File size: 172,378 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:24:33.547787Z"
    },
    "title": "Predicate Representations and Polysemy in VerbNet Semantic Parsing",
    "authors": [
        {
            "first": "James",
            "middle": [],
            "last": "Gung",
            "suffix": "",
            "affiliation": {},
            "email": "james.gung@colorado.edu"
        },
        {
            "first": "Martha",
            "middle": [],
            "last": "Palmer",
            "suffix": "",
            "affiliation": {},
            "email": "martha.palmer@colorado.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Despite recent advances in semantic role labeling propelled by pre-trained text encoders like BERT, performance lags behind when applied to predicates observed infrequently during training or to sentences in new domains. In this work, we investigate how semantic role labeling performance on low-frequency predicates and out-of-domain data can be improved by using VerbNet, a verb lexicon that groups verbs into hierarchical classes based on shared syntactic and semantic behavior and defines semantic representations describing relations between arguments. We find that Verb-Net classes provide an effective level of abstraction, improving generalization on lowfrequency predicates by allowing them to learn from the training examples of other predicates belonging to the same class. We also find that joint training of VerbNet role labeling and predicate disambiguation of VerbNet classes for polysemous verbs leads to improvements in both tasks, naturally supporting the extraction of VerbNet's semantic representations.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Despite recent advances in semantic role labeling propelled by pre-trained text encoders like BERT, performance lags behind when applied to predicates observed infrequently during training or to sentences in new domains. In this work, we investigate how semantic role labeling performance on low-frequency predicates and out-of-domain data can be improved by using VerbNet, a verb lexicon that groups verbs into hierarchical classes based on shared syntactic and semantic behavior and defines semantic representations describing relations between arguments. We find that Verb-Net classes provide an effective level of abstraction, improving generalization on lowfrequency predicates by allowing them to learn from the training examples of other predicates belonging to the same class. We also find that joint training of VerbNet role labeling and predicate disambiguation of VerbNet classes for polysemous verbs leads to improvements in both tasks, naturally supporting the extraction of VerbNet's semantic representations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Semantic role labeling (SRL) is a form of shallow semantic parsing that involves the extraction of predicate arguments and their assignment to consistent roles with respect to the predicate, facilitating the labeling of e.g. who did what to whom (Gildea and Jurafsky, 2000) . SRL systems have been broadly applied to applications such as question answering (Berant et al., 2014; Wang et al., 2015) , machine translation (Liu and Gildea, 2010; Bazrafshan and Gildea, 2013) , dialog systems (Tur and Hakkani-T\u00fcr, 2005; Chen et al., 2013) , metaphor detection (Stowe et al., 2019) , and clinical information extraction (Gung, 2013; MacAvaney et al., 2017) . Recent approaches to SRL have achieved * Work done prior to joining Amazon. large gains in performance through the use of pretrained text encoders like ELMo and BERT (Peters et al., 2018; Devlin et al., 2019) . Despite these advances, performance on low-frequency predicates and out-of-domain data remains low relative to in-domain performance on higher frequency predicates. The assignment of role labels to a predicate's arguments is dependent upon the predicate's sense. PropBank divides each predicate into one or more rolesets, which are coarsegrained sense distinctions that each provide a set of core numbered arguments (A0-A5) and their corresponding definitions. VerbNet (VN) groups verbs into hierarchical classes, each class defining a set of valid syntactic frames that define a direct correspondence between thematic roles and syntactic realizations, e.g. Agent REL Patient (e.g. John broke the vase) or Patient REL (e.g. The vase broke) for break-45.1 (Schuler, 2005) .",
                "cite_spans": [
                    {
                        "start": 246,
                        "end": 273,
                        "text": "(Gildea and Jurafsky, 2000)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 357,
                        "end": 378,
                        "text": "(Berant et al., 2014;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 379,
                        "end": 397,
                        "text": "Wang et al., 2015)",
                        "ref_id": "BIBREF50"
                    },
                    {
                        "start": 420,
                        "end": 442,
                        "text": "(Liu and Gildea, 2010;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 443,
                        "end": 471,
                        "text": "Bazrafshan and Gildea, 2013)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 489,
                        "end": 516,
                        "text": "(Tur and Hakkani-T\u00fcr, 2005;",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 517,
                        "end": 535,
                        "text": "Chen et al., 2013)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 557,
                        "end": 577,
                        "text": "(Stowe et al., 2019)",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 616,
                        "end": 628,
                        "text": "(Gung, 2013;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 629,
                        "end": 652,
                        "text": "MacAvaney et al., 2017)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 821,
                        "end": 842,
                        "text": "(Peters et al., 2018;",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 843,
                        "end": 863,
                        "text": "Devlin et al., 2019)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1621,
                        "end": 1636,
                        "text": "(Schuler, 2005)",
                        "ref_id": "BIBREF43"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recent PropBank (PB) semantic role labeling models have largely eschewed explicit predicate disambiguation in favor of direct prediction of semantic roles in end-to-end trainable models (Zhou and Xu, 2015; He et al., 2017; Shi and Lin, 2019) . This is possible for several reasons: First, Prop-Bank's core roles and modifiers are shared across all predicates, allowing a single classifier to be trained over tokens or spans. Second, although definitions of PB roles are specific to the different senses of each predicate, efforts are made when creating rolesets to ensure that A0 and A1 exhibit properties of Dowty's prototypical Agent and prototypical Patient respectively (1991) . Finally, PB rolesets are defined based on VN class membership, with predicates in the same classes thus being assigned relatively consistent role definitions (Bonial et al., 2010) .",
                "cite_spans": [
                    {
                        "start": 186,
                        "end": 205,
                        "text": "(Zhou and Xu, 2015;",
                        "ref_id": "BIBREF57"
                    },
                    {
                        "start": 206,
                        "end": 222,
                        "text": "He et al., 2017;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 223,
                        "end": 241,
                        "text": "Shi and Lin, 2019)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 609,
                        "end": 680,
                        "text": "Dowty's prototypical Agent and prototypical Patient respectively (1991)",
                        "ref_id": null
                    },
                    {
                        "start": 841,
                        "end": 862,
                        "text": "(Bonial et al., 2010)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Unlike PropBank, VerbNet's thematic roles are shared across predicates and classes with consistent definitions. However, VN roles are more dependent on the identity of the predicate (Zapirain et al., 2008; Merlo and Van Der Plas, 2009) . Examples of PropBank and VerbNet roles illustrating this are given in Table 1 . Consequently, VN role labeling models may benefit more from predicate features than PropBank. Furthermore, while it is possible to identify PB or VN roles without classifying predicate senses, linking the resulting roles to their definitions or to the syntactic frames and associated semantic primitives in VN does require explicit predicate disambiguation (Brown et al., 2019) . Therefore, predicate disambiguation is often an essential step when applying SRL systems to real-world problems.",
                "cite_spans": [
                    {
                        "start": 182,
                        "end": 205,
                        "text": "(Zapirain et al., 2008;",
                        "ref_id": "BIBREF56"
                    },
                    {
                        "start": 206,
                        "end": 235,
                        "text": "Merlo and Van Der Plas, 2009)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 675,
                        "end": 695,
                        "text": "(Brown et al., 2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 308,
                        "end": 315,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this work, we evaluate alternative approaches for incorporating VerbNet classes in English Verb-Net and PropBank role labeling. We propose a joint model for SRL and VN predicate disambiguation (VN classification), finding that joint training leads to improvements in VN classification and role labeling for out-of-domain predicates. We also evaluate VN classes as predicate-specific features. Using gold classes, we observe significant improvements in both PB and VN SRL. We also observe improvements in VN role labeling when using predicted classes and features that incorporate all valid classes for each predicate 1 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "VerbNet VerbNet is a broad-coverage lexicon that groups verbs into hierarchical classes based on shared syntactic and semantic behavior (Schuler, 2005) . Each VN class is assigned a set of thematic roles that, unlike PB numbered arguments, maintain consistent meanings across different verbs and classes. VN classes provide an enumeration of syntactic frames applicable to each member verb, describing how the thematic roles of a VN class may be realized in a sentence. Every syntactic frame entails a set of low-level semantic representations (primitives) that describe relations between thematic role arguments as well as changes throughout the course of the event (Brown et al., 2018) . The close relationship between syntactic realizations and semantic representations facilitates straightforward extraction of VN semantic predicates given identification of a VN class and corresponding thematic roles. VN primitives have been applied to problems such as machine comprehension and question generation (Dhole and Manning, 2020) .",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 151,
                        "text": "(Schuler, 2005)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 667,
                        "end": 687,
                        "text": "(Brown et al., 2018)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1005,
                        "end": 1030,
                        "text": "(Dhole and Manning, 2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background and Related Work",
                "sec_num": "2"
            },
            {
                "text": "Comparing VerbNet with PropBank Yi et al. (2007) use VN role groupings to improve label consistency across verbs by reducing the overloading of PropBank's numbered arguments like A2. Comparing SRL models trained on PB and VN, Zapirain et al. (2008) find that their VerbNet model performs worse on infrequent predicates than their PB model, and suggest that VN is more reliant on the identity of the predicate than PB based on experiments removing predicate-specific features from their models. They suggest that the high consistency of A0 and A1 enables PB to generalize better without relying on predicate-specific information. Merlo and Van Der Plas (2009) provide an information-theoretic perspective on the comparison of PropBank and VerbNet, demonstrating how the identity of the predicate is more important to VN SRL than for PB by comparing the conditional entropy of roles given verbs as well as the mutual information of roles and verbs. In multilingual BERT probing studies comparing several SRL formalisms, Kuznetsov and Gurevych (2020) find that layer utilization for predicates differs between PB and VN. PB emphasizes the same layers used for syntactic tasks, while VN uses layers associated with tasks used more prevalently in lexical tasks. These findings reinforce the importance of predicate representations to VerbNet.",
                "cite_spans": [
                    {
                        "start": 42,
                        "end": 48,
                        "text": "(2007)",
                        "ref_id": null
                    },
                    {
                        "start": 222,
                        "end": 248,
                        "text": "VN, Zapirain et al. (2008)",
                        "ref_id": null
                    },
                    {
                        "start": 629,
                        "end": 658,
                        "text": "Merlo and Van Der Plas (2009)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 1018,
                        "end": 1047,
                        "text": "Kuznetsov and Gurevych (2020)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background and Related Work",
                "sec_num": "2"
            },
            {
                "text": "Previous work has investigated the interplay between predicate sense disambiguation and SRL. Dang and Palmer (2005) improve verb sense disambiguation (VSD) using features based on semantic role labels. Moreda and Palomar (2006) find that explicit verb senses improve PB SRL for verb-specific roles like A2 and A3, but hurt on adjuncts. Yi (2007) find that using gold standard PB roleset IDs as features in an SRL model improves performance only on highly polysemous verbs. Dahlmeier et al. (2009) propose a joint probabilistic model for preposition disambiguation and SRL, finding an improvement over independent models.",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 115,
                        "text": "Dang and Palmer (2005)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 202,
                        "end": 227,
                        "text": "Moreda and Palomar (2006)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 473,
                        "end": 496,
                        "text": "Dahlmeier et al. (2009)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SRL and Predicate Disambiguation",
                "sec_num": null
            },
            {
                "text": "Predicate disambiguation plays a critical role in FrameNet (Baker et al., 1998) parsing, in part because FrameNet's role inventory is more than an order of magnitude larger than that of PB and VN. This richer, more granular role inventory lends advantages to approaches that constrain role identification to the set of valid roles for the predicted frame Hermann et al., 2014) , or that jointly encode argument and role representations given identified frames (FitzGerald et al., 2015) .",
                "cite_spans": [
                    {
                        "start": 59,
                        "end": 79,
                        "text": "(Baker et al., 1998)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 355,
                        "end": 376,
                        "text": "Hermann et al., 2014)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 460,
                        "end": 485,
                        "text": "(FitzGerald et al., 2015)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SRL and Predicate Disambiguation",
                "sec_num": null
            },
            {
                "text": "LM Pre-training and SRL Language model (LM) pre-training has become ubiquitous in natural language processing tasks, with LM encoders like ELMo propelling forward the state of the art in SRL (Peters et al., 2018) . We are interested in whether a strong baseline model using a LM encoder such as BERT can be further improved by incorporating external knowledge from lexical resources like VN.",
                "cite_spans": [
                    {
                        "start": 191,
                        "end": 212,
                        "text": "(Peters et al., 2018)",
                        "ref_id": "BIBREF41"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SRL and Predicate Disambiguation",
                "sec_num": null
            },
            {
                "text": "BERT (Devlin et al., 2019 ) is a Transformer encoder (Vaswani et al., 2017) jointly trained using two objectives: a masked language modeling objective to predict the identity of randomly-masked tokens in the input, as well as a next sentence prediction task (NSP) intended to encourage the model to encode the relationship between sentence pairs (henceforth referred to as Sent. A and Sent. B). Sentences are tokenized using WordPiece (Wu et al., 2016) . As a Transformer encoder, BERT applies multiple layers of a multi-headed self-attention mechanism to progressively build contextual tokenlevel representations. In our experiments, we use encodings from the final layer.",
                "cite_spans": [
                    {
                        "start": 5,
                        "end": 25,
                        "text": "(Devlin et al., 2019",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 53,
                        "end": 75,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF49"
                    },
                    {
                        "start": 435,
                        "end": 452,
                        "text": "(Wu et al., 2016)",
                        "ref_id": "BIBREF52"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SRL and Predicate Disambiguation",
                "sec_num": null
            },
            {
                "text": "Our baseline SRL model closely follows Shi and Lin (2019) . We thus approach SRL as a sequence tagging task, predicting per-word, IOB-encoded (In, Out, Begin) role labels independently for each predicate in a sentence. A predicate-aware encod-ing of a sentence is produced using the target predicate as the Sent. B input to BERT. For example, the sentence I tried opening it is processed as:",
                "cite_spans": [
                    {
                        "start": 39,
                        "end": 57,
                        "text": "Shi and Lin (2019)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "CLS I tried opening it SEP opening SEP",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "for the verb open. This enables BERT to incorporate the identity of the predicate in the encoding of each word while clearly delineating it from tokens in the original sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "To simplify notation, we'll treat LM(a, b) \u2208 R Ta\u00d7D LM as shorthand for the final layer BERT encoding for a pair of sentences a = w 1 , ..., w Ta and b = w 1 , ..., w T b with T a and T b words respectively, where D LM gives BERT's hidden size. This is produced by applying WordPiece tokenization (WP) to each word in each sentence and concatenating the resulting sequences of token IDs with standard BERT-specific IDs:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "w = CLS, WP(a), SEP, WP(b), SEP",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "The resulting sequence of tokens w is encoded using BERT. We use the final layer outputs, taking vectors only for the first WordPiece token for each original word in Sent. A (a), filtering out vectors corresponding to Sent. B (b), SEP or CLS. The resulting matrix consists of a vector per word in Sent. A, avoiding any discrepancies between IOBencoded word-level output labels and WordPiece tokens used as inputs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "Following previous work (Zhou and Xu, 2015; He et al., 2017) , we use a marker feature as an indicator for the specific location of the predicate within the sentence. For a sentence, w 1 , ..., w T , with a predicate given by index p \u2208 1...T , we compute a predicate-aware, contextualized embedding x pt of each word as",
                "cite_spans": [
                    {
                        "start": 24,
                        "end": 43,
                        "text": "(Zhou and Xu, 2015;",
                        "ref_id": "BIBREF57"
                    },
                    {
                        "start": 44,
                        "end": 60,
                        "text": "He et al., 2017)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "x pt = LM(w 1...T , w p ) (t) ; W (mark) (t=p) (1) with W (mark) \u2208 R 2\u00d7D mark and x pt \u2208 R D LM +D mark ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "where D mark provides the size of the predicate marker embedding.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "The predicate's positional information from the marker is integrated using a bidirectional LSTM (Hochreiter and Schmidhuber, 1997) , concatenating the hidden states for the forward and backward LSTMs at each timestep (omitting the p from x pt for brevity):",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 130,
                        "text": "(Hochreiter and Schmidhuber, 1997)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "h (f w) t = LSTM (f w) (x 1...T ) (t) h (bw) t = LSTM (bw) (x T...1 ) (T \u2212t) h (f b) t = h (f w) t ; h (bw) t (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "The BiLSTM output at each timestep t is concatenated with that of the predicate's timestep and passed through a sequentially-applied linear transformation followed by a leaky ReLu (\u03b1 = 0.1):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "x (mlp) pt = \u03c3 W (mlp) h (f b) t ; h (f b) p + b (mlp) (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "We apply a final linear projection from x (mlp) pt to IOB-encoded role labels:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "s (srl) pt = W (srl) x (mlp) pt + b (srl)",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "where s",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "(srl) pt \u2208 R K provides the unnormalized scores for each of K possible role labels, with the probability of predicting a label for a given token t and predicate p given by:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (y (srl) pt |w 1...T , w p ) = softmax(s (srl) pt )",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "Like He et al. 2017, we apply constrained Viterbi decoding to restrict inferred label sequences to produce valid IOB sequences.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Role Labeling with BERT",
                "sec_num": "3"
            },
            {
                "text": "Verbs belonging to the same VN class share syntactic and semantic properties and the same set of thematic roles and syntactic frames. Replacing a predicate in a sentence with a different verb from the same class typically produces a syntactically coherent sentence and does not impact the proposition's thematic role labels. VN classes may thus provide an effective level of abstraction for predicates in SRL. We hypothesize that using VN classes as predicate-specific features may help reduce sparsity issues for low-frequency and out-of-vocabulary (OOV) verbs. Intuitively, training examples for each member verb within a class contribute to the estimation of parameters associated with all other members of the same class, enabling the fine-tuning of predicate-level features even for OOV predicates. For example, a verb like traipse may rarely or never occur during training, but may belong to a class which appears hundreds of times in the form of more common verbs like run or rush. We investigate whether by sharing parameter updates across VN members, we can further improve generalization on infrequent verbs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes as Predicate Features",
                "sec_num": "4"
            },
            {
                "text": "Methodology Intuitively, BERT's NSP pretraining task encourages some level of focus on Sent. B tokens from attention heads when processing tokens in Sent. A. The predicate feature presented by Shi and Lin (2019) and applied in our baseline model uses the predicate token as the Sent. B input to BERT and thus allows the encodings of tokens in a sentence to be conditioned directly on the predicate.",
                "cite_spans": [
                    {
                        "start": 193,
                        "end": 211,
                        "text": "Shi and Lin (2019)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes as Predicate Features",
                "sec_num": "4"
            },
            {
                "text": "We propose to include tokens corresponding to the predicate's VN class as additional features as part of Sent. B. To realize this, we concatenate the corresponding VN class ID to Sent. B along with the predicate, updating the inputs given in Equation 1:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes as Predicate Features",
                "sec_num": "4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "LM(w 1...T , w p w s )",
                        "eq_num": "(6)"
                    }
                ],
                "section": "VerbNet Classes as Predicate Features",
                "sec_num": "4"
            },
            {
                "text": "where w s is a token corresponding to the VN class of the predicate w p 2 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes as Predicate Features",
                "sec_num": "4"
            },
            {
                "text": "VerbNet Classification VN classes can be predicted automatically using a word sense disambiguation system. We propose a simple model for VerbNet classification: fine tune a pre-trained BERT encoder by applying a feedforward multilayer perceptron (MLP) classifier over all VN classes to the BERT encoding associated with the first WordPiece of the target predicate. We again condition BERT on the target predicate by including it as a feature (w p ) in Sent. B:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes as Predicate Features",
                "sec_num": "4"
            },
            {
                "text": "x p = LM(w 1...T , w p ) (p) x (mlp) p = \u03c3 W (mlp) x p + b (mlp) s (vncls) p = W (vncls) x (mlp) p + b (vncls) (7)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes as Predicate Features",
                "sec_num": "4"
            },
            {
                "text": "where W (vncls) \u2208 R D mlp \u00d7V projects over all V VN classes for all predicates. The probability for predicting a VN class y (vncls) p for a given predicate and sentence is given by:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes as Predicate Features",
                "sec_num": "4"
            },
            {
                "text": "P (y (vncls) p |w 1...T , w p ) = softmax(s (vncls) p ) (8)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes as Predicate Features",
                "sec_num": "4"
            },
            {
                "text": "This single classifier formulation is possible for lexicons like VN and FrameNet in which predicates share senses from a global sense inventory. While individual predicates have a specific set of valid senses, their senses are shared from the global lexicon. Kawahara and Palmer (2014) demonstrate that a single classifier approach to VN classification achieves competitive performance when using shared semantic features. Intuitively, by training the classifier across multiple verbs, the model parameters specific to each sense receive more updates, with infrequent verb-class pairs also benefiting from the examples of other verbs within the same class. At inference time, we constrain sense predictions to predicate-sense combinations observed in the training data, selecting the highestscoring valid sense given the predicate. We evaluate models using both predicted and gold (ground truth) classes for w s as PREDICTED CLASS and GOLD CLASS respectively.",
                "cite_spans": [
                    {
                        "start": 259,
                        "end": 285,
                        "text": "Kawahara and Palmer (2014)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes as Predicate Features",
                "sec_num": "4"
            },
            {
                "text": "Like SRL, VerbNet classification accuracy declines in the long tail of low frequency senses and predicates. For this reason, incorrect sense predictions may negate the benefits of VN class features on precisely the instances for which they might be expected to be beneficial: OOV or rare predicates.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes without Disambiguation",
                "sec_num": null
            },
            {
                "text": "To avoid this problem while still retaining the benefits of parameter sharing for low frequency predicates with higher-frequency predicates belonging to the same VN class, we propose including the set of all possible classes for a given predicate as Sent. B features. To incorporate multiple senses, we simply concatenate them sequentially to Sent. B:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes without Disambiguation",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "LM(w 1...T , w p w s 1...k )",
                        "eq_num": "(9)"
                    }
                ],
                "section": "VerbNet Classes without Disambiguation",
                "sec_num": null
            },
            {
                "text": "This allows the BERT encoder to attend over all possible VerbNet classes for a given predicate and sentence, without making a discrete decision about which class is correct. The extent and way in which the model incorporates the Sent. B tokens associated with the available classes is learned during training. The inputs to this model, later referred to as ALL CLASSES are identical to PREDICTED CLASS and GOLD CLASS models for monosemous predicates.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Classes without Disambiguation",
                "sec_num": null
            },
            {
                "text": "Features that are useful for SRL may also be useful in predicting the sense of a predicate. For example, surface-level syntactic awareness that the argument of a predicate is a clause instead of a noun phrase may change the expected sense of a verb (bring-11.3 vs. characterize-29.2):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "Bob took Mary to the doctor. John took Mary to be a doctor.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "The semantic classes of arguments are also often important in determining the sense of a given predicate (dub-29.3.2 vs. get-13.5.1):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "John called Mary a name. John called Mary a car.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "This dependency between SRL and predicate sense disambiguation together with the prevalence of shared features between the two tasks makes them a good candidate for multi-task learning (Caruana, 1998) .",
                "cite_spans": [
                    {
                        "start": 185,
                        "end": 200,
                        "text": "(Caruana, 1998)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "Multi-task Model Much of recent work in multitask learning for SRL has focused on syntactic tasks such as syntactic parsing as auxiliary objectives (Strubell et al., 2018; Swayamdipta et al., 2018; Xia et al., 2019; Zhou et al., 2020) . We first investigate an MTL approach that predicts semantic role labels and predicate senses independently given a shared BERT encoder. We extend our baseline SRL model, adding an additional head that is trained to predict the target predicate's sense, as described in Equation 8. The negative log likelihood of a single training instance with predicate p and token sequence x = w 1...T with T tokens is then given by:",
                "cite_spans": [
                    {
                        "start": 148,
                        "end": 171,
                        "text": "(Strubell et al., 2018;",
                        "ref_id": "BIBREF46"
                    },
                    {
                        "start": 172,
                        "end": 197,
                        "text": "Swayamdipta et al., 2018;",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 198,
                        "end": 215,
                        "text": "Xia et al., 2019;",
                        "ref_id": "BIBREF53"
                    },
                    {
                        "start": 216,
                        "end": 234,
                        "text": "Zhou et al., 2020)",
                        "ref_id": "BIBREF58"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "\u2212 T t=1 log P (y (srl) pt |x, p) + \u03bb vncls log P (y (vncls) p |x, p) (10)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "with \u03bb vncls weighting the contribution of VerbNet class prediction to the overall objective. For brevity, we henceforth refer to this model as SRL + VSD.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "We also investigate conditioning role labeling directly on predicted predicate senses. We implement this by concatenating a weighted label embedding of the target predicate's predicted class to each of the SRL head's input vectors, x ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "y (vncls) p = K k=1 P (y (vncls) p = k|x, p)W (vncls) (k) (11) with W (vncls) \u2208 R K\u00d7D vncls and y (srl) p \u2208 R D vncls .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "The input to the SRL head is then given by:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "x (srl) pt = LM(w 1...T , w p ) (t) ; W (mark) (t=p) ; y (vncls) p (12)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "VerbNet class embeddings are initialized using the average of word embeddings corresponding to members of each class. During training, we use embeddings of predicted labels to avoid a discrepancy between the inputs to the SRL head between training and inference, when the gold labels are no longer available. In preliminary experiments, we used gold labels, similar to teacher forcing as described in Williams and Zipser (1989) , but found that performance degraded when applied to predicted labels. We refer to the model described in this section as SRL | VSD.",
                "cite_spans": [
                    {
                        "start": 401,
                        "end": 427,
                        "text": "Williams and Zipser (1989)",
                        "ref_id": "BIBREF51"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Joint VerbNet Classification and SRL",
                "sec_num": "5"
            },
            {
                "text": "All models are implemented using Tensorflow 1.13 (Abadi et al., 2016) and are trained on a single NVIDIA GTX 1080 Ti GPU. We use the 110M parameter cased BERT-Base model available in Tensorflow Hub 3 , with D LM = 768. To align with Shi and Lin (2019) , D mark is set to 10, and LSTM and MLP hidden state sizes are set to 768 and 300 respectively. Dropout rates of 0.1 are applied to BERT outputs as well as after ReLu transforms in MLPs. Recurrent dropout (Gal and Ghahramani, 2016) with a rate of 0.1 is applied in LSTMs on hidden states and outputs. To initialize VerbNet class embeddings, we use 100-dimensional GloVe embeddings (Pennington et al., 2014) averaged over member verbs (D vncls = 100). \u03bb vncls is set to 0.5 after a preliminary search over {0.1, 0.5, 1.0}.",
                "cite_spans": [
                    {
                        "start": 49,
                        "end": 69,
                        "text": "(Abadi et al., 2016)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 233,
                        "end": 251,
                        "text": "Shi and Lin (2019)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 457,
                        "end": 483,
                        "text": "(Gal and Ghahramani, 2016)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 633,
                        "end": 658,
                        "text": "(Pennington et al., 2014)",
                        "ref_id": "BIBREF40"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "6"
            },
            {
                "text": "We follow the fine-tuning methodology described in Devlin et al. (2019) , using Adam (Kingma and Ba, 2014) with a batch size of 16. The learning rate is warmed up linearly from 0 to 5e-5 for 10% of training, then decayed linearly to 0 for the rest of training. Models are trained for up to 8 epochs. The best-performing checkpoint on the development set, evaluated at every half epoch, is selected for evaluation.",
                "cite_spans": [
                    {
                        "start": 51,
                        "end": 71,
                        "text": "Devlin et al. (2019)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "6"
            },
            {
                "text": "Unless otherwise mentioned, we train and evaluate all models with at least 7 independent random initializations, and present mean scores in our comparisons. To establish statistical significance, we apply a test for Almost Stochastic Dominance (Dror et al., 2019) between test score distributions, using \u03b1 = 0.05. Numbers in bold indicate highest average performance within a given evaluative setting, with a single star indicating statistical significance of almost stochastic dominance over our baseline Datasets We use English PropBank datasets from CoNLL-2005 (Carreras and M\u00e0rquez, 2005) and the CoNLL-2012 split (Pradhan et al., 2013) for OntoNotes (Hovy et al., 2006) in order to situate our baseline mode among recent work in PB SRL. We compare against models of similar size (120M parameters) with pre-identified predicates. The SemLink corpus (Palmer, 2009) is currently the only dataset that contains explicit VerbNet thematic role annotations with VN sense annotations. SemLink contains mappings between VN, PB and FrameNet, with annotations performed over a subset of the CoNLL-2005 PB WSJ annotations and Brown corpus out-of-domain test set (Carreras and M\u00e0rquez, 2005) . Using SemLink thus allows us to evaluate performance for both PB and VN roles on the same source text. Following Zapirain et al. (2008), we restrict evaluation to propositions with PB core arguments fully mapped to VN thematic roles. This accounts for 56% of the original corpus. We include PB modifier roles in addition to VN thematic roles.",
                "cite_spans": [
                    {
                        "start": 244,
                        "end": 263,
                        "text": "(Dror et al., 2019)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 553,
                        "end": 577,
                        "text": "CoNLL-2005 (Carreras and",
                        "ref_id": null
                    },
                    {
                        "start": 578,
                        "end": 592,
                        "text": "M\u00e0rquez, 2005)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 618,
                        "end": 640,
                        "text": "(Pradhan et al., 2013)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 655,
                        "end": 674,
                        "text": "(Hovy et al., 2006)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 853,
                        "end": 867,
                        "text": "(Palmer, 2009)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 1155,
                        "end": 1183,
                        "text": "(Carreras and M\u00e0rquez, 2005)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "6"
            },
            {
                "text": "Baseline Comparisons Our baseline SRL model achieves comparable performance to Shi and Lin (2019) on both CoNLL-2012 and CoNLL-2005 and thus has performance similar to state-of-the-art models of the same size.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "6"
            },
            {
                "text": "To compare our VerbNet classification models against prior work, we train and evaluate a publicly available state-of-the-art VN classification system directly on the SemLink corpus. We use Clear-WSD 4 , which is a sense disambiguation library tailored for verb sense disambiguation based on linear models over features constructed from an ensemble of word representations applied over syntactic relations (Palmer et al., 2017) .",
                "cite_spans": [
                    {
                        "start": 405,
                        "end": 426,
                        "text": "(Palmer et al., 2017)",
                        "ref_id": "BIBREF39"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "6"
            },
            {
                "text": "The results of our experiments are shown in Table 3 . First, we find that incorporating gold VerbNet classes (GOLD CLASS) significantly improves VerbNet SRL, providing a 15% relative error reduction on out-of-domain data (80.1 to 83.0), and 6% reduction on in-domain data (87.4 to 88.2). In PB SRL, gold classes are also beneficial, but to a lesser degree. ALL CLASSES and PRE-DICTED CLASS models improve both in-domain and out-of-domain VN SRL.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 44,
                        "end": 51,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "VerbNet Models",
                "sec_num": null
            },
            {
                "text": "Predicting both VN classes and semantic roles from a single encoder reduces the total computational resources required to make predictions from separate models, providing a practical benefit. Additionally, we are interested in determining whether our multi-task models lead to improvements in generalization. Our multi-task model SRL + VSD, which does not condition thematic role prediction on predicted senses, does not have a significant effect on VN SRL performance. However, we do find that conditioning SRL on VN class predictions in a multi-task model (SRL | VSD) leads to a significant improvement in performance on the out-of-domain Brown test set for VN SRL. No significant change is observed on the in-domain WSJ test set, or when the model is applied to PB SRL.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "VerbNet Models",
                "sec_num": null
            },
            {
                "text": "We also evaluate the impact of multi-task learning on predicate disambiguation (VN classification). First, we find that even our baseline model is competitive with the highly-specialized approach for verb sense disambiguation provided in Clear-WSD (Table 4) . Comparing our joint VN SRL models with a single task baseline for VN classification, we observe a significant improvement on WSJ test data when incorporating multi-task supervision from SRL. This approach is related to earlier use of SRL features for verb sense disambiguation reported in Dang and Palmer (2005) , and the positive result is consistent with their findings.",
                "cite_spans": [
                    {
                        "start": 549,
                        "end": 571,
                        "text": "Dang and Palmer (2005)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 248,
                        "end": 257,
                        "text": "(Table 4)",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "VerbNet Models",
                "sec_num": null
            },
            {
                "text": "Monosemous vs. Polysemous Predicates To understand the impact of VerbNet class features, we break down our evaluation by polysemous and 4 https://github.com/clearwsd/clearwsd monosemous verbs in Table 5 . First, we observe that incorporating VN classes improves F 1 scores for monosemous verbs in both models. This is expected, as monosemous verbs are typically lower frequency, with low-frequency and OOV verbs benefiting the most from parameter sharing with other verbs belonging to the same VN classes. We also observe a significant improvement on polysemous verbs in the WSJ (in-domain) test set when including VN features. However, polysemous verbs in the Brown (out-of-domain) test set only benefit from using explicitly predicted classes, but not when using all valid classes for each predicate.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 195,
                        "end": 202,
                        "text": "Table 5",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "7"
            },
            {
                "text": "Why does ALL CLASSES improve performance on out-of-domain data for monosemous verbs, but not polysemous verbs? Intuitively, the per-verb distributions of VerbNet classes may change considerably between two domains. Using a correctlypredicted class may help mitigate errors on verbs for which one class was dominant during training, but a different class or set of classes are observed during testing in the new domain. This benefit would not be observed with ALL CLASSES as for a given verb, the same classes used as model inputs during training would be used as inputs on out-ofdomain data. However, VN classes receive fewer updates during training when using only predicted classes. Thus, verbs appearing in classes that never or rarely appeared during training will not benefit from PREDICTED CLASS features. ALL CLASSES may mitigate this issue, since even if a specific class does not appear in the training data, it still can receive updates from examples of polysemous member verbs that belong to other classes (and improved performance over PREDICTED CLASS on monosemous verbs on the out-of-domain Brown test set supports this). As future work, a promising direction may therefore be to combine PREDICTED CLASS and ALL CLASSES features.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "7"
            },
            {
                "text": "Out-of-Vocabulary Predicates How well do models incorporating VerbNet features generalize on out-of-vocabulary and rare predicates? We split an evaluation on the WSJ development set into 5 bins by training set predicate frequency (shown in Figure 1 ). Comparing development F 1 scores for ALL CLASSES and PREDICTED CLASS models against our baseline model, we note that VN classes improve SRL performance most for predicates appearing 0-50 times in the training data, which account for 24.4% of instances in the development set. Focusing on low-frequency predicates, we further divide our evaluation of predicates occurring fewer than 50 times in the training data into 6 bins, one of which is reserved for OOV predicates (Figure 2) . From this analysis, we find that VN classes are most impactful on predicates appearing fewer than 10 times in the training data, with a large improvement over the baseline on OOV predicates when applying predicted classes.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 240,
                        "end": 248,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 721,
                        "end": 731,
                        "text": "(Figure 2)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "7"
            },
            {
                "text": "We investigate VerbNet classes as an effective level of abstraction for predicates when performing semantic role labeling. We find that incorporating features based on gold VerbNet classes improves both VerbNet and PropBank SRL, but when predicted classes are used, this effect is only observed for VerbNet. An improvement is also observed without explicit prediction of classes by including a list of all VerbNet classes the target predicate belongs to as features. Breaking down our evaluation into polysemous and monosemous predicates, we find that predicted classes help more on outof-domain polysemous predicates, while using all valid VerbNet classes helps more on out-of-domain low-frequency predicates. In multi-task learning experiments motivated by the interdependence of VN classification and SRL, we find that joint training improves both tasks when conditioning role labeling on predicted predicates, facilitating VN semantic parsing. In future work, we will investigate alternative approaches incorporating the structure of VerbNet into the parsing of VerbNet semantic representations. Finally, we hope to expand our evaluations to larger, more diverse datasets to further investigate domain transfer. Predicted Class All Classes Baseline Figure 2 : Evaluation by training set predicate frequency similar to Figure 1 , but focused on lowfrequency predicates. Most improvements are for predicates appearing fewer than 10 times in the training data.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1253,
                        "end": 1261,
                        "text": "Figure 2",
                        "ref_id": null
                    },
                    {
                        "start": 1322,
                        "end": 1330,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "8"
            },
            {
                "text": "Our code is available at https://github.com/ jgung/verbnet-parsing-iwcs-2021.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In preliminary experiments, we found that directly modifying Sent. A drastically reduces the performance of the model and slows convergence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We gratefully acknowledge the support of C3 (Cognitively Coherent Human-Computer Communication, subcontracts from UIUC and SIFT), DARPA AIDA Award FA8750-18-2-0016 (RAM-FIS), and DTRA HDTRA1-16-1-0002/Project 1553695 (eTASC -Empirical Evidence for a Theoretical Approach to Semantic Components). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of any government agency. This work was partially supported by research credits from Google Cloud. Finally, we thank the anonymous IWCS reviewers for their insightful comments and suggestions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Tensorflow: A system for large-scale machine learning",
                "authors": [
                    {
                        "first": "Mart\u00edn",
                        "middle": [],
                        "last": "Abadi",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Barham",
                        "suffix": ""
                    },
                    {
                        "first": "Jianmin",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifeng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Davis",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    },
                    {
                        "first": "Matthieu",
                        "middle": [],
                        "last": "Devin",
                        "suffix": ""
                    },
                    {
                        "first": "Sanjay",
                        "middle": [],
                        "last": "Ghemawat",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [],
                        "last": "Irving",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Isard",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "OSDI",
                "volume": "",
                "issue": "",
                "pages": "265--283",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mart\u00edn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In OSDI, pages 265-283.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "The Berkeley FrameNet project",
                "authors": [
                    {
                        "first": "Collin",
                        "middle": [
                            "F"
                        ],
                        "last": "Baker",
                        "suffix": ""
                    },
                    {
                        "first": "Charles",
                        "middle": [
                            "J"
                        ],
                        "last": "Fillmore",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [
                            "B"
                        ],
                        "last": "Lowe",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "86--90",
                "other_ids": {
                    "DOI": [
                        "10.3115/980845.980860"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Collin F. Baker, Charles J. Fillmore, and John B. Lowe. 1998. The Berkeley FrameNet project. In 36th An- nual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Volume 1, pages 86-90, Montreal, Quebec, Canada. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Semantic roles for string to tree machine translation",
                "authors": [
                    {
                        "first": "Marzieh",
                        "middle": [],
                        "last": "Bazrafshan",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "419--423",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marzieh Bazrafshan and Daniel Gildea. 2013. Seman- tic roles for string to tree machine translation. In Proceedings of the 51st Annual Meeting of the As- sociation for Computational Linguistics (Volume 2: Short Papers), pages 419-423, Sofia, Bulgaria. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Modeling biological processes for reading comprehension",
                "authors": [
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Berant",
                        "suffix": ""
                    },
                    {
                        "first": "Vivek",
                        "middle": [],
                        "last": "Srikumar",
                        "suffix": ""
                    },
                    {
                        "first": "Pei-Chun",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Abby",
                        "middle": [],
                        "last": "Vander Linden",
                        "suffix": ""
                    },
                    {
                        "first": "Brittany",
                        "middle": [],
                        "last": "Harding",
                        "suffix": ""
                    },
                    {
                        "first": "Brad",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "1499--1510",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/D14-1159"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany Harding, Brad Huang, Peter Clark, and Christopher D. Manning. 2014. Modeling biological processes for reading compre- hension. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1499-1510, Doha, Qatar. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "PropBank Annotation Guidelines",
                "authors": [
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Bonial",
                        "suffix": ""
                    },
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Babko-Malaya",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Jinho",
                        "suffix": ""
                    },
                    {
                        "first": "Jena",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Hwang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Claire Bonial, Olga Babko-Malaya, Jinho D Choi, Jena Hwang, and Martha Palmer. 2010. PropBank Anno- tation Guidelines. Technical report, Center for Com- putational Language and Education Research Insti- tute of Cognitive Science University of Colorado at Boulder.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "VerbNet representations: Subevent semantics for transfer verbs",
                "authors": [
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Susan Windisch Brown",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Bonn",
                        "suffix": ""
                    },
                    {
                        "first": "Annie",
                        "middle": [],
                        "last": "Gung",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Zaenen",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the First International Workshop on Designing Meaning Representations",
                "volume": "",
                "issue": "",
                "pages": "154--163",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-3318"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Susan Windisch Brown, Julia Bonn, James Gung, An- nie Zaenen, James Pustejovsky, and Martha Palmer. 2019. VerbNet representations: Subevent semantics for transfer verbs. In Proceedings of the First Inter- national Workshop on Designing Meaning Represen- tations, pages 154-163, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Integrating Generative Lexicon event structures into VerbNet",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Susan Windisch Brown",
                        "suffix": ""
                    },
                    {
                        "first": "Annie",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Zaenen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Susan Windisch Brown, James Pustejovsky, Annie Za- enen, and Martha Palmer. 2018. Integrating Gen- erative Lexicon event structures into VerbNet. In Proceedings of the Eleventh International Confer- ence on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Re- sources Association (ELRA).",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Introduction to the CoNLL-2005 shared task: Semantic role labeling",
                "authors": [
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Carreras",
                        "suffix": ""
                    },
                    {
                        "first": "Llu\u00eds",
                        "middle": [],
                        "last": "M\u00e0rquez",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005)",
                "volume": "",
                "issue": "",
                "pages": "152--164",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xavier Carreras and Llu\u00eds M\u00e0rquez. 2005. Introduc- tion to the CoNLL-2005 shared task: Semantic role labeling. In Proceedings of the Ninth Confer- ence on Computational Natural Language Learning (CoNLL-2005), pages 152-164, Ann Arbor, Michi- gan. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Multitask learning",
                "authors": [
                    {
                        "first": "Rich",
                        "middle": [],
                        "last": "Caruana",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Learning to Learn",
                "volume": "",
                "issue": "",
                "pages": "95--133",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rich Caruana. 1998. Multitask learning. In Learning to Learn, pages 95-133. Springer.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Unsupervised Induction and Filling of Semantic Slots for Spoken Dialogue Systems Using Frame-Semantic Parsing",
                "authors": [
                    {
                        "first": "Yun-Nung",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [
                            "Yang"
                        ],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "I"
                        ],
                        "last": "Rudnicky",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "ASRU",
                "volume": "",
                "issue": "",
                "pages": "120--125",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yun-nung Chen, William Yang Wang, and Alexander I Rudnicky. 2013. Unsupervised Induction and Fill- ing of Semantic Slots for Spoken Dialogue Systems Using Frame-Semantic Parsing. ASRU, pages 120- 125.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "What happened? leveraging verbnet to predict the effects of actions in procedural text",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Bhavana",
                        "middle": [],
                        "last": "Dalvi",
                        "suffix": ""
                    },
                    {
                        "first": "Niket",
                        "middle": [],
                        "last": "Tandon",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1804.05435"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Peter Clark, Bhavana Dalvi, and Niket Tandon. 2018. What happened? leveraging verbnet to predict the effects of actions in procedural text. arXiv:1804.05435.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Joint learning of preposition senses and semantic roles of prepositional phrases",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Dahlmeier",
                        "suffix": ""
                    },
                    {
                        "first": "Tanja",
                        "middle": [],
                        "last": "Hwee Tou Ng",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Schultz",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "450--458",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Dahlmeier, Hwee Tou Ng, and Tanja Schultz. 2009. Joint learning of preposition senses and se- mantic roles of prepositional phrases. In Proceed- ings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 450-458, Singapore. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "The role of semantic roles in disambiguating verb senses",
                "authors": [
                    {
                        "first": "Trang",
                        "middle": [],
                        "last": "Hoa",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Dang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05)",
                "volume": "",
                "issue": "",
                "pages": "42--49",
                "other_ids": {
                    "DOI": [
                        "10.3115/1219840.1219846"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hoa Trang Dang and Martha Palmer. 2005. The role of semantic roles in disambiguating verb senses. In Proceedings of the 43rd Annual Meeting of the As- sociation for Computational Linguistics (ACL'05), pages 42-49, Ann Arbor, Michigan. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Frame-semantic parsing",
                "authors": [
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Desai",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "T"
                        ],
                        "last": "Andr\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "Nathan",
                        "middle": [],
                        "last": "Martins",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Schneider",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Computational Linguistics",
                "volume": "40",
                "issue": "1",
                "pages": "9--56",
                "other_ids": {
                    "DOI": [
                        "10.1162/COLI_a_00163"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Dipanjan Das, Desai Chen, Andr\u00e9 F. T. Martins, Nathan Schneider, and Noah A. Smith. 2014. Frame-semantic parsing. Computational Linguis- tics, 40(1):9-56.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "NAACL",
                "volume": "",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Un- derstanding. In NAACL, pages 4171-4186.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Syn-QG: Syntactic and shallow semantic rules for question generation",
                "authors": [
                    {
                        "first": "Kaustubh",
                        "middle": [],
                        "last": "Dhole",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "752--765",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.69"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kaustubh Dhole and Christopher D. Manning. 2020. Syn-QG: Syntactic and shallow semantic rules for question generation. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics, pages 752-765, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Thematic Proto-Roles and Argument Selection",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Dowty",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "Language",
                "volume": "67",
                "issue": "3",
                "pages": "547--619",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Dowty. 1991. Thematic Proto-Roles and Argu- ment Selection. Language, 67(3):547-619.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Deep dominance -how to properly compare deep neural models",
                "authors": [
                    {
                        "first": "Rotem",
                        "middle": [],
                        "last": "Dror",
                        "suffix": ""
                    },
                    {
                        "first": "Segev",
                        "middle": [],
                        "last": "Shlomov",
                        "suffix": ""
                    },
                    {
                        "first": "Roi",
                        "middle": [],
                        "last": "Reichart",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2773--2785",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1266"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rotem Dror, Segev Shlomov, and Roi Reichart. 2019. Deep dominance -how to properly compare deep neural models. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin- guistics, pages 2773-2785, Florence, Italy. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Semantic role labeling with neural network factors",
                "authors": [
                    {
                        "first": "Nicholas",
                        "middle": [],
                        "last": "Fitzgerald",
                        "suffix": ""
                    },
                    {
                        "first": "Oscar",
                        "middle": [],
                        "last": "T\u00e4ckstr\u00f6m",
                        "suffix": ""
                    },
                    {
                        "first": "Kuzman",
                        "middle": [],
                        "last": "Ganchev",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "960--970",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D15-1112"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nicholas FitzGerald, Oscar T\u00e4ckstr\u00f6m, Kuzman Ganchev, and Dipanjan Das. 2015. Semantic role la- beling with neural network factors. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 960-970, Lis- bon, Portugal. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "A theoretically grounded application of dropout in recurrent neural networks",
                "authors": [
                    {
                        "first": "Yarin",
                        "middle": [],
                        "last": "Gal",
                        "suffix": ""
                    },
                    {
                        "first": "Zoubin",
                        "middle": [],
                        "last": "Ghahramani",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "29",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yarin Gal and Zoubin Ghahramani. 2016. A theoret- ically grounded application of dropout in recurrent neural networks. In Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Automatic labeling of semantic roles",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "512--520",
                "other_ids": {
                    "DOI": [
                        "10.3115/1075218.1075283"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Gildea and Daniel Jurafsky. 2000. Automatic labeling of semantic roles. In Proceedings of the 38th Annual Meeting of the Association for Com- putational Linguistics, pages 512-520, Hong Kong. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Using Relations for Identification and Normalization of Disorders: Team CLEAR in the ShARe/CLEF 2013 eHealth Evaluation Lab",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Gung",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "CLEF (Working Notes)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James Gung. 2013. Using Relations for Identification and Normalization of Disorders: Team CLEAR in the ShARe/CLEF 2013 eHealth Evaluation Lab. In CLEF (Working Notes).",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A joint many-task model: Growing a neural network for multiple NLP tasks",
                "authors": [
                    {
                        "first": "Kazuma",
                        "middle": [],
                        "last": "Hashimoto",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshimasa",
                        "middle": [],
                        "last": "Tsuruoka",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1923--1933",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1206"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu- ruoka, and Richard Socher. 2017. A joint many-task model: Growing a neural network for multiple NLP tasks. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1923-1933, Copenhagen, Denmark. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Jointly predicting predicates and arguments in neural semantic role labeling",
                "authors": [
                    {
                        "first": "Luheng",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "364--369",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-2058"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Luheng He, Kenton Lee, Omer Levy, and Luke Zettle- moyer. 2018. Jointly predicting predicates and argu- ments in neural semantic role labeling. In Proceed- ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Pa- pers), pages 364-369, Melbourne, Australia. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Deep semantic role labeling: What works and what's next",
                "authors": [
                    {
                        "first": "Luheng",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "473--483",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1044"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle- moyer. 2017. Deep semantic role labeling: What works and what's next. In Proceedings of the 55th Annual Meeting of the Association for Computa- tional Linguistics (Volume 1: Long Papers), pages 473-483, Vancouver, Canada. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Semantic frame identification with distributed word representations",
                "authors": [
                    {
                        "first": "Karl",
                        "middle": [],
                        "last": "Moritz Hermann",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    },
                    {
                        "first": "Kuzman",
                        "middle": [],
                        "last": "Ganchev",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1448--1458",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P14-1136"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Karl Moritz Hermann, Dipanjan Das, Jason Weston, and Kuzman Ganchev. 2014. Semantic frame iden- tification with distributed word representations. In Proceedings of the 52nd Annual Meeting of the As- sociation for Computational Linguistics (Volume 1: Long Papers), pages 1448-1458, Baltimore, Mary- land. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Long Short-Term Memory",
                "authors": [
                    {
                        "first": "Sepp",
                        "middle": [],
                        "last": "Hochreiter",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00fcrgen",
                        "middle": [],
                        "last": "Schmidhuber",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Neural Computation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "OntoNotes: The 90% solution",
                "authors": [
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    },
                    {
                        "first": "Mitchell",
                        "middle": [],
                        "last": "Marcus",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "Lance",
                        "middle": [],
                        "last": "Ramshaw",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Weischedel",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers",
                "volume": "",
                "issue": "",
                "pages": "57--60",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph Weischedel. 2006. OntoNotes: The 90% solution. In Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers, pages 57-60, New York City, USA. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Single classifier approach for verb sense disambiguation based on generalized features",
                "authors": [
                    {
                        "first": "Daisuke",
                        "middle": [],
                        "last": "Kawahara",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)",
                "volume": "",
                "issue": "",
                "pages": "4210--4213",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daisuke Kawahara and Martha Palmer. 2014. Sin- gle classifier approach for verb sense disambigua- tion based on generalized features. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pages 4210- 4213, Reykjavik, Iceland. European Language Re- sources Association (ELRA).",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Adam: A Method for Stochastic Optimization",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1412.6980"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. arXiv:1412.6980.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "A matter of framing: The impact of linguistic formalism on probing results",
                "authors": [
                    {
                        "first": "Ilia",
                        "middle": [],
                        "last": "Kuznetsov",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "171--182",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.13"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ilia Kuznetsov and Iryna Gurevych. 2020. A matter of framing: The impact of linguistic formalism on prob- ing results. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 171-182, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Dependency or Span, End-to-End Uniform Semantic Role Labeling",
                "authors": [
                    {
                        "first": "Zuchao",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Shexia",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Yiqing",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhuosheng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xi",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "33",
                "issue": "",
                "pages": "6730--6737",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang, Zhu- osheng Zhang, Xi Zhou, and Xiang Zhou. 2019. De- pendency or Span, End-to-End Uniform Semantic Role Labeling. AAAI, 33:6730-6737.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Semantic role features for machine translation",
                "authors": [
                    {
                        "first": "Ding",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 23rd International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "716--724",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ding Liu and Daniel Gildea. 2010. Semantic role features for machine translation. In Proceedings of the 23rd International Conference on Computa- tional Linguistics (Coling 2010), pages 716-724, Beijing, China. Coling 2010 Organizing Committee.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "GUIR at SemEval-2017 task 12: A framework for cross-domain clinical temporal information extraction",
                "authors": [
                    {
                        "first": "Sean",
                        "middle": [],
                        "last": "Macavaney",
                        "suffix": ""
                    },
                    {
                        "first": "Arman",
                        "middle": [],
                        "last": "Cohan",
                        "suffix": ""
                    },
                    {
                        "first": "Nazli",
                        "middle": [],
                        "last": "Goharian",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)",
                "volume": "",
                "issue": "",
                "pages": "1024--1029",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S17-2180"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sean MacAvaney, Arman Cohan, and Nazli Goharian. 2017. GUIR at SemEval-2017 task 12: A frame- work for cross-domain clinical temporal information extraction. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 1024-1029, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Abstraction and generalisation in semantic role labels: PropBank, VerbNet or both?",
                "authors": [
                    {
                        "first": "Paola",
                        "middle": [],
                        "last": "Merlo",
                        "suffix": ""
                    },
                    {
                        "first": "Lonneke",
                        "middle": [],
                        "last": "Van Der",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Plas",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP",
                "volume": "",
                "issue": "",
                "pages": "288--296",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Paola Merlo and Lonneke Van Der Plas. 2009. Ab- straction and generalisation in semantic role labels: PropBank, VerbNet or both? In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pages 288-296, Suntec, Singapore. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "The Role of Verb Sense Disambiguation in Semantic Role Labeling",
                "authors": [
                    {
                        "first": "Paloma",
                        "middle": [],
                        "last": "Moreda",
                        "suffix": ""
                    },
                    {
                        "first": "Manuel",
                        "middle": [],
                        "last": "Palomar",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Lecture Notes in Computer Science Advances in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "684--695",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Paloma Moreda and Manuel Palomar. 2006. The Role of Verb Sense Disambiguation in Semantic Role Labeling. Lecture Notes in Computer Science Ad- vances in Natural Language Processing, pages 684- 695.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "A span selection model for semantic role labeling",
                "authors": [
                    {
                        "first": "Hiroki",
                        "middle": [],
                        "last": "Ouchi",
                        "suffix": ""
                    },
                    {
                        "first": "Hiroyuki",
                        "middle": [],
                        "last": "Shindo",
                        "suffix": ""
                    },
                    {
                        "first": "Yuji",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1630--1642",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1191"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto. 2018. A span selection model for semantic role la- beling. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1630-1642, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "SemLink: Linking PropBank, VerbNet and FrameNet",
                "authors": [
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the Generative Lexicon Conference",
                "volume": "",
                "issue": "",
                "pages": "9--15",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Martha Palmer. 2009. SemLink: Linking PropBank, VerbNet and FrameNet. In Proceedings of the Gen- erative Lexicon Conference, pages 9-15. Pisa Italy.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "The Proposition Bank: An annotated corpus of semantic roles",
                "authors": [
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Kingsbury",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Computational Linguistics",
                "volume": "31",
                "issue": "1",
                "pages": "71--106",
                "other_ids": {
                    "DOI": [
                        "10.1162/0891201053630264"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The Proposition Bank: An annotated cor- pus of semantic roles. Computational Linguistics, 31(1):71-106.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "The Pitfalls of Shortcuts: Tales from the Word Sense Tagging Trenches. Springer series Text, Speech and Language Technology",
                "authors": [
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Gung",
                        "suffix": ""
                    },
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Bonial",
                        "suffix": ""
                    },
                    {
                        "first": "Jinho",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Orin",
                        "middle": [],
                        "last": "Hargraves",
                        "suffix": ""
                    },
                    {
                        "first": "Derek",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Stowe",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Essays in Lexical Semantics and Computational Lexicography",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Martha Palmer, James Gung, Claire Bonial, Jinho Choi, Orin Hargraves, Derek Palmer, and Kevin Stowe. 2017. The Pitfalls of Shortcuts: Tales from the Word Sense Tagging Trenches. Springer series Text, Speech and Language Technology, Essays in Lexi- cal Semantics and Computational Lexicography -In Honor of Adam Kilgarriff.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "GloVe: Global vectors for word representation",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Pennington",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "1532--1543",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/D14-1162"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Confer- ence on Empirical Methods in Natural Language Processing (EMNLP), pages 1532-1543, Doha, Qatar. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Deep contextualized word representations",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Iyyer",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "2227--2237",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-1202"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word rep- resentations. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Towards robust linguistic analysis using OntoNotes",
                "authors": [
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Sameer Pradhan",
                        "suffix": ""
                    },
                    {
                        "first": "Nianwen",
                        "middle": [],
                        "last": "Moschitti",
                        "suffix": ""
                    },
                    {
                        "first": "Hwee Tou",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "Anders",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Bj\u00f6rkelund",
                        "suffix": ""
                    },
                    {
                        "first": "Yuchen",
                        "middle": [],
                        "last": "Uryupina",
                        "suffix": ""
                    },
                    {
                        "first": "Zhi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zhong",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "143--152",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders Bj\u00f6rkelund, Olga Uryupina, Yuchen Zhang, and Zhi Zhong. 2013. Towards ro- bust linguistic analysis using OntoNotes. In Pro- ceedings of the Seventeenth Conference on Computa- tional Natural Language Learning, pages 143-152, Sofia, Bulgaria. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "VerbNet: A Broad-Coverage",
                "authors": [
                    {
                        "first": "Karin Kipper",
                        "middle": [],
                        "last": "Schuler",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Comprehensive Verb Lexicon. Dissertation Abstracts International, B: Sciences and Engineering",
                "volume": "66",
                "issue": "6",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Karin Kipper Schuler. 2005. VerbNet: A Broad- Coverage, Comprehensive Verb Lexicon. Disserta- tion Abstracts International, B: Sciences and Engi- neering, 66(6).",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Simple BERT Models for Relation Extraction and Semantic Role Labeling",
                "authors": [
                    {
                        "first": "Peng",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1904.05255"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Peng Shi and Jimmy Lin. 2019. Simple BERT Models for Relation Extraction and Semantic Role Labeling. arXiv:1904.05255.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Linguistic analysis improves neural metaphor detection",
                "authors": [
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Stowe",
                        "suffix": ""
                    },
                    {
                        "first": "Sarah",
                        "middle": [],
                        "last": "Moeller",
                        "suffix": ""
                    },
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Michaelis",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
                "volume": "",
                "issue": "",
                "pages": "362--371",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/K19-1034"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kevin Stowe, Sarah Moeller, Laura Michaelis, and Martha Palmer. 2019. Linguistic analysis improves neural metaphor detection. In Proceedings of the 23rd Conference on Computational Natural Lan- guage Learning (CoNLL), pages 362-371, Hong Kong, China. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "Linguistically-informed self-attention for semantic role labeling",
                "authors": [
                    {
                        "first": "Emma",
                        "middle": [],
                        "last": "Strubell",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Verga",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Andor",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Weiss",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "5027--5038",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1548"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum. 2018. Linguistically-informed self-attention for semantic role labeling. In Proceedings of the 2018 Confer- ence on Empirical Methods in Natural Language Processing, pages 5027-5038, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "Syntactic scaffolds for semantic structures",
                "authors": [
                    {
                        "first": "Swabha",
                        "middle": [],
                        "last": "Swayamdipta",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Thomson",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "3772--3782",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1412"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Swabha Swayamdipta, Sam Thomson, Kenton Lee, Luke Zettlemoyer, Chris Dyer, and Noah A. Smith. 2018. Syntactic scaffolds for semantic structures. In Proceedings of the 2018 Conference on Em- pirical Methods in Natural Language Processing, pages 3772-3782, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Semi-Supervised Learning for Spoken Language Understanding Using Semantic Role Labeling. Language",
                "authors": [
                    {
                        "first": "Gokhan",
                        "middle": [],
                        "last": "Tur",
                        "suffix": ""
                    },
                    {
                        "first": "Dilek",
                        "middle": [],
                        "last": "Hakkani-T\u00fcr",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "232--237",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gokhan Tur and Dilek Hakkani-T\u00fcr. 2005. Semi- Supervised Learning for Spoken Language Under- standing Using Semantic Role Labeling. Language, pages 232-237.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "30",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141 ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Pro- cessing Systems, volume 30. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Machine comprehension with syntax, frames, and semantics",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Gimpel",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Mcallester",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "2",
                "issue": "",
                "pages": "700--706",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-2115"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hai Wang, Mohit Bansal, Kevin Gimpel, and David McAllester. 2015. Machine comprehension with syntax, frames, and semantics. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 700-706, Beijing, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF51": {
                "ref_id": "b51",
                "title": "A Learning Algorithm for Continually Running Fully Recurrent Neural Networks",
                "authors": [
                    {
                        "first": "Ronald",
                        "middle": [
                            "J"
                        ],
                        "last": "Williams",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Zipser",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Neural Computation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ronald J. Williams and David Zipser. 1989. A Learn- ing Algorithm for Continually Running Fully Recur- rent Neural Networks. Neural Computation.",
                "links": null
            },
            "BIBREF52": {
                "ref_id": "b52",
                "title": "Google's neural machine translation system: Bridging the gap between human and machine translation",
                "authors": [
                    {
                        "first": "Yonghui",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Schuster",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifeng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Quoc",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "Wolfgang",
                        "middle": [],
                        "last": "Norouzi",
                        "suffix": ""
                    },
                    {
                        "first": "Maxim",
                        "middle": [],
                        "last": "Macherey",
                        "suffix": ""
                    },
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Krikun",
                        "suffix": ""
                    },
                    {
                        "first": "Qin",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "Klaus",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Macherey",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1609.08144"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv:1609.08144.",
                "links": null
            },
            "BIBREF53": {
                "ref_id": "b53",
                "title": "A syntax-aware multi-task learning framework for Chinese semantic role labeling",
                "authors": [
                    {
                        "first": "Qingrong",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Zhenghua",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "5382--5392",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1541"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Qingrong Xia, Zhenghua Li, and Min Zhang. 2019. A syntax-aware multi-task learning framework for Chinese semantic role labeling. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5382-5392, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF54": {
                "ref_id": "b54",
                "title": "Robust Semantic Role Labeling Using Parsing Variations and Semantic Classes",
                "authors": [
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Szu-Ting",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Szu-ting Yi. 2007. Robust Semantic Role Labeling Us- ing Parsing Variations and Semantic Classes. Ph.D. thesis, University of Pennsylvania.",
                "links": null
            },
            "BIBREF55": {
                "ref_id": "b55",
                "title": "Can semantic roles generalize across genres?",
                "authors": [
                    {
                        "first": "Edward",
                        "middle": [],
                        "last": "Szu-Ting Yi",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Loper",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference",
                "volume": "",
                "issue": "",
                "pages": "548--555",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Szu-ting Yi, Edward Loper, and Martha Palmer. 2007. Can semantic roles generalize across genres? In Hu- man Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, pages 548-555, Rochester, New York. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF56": {
                "ref_id": "b56",
                "title": "Robustness and generalization of role sets: PropBank vs. VerbNet",
                "authors": [
                    {
                        "first": "Eneko",
                        "middle": [],
                        "last": "Be\u00f1at Zapirain",
                        "suffix": ""
                    },
                    {
                        "first": "Llu\u00eds",
                        "middle": [],
                        "last": "Agirre",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "M\u00e0rquez",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of ACL-08: HLT",
                "volume": "",
                "issue": "",
                "pages": "550--558",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Be\u00f1at Zapirain, Eneko Agirre, and Llu\u00eds M\u00e0rquez. 2008. Robustness and generalization of role sets: PropBank vs. VerbNet. In Proceedings of ACL-08: HLT, pages 550-558, Columbus, Ohio. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF57": {
                "ref_id": "b57",
                "title": "End-to-end learning of semantic role labeling using recurrent neural networks",
                "authors": [
                    {
                        "first": "Jie",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "1127--1137",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-1109"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jie Zhou and Wei Xu. 2015. End-to-end learning of se- mantic role labeling using recurrent neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Lan- guage Processing (Volume 1: Long Papers), pages 1127-1137, Beijing, China. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF58": {
                "ref_id": "b58",
                "title": "LIMIT-BERT : Linguistics informed multi-task BERT",
                "authors": [
                    {
                        "first": "Junru",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Zhuosheng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Shuailiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Findings of the Association for Computational Linguistics: EMNLP 2020",
                "volume": "",
                "issue": "",
                "pages": "4450--4461",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.findings-emnlp.399"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Junru Zhou, Zhuosheng Zhang, Hai Zhao, and Shuail- iang Zhang. 2020. LIMIT-BERT : Linguistics in- formed multi-task BERT. In Findings of the Associ- ation for Computational Linguistics: EMNLP 2020, pages 4450-4461, Online. Association for Computa- tional Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "text": "compute the weighted label embedding of a given VN class y (vncls) p we follow Hashimoto et al. (2017):",
                "type_str": "figure",
                "uris": null
            },
            "FIGREF1": {
                "num": null,
                "text": "Evaluation by training set predicate frequency on the SemLink development data comparing the impact of VerbNet features.",
                "type_str": "figure",
                "uris": null
            },
            "TABREF1": {
                "text": "Comparison of PropBank (PB) and VerbNet (VN) roles for predicates console and walk. VerbNet's thematic role assignments (e.g. Stimulus vs. Agent and Experiencer vs. Theme) are more dependent on the predicate than PropBank's numbered arguments.",
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table/>"
            },
            "TABREF3": {
                "text": "",
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>: Comparison of baseline SRL system on</td></tr><tr><td>CoNLL-2005 and CoNLL-2012 against models apply-</td></tr><tr><td>ing pre-trained encoders of comparable size (F 1 ).</td></tr><tr><td>models for each experiment, and two stars indicat-</td></tr><tr><td>ing stochastic dominance ( = 0). For example,</td></tr><tr><td>a value in a table of 88.2 \u00b10.2 indicates that a</td></tr><tr><td>model has a mean test score (e.g. F 1 or accuracy)</td></tr><tr><td>of 88.2, with a standard deviation of 0.2, and is</td></tr><tr><td>stochastically dominant over the baseline.</td></tr></table>"
            },
            "TABREF4": {
                "text": "\u00b10.0 82.8 \u00b10.2 88.2 \u00b10.2 83.0 \u00b10.9",
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td/><td>PropBank</td><td/><td>VerbNet</td><td/></tr><tr><td>System</td><td>WSJ</td><td>Brown</td><td>WSJ</td><td>Brown</td></tr><tr><td colspan=\"2\">Zapirain et al. (2008) 78.9\u00b10.9</td><td/><td>77.0\u00b10.9</td><td>62.9\u00b11.0</td></tr><tr><td>Baseline</td><td>88.5\u00b10.1</td><td>82.4\u00b10.5</td><td>87.4\u00b10.2</td><td>80.1\u00b10.4</td></tr><tr><td>SRL + VSD</td><td>88.2\u00b10.2</td><td colspan=\"2\">82.8 \u00b10.6 87.3\u00b10.1</td><td>80.0\u00b10.7</td></tr><tr><td>SRL | VSD</td><td>88.3\u00b10.2</td><td>82.2\u00b10.4</td><td>87.4\u00b10.2</td><td>80.6 \u00b10.4</td></tr><tr><td>PREDICTED CLASS</td><td>88.3\u00b10.1</td><td>81.2\u00b10.6</td><td colspan=\"2\">87.6 \u00b10.1 80.9 \u00b10.6</td></tr><tr><td>ALL CLASSES</td><td colspan=\"2\">88.6 \u00b10.3 82.3\u00b10.5</td><td colspan=\"2\">87.6 \u00b10.2 81.1 \u00b10.6</td></tr><tr><td>GOLD CLASS</td><td>88.7</td><td/><td/><td/></tr></table>"
            },
            "TABREF5": {
                "text": "F 1 scores of models incorporating different predicate representations and sense distinctions on VerbNet and PropBank SRL on SemLink. SRL + VSD and SRL | VSD are multitask models for SRL and VerbNet classification, with the latter using predicted classes as features for SRL. ALL CLASSES, PREDICTED CLASS, and GOLD CLASS are SRL models using VerbNet class features (the list of all VerbNet classes the predicate belongs to, predicted VerbNet classes, and gold VerbNet classes respectively). VSD 97.7 \u00b10.1 91.3\u00b10.4 SRL | VSD 97.6 \u00b10.1 91.3\u00b10",
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>System</td><td>WSJ</td><td>Brown</td></tr><tr><td colspan=\"2\">ClearWSD 97.0\u00b10</td><td>89.3\u00b10</td></tr><tr><td>Baseline</td><td>97.3\u00b10.1</td><td>90.7\u00b10</td></tr><tr><td>SRL +</td><td/><td/></tr></table>"
            },
            "TABREF6": {
                "text": "VerbNet classification (sense disambiguation) accuracy on SemLink.",
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table/>"
            },
            "TABREF7": {
                "text": "+0.0) 88.2\u00b10.3 (+0.0) 81.8\u00b10.8 (+0.0) 85.9\u00b10.3 (+0.0) 77.7\u00b11.3 ALL CLASSES (+0.4) 88.6 \u00b10.2 (\u22120.2) 81.6\u00b10.8 (+0.2) 86.1 \u00b10.4 (+2.6) 80.3 \u00b10.8 PREDICTED CLASS (+0.3) 88.5 \u00b10.2 (+0.5) 82.3 \u00b10.8 (+0.2) 86.1 \u00b10.2 (+0.9) 78.6 \u00b11.3",
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td/><td>Polysemous</td><td/><td>Monosemous</td><td/></tr><tr><td>System</td><td>WSJ</td><td>Brown</td><td>WSJ</td><td>Brown</td></tr><tr><td>Baseline</td><td>(</td><td/><td/><td/></tr></table>"
            },
            "TABREF8": {
                "text": "Evaluation of contribution of VerbNet features on polysemous vs. monosemous predicates for VerbNet SRL averaged over all models. Average change over the baseline performance is given in parentheses.",
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td/><td>90</td></tr><tr><td/><td>80</td></tr><tr><td>Dev Set F 1</td><td>70</td></tr><tr><td/><td>60</td></tr><tr><td/><td>50</td></tr><tr><td/><td>0</td><td>1-10 11-20 21-30 31-40 41-50</td></tr><tr><td/><td colspan=\"2\">Predicate Frequency in Training Data</td></tr></table>"
            }
        }
    }
}