File size: 152,906 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:24:32.272632Z"
},
"title": "Encoding Explanatory Knowledge for Zero-shot Science Question Answering",
"authors": [
{
"first": "Zili",
"middle": [],
"last": "Zhou",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Manchester",
"location": {
"country": "United Kingdom"
}
},
"email": "zili.zhou@manchester.ac.uk"
},
{
"first": "Marco",
"middle": [],
"last": "Valentino",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Manchester",
"location": {
"country": "United Kingdom"
}
},
"email": "marco.valentino@manchester.ac.uk"
},
{
"first": "D\u00f3nal",
"middle": [],
"last": "Landers",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Manchester Institute",
"location": {
"country": "UK, United Kingdom"
}
},
"email": "donal.landers@digitalecmt.org"
},
{
"first": "Andr\u00e9",
"middle": [],
"last": "Freitas",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Manchester",
"location": {
"country": "United Kingdom"
}
},
"email": "andre.freitas@idiap.ch"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "This paper describes N-XKT (Neural encoding based on eXplanatory Knowledge Transfer), a novel method for the automatic transfer of explanatory knowledge through neural encoding mechanisms. We demonstrate that N-XKT is able to improve accuracy and generalization on science Question Answering (QA). Specifically, by leveraging facts from background explanatory knowledge corpora, the N-XKT model shows a clear improvement on zero-shot QA. Furthermore, we show that N-XKT can be fine-tuned on a target QA dataset, enabling faster convergence and more accurate results. A systematic analysis is conducted to quantitatively analyze the performance of the N-XKT model and the impact of different categories of knowledge on the zero-shot generalization task.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "This paper describes N-XKT (Neural encoding based on eXplanatory Knowledge Transfer), a novel method for the automatic transfer of explanatory knowledge through neural encoding mechanisms. We demonstrate that N-XKT is able to improve accuracy and generalization on science Question Answering (QA). Specifically, by leveraging facts from background explanatory knowledge corpora, the N-XKT model shows a clear improvement on zero-shot QA. Furthermore, we show that N-XKT can be fine-tuned on a target QA dataset, enabling faster convergence and more accurate results. A systematic analysis is conducted to quantitatively analyze the performance of the N-XKT model and the impact of different categories of knowledge on the zero-shot generalization task.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Contemporary Question Answering (QA) is evolving in the direction of addressing more abstractive reasoning tasks (Thayaparan et al., 2020; Dua et al., 2019; Mihaylov et al., 2018) , supported by multi-hop inference (Khot et al., 2020; Yang et al., 2018) and explanatory scientific facts (Jansen and Ustalov, 2019; Jansen et al., 2018 Jansen et al., , 2016 .",
"cite_spans": [
{
"start": 113,
"end": 138,
"text": "(Thayaparan et al., 2020;",
"ref_id": "BIBREF31"
},
{
"start": 139,
"end": 156,
"text": "Dua et al., 2019;",
"ref_id": "BIBREF8"
},
{
"start": 157,
"end": 179,
"text": "Mihaylov et al., 2018)",
"ref_id": "BIBREF20"
},
{
"start": 215,
"end": 234,
"text": "(Khot et al., 2020;",
"ref_id": "BIBREF13"
},
{
"start": 235,
"end": 253,
"text": "Yang et al., 2018)",
"ref_id": "BIBREF42"
},
{
"start": 287,
"end": 313,
"text": "(Jansen and Ustalov, 2019;",
"ref_id": "BIBREF10"
},
{
"start": 314,
"end": 333,
"text": "Jansen et al., 2018",
"ref_id": "BIBREF11"
},
{
"start": 334,
"end": 355,
"text": "Jansen et al., , 2016",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "This trend of aiming to address more complex, multi-evidence and chained inference is pushing the envelope for novel representation and architectural patterns (Ding et al., 2019; Qiu et al., 2019; Asai et al., 2020; Thayaparan et al., 2019; Kundu et al., 2019; Valentino et al., 2021) , which are moving from modelling meaning from immediate distributional semantics patterns into deeper abstractive capabilities. This poses a paradigmatic challenge on the design of QA architectures, which need to operate over high-level semantic patterns and acquire the necessary knowledge to perform abstraction . At the same time, the design of new strategies to incorporate explanatory knowledge into neural representation has the potential to address fundamental data efficiency problems and promote zero-shot generalisation on out-of-distribution examples.",
"cite_spans": [
{
"start": 159,
"end": 178,
"text": "(Ding et al., 2019;",
"ref_id": "BIBREF7"
},
{
"start": 179,
"end": 196,
"text": "Qiu et al., 2019;",
"ref_id": "BIBREF25"
},
{
"start": 197,
"end": 215,
"text": "Asai et al., 2020;",
"ref_id": "BIBREF0"
},
{
"start": 216,
"end": 240,
"text": "Thayaparan et al., 2019;",
"ref_id": "BIBREF32"
},
{
"start": 241,
"end": 260,
"text": "Kundu et al., 2019;",
"ref_id": "BIBREF16"
},
{
"start": 261,
"end": 284,
"text": "Valentino et al., 2021)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Explanation-based Science QA (Jansen et al., 2018) provides a rich framework to evaluate these emerging requirements, as the task typically requires multi-hop reasoning through the composition of explanatory facts. While existing approaches in the field mainly focus on the construction of natural language explanations (Jansen et al., 2018; Jansen and Ustalov, 2019) , this work aims to explore the impact of explanatory knowledge on zero-shot generalisation.",
"cite_spans": [
{
"start": 29,
"end": 50,
"text": "(Jansen et al., 2018)",
"ref_id": "BIBREF11"
},
{
"start": 320,
"end": 341,
"text": "(Jansen et al., 2018;",
"ref_id": "BIBREF11"
},
{
"start": 342,
"end": 367,
"text": "Jansen and Ustalov, 2019)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, we argue that explanation-centred corpora can serve as a resource to boost zero-shot capabilities on Question Answering tasks which demand deeper inference. To this end, we explore the adoption of latent knowledge representations for supporting generalisation on downstream QA tasks requiring multi-hop inference.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Our hypothesis is that explanatory scientific knowledge expressed in natural language can be transferred into neural network representations, and subsequently used to achieve knowledge based inference on scientific QA tasks. To validate this hypothesis, this paper proposes a unified approach that frames Question Answering as an explanatory knowledge reasoning problem. The unification between the two tasks allows us to explore the adoption of pre-training strategies over explanatory knowledge bases, and subsequently leverage the same paradigm to generalise on the Question Answering task.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "An empirical evaluation is performed on Transformers-based architectures adopting the WorldTree corpus as a knowledge base (Xie et al., 2020; Jansen et al., 2018) and measuring generalisation on ARC and OpenbookQA (Mihaylov et al., 2018) . The main contributions of this paper are as follows:",
"cite_spans": [
{
"start": 123,
"end": 141,
"text": "(Xie et al., 2020;",
"ref_id": "BIBREF39"
},
{
"start": 142,
"end": 162,
"text": "Jansen et al., 2018)",
"ref_id": "BIBREF11"
},
{
"start": 214,
"end": 237,
"text": "(Mihaylov et al., 2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 We propose N-XKT, a neural mechanism for encoding and transferring explanatory knowledge for science QA. To the best of our knowledge, N-XKT is the first work tackling science QA tasks through the transfer of external explanatory knowledge via neural encoding mechanisms.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 We introduce the explanatory knowledge transfer task on explanation-centred knowledge bases, describing the methodology to implement N-XKT for knowledge acquisition and downstream Question Answering using Transformer-based models as neural encoders.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 We conduct a systematic empirical analysis to demonstrate the effectiveness of N-XKT on improving downstream QA accuracy and overall convergence speed in the training phase. An ablation analysis on different types of knowledge facts is performed to measure the impact of different knowledge categories.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this section we describe several works related to knowledge-based scientific QA.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Explanation Bank Explanation Bank 1 is a core component of the WorldTree corpus (Jansen et al., 2018; Xie et al., 2020) . The dataset provides explanations for multiple-choice science questions in the form of graphs connecting questions and correct answers, where multiple sentences from a knowledge base (KB) are aggregated through lexical overlap between terms. The background knowledge used for the explanations is grouped in semi-structured tables, whose facts range from common-sense to core scientific statements. Explanation Bank has been proposed for the task of explanation regeneration (Jansen and Ustalov, 2019) -i.e. given a multiple-choice science question, regenerate the gold explanation supporting the correct answer. The explanation regeneration task has been framed as an Information Retrieval (IR) problem (Valentino et al., 2021) . In this paper, we aim to leverage the knowledge expressed in the explanations to enhance generalisation and zero-shot capability on multiple-choice scientific question answering.",
"cite_spans": [
{
"start": 80,
"end": 101,
"text": "(Jansen et al., 2018;",
"ref_id": "BIBREF11"
},
{
"start": 102,
"end": 119,
"text": "Xie et al., 2020)",
"ref_id": "BIBREF39"
},
{
"start": 825,
"end": 849,
"text": "(Valentino et al., 2021)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "1 http://cognitiveai.org/explanationbank/ Bidirectional Encoder Representations from Transformers BERT represents the foundation which defines the state-of-the-art in several NLP tasks (Devlin et al., 2019) . This model adopts a Transformer-based architecture composed of several layers of attention (Vaswani et al., 2017) that are used to learn a deep bidirectional representation of language. BERT-based models have demonstrated remarkable results in Question Answering when directly fine-tuned on the answer prediction task or additionally pre-trained using domain specific knowledge (Clark et al., 2020; Beltagy et al., 2019) . A recent line of research attempts to enrich the input of BERT with background knowledge in the form of explanations in order to boost generalisation and accuracy for challenging QA settings. Here, the explanations are explicitly constructed through the adoption of language models (Rajani et al., 2019) or information retrieval (IR) approaches (Valentino et al., 2021; Yadav et al., 2019) . Conversely, this paper explores mechanisms to implicitly encode explanatory knowledge in the neural representation to improve the capability of performing downstream inference. Specifically, in this work, we adopt Transformers as text neural encoders.",
"cite_spans": [
{
"start": 185,
"end": 206,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF6"
},
{
"start": 300,
"end": 322,
"text": "(Vaswani et al., 2017)",
"ref_id": null
},
{
"start": 587,
"end": 607,
"text": "(Clark et al., 2020;",
"ref_id": "BIBREF13"
},
{
"start": 608,
"end": 629,
"text": "Beltagy et al., 2019)",
"ref_id": "BIBREF1"
},
{
"start": 977,
"end": 1001,
"text": "(Valentino et al., 2021;",
"ref_id": "BIBREF33"
},
{
"start": 1002,
"end": 1021,
"text": "Yadav et al., 2019)",
"ref_id": "BIBREF40"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Leveraging External Knowledge for Scientific QA Recently, many solutions have been proposed for science QA that leverage either external reference corpora (Khot et al., 2017; Khashabi et al., 2018; or existing knowledge graphs (Li and Clark, 2015; Sachan et al., 2016; Wang et al., 2018; Musa et al., 2019; Zhong et al., 2019) . Generally, previous works rely on Information Retrieval models or on structural embeddings for Knowledge Bases, while our work focuses on directly encoding explanatory knowledge, evaluating it in a downstream scientific QA setting.",
"cite_spans": [
{
"start": 155,
"end": 174,
"text": "(Khot et al., 2017;",
"ref_id": "BIBREF14"
},
{
"start": 175,
"end": 197,
"text": "Khashabi et al., 2018;",
"ref_id": "BIBREF12"
},
{
"start": 227,
"end": 247,
"text": "(Li and Clark, 2015;",
"ref_id": "BIBREF18"
},
{
"start": 248,
"end": 268,
"text": "Sachan et al., 2016;",
"ref_id": "BIBREF28"
},
{
"start": 269,
"end": 287,
"text": "Wang et al., 2018;",
"ref_id": "BIBREF36"
},
{
"start": 288,
"end": 306,
"text": "Musa et al., 2019;",
"ref_id": "BIBREF21"
},
{
"start": 307,
"end": 326,
"text": "Zhong et al., 2019)",
"ref_id": "BIBREF44"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Scientific Question Answering has the distinctive property of requiring the articulation of multi-hop and explanatory reasoning. This can be contrasted with the lexical-retrieval style of factoid Question Answering. Additionally, the explanatory chains required to arrive at the correct answer typically operate at an abstract level, through the combination of definitions and scientific laws (Thayaparan et al., 2020) . This characteristic makes the generalisation process more challenging, as the answer prediction model needs to acquire the ability to perform abstraction from the specific context in the question. This paper hypothesises that it is possible to automatically transfer abstractive knowledge from explanatory facts into neural encoding representation for more accurate scientific QA, and for enabling zero-shot generalization. To this end, we propose N-XKT (Neural encoding based on eXplanatory Knowledge Transfer) which encodes abstractive knowledge into neural representation to improve the effectiveness in both zero-shot QA task and fine-tuning based QA task. The general neural encoding mechanism is evaluated adopting the following training tasks:",
"cite_spans": [
{
"start": 393,
"end": 418,
"text": "(Thayaparan et al., 2020)",
"ref_id": "BIBREF31"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Methodology",
"sec_num": "3"
},
{
"text": "\u03b8F q t , c t l pred l pred q K , a K , l K q Q , a Q , l Q q S , a S , l S",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Methodology",
"sec_num": "3"
},
{
"text": "1. Explanatory Knowledge Acquisition: In this pre-training task, the N-XKT model encodes the explanatory textual knowledge from a set of explanatory facts into supporting embeddings. This process aims to acquire the necessary explanatory knowledge to test generalization on downstream science QA. We frame this problem as a knowledge base completion task. Specifically, after casting each explanatory fact in the knowledge base into a tuple composed of subject, object, and predicate, the model is trained on completing each fact by alternatively masking each element in the tuple (additional details can be found in section 3.1).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Methodology",
"sec_num": "3"
},
{
"text": "2. Cloze-style Question Answering: To keep the encoding mechanism consistent with the pre-training explanatory knowledge acquisition task, we cast Multiple-choice Question Answering into a cloze-style QA problem. Specifically, we train the N-XKT model to complete the question with the expected candidate answer. This task aims to acquire additional knowledge for addressing downstream science QA since the patterns in the questions are typically more complex than the background explanatory facts (additional details can be found in section 3.2).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Methodology",
"sec_num": "3"
},
{
"text": "The training tasks defined above can be used to encode different types and levels of knowledge into the N-XKT model, allowing us to perform a detailed evaluation on both zero-shot and finetuning-based Question Answering tasks. Figure 1 shows a schematic representation of the proposed approach.",
"cite_spans": [],
"ref_spans": [
{
"start": 227,
"end": 235,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Methodology",
"sec_num": "3"
},
{
"text": "The WorldTree corpus (Jansen et al., 2018) contains natural language explanatory facts, which are stored in semi-structured tables whose columns correspond to semantic roles. The knowledge base contains a total of 82 tables, where each table represents a different knowledge type, with different arity and argument types. N-XKT can be used as a unified approach for transferring knowledge from heterogeneous explanatory facts via a neural encoding mechanism.",
"cite_spans": [
{
"start": 21,
"end": 42,
"text": "(Jansen et al., 2018)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Explanatory Knowledge Acquisition",
"sec_num": "3.1"
},
{
"text": "To acquire the explanatory knowledge in a unified way for subsequent transfer learning, we normalize the semi-structured facts using a binary predicate-argument structure as typical practice in standard knowledge-base completion tasks (Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015) . Specifically, for each table, we map the columns into three main components: subject, predicate, and object. After performing the mapping for each table in the knowledge base, we generate triples for all the facts in the knowledge base.",
"cite_spans": [
{
"start": 235,
"end": 256,
"text": "(Bordes et al., 2013;",
"ref_id": "BIBREF2"
},
{
"start": 257,
"end": 275,
"text": "Wang et al., 2014;",
"ref_id": "BIBREF37"
},
{
"start": 276,
"end": 293,
"text": "Lin et al., 2015)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Explanatory Knowledge Acquisition",
"sec_num": "3.1"
},
{
"text": "By framing the explanatory knowledge acquisition task as a knowledge base completion problem, we alternatively mask subjects and objects from the triples and train the model to predict the missing component in the triple by giving in input the remaining ones. Specifically, we simulate a question answering problem adopting either subject or object as an answer, and the other two components in the triple as a question.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Explanatory Knowledge Acquisition",
"sec_num": "3.1"
},
{
"text": "The neural encoder of N-XKT learns an embedding representation for each pair in input. A softmax layer is added on top of the embedding to predict the probability of the missing component in the triple. The configuration adopted for the N-XKT model is described in equation 1;.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Explanatory Knowledge Acquisition",
"sec_num": "3.1"
},
{
"text": "\u03b8 K \u2190 argmin \u03b8 L(N-XKT \u03b8 (q K , a K ), l K ) (1)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Explanatory Knowledge Acquisition",
"sec_num": "3.1"
},
{
"text": "Here, q K and a K represent the simulated questionanswer pair generated from a generic explanatory fact triple, while l K represents the target labels (i.e. 1 if a is the correct component for completing the triple, 0 otherwise). \u03b8 K is the set of parameters optimised during the explanatory knowledge acquisition stage. The negative samples are generated by replacing each correct answer with a random component extracted from different explanatory facts in the knowledge base.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Explanatory Knowledge Acquisition",
"sec_num": "3.1"
},
{
"text": "The transformer neural network is used as a textual neural encoder component of N-XKT, where each question-answer pair is compiled into the input token sequence:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Explanatory Knowledge Acquisition",
"sec_num": "3.1"
},
{
"text": "[CLS][question][SEP ][answer][SEP ] (2)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Explanatory Knowledge Acquisition",
"sec_num": "3.1"
},
{
"text": "The final hidden vector C \u2208 R H of the Transformer neural network that corresponds to the first input token ([CLS]) is used as an embedding to perform the final classification.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Explanatory Knowledge Acquisition",
"sec_num": "3.1"
},
{
"text": "Normally, the explanatory knowledge patterns do not contain the complete information to address downstream Question Answering. However, the questions in WorldTree can be used as additional knowledge to deal with complex structured science questions, allowing N-XKT to learn to recognize more complex patterns.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Cloze-style Question Answering",
"sec_num": "3.2"
},
{
"text": "To acquire additional knowledge while keeping the encoding mechanism consistent with the pretraining explanatory knowledge acquisition task, we cast Multiple-choice Question Answering into a cloze-style QA problem. The particular encoding configuration of the N-XKT model can be used in fact to address this type of question answering problems, where the model is trained to complete the question with the expected candidate answer. The detailed parameters and inputs adopted for cloze-style QA are described in equation 3:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Cloze-style Question Answering",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u03b8 K+Q \u2190 argmin \u03b8 L(N-XKT \u03b8 K (q Q , a Q ), l Q )",
"eq_num": "(3)"
}
],
"section": "Cloze-style Question Answering",
"sec_num": "3.2"
},
{
"text": "The setting adopted for cloze-style QA is similar to the one adopted for explanatory knowledge acquisition, but with two main differences: 1) In this case, the question q Q , the answer a Q , and the target label l K are generated from the WorldTree multiple-choice question answering set, where the right candidate answer of each question acts as a positive sample, and the incorrect candidate answers act as the negative samples.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Cloze-style Question Answering",
"sec_num": "3.2"
},
{
"text": "2) The initial parameters are initially set with \u03b8 K , that is, we adopt the parameters that have been optimised during the explanatory knowledge acquisition stage.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Cloze-style Question Answering",
"sec_num": "3.2"
},
{
"text": "Given a multiple-choice science question, N-XKT can perform question answering by framing it as a sequence classification problem, where the question is paired with each candidate answer to compute a probability score. The candidate choice with highest score can then be selected as the predicted answer. We evaluate N-XKT in two different settings: zero-shot and fine-tuning-based QA.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Zero-shot and Fine-tuning Settings",
"sec_num": "3.3"
},
{
"text": "Regarding the zero-shot setting, the N-XKT is trained only on the explanatory knowledge acquisition task and then directly tested on downstream Question Answering. We also evaluate the model trained jointly on explanatory knowledge and science questions in WorldTree, evaluating its generalization capabilities on different multiple-choice Question Answering datasets, such as ARC 2 and OpenBook QA 3 (Mihaylov et al., 2018) . For each pair of question and candidate answer, the scores are computed as described in equation 4. Here, (q T , c T ) represent the test question and a candidate answer, while l T pred is the score predicted by the model.",
"cite_spans": [
{
"start": 401,
"end": 424,
"text": "(Mihaylov et al., 2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Zero-shot and Fine-tuning Settings",
"sec_num": "3.3"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "l T pred = N-XKT \u03b8 K+Q (q T , c T )",
"eq_num": "(4)"
}
],
"section": "Zero-shot and Fine-tuning Settings",
"sec_num": "3.3"
},
{
"text": "In the fine-tuning setting, the N-XKT model is additionally fine-tuned on each target QA dataset as in equation 6. Here, (q S , a S ) represents a questionanswer pair from the target QA training set, while l S is the label indicating whether the answer is correct or not.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Zero-shot and Fine-tuning Settings",
"sec_num": "3.3"
},
{
"text": "\u03b8 F \u2190 argmin \u03b8 L(N-XKT \u03b8 K+Q (q S , a S ), l S ) (5)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Zero-shot and Fine-tuning Settings",
"sec_num": "3.3"
},
{
"text": "As shown in equation 6, we adopt the same configuration as in the zero-shot setting, where the only difference is represented by the fine-tuned parameters set \u03b8 F :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Zero-shot and Fine-tuning Settings",
"sec_num": "3.3"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "l T pred = N-XKT \u03b8 F (q T , c T )",
"eq_num": "(6)"
}
],
"section": "Zero-shot and Fine-tuning Settings",
"sec_num": "3.3"
},
{
"text": "We conduct our experiments on four widely used science QA datasets, WorldTree V2.0 (Xie et al., 2020) , ARC Easy and Challenge , and Openbook QA (Mihaylov et al., 2018) . The results tend to confirm our research hypothesis that explanatory knowledge encoding can improve generalization in downstream science Question Answering (QA) tasks. Furthermore, we systematically analyze several factors which may have an impact on the final results, including the use of Transformer-based models with a larger number of parameters (BERT-large), testing the model on QA tasks using different types of explanatory background knowledge, and measuring training and test performance by further fine-tuning the model on other datasets.",
"cite_spans": [
{
"start": 83,
"end": 101,
"text": "(Xie et al., 2020)",
"ref_id": "BIBREF39"
},
{
"start": 145,
"end": 168,
"text": "(Mihaylov et al., 2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Empirical Evaluation",
"sec_num": "4"
},
{
"text": "QA dataset size. In order to conduct a thorough quantitative analysis, we use four science QA datasets, WorldTree V2.0 (Xie et al., 2020) , ARC Easy and Challenge , and Openbook QA (Mihaylov et al., 2018) . The number of question-answer pairs in each dataset is listed in Table. 1.",
"cite_spans": [
{
"start": 119,
"end": 137,
"text": "(Xie et al., 2020)",
"ref_id": "BIBREF39"
},
{
"start": 181,
"end": 204,
"text": "(Mihaylov et al., 2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [
{
"start": 272,
"end": 278,
"text": "Table.",
"ref_id": null
}
],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "4.1"
},
{
"text": "Explanatory knowledge dataset size. We encode different types of explanatory knowledge in the WorldTree corpus into Transformer neural networks. The statistics of the adopted explanatory facts are reported in Table 2 . Because we further analyze the impact of different types of knowledge, the number of each knowledge type is also given in the table.",
"cite_spans": [],
"ref_spans": [
{
"start": 209,
"end": 216,
"text": "Table 2",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "4.1"
},
{
"text": "Hyperparameters configuration. We adjust two major hyperparameters for the training of the model, namely batch size and learning rate. We optimize the parameters considering the following combinations: we adopt training batch sizes in {16, 32}, and learning rate in {1e \u2212 5, 3e \u2212 5, 5e \u2212 5}. The best results are obtained with batch size 32 and learning rate 3e \u2212 5 for the BERT-base model, and batch size 16 and learning rate 1e \u2212 5 for BERT-large (Devlin et al., 2019) .",
"cite_spans": [
{
"start": 449,
"end": 470,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "4.1"
},
{
"text": "Information Retrieval baseline. We adopt an Information Retrieval (IR) baseline similar to the one described in . Given a question q, for each candidate answer c i \u2208 C = {c 1 , . . . , c n }, the IR solver uses BM25 vectors and cosine similarity to retrieve the top K sentences in the WorldTree corpus that are most similar to the concatenation of q and c i . The score of a candidate answer c i is then obtained by considering the sum of the BM25 relevance scores associated to the retrieved sentences. The predicted answer corresponds to the candidate choice with the highest score. To test the generalisation of this approach on ARC and OpenbookQA, we keep the same background knowledge throughout the experiments.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "4.1"
},
{
"text": "Configuration Setting. We adopt different configurations in the experiments to control for training data, Transformer model, and target QA test dataset fine-tuning. We report the different configurations in the \"Config\" column of Table 6 and Table 7 . The label \"K\" indicates that the model is trained only on the explanatory knowledge acquisition task, \"Q\" means that the model is trained only on the cloze-style QA task using WorldTree as reference dataset, \"K+Q\" means that the model is pre-trained for explanatory knowledge acquisition and then further fine-tuned on cloze-style QA (again using only WorldTree as training dataset). Moreover, \"base\" means using BERT-base as Transformer model, while \"large\" means using BERT-large. Finally, \"FT\" means that the model is additionally finetuned on the target QA dataset's training data.",
"cite_spans": [],
"ref_spans": [
{
"start": 230,
"end": 249,
"text": "Table 6 and Table 7",
"ref_id": "TABREF7"
}
],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "4.1"
},
{
"text": "In Table 6 , we report the performance of N-XKT under different configurations along with the accuracy of the BM25 baseline with K = 5 number of facts. The models are tested across multiple QA datasets including WorldTree, ARC, and Open-bookQA.",
"cite_spans": [],
"ref_spans": [
{
"start": 3,
"end": 10,
"text": "Table 6",
"ref_id": "TABREF7"
}
],
"eq_spans": [],
"section": "Overall Results on Zero-shot Science Question Answering",
"sec_num": "4.2"
},
{
"text": "From the results, we derive the following conclusions. First, the proposed N-XKT model can clearly achieve better accuracy than the BM25 baseline since N-XKT uses Transformer-based neural mechanisms to acquire and encode external knowledge. Second, using BERT-large instead of BERTbase as initial Transformer can improve the performance since BERT-large contains more parameters than BERT-base. However, we found that the advantage of using BERT-large is not significant since more parameters implies more resources needed for training. Third, we observe than N-XKT obtains better performance than pre-trained BERT when fine-tuning on the target datasets. : Accuracy comparison between N-XKT and othe approaches. External KB adopted by the models: 1.ARCcorpus , 2.ConceptNet (Speer et al., 2017) , 3.Wikipedia (https://www.wikipedia.org/), 4.SciTail ), 5.SNLI (Bowman et al., 2015 , 6.MultiNLI (Williams et al., 2018) , 7.RACE (Lai et al., 2017) , 8.MCScript (Ostermann et al., 2018) , 9.WorldTree (Jansen et al., 2018 ",
"cite_spans": [
{
"start": 775,
"end": 795,
"text": "(Speer et al., 2017)",
"ref_id": "BIBREF29"
},
{
"start": 850,
"end": 880,
"text": "), 5.SNLI (Bowman et al., 2015",
"ref_id": null
},
{
"start": 894,
"end": 917,
"text": "(Williams et al., 2018)",
"ref_id": "BIBREF38"
},
{
"start": 927,
"end": 945,
"text": "(Lai et al., 2017)",
"ref_id": "BIBREF17"
},
{
"start": 959,
"end": 983,
"text": "(Ostermann et al., 2018)",
"ref_id": "BIBREF23"
},
{
"start": 998,
"end": 1018,
"text": "(Jansen et al., 2018",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Overall Results on Zero-shot Science Question Answering",
"sec_num": "4.2"
},
{
"text": "To understand the impact of different types of explanation on the final accuracy, we breakdown the facts stored in the knowledge base using three different categories (i.e., retrieval, inferencesupporting and complex inference) and rerun the training of the N-XKT model using only one category per time. The adopted categories are provided in the WorldTree corpus and can be described as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
"sec_num": "4.3"
},
{
"text": "\u2022 Retrieval: facts expressing knowledge about taxonomic relations and/or properties.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
"sec_num": "4.3"
},
{
"text": "\u2022 Inference-Supporting: Facts expressing knowledge about actions, affordances, requirements.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
"sec_num": "4.3"
},
{
"text": "\u2022 Complex Inference: Facts expressing knowledge about causality, processes, and if/then relationships.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
"sec_num": "4.3"
},
{
"text": "The obtained accuracy is showed in Table 7 . The results highlight the importance of using all the explanation categories to achieve the final accuracy for the combined approach. However, the retrieval category seems to have a higher impact on the generalisation. We believe that this result is due to the taxonomic knowledge encoded in the retrieval category (i.e. \"x is a kind of y\"), which facilitates the acquisition of the implicit explanatory capabilities necessary for answering science questions.",
"cite_spans": [],
"ref_spans": [
{
"start": 35,
"end": 42,
"text": "Table 7",
"ref_id": "TABREF8"
}
],
"eq_spans": [],
"section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
"sec_num": "4.3"
},
{
"text": "In Table 7 , we compare the impact of different explanatory knowledge types and get the following conclusion. 1) All three types of explanatory knowledge are helpful for further science QA task. The results using all three types of knowledge are significantly better than the results obtained when using no explanatory knowledge at all (first rown in Table 7) . 2) The model trained on all explanatory knowledge outperforms the models using each individual type of knowledge alone, confirming that different types of knowledge are complementary for achieving the final performance.",
"cite_spans": [],
"ref_spans": [
{
"start": 3,
"end": 10,
"text": "Table 7",
"ref_id": "TABREF8"
},
{
"start": 351,
"end": 359,
"text": "Table 7)",
"ref_id": "TABREF8"
}
],
"eq_spans": [],
"section": "Ablation Analysis on Impact of Different Explanatory Knowledge Types",
"sec_num": "4.3"
},
{
"text": "Start-of-the-art baselines",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluating Zero-shot N-XKT with",
"sec_num": "4.4"
},
{
"text": "In Table 5 , we evaluate several start-of-the-art methods as baselines along with N-XKT trained only on the WorldTree. The table reports the accuracy results on ARC and OpenbookQA. In the \"External KB\" column, we list the external Knowledge Bases (KB) adopted by different models. The \"IR-based\" column indicates whether the model adopts Information Retrieval (IR) techniques, and the \"Finetuned\" column indicates whether the approach is fine-tuned on the target dataset. Table 5 is intended to provide a general comparative analysis between N-XKT and the baseline models, most of them fine-tuned on the target datasets. N-XKT is able to achieve comparable performance under a transfer learning setting. The generalization performance of the proposed model is more noticeable for the ARC Challenge dataset, which requires the implicit encoding of more complex explanatory knowledge. ",
"cite_spans": [],
"ref_spans": [
{
"start": 3,
"end": 10,
"text": "Table 5",
"ref_id": "TABREF5"
},
{
"start": 472,
"end": 479,
"text": "Table 5",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Evaluating Zero-shot N-XKT with",
"sec_num": "4.4"
},
{
"text": "In Figure 2 , we visualize the convergence curve for the fine-tuning over three science QA tasks (ARC Easy, ARC Challenge and OpenBookQA), comparing a pure BERT-based N-XKT model with a pre-trained N-XKT models using different configurations, AFK (pre-trained on explanatory knowledge acquisition), QAP (pre-trained on WorldTree cloze-style QA), AFK+QAP (pre-trained on both). It is noticeable that the encoding of explanatory knowledge impacts the convergence of the model for all three datasets, with a particular emphasis on the two ARC variants.",
"cite_spans": [],
"ref_spans": [
{
"start": 3,
"end": 11,
"text": "Figure 2",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Improvement on Fine-tuning Convergence",
"sec_num": "4.5"
},
{
"text": "In this paper, we proposed a neural encoding mechanism for explanatory knowledge acquisition and transfer, N-XKT. We evaluated the impact of the encoding mechanism on downstream science QA. The proposed model delivers better generalisation and accuracy for QA tasks that require multi-hop and explanatory inference. The proposed encoding mechanism can be used to deliver zero-shot inference capabilities, providing comparable performance when compared to supervised models on QA. These results supports the hypothesis that pretraining tasks targeting abstract and explanatory knowledge acquisition can constitute and impor-tant direction to improve inference capabilities and generalization of state-of-the-art neural models. Tab. 6 is for overall accuracy of N-XKT model on QA tasks, and Tab. 7 is for ablation analysis results, only use part of explanations in training process.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "https://allenai.org/data/arc 3 https://allenai.org/data/open-book-qa",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "The N-XKT mainly use a transformer network as natural language encoder component, the hyperparameters of transformer network training have been tuned manually for the optimisation is the maximisation of the accuracy in answer prediction. Specifically, 3 parameters should be set for training, train batch size \u03b2, learning rate \u03b1, and train epoch N . The values used in pre-training on explanation knowledge base are as follows:The values used in fine-tuning on Question Answer are as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A Hyperparameters tuning",
"sec_num": null
},
{
"text": "We use two versions of Explanation Bank Scientific Question Answer datasets in this paper. The version 1 of Explanation Bank dataset can be downloaded at the following URL: http: //cognitiveai.org/dist/worldtree_corpus_ textgraphs2019sharedtask_withgraphvis.zip. The version 2 of Explanation Bank dataset is available at the following URL: https: //github.com/cognitiveailab/tg2020task.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "B Data",
"sec_num": null
},
{
"text": "To accelerate the training process of the experiments, we adopt a NVIDIA Tesla V100 GPU.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "C Computing Infrastructure",
"sec_num": null
},
{
"text": "We repeat the N-XKT model Question Answering training process on all the dataset for 5 times, each time with random parameters initialization. Addition to the tables provided in paper, we report the detailed results with standard deviation in following tables.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "D Accuracy Results Including Standard Deviation",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Learning to retrieve reasoning paths over wikipedia graph for question answering",
"authors": [
{
"first": "Akari",
"middle": [],
"last": "Asai",
"suffix": ""
},
{
"first": "Kazuma",
"middle": [],
"last": "Hashimoto",
"suffix": ""
},
{
"first": "Hannaneh",
"middle": [],
"last": "Hajishirzi",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Caiming",
"middle": [],
"last": "Xiong",
"suffix": ""
}
],
"year": 2020,
"venue": "International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi, Richard Socher, and Caiming Xiong. 2020. Learn- ing to retrieve reasoning paths over wikipedia graph for question answering. In International Conference on Learning Representations.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "SciB-ERT: A pretrained language model for scientific text",
"authors": [
{
"first": "Iz",
"middle": [],
"last": "Beltagy",
"suffix": ""
},
{
"first": "Kyle",
"middle": [],
"last": "Lo",
"suffix": ""
},
{
"first": "Arman",
"middle": [],
"last": "Cohan",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "3615--3620",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1371"
]
},
"num": null,
"urls": [],
"raw_text": "Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB- ERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 3615- 3620, Hong Kong, China. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Translating embeddings for modeling multirelational data",
"authors": [
{
"first": "Antoine",
"middle": [],
"last": "Bordes",
"suffix": ""
},
{
"first": "Nicolas",
"middle": [],
"last": "Usunier",
"suffix": ""
},
{
"first": "Alberto",
"middle": [],
"last": "Garcia-Duran",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Weston",
"suffix": ""
},
{
"first": "Oksana",
"middle": [],
"last": "Yakhnenko",
"suffix": ""
}
],
"year": 2013,
"venue": "Advances in Neural Information Processing Systems",
"volume": "26",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Antoine Bordes, Nicolas Usunier, Alberto Garcia- Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating embeddings for modeling multi- relational data. In Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "A large annotated corpus for learning natural language inference",
"authors": [
{
"first": "R",
"middle": [],
"last": "Samuel",
"suffix": ""
},
{
"first": "Gabor",
"middle": [],
"last": "Bowman",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Angeli",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Potts",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "632--642",
"other_ids": {
"DOI": [
"10.18653/v1/D15-1075"
]
},
"num": null,
"urls": [],
"raw_text": "Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large anno- tated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empiri- cal Methods in Natural Language Processing, pages 632-642, Lisbon, Portugal. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Think you have solved question answering? try arc, the ai2 reasoning challenge",
"authors": [
{
"first": "Peter",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Isaac",
"middle": [],
"last": "Cowhey",
"suffix": ""
},
{
"first": "Oren",
"middle": [],
"last": "Etzioni",
"suffix": ""
},
{
"first": "Tushar",
"middle": [],
"last": "Khot",
"suffix": ""
},
{
"first": "Ashish",
"middle": [],
"last": "Sabharwal",
"suffix": ""
},
{
"first": "Carissa",
"middle": [],
"last": "Schoenick",
"suffix": ""
},
{
"first": "Oyvind",
"middle": [],
"last": "Tafjord",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. 2018. Think you have solved question an- swering? try arc, the ai2 reasoning challenge.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Niket Tandon, Sumithra Bhakthavatsalam, Dirk Groeneveld, Michal Guerquin, and Michael Schmitz. 2020. From 'f' to 'a' on the n.y. regents science exams: An overview of the aristo project",
"authors": [
{
"first": "Peter",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Oren",
"middle": [],
"last": "Etzioni",
"suffix": ""
},
{
"first": "Tushar",
"middle": [],
"last": "Khot",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Khashabi",
"suffix": ""
},
{
"first": "Bhavana",
"middle": [],
"last": "Mishra",
"suffix": ""
},
{
"first": "Kyle",
"middle": [],
"last": "Richardson",
"suffix": ""
},
{
"first": "Ashish",
"middle": [],
"last": "Sabharwal",
"suffix": ""
},
{
"first": "Carissa",
"middle": [],
"last": "Schoenick",
"suffix": ""
},
{
"first": "Carissa",
"middle": [],
"last": "Schoenick",
"suffix": ""
},
{
"first": "Oyvind",
"middle": [],
"last": "Tafjord",
"suffix": ""
}
],
"year": null,
"venue": "AI Magazine",
"volume": "41",
"issue": "4",
"pages": "39--53",
"other_ids": {
"DOI": [
"10.1609/aimag.v41i4.5304"
]
},
"num": null,
"urls": [],
"raw_text": "Peter Clark, Oren Etzioni, Tushar Khot, Daniel Khashabi, Bhavana Mishra, Kyle Richardson, Ashish Sabharwal, Carissa Schoenick, Carissa Schoenick, Oyvind Tafjord, Niket Tandon, Sum- ithra Bhakthavatsalam, Dirk Groeneveld, Michal Guerquin, and Michael Schmitz. 2020. From 'f' to 'a' on the n.y. regents science exams: An overview of the aristo project. AI Magazine, 41(4):39-53.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Cognitive graph for multi-hop reading comprehension at scale",
"authors": [
{
"first": "Ming",
"middle": [],
"last": "Ding",
"suffix": ""
},
{
"first": "Chang",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Qibin",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Hongxia",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Jie",
"middle": [],
"last": "Tang",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2694--2703",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1259"
]
},
"num": null,
"urls": [],
"raw_text": "Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. 2019. Cognitive graph for multi-hop reading comprehension at scale. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics, pages 2694-2703, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs",
"authors": [
{
"first": "Dheeru",
"middle": [],
"last": "Dua",
"suffix": ""
},
{
"first": "Yizhong",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Pradeep",
"middle": [],
"last": "Dasigi",
"suffix": ""
},
{
"first": "Gabriel",
"middle": [],
"last": "Stanovsky",
"suffix": ""
},
{
"first": "Sameer",
"middle": [],
"last": "Singh",
"suffix": ""
},
{
"first": "Matt",
"middle": [],
"last": "Gardner",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "2368--2378",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1246"
]
},
"num": null,
"urls": [],
"raw_text": "Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. 2019. DROP: A reading comprehension benchmark requir- ing discrete reasoning over paragraphs. In Proceed- ings of the 2019 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2368-2378, Min- neapolis, Minnesota. Association for Computational Linguistics.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "What's in an explanation? characterizing knowledge and inference requirements for elementary science exams",
"authors": [
{
"first": "Peter",
"middle": [],
"last": "Jansen",
"suffix": ""
},
{
"first": "Niranjan",
"middle": [],
"last": "Balasubramanian",
"suffix": ""
},
{
"first": "Mihai",
"middle": [],
"last": "Surdeanu",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
"volume": "",
"issue": "",
"pages": "2956--2965",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Peter Jansen, Niranjan Balasubramanian, Mihai Sur- deanu, and Peter Clark. 2016. What's in an expla- nation? characterizing knowledge and inference re- quirements for elementary science exams. In Pro- ceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Techni- cal Papers, pages 2956-2965, Osaka, Japan. The COLING 2016 Organizing Committee.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "TextGraphs 2019 shared task on multi-hop inference for explanation regeneration",
"authors": [
{
"first": "Peter",
"middle": [],
"last": "Jansen",
"suffix": ""
},
{
"first": "Dmitry",
"middle": [],
"last": "Ustalov",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
"volume": "",
"issue": "",
"pages": "63--77",
"other_ids": {
"DOI": [
"10.18653/v1/D19-5309"
]
},
"num": null,
"urls": [],
"raw_text": "Peter Jansen and Dmitry Ustalov. 2019. TextGraphs 2019 shared task on multi-hop inference for expla- nation regeneration. In Proceedings of the Thir- teenth Workshop on Graph-Based Methods for Nat- ural Language Processing (TextGraphs-13), pages 63-77, Hong Kong. Association for Computational Linguistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "WorldTree: A corpus of explanation graphs for elementary science questions supporting multi-hop inference",
"authors": [
{
"first": "Peter",
"middle": [],
"last": "Jansen",
"suffix": ""
},
{
"first": "Elizabeth",
"middle": [],
"last": "Wainwright",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Marmorstein",
"suffix": ""
},
{
"first": "Clayton",
"middle": [],
"last": "Morrison",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Peter Jansen, Elizabeth Wainwright, Steven Mar- morstein, and Clayton Morrison. 2018. WorldTree: A corpus of explanation graphs for elementary sci- ence questions supporting multi-hop inference. In Proceedings of the Eleventh International Confer- ence on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Re- sources Association (ELRA).",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Question answering as global reasoning over semantic abstractions",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Khashabi",
"suffix": ""
},
{
"first": "Tushar",
"middle": [],
"last": "Khot",
"suffix": ""
},
{
"first": "Ashish",
"middle": [],
"last": "Sabharwal",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2018,
"venue": "AAAI",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and D. Roth. 2018. Question answering as global rea- soning over semantic abstractions. In AAAI.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Qasc: A dataset for question answering via sentence composition",
"authors": [
{
"first": "Tushar",
"middle": [],
"last": "Khot",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Michal",
"middle": [],
"last": "Guerquin",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Jansen",
"suffix": ""
},
{
"first": "Ashish",
"middle": [],
"last": "Sabharwal",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
"volume": "34",
"issue": "",
"pages": "8082--8090",
"other_ids": {
"DOI": [
"10.1609/aaai.v34i05.6319"
]
},
"num": null,
"urls": [],
"raw_text": "Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. 2020. Qasc: A dataset for question answering via sentence compo- sition. Proceedings of the AAAI Conference on Arti- ficial Intelligence, 34(05):8082-8090.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Answering complex questions using open information extraction",
"authors": [
{
"first": "Tushar",
"middle": [],
"last": "Khot",
"suffix": ""
},
{
"first": "Ashish",
"middle": [],
"last": "Sabharwal",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "311--316",
"other_ids": {
"DOI": [
"10.18653/v1/P17-2049"
]
},
"num": null,
"urls": [],
"raw_text": "Tushar Khot, Ashish Sabharwal, and Peter Clark. 2017. Answering complex questions using open informa- tion extraction. In Proceedings of the 55th Annual Meeting of the Association for Computational Lin- guistics (Volume 2: Short Papers), pages 311-316, Vancouver, Canada. Association for Computational Linguistics.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Scitail: A textual entailment dataset from science question answering",
"authors": [
{
"first": "Tushar",
"middle": [],
"last": "Khot",
"suffix": ""
},
{
"first": "Ashish",
"middle": [],
"last": "Sabharwal",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18)",
"volume": "",
"issue": "",
"pages": "5189--5197",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018. Scitail: A textual entailment dataset from science question answering. In Proceedings of the Thirty- Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Arti- ficial Intelligence (IAAI-18), and the 8th AAAI Sym- posium on Educational Advances in Artificial Intel- ligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 5189-5197. AAAI Press.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Exploiting explicit paths for multi-hop reading comprehension",
"authors": [
{
"first": "Souvik",
"middle": [],
"last": "Kundu",
"suffix": ""
},
{
"first": "Tushar",
"middle": [],
"last": "Khot",
"suffix": ""
},
{
"first": "Ashish",
"middle": [],
"last": "Sabharwal",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2737--2747",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1263"
]
},
"num": null,
"urls": [],
"raw_text": "Souvik Kundu, Tushar Khot, Ashish Sabharwal, and Peter Clark. 2019. Exploiting explicit paths for multi-hop reading comprehension. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2737-2747, Flo- rence, Italy. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "RACE: Large-scale ReAding comprehension dataset from examinations",
"authors": [
{
"first": "Guokun",
"middle": [],
"last": "Lai",
"suffix": ""
},
{
"first": "Qizhe",
"middle": [],
"last": "Xie",
"suffix": ""
},
{
"first": "Hanxiao",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Yiming",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "785--794",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1082"
]
},
"num": null,
"urls": [],
"raw_text": "Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. RACE: Large-scale ReAd- ing comprehension dataset from examinations. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 785-794, Copenhagen, Denmark. Association for Computational Linguistics.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Answering elementary science questions by constructing coherent scenes using background knowledge",
"authors": [
{
"first": "Yang",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2007--2012",
"other_ids": {
"DOI": [
"10.18653/v1/D15-1236"
]
},
"num": null,
"urls": [],
"raw_text": "Yang Li and Peter Clark. 2015. Answering elementary science questions by constructing coherent scenes using background knowledge. In Proceedings of the 2015 Conference on Empirical Methods in Nat- ural Language Processing, pages 2007-2012, Lis- bon, Portugal. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Learning entity and relation embeddings for knowledge graph completion",
"authors": [
{
"first": "Yankai",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Zhiyuan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Maosong",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Xuan",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI'15",
"volume": "",
"issue": "",
"pages": "2181--2187",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning entity and relation em- beddings for knowledge graph completion. In Pro- ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI'15, page 2181-2187. AAAI Press.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Can a suit of armor conduct electricity? a new dataset for open book question answering",
"authors": [
{
"first": "Todor",
"middle": [],
"last": "Mihaylov",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Tushar",
"middle": [],
"last": "Khot",
"suffix": ""
},
{
"first": "Ashish",
"middle": [],
"last": "Sabharwal",
"suffix": ""
}
],
"year": 2018,
"venue": "EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a suit of armor conduct elec- tricity? a new dataset for open book question answer- ing. In EMNLP.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Answering science exam questions using query reformulation with background knowledge",
"authors": [
{
"first": "Ryan",
"middle": [],
"last": "Musa",
"suffix": ""
},
{
"first": "Xiaoyan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Achille",
"middle": [],
"last": "Fokoue",
"suffix": ""
},
{
"first": "Nicholas",
"middle": [],
"last": "Mattei",
"suffix": ""
},
{
"first": "Maria",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Pavan",
"middle": [],
"last": "Kapanipathi",
"suffix": ""
},
{
"first": "Bassem",
"middle": [],
"last": "Makni",
"suffix": ""
},
{
"first": "Kartik",
"middle": [],
"last": "Talamadupula",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Witbrock",
"suffix": ""
}
],
"year": 2019,
"venue": "Automated Knowledge Base Construction (AKBC)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ryan Musa, Xiaoyan Wang, Achille Fokoue, Nicholas Mattei, Maria Chang, Pavan Kapanipathi, Bassem Makni, Kartik Talamadupula, and Michael Wit- brock. 2019. Answering science exam questions using query reformulation with background knowl- edge. In Automated Knowledge Base Construction (AKBC).",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Learning to attend on essential terms: An enhanced retriever-reader model for opendomain question answering",
"authors": [
{
"first": "Jianmo",
"middle": [],
"last": "Ni",
"suffix": ""
},
{
"first": "Chenguang",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Weizhu",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Julian",
"middle": [],
"last": "Mcauley",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "335--344",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1030"
]
},
"num": null,
"urls": [],
"raw_text": "Jianmo Ni, Chenguang Zhu, Weizhu Chen, and Julian McAuley. 2019. Learning to attend on essential terms: An enhanced retriever-reader model for open- domain question answering. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, Volume 1 (Long and Short Papers), pages 335-344, Minneapolis, Min- nesota. Association for Computational Linguistics.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "MCScript: A novel dataset for assessing machine comprehension using script knowledge",
"authors": [
{
"first": "Simon",
"middle": [],
"last": "Ostermann",
"suffix": ""
},
{
"first": "Ashutosh",
"middle": [],
"last": "Modi",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Simon Ostermann, Ashutosh Modi, Michael Roth, Ste- fan Thater, and Manfred Pinkal. 2018. MCScript: A novel dataset for assessing machine comprehension using script knowledge.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Improving retrieval-based question answering with deep inference models",
"authors": [
{
"first": "George-Sebastian",
"middle": [],
"last": "P\u00eertoac\u0203",
"suffix": ""
},
{
"first": "Traian",
"middle": [],
"last": "Rebedea",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Tefan Rus",
"suffix": ""
}
],
"year": 2019,
"venue": "2019 International Joint Conference on Neural Networks (IJCNN)",
"volume": "",
"issue": "",
"pages": "1--8",
"other_ids": {
"DOI": [
"10.1109/IJCNN.2019.8851826"
]
},
"num": null,
"urls": [],
"raw_text": "George-Sebastian P\u00eertoac\u0203, Traian Rebedea, and S , tefan Rus , et , i. 2019. Improving retrieval-based question an- swering with deep inference models. In 2019 In- ternational Joint Conference on Neural Networks (IJCNN), pages 1-8.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Dynamically fused graph network for multi-hop reasoning",
"authors": [
{
"first": "Lin",
"middle": [],
"last": "Qiu",
"suffix": ""
},
{
"first": "Yunxuan",
"middle": [],
"last": "Xiao",
"suffix": ""
},
{
"first": "Yanru",
"middle": [],
"last": "Qu",
"suffix": ""
},
{
"first": "Hao",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Lei",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Weinan",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Yong",
"middle": [],
"last": "Yu",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "6140--6150",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1617"
]
},
"num": null,
"urls": [],
"raw_text": "Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li, Weinan Zhang, and Yong Yu. 2019. Dynami- cally fused graph network for multi-hop reasoning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 6140-6150, Florence, Italy. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Improving language understanding by generative pre-training",
"authors": [
{
"first": "A",
"middle": [],
"last": "Radford",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Radford. 2018. Improving language understanding by generative pre-training.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Explain yourself! leveraging language models for commonsense reasoning",
"authors": [
{
"first": "Bryan",
"middle": [],
"last": "Nazneen Fatema Rajani",
"suffix": ""
},
{
"first": "Caiming",
"middle": [],
"last": "Mccann",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Xiong",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Socher",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "4932--4942",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1487"
]
},
"num": null,
"urls": [],
"raw_text": "Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. 2019. Explain yourself! leveraging language models for commonsense rea- soning. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 4932-4942, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Science question answering using instructional materials",
"authors": [
{
"first": "Mrinmaya",
"middle": [],
"last": "Sachan",
"suffix": ""
},
{
"first": "Kumar",
"middle": [],
"last": "Dubey",
"suffix": ""
},
{
"first": "Eric",
"middle": [],
"last": "Xing",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "467--473",
"other_ids": {
"DOI": [
"10.18653/v1/P16-2076"
]
},
"num": null,
"urls": [],
"raw_text": "Mrinmaya Sachan, Kumar Dubey, and Eric Xing. 2016. Science question answering using instructional ma- terials. In Proceedings of the 54th Annual Meet- ing of the Association for Computational Linguistics (Volume 2: Short Papers), pages 467-473, Berlin, Germany. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Conceptnet 5.5: An open multilingual graph of general knowledge",
"authors": [
{
"first": "Robyn",
"middle": [],
"last": "Speer",
"suffix": ""
},
{
"first": "Joshua",
"middle": [],
"last": "Chin",
"suffix": ""
},
{
"first": "Catherine",
"middle": [],
"last": "Havasi",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI'17",
"volume": "",
"issue": "",
"pages": "4444--4451",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the Thirty- First AAAI Conference on Artificial Intelligence, AAAI'17, page 4444-4451. AAAI Press.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Improving machine reading comprehension with general reading strategies",
"authors": [
{
"first": "Kai",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Dian",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "Dong",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "Claire",
"middle": [],
"last": "Cardie",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "2633--2643",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1270"
]
},
"num": null,
"urls": [],
"raw_text": "Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2019. Improving machine reading comprehension with general reading strategies. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, Volume 1 (Long and Short Papers), pages 2633-2643, Minneapolis, Min- nesota. Association for Computational Linguistics.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "A survey on explainability in machine reading comprehension",
"authors": [
{
"first": "Mokanarangan",
"middle": [],
"last": "Thayaparan",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Valentino",
"suffix": ""
},
{
"first": "Andr\u00e9",
"middle": [],
"last": "Freitas",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mokanarangan Thayaparan, Marco Valentino, and Andr\u00e9 Freitas. 2020. A survey on explainability in machine reading comprehension.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Identifying supporting facts for multi-hop question answering with document graph networks",
"authors": [
{
"first": "Mokanarangan",
"middle": [],
"last": "Thayaparan",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Valentino",
"suffix": ""
},
{
"first": "Viktor",
"middle": [],
"last": "Schlegel",
"suffix": ""
},
{
"first": "Andr\u00e9",
"middle": [],
"last": "Freitas",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
"volume": "",
"issue": "",
"pages": "42--51",
"other_ids": {
"DOI": [
"10.18653/v1/D19-5306"
]
},
"num": null,
"urls": [],
"raw_text": "Mokanarangan Thayaparan, Marco Valentino, Viktor Schlegel, and Andr\u00e9 Freitas. 2019. Identifying supporting facts for multi-hop question answering with document graph networks. In Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 42-51, Hong Kong. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Unification-based reconstruction of multi-hop explanations for science questions",
"authors": [
{
"first": "Marco",
"middle": [],
"last": "Valentino",
"suffix": ""
},
{
"first": "Mokanarangan",
"middle": [],
"last": "Thayaparan",
"suffix": ""
},
{
"first": "Andr\u00e9",
"middle": [],
"last": "Freitas",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
"volume": "",
"issue": "",
"pages": "200--211",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marco Valentino, Mokanarangan Thayaparan, and Andr\u00e9 Freitas. 2021. Unification-based reconstruc- tion of multi-hop explanations for science questions. In Proceedings of the 16th Conference of the Euro- pean Chapter of the Association for Computational Linguistics: Main Volume, pages 200-211, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Attention is all you need",
"authors": [
{
"first": "Illia",
"middle": [],
"last": "Kaiser",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Polosukhin",
"suffix": ""
}
],
"year": 2017,
"venue": "Advances in Neural Information Processing Systems",
"volume": "30",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Pro- cessing Systems, volume 30. Curran Associates, Inc.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Yuanfudao at SemEval-2018 task 11: Three-way attention and relational knowledge for commonsense machine comprehension",
"authors": [
{
"first": "Liang",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Meng",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Kewei",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Jingming",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "758--762",
"other_ids": {
"DOI": [
"10.18653/v1/S18-1120"
]
},
"num": null,
"urls": [],
"raw_text": "Liang Wang, Meng Sun, Wei Zhao, Kewei Shen, and Jingming Liu. 2018. Yuanfudao at SemEval- 2018 task 11: Three-way attention and relational knowledge for commonsense machine comprehen- sion. pages 758-762.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Knowledge graph embedding by translating on hyperplanes",
"authors": [
{
"first": "Zhen",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Jianwen",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Jianlin",
"middle": [],
"last": "Feng",
"suffix": ""
},
{
"first": "Zheng",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI'14",
"volume": "",
"issue": "",
"pages": "1112--1119",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge graph embedding by trans- lating on hyperplanes. In Proceedings of the Twenty- Eighth AAAI Conference on Artificial Intelligence, AAAI'14, page 1112-1119. AAAI Press.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "A broad-coverage challenge corpus for sentence understanding through inference",
"authors": [
{
"first": "Adina",
"middle": [],
"last": "Williams",
"suffix": ""
},
{
"first": "Nikita",
"middle": [],
"last": "Nangia",
"suffix": ""
},
{
"first": "Samuel",
"middle": [],
"last": "Bowman",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "1112--1122",
"other_ids": {
"DOI": [
"10.18653/v1/N18-1101"
]
},
"num": null,
"urls": [],
"raw_text": "Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sen- tence understanding through inference. In Proceed- ings of the 2018 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112-1122, New Orleans, Louisiana. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "WorldTree v2: A corpus of sciencedomain structured explanations and inference patterns supporting multi-hop inference",
"authors": [
{
"first": "Zhengnan",
"middle": [],
"last": "Xie",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "Thiem",
"suffix": ""
},
{
"first": "Jaycie",
"middle": [],
"last": "Martin",
"suffix": ""
},
{
"first": "Elizabeth",
"middle": [],
"last": "Wainwright",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Marmorstein",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Jansen",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 12th Language Resources and Evaluation Conference",
"volume": "",
"issue": "",
"pages": "5456--5473",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Eliz- abeth Wainwright, Steven Marmorstein, and Peter Jansen. 2020. WorldTree v2: A corpus of science- domain structured explanations and inference pat- terns supporting multi-hop inference. In Proceed- ings of the 12th Language Resources and Evaluation Conference, pages 5456-5473, Marseille, France. European Language Resources Association.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Quick and (not so) dirty: Unsupervised selection of justification sentences for multi-hop question answering",
"authors": [
{
"first": "Vikas",
"middle": [],
"last": "Yadav",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Bethard",
"suffix": ""
},
{
"first": "Mihai",
"middle": [],
"last": "Surdeanu",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "2578--2589",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1260"
]
},
"num": null,
"urls": [],
"raw_text": "Vikas Yadav, Steven Bethard, and Mihai Surdeanu. 2019. Quick and (not so) dirty: Unsupervised se- lection of justification sentences for multi-hop ques- tion answering. In Proceedings of the 2019 Con- ference on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 2578-2589, Hong Kong, China. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Sanity check: A strong alignment and information retrieval baseline for question answering",
"authors": [
{
"first": "Vikas",
"middle": [],
"last": "Yadav",
"suffix": ""
},
{
"first": "Rebecca",
"middle": [],
"last": "Sharp",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Surdeanu",
"suffix": ""
}
],
"year": 2018,
"venue": "The 41st International ACM SIGIR Conference on Research Development in Information Retrieval",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Vikas Yadav, Rebecca Sharp, and M. Surdeanu. 2018. Sanity check: A strong alignment and information retrieval baseline for question answering. The 41st International ACM SIGIR Conference on Research Development in Information Retrieval.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "HotpotQA: A dataset for diverse, explainable multi-hop question answering",
"authors": [
{
"first": "Zhilin",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Peng",
"middle": [],
"last": "Qi",
"suffix": ""
},
{
"first": "Saizheng",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
},
{
"first": "William",
"middle": [],
"last": "Cohen",
"suffix": ""
},
{
"first": "Ruslan",
"middle": [],
"last": "Salakhutdinov",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2369--2380",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1259"
]
},
"num": null,
"urls": [],
"raw_text": "Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christo- pher D. Manning. 2018. HotpotQA: A dataset for diverse, explainable multi-hop question answer- ing. In Proceedings of the 2018 Conference on Em- pirical Methods in Natural Language Processing, pages 2369-2380, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Kg2: Learning to reason science exam questions with contextual knowledge graph embeddings",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Dai",
"suffix": ""
},
{
"first": "Kamil",
"middle": [],
"last": "Toraman",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Song",
"suffix": ""
}
],
"year": 2018,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y. Zhang, H. Dai, Kamil Toraman, and L. Song. 2018. Kg2: Learning to reason science exam ques- tions with contextual knowledge graph embeddings. ArXiv, abs/1805.12393.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Improving question answering by commonsense-based pre-training",
"authors": [
{
"first": "Wanjun",
"middle": [],
"last": "Zhong",
"suffix": ""
},
{
"first": "Duyu",
"middle": [],
"last": "Tang",
"suffix": ""
},
{
"first": "Nan",
"middle": [],
"last": "Duan",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Jiahai",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Yin",
"suffix": ""
}
],
"year": 2019,
"venue": "NLPCC",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wanjun Zhong, Duyu Tang, Nan Duan, M. Zhou, Ji- ahai Wang, and J. Yin. 2019. Improving question answering by commonsense-based pre-training. In NLPCC.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"uris": null,
"type_str": "figure",
"text": "Outline of the proposed approach."
},
"FIGREF1": {
"num": null,
"uris": null,
"type_str": "figure",
"text": "Convergence curve when fine-tuning different version of N-XTK on the target QA datasets."
},
"TABREF1": {
"content": "<table><tr><td>Dataset</td><td colspan=\"3\">#Train #Dev #Test</td></tr><tr><td colspan=\"4\">WorldTree V2.0 3,947 1,019 4,165</td></tr><tr><td>ARC Easy</td><td>2,251</td><td colspan=\"2\">570 2,376</td></tr><tr><td colspan=\"2\">ARC Challenge 1,119</td><td colspan=\"2\">299 1,172</td></tr><tr><td>Openbook QA</td><td>4,957</td><td>500</td><td>500</td></tr></table>",
"html": null,
"type_str": "table",
"num": null,
"text": "QA datasets size."
},
"TABREF2": {
"content": "<table><tr><td colspan=\"2\">: Number of instances in each explanatory</td></tr><tr><td>knowledge category.</td><td/></tr><tr><td>Type</td><td>Size</td></tr><tr><td>All</td><td>9,701</td></tr><tr><td>Retrieval</td><td>7,006</td></tr><tr><td colspan=\"2\">Inference-supporting 1,670</td></tr><tr><td>Complex Inference</td><td>1,025</td></tr></table>",
"html": null,
"type_str": "table",
"num": null,
"text": ""
},
"TABREF3": {
"content": "<table><tr><td>Config</td><td colspan=\"2\">Explanation Bank Dev Test</td><td>ARC Easy Dev Test</td><td>ARC Challenge Dev Test</td><td>Openbook QA Dev Test</td></tr><tr><td>IR BM25 (K = 5Q base</td><td colspan=\"5\">44.86% 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%</td></tr><tr><td>K+Q base</td><td colspan=\"5\">58.14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%</td></tr><tr><td>K large</td><td colspan=\"5\">51.62% 45.85% 52.81% 52.58% 37.53% 33.07% 31.72% 34.12%</td></tr><tr><td>Q large</td><td colspan=\"5\">47.54% 43.47% 53.61% 51.41% 27.09% 28.63% 28.24% 36.04%</td></tr><tr><td>K+Q large</td><td colspan=\"5\">60.16% 50.98% 61.19% 58.24% 39.00% 37.63% 35.64% 38.20%</td></tr><tr><td>base FT</td><td>-</td><td>-</td><td colspan=\"3\">53.61% 53.82% 36.72% 32.71% 53.64% 53.16%</td></tr><tr><td>K base FT</td><td>-</td><td>-</td><td colspan=\"3\">53.61% 52.81% 35.79% 34.90% 53.60% 54.60%</td></tr><tr><td>Q base FT</td><td>-</td><td>-</td><td colspan=\"3\">59.05% 58.44% 33.65% 35.09% 56.04% 57.08%</td></tr><tr><td>K+Q base FT</td><td/><td/><td colspan=\"3\">59.33% 58.79% 38.13% 38.09% 56.12% 56.56%</td></tr></table>",
"html": null,
"type_str": "table",
"num": null,
"text": "N-XKT Question Answering accuracy results. ) 50.29% 44.55% 54.56% 50.00% 37.46% 31.14% 24.80% 26.80% K base 49.30% 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%"
},
"TABREF4": {
"content": "<table><tr><td>Knowledge</td><td>Config</td><td>Explanation Bank Dev Test</td><td>ARC Easy Dev Test</td><td>ARC Challenge Dev Test</td><td>Openbook QA Dev Test</td></tr><tr><td>None</td><td>Q base</td><td>44.86% 40.34%</td><td>50.81% 47.43%</td><td>24.41% 26.86%</td><td>27.92% 33.12%</td></tr><tr><td>Retrieval</td><td colspan=\"2\">K base K+Q base 51.00% 46.08% 39.05% 38.72%</td><td>44.42% 45.25% 51.79% 53.22%</td><td>23.75% 26.25% 34.65% 33.00%</td><td>27.12% 29.96% 31.96% 32.96%</td></tr><tr><td>Inference-supporting</td><td colspan=\"2\">K base K+Q base 52.72% 47.33% 41.60% 38.24%</td><td>45.96% 44.77% 54.35% 54.32%</td><td>26.09% 26.02% 34.85% 34.40%</td><td>27.40% 30.88% 33.64% 37.16%</td></tr><tr><td>Complex inference</td><td colspan=\"2\">K base K+Q base 52.99% 46.12% 41.01% 38.58%</td><td>46.32% 45.98% 55.30% 52.74%</td><td>24.95% 23.75% 34.78% 34.51%</td><td>26.96% 29.76% 32.08% 35.08%</td></tr><tr><td>All</td><td colspan=\"2\">K base K+Q base 58.49.30% 44.74%</td><td>50.18% 50.89%</td><td>34.38% 33.17%</td><td>30.96% 32.72%</td></tr></table>",
"html": null,
"type_str": "table",
"num": null,
"text": "Question Answering accuracy results using different explanatory knowledge categories. 14% 50.42% 58.53% 57.98% 37.46% 35.87% 35.32% 37.60%"
},
"TABREF5": {
"content": "<table/>",
"html": null,
"type_str": "table",
"num": null,
"text": ""
},
"TABREF6": {
"content": "<table><tr><td/><td colspan=\"6\">ARC Easy ARC Challenge Openbook QA External KB IR-based Fine-tuned</td></tr><tr><td>IR BM25 (K = 5)</td><td>50.00%</td><td>31.14%</td><td>26.80%</td><td>9</td><td>yes</td><td>no</td></tr><tr><td>Clark et al. (2018)</td><td>62.60%</td><td>20.30%</td><td>-</td><td>1</td><td>yes</td><td>yes</td></tr><tr><td>Mihaylov et al. (2018)</td><td>-</td><td>-</td><td>50.20%</td><td>2, 3</td><td>yes</td><td>yes</td></tr><tr><td>Khot et al. (2018)</td><td>59.00%</td><td>27.10%</td><td>24.40%</td><td>4</td><td>yes</td><td>yes</td></tr><tr><td>Zhang et al. (2018)</td><td>-</td><td>31.70%</td><td>-</td><td>1</td><td>no</td><td>yes</td></tr><tr><td>Yadav et al. (2018)</td><td>58.40%</td><td>26.60%</td><td>-</td><td>none</td><td>no</td><td>yes</td></tr><tr><td>Musa et al. (2019)</td><td>52.20%</td><td>33.20%</td><td>-</td><td>1</td><td>yes</td><td>yes</td></tr><tr><td>Zhong et al. (2019)</td><td>-</td><td>33.40%</td><td>-</td><td>2</td><td>no</td><td>yes</td></tr><tr><td>P\u00eertoac\u0203 et al. (2019)</td><td>61.10%</td><td>26.90%</td><td>-</td><td>4, 5, 6</td><td>no</td><td>yes</td></tr><tr><td>Ni et al. (2019)</td><td>-</td><td>36.60%</td><td>-</td><td>7, 8</td><td>no</td><td>yes</td></tr><tr><td>GP T II (Radford, 2018)</td><td>57.00%</td><td>38.20%</td><td>52.00%</td><td>7</td><td>no</td><td>yes</td></tr><tr><td>RS II (Sun et al., 2019)</td><td>66.60%</td><td>40.70%</td><td>55.20%</td><td>7</td><td>no</td><td>yes</td></tr><tr><td>N-XKT K+Q base (ours)</td><td>57.98%</td><td>35.87%</td><td>37.60%</td><td>9</td><td>no</td><td>no</td></tr></table>",
"html": null,
"type_str": "table",
"num": null,
"text": ")."
},
"TABREF7": {
"content": "<table><tr><td>Config</td><td colspan=\"2\">Explanation Bank Dev Test</td><td colspan=\"2\">ARC Easy Dev Test</td><td colspan=\"2\">ARC Challenge Dev Test</td><td colspan=\"2\">Openbook QA Dev Test</td></tr><tr><td>IR BM25 (K = 5)</td><td>50.29%</td><td>44.55%</td><td>54.56%</td><td>50.00%</td><td>37.46%</td><td>31.14%</td><td>24.80%</td><td>26.80%</td></tr><tr><td>K base</td><td colspan=\"8\">49.30% \u00b10.0238 \u00b10.0166 \u00b10.0167 \u00b10.0198 \u00b10.0255 \u00b10.0165 \u00b10.0359 \u00b10.0273 44.74% 50.18% 50.89% 34.38% 33.17% 30.96% 32.72%</td></tr><tr><td>Q base</td><td colspan=\"8\">44.86% \u00b10.0229 \u00b10.0087 \u00b10.0258 \u00b10.0136 \u00b10.0101 \u00b10.0049 \u00b10.0342 \u00b10.0176 40.34% 50.81% 47.43% 24.41% 26.86% 27.92% 33.12%</td></tr><tr><td>K+Q base</td><td>58.14%</td><td>50.42%</td><td>58.53%</td><td>57.98%</td><td>37.46%</td><td>35.87%</td><td>35.32%</td><td>37.60%</td></tr><tr><td>K large</td><td colspan=\"2\">51.62% \u00b10.0159 \u00b10.0089 45.85%</td><td>52.81% \u00b10.004</td><td colspan=\"5\">52.58% \u00b10.0136 \u00b10.0109 \u00b10.0129 \u00b10.0199 \u00b10.0232 37.53% 33.07% 31.72% 34.12%</td></tr><tr><td>Q large</td><td colspan=\"4\">47.54% \u00b10.0131 \u00b10.0061 \u00b10.0176 \u00b10.0073 43.47% 53.61% 51.41%</td><td>27.09% \u00b10.012</td><td colspan=\"3\">28.63% \u00b10.0125 \u00b10.0118 \u00b10.0167 28.24% 36.04%</td></tr><tr><td>K+Q large</td><td>60.16%</td><td>50.98%</td><td>61.19%</td><td>58.24%</td><td>39.00%</td><td>37.63%</td><td>35.64%</td><td>38.20%</td></tr><tr><td>base FT</td><td>--</td><td>--</td><td colspan=\"6\">53.61% \u00b10.0168 \u00b10.0093 \u00b10.0104 \u00b10.0086 \u00b10.0182 \u00b10.0223 53.82% 36.72% 32.71% 53.64% 53.16%</td></tr><tr><td>K base FT</td><td>--</td><td>--</td><td colspan=\"6\">53.61% \u00b10.0159 \u00b10.0241 \u00b10.0218 \u00b10.0239 \u00b10.0248 \u00b10.0281 52.81% 35.79% 34.90% 53.60% 54.60%</td></tr><tr><td>Q base FT</td><td>--</td><td>--</td><td colspan=\"6\">59.05% \u00b10.0177 \u00b10.0070 \u00b10.0280 \u00b10.0065 \u00b10.0126 \u00b10.0178 58.44% 33.65% 35.09% 56.04% 57.08%</td></tr><tr><td>K+Q base FT</td><td>-</td><td>-</td><td>59.33%</td><td>58.79%</td><td>38.13%</td><td>38.09%</td><td>56.12%</td><td>56.56%</td></tr></table>",
"html": null,
"type_str": "table",
"num": null,
"text": "N-XKT Question Answering accuracy result comparison \u00b10.0119 \u00b10.0039 \u00b10.0047 \u00b10.0014 \u00b10.0135 \u00b10.0149 \u00b10.0124 \u00b10.0085 \u00b10.0168 \u00b10.0102 \u00b10.0108 \u00b10.0076 \u00b10.0268 \u00b10.0155 \u00b10.0076 \u00b10.0161 \u00b10.0187 \u00b10.0087 \u00b10.0224 \u00b10.0124 \u00b10.0186 \u00b10.0111"
},
"TABREF8": {
"content": "<table><tr><td>Knowledge</td><td>Config</td><td colspan=\"2\">Explanation Bank Dev Test</td><td colspan=\"2\">ARC Easy Dev Test</td><td colspan=\"2\">ARC Challenge Dev Test</td><td colspan=\"2\">Openbook QA Dev Test</td></tr><tr><td>None</td><td>Q base</td><td>44.86%</td><td>40.34%</td><td>50.81%</td><td>47.43%</td><td>24.41%</td><td>26.86%</td><td>27.92%</td><td>33.12%</td></tr><tr><td>RET</td><td>K base K+Q base</td><td colspan=\"2\">39.05% \u00b10.0258 \u00b10.0106 38.72% 51.00% 46.08%</td><td>44.42% \u00b10.011 51.79%</td><td colspan=\"5\">45.25% \u00b10.0139 \u00b10.0165 \u00b10.0141 \u00b10.0099 \u00b10.0202 23.75% 26.25% 27.12% 29.96% 53.22% 34.65% 33.00% 31.96% 32.96%</td></tr><tr><td/><td>K base</td><td>41.60%</td><td>38.24%</td><td>45.96%</td><td>44.77%</td><td>26.09%</td><td>26.02%</td><td>27.40%</td><td>30.88%</td></tr><tr><td>INSUPP</td><td>K+Q base</td><td colspan=\"4\">52.72% \u00b10.0247 \u00b10.0062 \u00b10.0206 \u00b10.0092 47.33% 54.35% 54.32%</td><td>34.85% \u00b10.031</td><td colspan=\"3\">34.40% \u00b10.0128 \u00b10.0279 \u00b10.0306 33.64% 37.16%</td></tr><tr><td>COMPLEX</td><td>K base K+Q base</td><td colspan=\"6\">41.01% \u00b10.0132 \u00b10.0035 \u00b10.0134 \u00b10.0091 \u00b10.0263 \u00b10.0066 38.58% 46.32% 45.98% 24.95% 23.75% 52.99% 46.12% 55.30% 52.74% 34.78% 34.51% \u00b10.0098 \u00b10.0131 \u00b10.0081 \u00b10.0087 \u00b10.0112 \u00b10.0194</td><td>26.96% \u00b10.012 32.08% \u00b10.018</td><td>29.76% \u00b10.0163 35.08% \u00b10.0153</td></tr><tr><td/><td>K base</td><td>49.30%</td><td>44.74%</td><td>50.18%</td><td>50.89%</td><td>34.38%</td><td>33.17%</td><td>30.96%</td><td>32.72%</td></tr><tr><td>All</td><td>K+Q base</td><td>58.14%</td><td>50.42%</td><td>58.53%</td><td>57.98%</td><td>37.46%</td><td>35.87%</td><td>35.32%</td><td>37.60%</td></tr></table>",
"html": null,
"type_str": "table",
"num": null,
"text": "Question Answering accuracy result in different abstractive knowledge categories \u00b10.0229 \u00b10.0087 \u00b10.0258 \u00b10.0136 \u00b10.0101 \u00b10.0049 \u00b10.0342 \u00b10.0176 \u00b10.0173 \u00b10.0135 \u00b10.0178 \u00b10.0141 \u00b10.0321 \u00b10.0128 \u00b10.0192 \u00b10.0182 \u00b10.0149 \u00b10.0075 \u00b10.0127 \u00b10.0118 \u00b10.0164 \u00b10.0099 \u00b10.0168 \u00b10.0122 \u00b10.0238 \u00b10.0166 \u00b10.0167 \u00b10.0198 \u00b10.0255 \u00b10.0165 \u00b10.0359 \u00b10.0273 \u00b10.0119 \u00b10.0039 \u00b10.0047 \u00b10.0014 \u00b10.0135 \u00b10.0149 \u00b10.0124 \u00b10.0085"
}
}
}
} |