowledge acquisition), QAP (pre-trained on WorldTree cloze-style QA), AFK+QAP (pre-trained on both). It is noticeable that the encoding of explanatory knowledge impacts the convergence of the model for all three datasets, with a particular emphasis on the two ARC variants.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 11,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Improvement on Fine-tuning Convergence",
                "sec_num": "4.5"
            },
            {
                "text": "In this paper, we proposed a neural encoding mechanism for explanatory knowledge acquisition and transfer, N-XKT. We evaluated the impact of the encoding mechanism on downstream science QA. The proposed model delivers better generalisation and accuracy for QA tasks that require multi-hop and explanatory inference. The proposed encoding mechanism can be used to deliver zero-shot inference capabilities, providing comparable performance when compared to supervised models on QA. These results supports the hypothesis that pretraining tasks targeting abstract and explanatory knowledge acquisition can constitute and impor-tant direction to improve inference capabilities and generalization of state-of-the-art neural models. Tab. 6 is for overall accuracy of N-XKT model on QA tasks, and Tab. 7 is for ablation analysis results, only use part of explanations in training process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "https://allenai.org/data/arc 3 https://allenai.org/data/open-book-qa",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The N-XKT mainly use a transformer network as natural language encoder component, the hyperparameters of transformer network training have been tuned manually for the optimisation is the maximisation of the accuracy in answer prediction. Specifically, 3 parameters should be set for training, train batch size \u03b2, learning rate \u03b1, and train epoch N . The values used in pre-training on explanation knowledge base are as follows:The values used in fine-tuning on Question Answer are as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Hyperparameters tuning",
                "sec_num": null
            },
            {
                "text": "We use two versions of Explanation Bank Scientific Question Answer datasets in this paper. The version 1 of Explanation Bank dataset can be downloaded at the following URL: http: //cognitiveai.org/dist/worldtree_corpus_ textgraphs2019sharedtask_withgraphvis.zip. The version 2 of Explanation Bank dataset is available at the following URL: https: //github.com/cognitiveailab/tg2020task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Data",
                "sec_num": null
            },
            {
                "text": "To accelerate the training process of the experiments, we adopt a NVIDIA Tesla V100 GPU.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "C Computing Infrastructure",
                "sec_num": null
            },
            {
                "text": "We repeat the N-XKT model Question Answering training process on all the dataset for 5 times, each time with random parameters initialization. Addition to the tables provided in paper, we report the detailed results with standard deviation in following tables.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "D Accuracy Results Including Standard Deviation",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Learning to retrieve reasoning paths over wikipedia graph for question answering",
                "authors": [
                    {
                        "first": "Akari",
                        "middle": [],
                        "last": "Asai",
                        "suffix": ""
                    },
                    {
                        "first": "Kazuma",
                        "middle": [],
                        "last": "Hashimoto",
                        "suffix": ""
                    },
                    {
                        "first": "Hannaneh",
                        "middle": [],
                        "last": "Hajishirzi",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi, Richard Socher, and Caiming Xiong. 2020. Learn- ing to retrieve reasoning paths over wikipedia graph for question answering. In International Conference on Learning Representations.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "SciB-ERT: A pretrained language model for scientific text",
                "authors": [
                    {
                        "first": "Iz",
                        "middle": [],
                        "last": "Beltagy",
                        "suffix": ""
                    },
                    {
                        "first": "Kyle",
                        "middle": [],
                        "last": "Lo",
                        "suffix": ""
                    },
                    {
                        "first": "Arman",
                        "middle": [],
                        "last": "Cohan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "3615--3620",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1371"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB- ERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 3615- 3620, Hong Kong, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Translating embeddings for modeling multirelational data",
                "authors": [
                    {
                        "first": "Antoine",
                        "middle": [],
                        "last": "Bordes",
                        "suffix": ""
                    },
                    {
                        "first": "Nicolas",
                        "middle": [],
                        "last": "Usunier",
                        "suffix": ""
                    },
                    {
                        "first": "Alberto",
                        "middle": [],
                        "last": "Garcia-Duran",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    },
                    {
                        "first": "Oksana",
                        "middle": [],
                        "last": "Yakhnenko",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "26",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Antoine Bordes, Nicolas Usunier, Alberto Garcia- Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating embeddings for modeling multi- relational data. In Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A large annotated corpus for learning natural language inference",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Samuel",
                        "suffix": ""
                    },
                    {
                        "first": "Gabor",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Angeli",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Potts",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "632--642",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D15-1075"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large anno- tated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empiri- cal Methods in Natural Language Processing, pages 632-642, Lisbon, Portugal. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Think you have solved question answering? try arc, the ai2 reasoning challenge",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Isaac",
                        "middle": [],
                        "last": "Cowhey",
                        "suffix": ""
                    },
                    {
                        "first": "Oren",
                        "middle": [],
                        "last": "Etzioni",
                        "suffix": ""
                    },
                    {
                        "first": "Tushar",
                        "middle": [],
                        "last": "Khot",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Sabharwal",
                        "suffix": ""
                    },
                    {
                        "first": "Carissa",
                        "middle": [],
                        "last": "Schoenick",
                        "suffix": ""
                    },
                    {
                        "first": "Oyvind",
                        "middle": [],
                        "last": "Tafjord",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. 2018. Think you have solved question an- swering? try arc, the ai2 reasoning challenge.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Niket Tandon, Sumithra Bhakthavatsalam, Dirk Groeneveld, Michal Guerquin, and Michael Schmitz. 2020. From 'f' to 'a' on the n.y. regents science exams: An overview of the aristo project",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Oren",
                        "middle": [],
                        "last": "Etzioni",
                        "suffix": ""
                    },
                    {
                        "first": "Tushar",
                        "middle": [],
                        "last": "Khot",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Khashabi",
                        "suffix": ""
                    },
                    {
                        "first": "Bhavana",
                        "middle": [],
                        "last": "Mishra",
                        "suffix": ""
                    },
                    {
                        "first": "Kyle",
                        "middle": [],
                        "last": "Richardson",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Sabharwal",
                        "suffix": ""
                    },
                    {
                        "first": "Carissa",
                        "middle": [],
                        "last": "Schoenick",
                        "suffix": ""
                    },
                    {
                        "first": "Carissa",
                        "middle": [],
                        "last": "Schoenick",
                        "suffix": ""
                    },
                    {
                        "first": "Oyvind",
                        "middle": [],
                        "last": "Tafjord",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "AI Magazine",
                "volume": "41",
                "issue": "4",
                "pages": "39--53",
                "other_ids": {
                    "DOI": [
                        "10.1609/aimag.v41i4.5304"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Peter Clark, Oren Etzioni, Tushar Khot, Daniel Khashabi, Bhavana Mishra, Kyle Richardson, Ashish Sabharwal, Carissa Schoenick, Carissa Schoenick, Oyvind Tafjord, Niket Tandon, Sum- ithra Bhakthavatsalam, Dirk Groeneveld, Michal Guerquin, and Michael Schmitz. 2020. From 'f' to 'a' on the n.y. regents science exams: An overview of the aristo project. AI Magazine, 41(4):39-53.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Cognitive graph for multi-hop reading comprehension at scale",
                "authors": [
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Ding",
                        "suffix": ""
                    },
                    {
                        "first": "Chang",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Qibin",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Hongxia",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Jie",
                        "middle": [],
                        "last": "Tang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2694--2703",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1259"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. 2019. Cognitive graph for multi-hop reading comprehension at scale. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics, pages 2694-2703, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs",
                "authors": [
                    {
                        "first": "Dheeru",
                        "middle": [],
                        "last": "Dua",
                        "suffix": ""
                    },
                    {
                        "first": "Yizhong",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Pradeep",
                        "middle": [],
                        "last": "Dasigi",
                        "suffix": ""
                    },
                    {
                        "first": "Gabriel",
                        "middle": [],
                        "last": "Stanovsky",
                        "suffix": ""
                    },
                    {
                        "first": "Sameer",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "2368--2378",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1246"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. 2019. DROP: A reading comprehension benchmark requir- ing discrete reasoning over paragraphs. In Proceed- ings of the 2019 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2368-2378, Min- neapolis, Minnesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "What's in an explanation? characterizing knowledge and inference requirements for elementary science exams",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Jansen",
                        "suffix": ""
                    },
                    {
                        "first": "Niranjan",
                        "middle": [],
                        "last": "Balasubramanian",
                        "suffix": ""
                    },
                    {
                        "first": "Mihai",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
                "volume": "",
                "issue": "",
                "pages": "2956--2965",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter Jansen, Niranjan Balasubramanian, Mihai Sur- deanu, and Peter Clark. 2016. What's in an expla- nation? characterizing knowledge and inference re- quirements for elementary science exams. In Pro- ceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Techni- cal Papers, pages 2956-2965, Osaka, Japan. The COLING 2016 Organizing Committee.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "TextGraphs 2019 shared task on multi-hop inference for explanation regeneration",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Jansen",
                        "suffix": ""
                    },
                    {
                        "first": "Dmitry",
                        "middle": [],
                        "last": "Ustalov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
                "volume": "",
                "issue": "",
                "pages": "63--77",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-5309"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Peter Jansen and Dmitry Ustalov. 2019. TextGraphs 2019 shared task on multi-hop inference for expla- nation regeneration. In Proceedings of the Thir- teenth Workshop on Graph-Based Methods for Nat- ural Language Processing (TextGraphs-13), pages 63-77, Hong Kong. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "WorldTree: A corpus of explanation graphs for elementary science questions supporting multi-hop inference",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Jansen",
                        "suffix": ""
                    },
                    {
                        "first": "Elizabeth",
                        "middle": [],
                        "last": "Wainwright",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Marmorstein",
                        "suffix": ""
                    },
                    {
                        "first": "Clayton",
                        "middle": [],
                        "last": "Morrison",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter Jansen, Elizabeth Wainwright, Steven Mar- morstein, and Clayton Morrison. 2018. WorldTree: A corpus of explanation graphs for elementary sci- ence questions supporting multi-hop inference. In Proceedings of the Eleventh International Confer- ence on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Re- sources Association (ELRA).",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Question answering as global reasoning over semantic abstractions",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Khashabi",
                        "suffix": ""
                    },
                    {
                        "first": "Tushar",
                        "middle": [],
                        "last": "Khot",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Sabharwal",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "AAAI",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and D. Roth. 2018. Question answering as global rea- soning over semantic abstractions. In AAAI.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Qasc: A dataset for question answering via sentence composition",
                "authors": [
                    {
                        "first": "Tushar",
                        "middle": [],
                        "last": "Khot",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Michal",
                        "middle": [],
                        "last": "Guerquin",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Jansen",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Sabharwal",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "34",
                "issue": "",
                "pages": "8082--8090",
                "other_ids": {
                    "DOI": [
                        "10.1609/aaai.v34i05.6319"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. 2020. Qasc: A dataset for question answering via sentence compo- sition. Proceedings of the AAAI Conference on Arti- ficial Intelligence, 34(05):8082-8090.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Answering complex questions using open information extraction",
                "authors": [
                    {
                        "first": "Tushar",
                        "middle": [],
                        "last": "Khot",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Sabharwal",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "311--316",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-2049"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tushar Khot, Ashish Sabharwal, and Peter Clark. 2017. Answering complex questions using open informa- tion extraction. In Proceedings of the 55th Annual Meeting of the Association for Computational Lin- guistics (Volume 2: Short Papers), pages 311-316, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Scitail: A textual entailment dataset from science question answering",
                "authors": [
                    {
                        "first": "Tushar",
                        "middle": [],
                        "last": "Khot",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Sabharwal",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18)",
                "volume": "",
                "issue": "",
                "pages": "5189--5197",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018. Scitail: A textual entailment dataset from science question answering. In Proceedings of the Thirty- Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Arti- ficial Intelligence (IAAI-18), and the 8th AAAI Sym- posium on Educational Advances in Artificial Intel- ligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 5189-5197. AAAI Press.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Exploiting explicit paths for multi-hop reading comprehension",
                "authors": [
                    {
                        "first": "Souvik",
                        "middle": [],
                        "last": "Kundu",
                        "suffix": ""
                    },
                    {
                        "first": "Tushar",
                        "middle": [],
                        "last": "Khot",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Sabharwal",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2737--2747",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1263"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Souvik Kundu, Tushar Khot, Ashish Sabharwal, and Peter Clark. 2019. Exploiting explicit paths for multi-hop reading comprehension. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2737-2747, Flo- rence, Italy. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "RACE: Large-scale ReAding comprehension dataset from examinations",
                "authors": [
                    {
                        "first": "Guokun",
                        "middle": [],
                        "last": "Lai",
                        "suffix": ""
                    },
                    {
                        "first": "Qizhe",
                        "middle": [],
                        "last": "Xie",
                        "suffix": ""
                    },
                    {
                        "first": "Hanxiao",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yiming",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "785--794",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1082"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. RACE: Large-scale ReAd- ing comprehension dataset from examinations. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 785-794, Copenhagen, Denmark. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Answering elementary science questions by constructing coherent scenes using background knowledge",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2007--2012",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D15-1236"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yang Li and Peter Clark. 2015. Answering elementary science questions by constructing coherent scenes using background knowledge. In Proceedings of the 2015 Conference on Empirical Methods in Nat- ural Language Processing, pages 2007-2012, Lis- bon, Portugal. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Learning entity and relation embeddings for knowledge graph completion",
                "authors": [
                    {
                        "first": "Yankai",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiyuan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Maosong",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Xuan",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI'15",
                "volume": "",
                "issue": "",
                "pages": "2181--2187",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning entity and relation em- beddings for knowledge graph completion. In Pro- ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI'15, page 2181-2187. AAAI Press.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Can a suit of armor conduct electricity? a new dataset for open book question answering",
                "authors": [
                    {
                        "first": "Todor",
                        "middle": [],
                        "last": "Mihaylov",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Tushar",
                        "middle": [],
                        "last": "Khot",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Sabharwal",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a suit of armor conduct elec- tricity? a new dataset for open book question answer- ing. In EMNLP.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Answering science exam questions using query reformulation with background knowledge",
                "authors": [
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Musa",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoyan",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Achille",
                        "middle": [],
                        "last": "Fokoue",
                        "suffix": ""
                    },
                    {
                        "first": "Nicholas",
                        "middle": [],
                        "last": "Mattei",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Pavan",
                        "middle": [],
                        "last": "Kapanipathi",
                        "suffix": ""
                    },
                    {
                        "first": "Bassem",
                        "middle": [],
                        "last": "Makni",
                        "suffix": ""
                    },
                    {
                        "first": "Kartik",
                        "middle": [],
                        "last": "Talamadupula",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Witbrock",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Automated Knowledge Base Construction (AKBC)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ryan Musa, Xiaoyan Wang, Achille Fokoue, Nicholas Mattei, Maria Chang, Pavan Kapanipathi, Bassem Makni, Kartik Talamadupula, and Michael Wit- brock. 2019. Answering science exam questions using query reformulation with background knowl- edge. In Automated Knowledge Base Construction (AKBC).",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Learning to attend on essential terms: An enhanced retriever-reader model for opendomain question answering",
                "authors": [
                    {
                        "first": "Jianmo",
                        "middle": [],
                        "last": "Ni",
                        "suffix": ""
                    },
                    {
                        "first": "Chenguang",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Weizhu",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Julian",
                        "middle": [],
                        "last": "Mcauley",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "335--344",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1030"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jianmo Ni, Chenguang Zhu, Weizhu Chen, and Julian McAuley. 2019. Learning to attend on essential terms: An enhanced retriever-reader model for open- domain question answering. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, Volume 1 (Long and Short Papers), pages 335-344, Minneapolis, Min- nesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "MCScript: A novel dataset for assessing machine comprehension using script knowledge",
                "authors": [
                    {
                        "first": "Simon",
                        "middle": [],
                        "last": "Ostermann",
                        "suffix": ""
                    },
                    {
                        "first": "Ashutosh",
                        "middle": [],
                        "last": "Modi",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Simon Ostermann, Ashutosh Modi, Michael Roth, Ste- fan Thater, and Manfred Pinkal. 2018. MCScript: A novel dataset for assessing machine comprehension using script knowledge.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Improving retrieval-based question answering with deep inference models",
                "authors": [
                    {
                        "first": "George-Sebastian",
                        "middle": [],
                        "last": "P\u00eertoac\u0203",
                        "suffix": ""
                    },
                    {
                        "first": "Traian",
                        "middle": [],
                        "last": "Rebedea",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Tefan Rus",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "2019 International Joint Conference on Neural Networks (IJCNN)",
                "volume": "",
                "issue": "",
                "pages": "1--8",
                "other_ids": {
                    "DOI": [
                        "10.1109/IJCNN.2019.8851826"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "George-Sebastian P\u00eertoac\u0203, Traian Rebedea, and S , tefan Rus , et , i. 2019. Improving retrieval-based question an- swering with deep inference models. In 2019 In- ternational Joint Conference on Neural Networks (IJCNN), pages 1-8.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Dynamically fused graph network for multi-hop reasoning",
                "authors": [
                    {
                        "first": "Lin",
                        "middle": [],
                        "last": "Qiu",
                        "suffix": ""
                    },
                    {
                        "first": "Yunxuan",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    },
                    {
                        "first": "Yanru",
                        "middle": [],
                        "last": "Qu",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Weinan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yong",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "6140--6150",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1617"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li, Weinan Zhang, and Yong Yu. 2019. Dynami- cally fused graph network for multi-hop reasoning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 6140-6150, Florence, Italy. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Improving language understanding by generative pre-training",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Radford. 2018. Improving language understanding by generative pre-training.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Explain yourself! leveraging language models for commonsense reasoning",
                "authors": [
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Nazneen Fatema Rajani",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Mccann",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4932--4942",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1487"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. 2019. Explain yourself! leveraging language models for commonsense rea- soning. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 4932-4942, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Science question answering using instructional materials",
                "authors": [
                    {
                        "first": "Mrinmaya",
                        "middle": [],
                        "last": "Sachan",
                        "suffix": ""
                    },
                    {
                        "first": "Kumar",
                        "middle": [],
                        "last": "Dubey",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Xing",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "467--473",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P16-2076"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mrinmaya Sachan, Kumar Dubey, and Eric Xing. 2016. Science question answering using instructional ma- terials. In Proceedings of the 54th Annual Meet- ing of the Association for Computational Linguistics (Volume 2: Short Papers), pages 467-473, Berlin, Germany. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Conceptnet 5.5: An open multilingual graph of general knowledge",
                "authors": [
                    {
                        "first": "Robyn",
                        "middle": [],
                        "last": "Speer",
                        "suffix": ""
                    },
                    {
                        "first": "Joshua",
                        "middle": [],
                        "last": "Chin",
                        "suffix": ""
                    },
                    {
                        "first": "Catherine",
                        "middle": [],
                        "last": "Havasi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI'17",
                "volume": "",
                "issue": "",
                "pages": "4444--4451",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the Thirty- First AAAI Conference on Artificial Intelligence, AAAI'17, page 4444-4451. AAAI Press.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Improving machine reading comprehension with general reading strategies",
                "authors": [
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Dian",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Dong",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Cardie",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "2633--2643",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1270"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2019. Improving machine reading comprehension with general reading strategies. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, Volume 1 (Long and Short Papers), pages 2633-2643, Minneapolis, Min- nesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "A survey on explainability in machine reading comprehension",
                "authors": [
                    {
                        "first": "Mokanarangan",
                        "middle": [],
                        "last": "Thayaparan",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Valentino",
                        "suffix": ""
                    },
                    {
                        "first": "Andr\u00e9",
                        "middle": [],
                        "last": "Freitas",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mokanarangan Thayaparan, Marco Valentino, and Andr\u00e9 Freitas. 2020. A survey on explainability in machine reading comprehension.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Identifying supporting facts for multi-hop question answering with document graph networks",
                "authors": [
                    {
                        "first": "Mokanarangan",
                        "middle": [],
                        "last": "Thayaparan",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Valentino",
                        "suffix": ""
                    },
                    {
                        "first": "Viktor",
                        "middle": [],
                        "last": "Schlegel",
                        "suffix": ""
                    },
                    {
                        "first": "Andr\u00e9",
                        "middle": [],
                        "last": "Freitas",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
                "volume": "",
                "issue": "",
                "pages": "42--51",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-5306"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mokanarangan Thayaparan, Marco Valentino, Viktor Schlegel, and Andr\u00e9 Freitas. 2019. Identifying supporting facts for multi-hop question answering with document graph networks. In Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 42-51, Hong Kong. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Unification-based reconstruction of multi-hop explanations for science questions",
                "authors": [
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Valentino",
                        "suffix": ""
                    },
                    {
                        "first": "Mokanarangan",
                        "middle": [],
                        "last": "Thayaparan",
                        "suffix": ""
                    },
                    {
                        "first": "Andr\u00e9",
                        "middle": [],
                        "last": "Freitas",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
                "volume": "",
                "issue": "",
                "pages": "200--211",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marco Valentino, Mokanarangan Thayaparan, and Andr\u00e9 Freitas. 2021. Unification-based reconstruc- tion of multi-hop explanations for science questions. In Proceedings of the 16th Conference of the Euro- pean Chapter of the Association for Computational Linguistics: Main Volume, pages 200-211, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "30",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Pro- cessing Systems, volume 30. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Yuanfudao at SemEval-2018 task 11: Three-way attention and relational knowledge for commonsense machine comprehension",
                "authors": [
                    {
                        "first": "Liang",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Meng",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Kewei",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Jingming",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "758--762",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S18-1120"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Liang Wang, Meng Sun, Wei Zhao, Kewei Shen, and Jingming Liu. 2018. Yuanfudao at SemEval- 2018 task 11: Three-way attention and relational knowledge for commonsense machine comprehen- sion. pages 758-762.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Knowledge graph embedding by translating on hyperplanes",
                "authors": [
                    {
                        "first": "Zhen",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Jianwen",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jianlin",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Zheng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI'14",
                "volume": "",
                "issue": "",
                "pages": "1112--1119",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge graph embedding by trans- lating on hyperplanes. In Proceedings of the Twenty- Eighth AAAI Conference on Artificial Intelligence, AAAI'14, page 1112-1119. AAAI Press.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "A broad-coverage challenge corpus for sentence understanding through inference",
                "authors": [
                    {
                        "first": "Adina",
                        "middle": [],
                        "last": "Williams",
                        "suffix": ""
                    },
                    {
                        "first": "Nikita",
                        "middle": [],
                        "last": "Nangia",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1112--1122",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-1101"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sen- tence understanding through inference. In Proceed- ings of the 2018 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112-1122, New Orleans, Louisiana. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "WorldTree v2: A corpus of sciencedomain structured explanations and inference patterns supporting multi-hop inference",
                "authors": [
                    {
                        "first": "Zhengnan",
                        "middle": [],
                        "last": "Xie",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Thiem",
                        "suffix": ""
                    },
                    {
                        "first": "Jaycie",
                        "middle": [],
                        "last": "Martin",
                        "suffix": ""
                    },
                    {
                        "first": "Elizabeth",
                        "middle": [],
                        "last": "Wainwright",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Marmorstein",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Jansen",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 12th Language Resources and Evaluation Conference",
                "volume": "",
                "issue": "",
                "pages": "5456--5473",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Eliz- abeth Wainwright, Steven Marmorstein, and Peter Jansen. 2020. WorldTree v2: A corpus of science- domain structured explanations and inference pat- terns supporting multi-hop inference. In Proceed- ings of the 12th Language Resources and Evaluation Conference, pages 5456-5473, Marseille, France. European Language Resources Association.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Quick and (not so) dirty: Unsupervised selection of justification sentences for multi-hop question answering",
                "authors": [
                    {
                        "first": "Vikas",
                        "middle": [],
                        "last": "Yadav",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Bethard",
                        "suffix": ""
                    },
                    {
                        "first": "Mihai",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "2578--2589",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1260"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Vikas Yadav, Steven Bethard, and Mihai Surdeanu. 2019. Quick and (not so) dirty: Unsupervised se- lection of justification sentences for multi-hop ques- tion answering. In Proceedings of the 2019 Con- ference on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 2578-2589, Hong Kong, China. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Sanity check: A strong alignment and information retrieval baseline for question answering",
                "authors": [
                    {
                        "first": "Vikas",
                        "middle": [],
                        "last": "Yadav",
                        "suffix": ""
                    },
                    {
                        "first": "Rebecca",
                        "middle": [],
                        "last": "Sharp",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "The 41st International ACM SIGIR Conference on Research Development in Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vikas Yadav, Rebecca Sharp, and M. Surdeanu. 2018. Sanity check: A strong alignment and information retrieval baseline for question answering. The 41st International ACM SIGIR Conference on Research Development in Information Retrieval.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "HotpotQA: A dataset for diverse, explainable multi-hop question answering",
                "authors": [
                    {
                        "first": "Zhilin",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Peng",
                        "middle": [],
                        "last": "Qi",
                        "suffix": ""
                    },
                    {
                        "first": "Saizheng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2369--2380",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1259"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christo- pher D. Manning. 2018. HotpotQA: A dataset for diverse, explainable multi-hop question answer- ing. In Proceedings of the 2018 Conference on Em- pirical Methods in Natural Language Processing, pages 2369-2380, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Kg2: Learning to reason science exam questions with contextual knowledge graph embeddings",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Kamil",
                        "middle": [],
                        "last": "Toraman",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Zhang, H. Dai, Kamil Toraman, and L. Song. 2018. Kg2: Learning to reason science exam ques- tions with contextual knowledge graph embeddings. ArXiv, abs/1805.12393.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Improving question answering by commonsense-based pre-training",
                "authors": [
                    {
                        "first": "Wanjun",
                        "middle": [],
                        "last": "Zhong",
                        "suffix": ""
                    },
                    {
                        "first": "Duyu",
                        "middle": [],
                        "last": "Tang",
                        "suffix": ""
                    },
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Duan",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Jiahai",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "NLPCC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wanjun Zhong, Duyu Tang, Nan Duan, M. Zhou, Ji- ahai Wang, and J. Yin. 2019. Improving question answering by commonsense-based pre-training. In NLPCC.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "uris": null,
                "type_str": "figure",
                "text": "Outline of the proposed approach."
            },
            "FIGREF1": {
                "num": null,
                "uris": null,
                "type_str": "figure",
                "text": "Convergence curve when fine-tuning different version of N-XTK on the target QA datasets."
            },
            "TABREF1": {
                "content": "<table><tr><td>Dataset</td><td colspan=\"3\">#Train #Dev #Test</td></tr><tr><td colspan=\"4\">WorldTree V2.0 3,947 1,019 4,165</td></tr><tr><td>ARC Easy</td><td>2,251</td><td colspan=\"2\">570 2,376</td></tr><tr><td colspan=\"2\">ARC Challenge 1,119</td><td colspan=\"2\">299 1,172</td></tr><tr><td>Openbook QA</td><td>4,957</td><td>500</td><td>500</td></tr></table>",
                "html": null,
                "type_str": "table",
                "num": null,
                "text": "QA datasets size."
            },
            "TABREF2": {
                "content": "<table><tr><td colspan=\"2\">: Number of instances in each explanatory</td></tr><tr><td>knowledge category.</td><td/></tr><tr><td>Type</td><td>Size</td></tr><tr><td>All</td><td>9,701</td></tr><tr><td>Retrieval</td><td>7,006</td></tr><tr><td colspan=\"2\">Inference-supporting 1,670</td></tr><tr><td>Complex Inference</td><td>1,025</td></tr></table>",
                "html": null,
                "type_str": "table",
                "num": null,
                "text": ""
            },
            "TABREF3": {
                "content": "<table><tr><td>Config</td><td colspan=\"2\">Explanation Bank Dev Test</td><td>ARC Easy Dev Test</td><td>ARC Challenge Dev Test</td><td>Openbook QA Dev Test</td></tr><tr><td>IR BM25 (K = 5Q base</td><td colspan=\"5\">44.86% 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%</td></tr><tr><td>K+Q base</td><td colspan=\"5\">58.14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%</td></tr><tr><td>K large</td><td colspan=\"5\">51.62% 45.85% 52.81% 52.58% 37.53% 33.07% 31.72% 34.12%</td></tr><tr><td>Q large</td><td colspan=\"5\">47.54% 43.47% 53.61% 51.41% 27.09% 28.63% 28.24% 36.04%</td></tr><tr><td>K+Q large</td><td colspan=\"5\">60.16% 50.98% 61.19% 58.24% 39.00% 37.63% 35.64% 38.20%</td></tr><tr><td>base FT</td><td>-</td><td>-</td><td colspan=\"3\">53.61% 53.82% 36.72% 32.71% 53.64% 53.16%</td></tr><tr><td>K base FT</td><td>-</td><td>-</td><td colspan=\"3\">53.61% 52.81% 35.79% 34.90% 53.60% 54.60%</td></tr><tr><td>Q base FT</td><td>-</td><td>-</td><td colspan=\"3\">59.05% 58.44% 33.65% 35.09% 56.04% 57.08%</td></tr><tr><td>K+Q base FT</td><td/><td/><td colspan=\"3\">59.33% 58.79% 38.13% 38.09% 56.12% 56.56%</td></tr></table>",
                "html": null,
                "type_str": "table",
                "num": null,
                "text": "N-XKT Question Answering accuracy results. ) 50.29% 44.55% 54.56% 50.00% 37.46% 31.14% 24.80% 26.80% K base 49.30% 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%"
            },
            "TABREF4": {
                "content": "<table><tr><td>Knowledge</td><td>Config</td><td>Explanation Bank Dev Test</td><td>ARC Easy Dev Test</td><td>ARC Challenge Dev Test</td><td>Openbook QA Dev Test</td></tr><tr><td>None</td><td>Q base</td><td>44.86% 40.34%</td><td>50.81% 47.43%</td><td>24.41% 26.86%</td><td>27.92% 33.12%</td></tr><tr><td>Retrieval</td><td colspan=\"2\">K base K+Q base 51.00% 46.08% 39.05% 38.72%</td><td>44.42% 45.25% 51.79% 53.22%</td><td>23.75% 26.25% 34.65% 33.00%</td><td>27.12% 29.96% 31.96% 32.96%</td></tr><tr><td>Inference-supporting</td><td colspan=\"2\">K base K+Q base 52.72% 47.33% 41.60% 38.24%</td><td>45.96% 44.77% 54.35% 54.32%</td><td>26.09% 26.02% 34.85% 34.40%</td><td>27.40% 30.88% 33.64% 37.16%</td></tr><tr><td>Complex inference</td><td colspan=\"2\">K base K+Q base 52.99% 46.12% 41.01% 38.58%</td><td>46.32% 45.98% 55.30% 52.74%</td><td>24.95% 23.75% 34.78% 34.51%</td><td>26.96% 29.76% 32.08% 35.08%</td></tr><tr><td>All</td><td colspan=\"2\">K base K+Q base 58.49.30% 44.74%</td><td>50.18% 50.89%</td><td>34.38% 33.17%</td><td>30.96% 32.72%</td></tr></table>",
                "html": null,
                "type_str": "table",
                "num": null,
                "text": "Question Answering accuracy results using different explanatory knowledge categories. 14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%"
            },
            "TABREF5": {
                "content": "<table/>",
                "html": null,
                "type_str": "table",
                "num": null,
                "text": ""
            },
            "TABREF6": {
                "content": "<table><tr><td/><td colspan=\"6\">ARC Easy ARC Challenge Openbook QA External KB IR-based Fine-tuned</td></tr><tr><td>IR BM25 (K = 5)</td><td>50.00%</td><td>31.14%</td><td>26.80%</td><td>9</td><td>yes</td><td>no</td></tr><tr><td>Clark et al. (2018)</td><td>62.60%</td><td>20.30%</td><td>-</td><td>1</td><td>yes</td><td>yes</td></tr><tr><td>Mihaylov et al. (2018)</td><td>-</td><td>-</td><td>50.20%</td><td>2, 3</td><td>yes</td><td>yes</td></tr><tr><td>Khot et al. (2018)</td><td>59.00%</td><td>27.10%</td><td>24.40%</td><td>4</td><td>yes</td><td>yes</td></tr><tr><td>Zhang et al. (2018)</td><td>-</td><td>31.70%</td><td>-</td><td>1</td><td>no</td><td>yes</td></tr><tr><td>Yadav et al. (2018)</td><td>58.40%</td><td>26.60%</td><td>-</td><td>none</td><td>no</td><td>yes</td></tr><tr><td>Musa et al. (2019)</td><td>52.20%</td><td>33.20%</td><td>-</td><td>1</td><td>yes</td><td>yes</td></tr><tr><td>Zhong et al. (2019)</td><td>-</td><td>33.40%</td><td>-</td><td>2</td><td>no</td><td>yes</td></tr><tr><td>P\u00eertoac\u0203 et al. (2019)</td><td>61.10%</td><td>26.90%</td><td>-</td><td>4, 5, 6</td><td>no</td><td>yes</td></tr><tr><td>Ni et al. (2019)</td><td>-</td><td>36.60%</td><td>-</td><td>7, 8</td><td>no</td><td>yes</td></tr><tr><td>GP T II (Radford, 2018)</td><td>57.00%</td><td>38.20%</td><td>52.00%</td><td>7</td><td>no</td><td>yes</td></tr><tr><td>RS II (Sun et al., 2019)</td><td>66.60%</td><td>40.70%</td><td>55.20%</td><td>7</td><td>no</td><td>yes</td></tr><tr><td>N-XKT K+Q base (ours)</td><td>57.98%</td><td>35.87%</td><td>37.60%</td><td>9</td><td>no</td><td>no</td></tr></table>",
                "html": null,
                "type_str": "table",
                "num": null,
                "text": ")."
            },
            "TABREF7": {
                "content": "<table><tr><td>Config</td><td colspan=\"2\">Explanation Bank Dev Test</td><td colspan=\"2\">ARC Easy Dev Test</td><td colspan=\"2\">ARC Challenge Dev Test</td><td colspan=\"2\">Openbook QA Dev Test</td></tr><tr><td>IR BM25 (K = 5)</td><td>50.29%</td><td>44.55%</td><td>54.56%</td><td>50.00%</td><td>37.46%</td><td>31.14%</td><td>24.80%</td><td>26.80%</td></tr><tr><td>K base</td><td colspan=\"8\">49.30% \u00b10.0238 \u00b10.0166 \u00b10.0167 \u00b10.0198 \u00b10.0255 \u00b10.0165 \u00b10.0359 \u00b10.0273 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%</td></tr><tr><td>Q base</td><td colspan=\"8\">44.86% \u00b10.0229 \u00b10.0087 \u00b10.0258 \u00b10.0136 \u00b10.0101 \u00b10.0049 \u00b10.0342 \u00b10.0176 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%</td></tr><tr><td>K+Q base</td><td>58.14%</td><td>50.42%</td><td>58.53%</td><td>57.98%</td><td>37.46%</td><td>35.87%</td><td>35.32%</td><td>37.60%</td></tr><tr><td>K large</td><td colspan=\"2\">51.62% \u00b10.0159 \u00b10.0089 45.85%</td><td>52.81% \u00b10.004</td><td colspan=\"5\">52.58% \u00b10.0136 \u00b10.0109 \u00b10.0129 \u00b10.0199 \u00b10.0232 37.53% 33.07% 31.72% 34.12%</td></tr><tr><td>Q large</td><td colspan=\"4\">47.54% \u00b10.0131 \u00b10.0061 \u00b10.0176 \u00b10.0073 43.47% 53.61% 51.41%</td><td>27.09% \u00b10.012</td><td colspan=\"3\">28.63% \u00b10.0125 \u00b10.0118 \u00b10.0167 28.24% 36.04%</td></tr><tr><td>K+Q large</td><td>60.16%</td><td>50.98%</td><td>61.19%</td><td>58.24%</td><td>39.00%</td><td>37.63%</td><td>35.64%</td><td>38.20%</td></tr><tr><td>base FT</td><td>--</td><td>--</td><td colspan=\"6\">53.61% \u00b10.0168 \u00b10.0093 \u00b10.0104 \u00b10.0086 \u00b10.0182 \u00b10.0223 53.82% 36.72% 32.71% 53.64% 53.16%</td></tr><tr><td>K base FT</td><td>--</td><td>--</td><td colspan=\"6\">53.61% \u00b10.0159 \u00b10.0241 \u00b10.0218 \u00b10.0239 \u00b10.0248 \u00b10.0281 52.81% 35.79% 34.90% 53.60% 54.60%</td></tr><tr><td>Q base FT</td><td>--</td><td>--</td><td colspan=\"6\">59.05% \u00b10.0177 \u00b10.0070 \u00b10.0280 \u00b10.0065 \u00b10.0126 \u00b10.0178 58.44% 33.65% 35.09% 56.04% 57.08%</td></tr><tr><td>K+Q base FT</td><td>-</td><td>-</td><td>59.33%</td><td>58.79%</td><td>38.13%</td><td>38.09%</td><td>56.12%</td><td>56.56%</td></tr></table>",
                "html": null,
                "type_str": "table",
                "num": null,
                "text": "N-XKT Question Answering accuracy result comparison \u00b10.0119 \u00b10.0039 \u00b10.0047 \u00b10.0014 \u00b10.0135 \u00b10.0149 \u00b10.0124 \u00b10.0085 \u00b10.0168 \u00b10.0102 \u00b10.0108 \u00b10.0076 \u00b10.0268 \u00b10.0155 \u00b10.0076 \u00b10.0161 \u00b10.0187 \u00b10.0087 \u00b10.0224 \u00b10.0124 \u00b10.0186 \u00b10.0111"
            },
            "TABREF8": {
                "content": "<table><tr><td>Knowledge</td><td>Config</td><td colspan=\"2\">Explanation Bank Dev Test</td><td colspan=\"2\">ARC Easy Dev Test</td><td colspan=\"2\">ARC Challenge Dev Test</td><td colspan=\"2\">Openbook QA Dev Test</td></tr><tr><td>None</td><td>Q base</td><td>44.86%</td><td>40.34%</td><td>50.81%</td><td>47.43%</td><td>24.41%</td><td>26.86%</td><td>27.92%</td><td>33.12%</td></tr><tr><td>RET</td><td>K base K+Q base</td><td colspan=\"2\">39.05% \u00b10.0258 \u00b10.0106 38.72% 51.00% 46.08%</td><td>44.42% \u00b10.011 51.79%</td><td colspan=\"5\">45.25% \u00b10.0139 \u00b10.0165 \u00b10.0141 \u00b10.0099 \u00b10.0202 23.75% 26.25% 27.12% 29.96% 53.22% 34.65% 33.00% 31.96% 32.96%</td></tr><tr><td/><td>K base</td><td>41.60%</td><td>38.24%</td><td>45.96%</td><td>44.77%</td><td>26.09%</td><td>26.02%</td><td>27.40%</td><td>30.88%</td></tr><tr><td>INSUPP</td><td>K+Q base</td><td colspan=\"4\">52.72% \u00b10.0247 \u00b10.0062 \u00b10.0206 \u00b10.0092 47.33% 54.35% 54.32%</td><td>34.85% \u00b10.031</td><td colspan=\"3\">34.40% \u00b10.0128 \u00b10.0279 \u00b10.0306 33.64% 37.16%</td></tr><tr><td>COMPLEX</td><td>K base K+Q base</td><td colspan=\"6\">41.01% \u00b10.0132 \u00b10.0035 \u00b10.0134 \u00b10.0091 \u00b10.0263 \u00b10.0066 38.58% 46.32% 45.98% 24.95% 23.75% 52.99% 46.12% 55.30% 52.74% 34.78% 34.51% \u00b10.0098 \u00b10.0131 \u00b10.0081 \u00b10.0087 \u00b10.0112 \u00b10.0194</td><td>26.96% \u00b10.012 32.08% \u00b10.018</td><td>29.76% \u00b10.0163 35.08% \u00b10.0153</td></tr><tr><td/><td>K base</td><td>49.30%</td><td>44.74%</td><td>50.18%</td><td>50.89%</td><td>34.38%</td><td>33.17%</td><td>30.96%</td><td>32.72%</td></tr><tr><td>All</td><td>K+Q base</td><td>58.14%</td><td>50.42%</td><td>58.53%</td><td>57.98%</td><td>37.46%</td><td>35.87%</td><td>35.32%</td><td>37.60%</td></tr></table>",
                "html": null,
                "type_str": "table",
                "num": null,
                "text": "Question Answering accuracy result in different abstractive knowledge categories \u00b10.0229 \u00b10.0087 \u00b10.0258 \u00b10.0136 \u00b10.0101 \u00b10.0049 \u00b10.0342 \u00b10.0176 \u00b10.0173 \u00b10.0135 \u00b10.0178 \u00b10.0141 \u00b10.0321 \u00b10.0128 \u00b10.0192 \u00b10.0182 \u00b10.0149 \u00b10.0075 \u00b10.0127 \u00b10.0118 \u00b10.0164 \u00b10.0099 \u00b10.0168 \u00b10.0122 \u00b10.0238 \u00b10.0166 \u00b10.0167 \u00b10.0198 \u00b10.0255 \u00b10.0165 \u00b10.0359 \u00b10.0273 \u00b10.0119 \u00b10.0039 \u00b10.0047 \u00b10.0014 \u00b10.0135 \u00b10.0149 \u00b10.0124 \u00b10.0085"
            }
        }
    }
}