File size: 172,378 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:24:33.547787Z"
},
"title": "Predicate Representations and Polysemy in VerbNet Semantic Parsing",
"authors": [
{
"first": "James",
"middle": [],
"last": "Gung",
"suffix": "",
"affiliation": {},
"email": "james.gung@colorado.edu"
},
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": "",
"affiliation": {},
"email": "martha.palmer@colorado.edu"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Despite recent advances in semantic role labeling propelled by pre-trained text encoders like BERT, performance lags behind when applied to predicates observed infrequently during training or to sentences in new domains. In this work, we investigate how semantic role labeling performance on low-frequency predicates and out-of-domain data can be improved by using VerbNet, a verb lexicon that groups verbs into hierarchical classes based on shared syntactic and semantic behavior and defines semantic representations describing relations between arguments. We find that Verb-Net classes provide an effective level of abstraction, improving generalization on lowfrequency predicates by allowing them to learn from the training examples of other predicates belonging to the same class. We also find that joint training of VerbNet role labeling and predicate disambiguation of VerbNet classes for polysemous verbs leads to improvements in both tasks, naturally supporting the extraction of VerbNet's semantic representations.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "Despite recent advances in semantic role labeling propelled by pre-trained text encoders like BERT, performance lags behind when applied to predicates observed infrequently during training or to sentences in new domains. In this work, we investigate how semantic role labeling performance on low-frequency predicates and out-of-domain data can be improved by using VerbNet, a verb lexicon that groups verbs into hierarchical classes based on shared syntactic and semantic behavior and defines semantic representations describing relations between arguments. We find that Verb-Net classes provide an effective level of abstraction, improving generalization on lowfrequency predicates by allowing them to learn from the training examples of other predicates belonging to the same class. We also find that joint training of VerbNet role labeling and predicate disambiguation of VerbNet classes for polysemous verbs leads to improvements in both tasks, naturally supporting the extraction of VerbNet's semantic representations.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Semantic role labeling (SRL) is a form of shallow semantic parsing that involves the extraction of predicate arguments and their assignment to consistent roles with respect to the predicate, facilitating the labeling of e.g. who did what to whom (Gildea and Jurafsky, 2000) . SRL systems have been broadly applied to applications such as question answering (Berant et al., 2014; Wang et al., 2015) , machine translation (Liu and Gildea, 2010; Bazrafshan and Gildea, 2013) , dialog systems (Tur and Hakkani-T\u00fcr, 2005; Chen et al., 2013) , metaphor detection (Stowe et al., 2019) , and clinical information extraction (Gung, 2013; MacAvaney et al., 2017) . Recent approaches to SRL have achieved * Work done prior to joining Amazon. large gains in performance through the use of pretrained text encoders like ELMo and BERT (Peters et al., 2018; Devlin et al., 2019) . Despite these advances, performance on low-frequency predicates and out-of-domain data remains low relative to in-domain performance on higher frequency predicates. The assignment of role labels to a predicate's arguments is dependent upon the predicate's sense. PropBank divides each predicate into one or more rolesets, which are coarsegrained sense distinctions that each provide a set of core numbered arguments (A0-A5) and their corresponding definitions. VerbNet (VN) groups verbs into hierarchical classes, each class defining a set of valid syntactic frames that define a direct correspondence between thematic roles and syntactic realizations, e.g. Agent REL Patient (e.g. John broke the vase) or Patient REL (e.g. The vase broke) for break-45.1 (Schuler, 2005) .",
"cite_spans": [
{
"start": 246,
"end": 273,
"text": "(Gildea and Jurafsky, 2000)",
"ref_id": "BIBREF20"
},
{
"start": 357,
"end": 378,
"text": "(Berant et al., 2014;",
"ref_id": "BIBREF3"
},
{
"start": 379,
"end": 397,
"text": "Wang et al., 2015)",
"ref_id": "BIBREF50"
},
{
"start": 420,
"end": 442,
"text": "(Liu and Gildea, 2010;",
"ref_id": "BIBREF32"
},
{
"start": 443,
"end": 471,
"text": "Bazrafshan and Gildea, 2013)",
"ref_id": "BIBREF2"
},
{
"start": 489,
"end": 516,
"text": "(Tur and Hakkani-T\u00fcr, 2005;",
"ref_id": "BIBREF48"
},
{
"start": 517,
"end": 535,
"text": "Chen et al., 2013)",
"ref_id": "BIBREF9"
},
{
"start": 557,
"end": 577,
"text": "(Stowe et al., 2019)",
"ref_id": "BIBREF45"
},
{
"start": 616,
"end": 628,
"text": "(Gung, 2013;",
"ref_id": "BIBREF21"
},
{
"start": 629,
"end": 652,
"text": "MacAvaney et al., 2017)",
"ref_id": "BIBREF33"
},
{
"start": 821,
"end": 842,
"text": "(Peters et al., 2018;",
"ref_id": "BIBREF41"
},
{
"start": 843,
"end": 863,
"text": "Devlin et al., 2019)",
"ref_id": "BIBREF14"
},
{
"start": 1621,
"end": 1636,
"text": "(Schuler, 2005)",
"ref_id": "BIBREF43"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Recent PropBank (PB) semantic role labeling models have largely eschewed explicit predicate disambiguation in favor of direct prediction of semantic roles in end-to-end trainable models (Zhou and Xu, 2015; He et al., 2017; Shi and Lin, 2019) . This is possible for several reasons: First, Prop-Bank's core roles and modifiers are shared across all predicates, allowing a single classifier to be trained over tokens or spans. Second, although definitions of PB roles are specific to the different senses of each predicate, efforts are made when creating rolesets to ensure that A0 and A1 exhibit properties of Dowty's prototypical Agent and prototypical Patient respectively (1991) . Finally, PB rolesets are defined based on VN class membership, with predicates in the same classes thus being assigned relatively consistent role definitions (Bonial et al., 2010) .",
"cite_spans": [
{
"start": 186,
"end": 205,
"text": "(Zhou and Xu, 2015;",
"ref_id": "BIBREF57"
},
{
"start": 206,
"end": 222,
"text": "He et al., 2017;",
"ref_id": "BIBREF24"
},
{
"start": 223,
"end": 241,
"text": "Shi and Lin, 2019)",
"ref_id": "BIBREF44"
},
{
"start": 609,
"end": 680,
"text": "Dowty's prototypical Agent and prototypical Patient respectively (1991)",
"ref_id": null
},
{
"start": 841,
"end": 862,
"text": "(Bonial et al., 2010)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Unlike PropBank, VerbNet's thematic roles are shared across predicates and classes with consistent definitions. However, VN roles are more dependent on the identity of the predicate (Zapirain et al., 2008; Merlo and Van Der Plas, 2009) . Examples of PropBank and VerbNet roles illustrating this are given in Table 1 . Consequently, VN role labeling models may benefit more from predicate features than PropBank. Furthermore, while it is possible to identify PB or VN roles without classifying predicate senses, linking the resulting roles to their definitions or to the syntactic frames and associated semantic primitives in VN does require explicit predicate disambiguation (Brown et al., 2019) . Therefore, predicate disambiguation is often an essential step when applying SRL systems to real-world problems.",
"cite_spans": [
{
"start": 182,
"end": 205,
"text": "(Zapirain et al., 2008;",
"ref_id": "BIBREF56"
},
{
"start": 206,
"end": 235,
"text": "Merlo and Van Der Plas, 2009)",
"ref_id": "BIBREF34"
},
{
"start": 675,
"end": 695,
"text": "(Brown et al., 2019)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [
{
"start": 308,
"end": 315,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this work, we evaluate alternative approaches for incorporating VerbNet classes in English Verb-Net and PropBank role labeling. We propose a joint model for SRL and VN predicate disambiguation (VN classification), finding that joint training leads to improvements in VN classification and role labeling for out-of-domain predicates. We also evaluate VN classes as predicate-specific features. Using gold classes, we observe significant improvements in both PB and VN SRL. We also observe improvements in VN role labeling when using predicted classes and features that incorporate all valid classes for each predicate 1 .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "VerbNet VerbNet is a broad-coverage lexicon that groups verbs into hierarchical classes based on shared syntactic and semantic behavior (Schuler, 2005) . Each VN class is assigned a set of thematic roles that, unlike PB numbered arguments, maintain consistent meanings across different verbs and classes. VN classes provide an enumeration of syntactic frames applicable to each member verb, describing how the thematic roles of a VN class may be realized in a sentence. Every syntactic frame entails a set of low-level semantic representations (primitives) that describe relations between thematic role arguments as well as changes throughout the course of the event (Brown et al., 2018) . The close relationship between syntactic realizations and semantic representations facilitates straightforward extraction of VN semantic predicates given identification of a VN class and corresponding thematic roles. VN primitives have been applied to problems such as machine comprehension and question generation (Dhole and Manning, 2020) .",
"cite_spans": [
{
"start": 136,
"end": 151,
"text": "(Schuler, 2005)",
"ref_id": "BIBREF43"
},
{
"start": 667,
"end": 687,
"text": "(Brown et al., 2018)",
"ref_id": "BIBREF6"
},
{
"start": 1005,
"end": 1030,
"text": "(Dhole and Manning, 2020)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "Comparing VerbNet with PropBank Yi et al. (2007) use VN role groupings to improve label consistency across verbs by reducing the overloading of PropBank's numbered arguments like A2. Comparing SRL models trained on PB and VN, Zapirain et al. (2008) find that their VerbNet model performs worse on infrequent predicates than their PB model, and suggest that VN is more reliant on the identity of the predicate than PB based on experiments removing predicate-specific features from their models. They suggest that the high consistency of A0 and A1 enables PB to generalize better without relying on predicate-specific information. Merlo and Van Der Plas (2009) provide an information-theoretic perspective on the comparison of PropBank and VerbNet, demonstrating how the identity of the predicate is more important to VN SRL than for PB by comparing the conditional entropy of roles given verbs as well as the mutual information of roles and verbs. In multilingual BERT probing studies comparing several SRL formalisms, Kuznetsov and Gurevych (2020) find that layer utilization for predicates differs between PB and VN. PB emphasizes the same layers used for syntactic tasks, while VN uses layers associated with tasks used more prevalently in lexical tasks. These findings reinforce the importance of predicate representations to VerbNet.",
"cite_spans": [
{
"start": 42,
"end": 48,
"text": "(2007)",
"ref_id": null
},
{
"start": 222,
"end": 248,
"text": "VN, Zapirain et al. (2008)",
"ref_id": null
},
{
"start": 629,
"end": 658,
"text": "Merlo and Van Der Plas (2009)",
"ref_id": "BIBREF34"
},
{
"start": 1018,
"end": 1047,
"text": "Kuznetsov and Gurevych (2020)",
"ref_id": "BIBREF30"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "Previous work has investigated the interplay between predicate sense disambiguation and SRL. Dang and Palmer (2005) improve verb sense disambiguation (VSD) using features based on semantic role labels. Moreda and Palomar (2006) find that explicit verb senses improve PB SRL for verb-specific roles like A2 and A3, but hurt on adjuncts. Yi (2007) find that using gold standard PB roleset IDs as features in an SRL model improves performance only on highly polysemous verbs. Dahlmeier et al. (2009) propose a joint probabilistic model for preposition disambiguation and SRL, finding an improvement over independent models.",
"cite_spans": [
{
"start": 93,
"end": 115,
"text": "Dang and Palmer (2005)",
"ref_id": "BIBREF12"
},
{
"start": 202,
"end": 227,
"text": "Moreda and Palomar (2006)",
"ref_id": "BIBREF35"
},
{
"start": 473,
"end": 496,
"text": "Dahlmeier et al. (2009)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SRL and Predicate Disambiguation",
"sec_num": null
},
{
"text": "Predicate disambiguation plays a critical role in FrameNet (Baker et al., 1998) parsing, in part because FrameNet's role inventory is more than an order of magnitude larger than that of PB and VN. This richer, more granular role inventory lends advantages to approaches that constrain role identification to the set of valid roles for the predicted frame Hermann et al., 2014) , or that jointly encode argument and role representations given identified frames (FitzGerald et al., 2015) .",
"cite_spans": [
{
"start": 59,
"end": 79,
"text": "(Baker et al., 1998)",
"ref_id": "BIBREF1"
},
{
"start": 355,
"end": 376,
"text": "Hermann et al., 2014)",
"ref_id": "BIBREF25"
},
{
"start": 460,
"end": 485,
"text": "(FitzGerald et al., 2015)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SRL and Predicate Disambiguation",
"sec_num": null
},
{
"text": "LM Pre-training and SRL Language model (LM) pre-training has become ubiquitous in natural language processing tasks, with LM encoders like ELMo propelling forward the state of the art in SRL (Peters et al., 2018) . We are interested in whether a strong baseline model using a LM encoder such as BERT can be further improved by incorporating external knowledge from lexical resources like VN.",
"cite_spans": [
{
"start": 191,
"end": 212,
"text": "(Peters et al., 2018)",
"ref_id": "BIBREF41"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SRL and Predicate Disambiguation",
"sec_num": null
},
{
"text": "BERT (Devlin et al., 2019 ) is a Transformer encoder (Vaswani et al., 2017) jointly trained using two objectives: a masked language modeling objective to predict the identity of randomly-masked tokens in the input, as well as a next sentence prediction task (NSP) intended to encourage the model to encode the relationship between sentence pairs (henceforth referred to as Sent. A and Sent. B). Sentences are tokenized using WordPiece (Wu et al., 2016) . As a Transformer encoder, BERT applies multiple layers of a multi-headed self-attention mechanism to progressively build contextual tokenlevel representations. In our experiments, we use encodings from the final layer.",
"cite_spans": [
{
"start": 5,
"end": 25,
"text": "(Devlin et al., 2019",
"ref_id": "BIBREF14"
},
{
"start": 53,
"end": 75,
"text": "(Vaswani et al., 2017)",
"ref_id": "BIBREF49"
},
{
"start": 435,
"end": 452,
"text": "(Wu et al., 2016)",
"ref_id": "BIBREF52"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SRL and Predicate Disambiguation",
"sec_num": null
},
{
"text": "Our baseline SRL model closely follows Shi and Lin (2019) . We thus approach SRL as a sequence tagging task, predicting per-word, IOB-encoded (In, Out, Begin) role labels independently for each predicate in a sentence. A predicate-aware encod-ing of a sentence is produced using the target predicate as the Sent. B input to BERT. For example, the sentence I tried opening it is processed as:",
"cite_spans": [
{
"start": 39,
"end": 57,
"text": "Shi and Lin (2019)",
"ref_id": "BIBREF44"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "CLS I tried opening it SEP opening SEP",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "for the verb open. This enables BERT to incorporate the identity of the predicate in the encoding of each word while clearly delineating it from tokens in the original sentence.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "To simplify notation, we'll treat LM(a, b) \u2208 R Ta\u00d7D LM as shorthand for the final layer BERT encoding for a pair of sentences a = w 1 , ..., w Ta and b = w 1 , ..., w T b with T a and T b words respectively, where D LM gives BERT's hidden size. This is produced by applying WordPiece tokenization (WP) to each word in each sentence and concatenating the resulting sequences of token IDs with standard BERT-specific IDs:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "w = CLS, WP(a), SEP, WP(b), SEP",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "The resulting sequence of tokens w is encoded using BERT. We use the final layer outputs, taking vectors only for the first WordPiece token for each original word in Sent. A (a), filtering out vectors corresponding to Sent. B (b), SEP or CLS. The resulting matrix consists of a vector per word in Sent. A, avoiding any discrepancies between IOBencoded word-level output labels and WordPiece tokens used as inputs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "Following previous work (Zhou and Xu, 2015; He et al., 2017) , we use a marker feature as an indicator for the specific location of the predicate within the sentence. For a sentence, w 1 , ..., w T , with a predicate given by index p \u2208 1...T , we compute a predicate-aware, contextualized embedding x pt of each word as",
"cite_spans": [
{
"start": 24,
"end": 43,
"text": "(Zhou and Xu, 2015;",
"ref_id": "BIBREF57"
},
{
"start": 44,
"end": 60,
"text": "He et al., 2017)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "x pt = LM(w 1...T , w p ) (t) ; W (mark) (t=p) (1) with W (mark) \u2208 R 2\u00d7D mark and x pt \u2208 R D LM +D mark ,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "where D mark provides the size of the predicate marker embedding.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "The predicate's positional information from the marker is integrated using a bidirectional LSTM (Hochreiter and Schmidhuber, 1997) , concatenating the hidden states for the forward and backward LSTMs at each timestep (omitting the p from x pt for brevity):",
"cite_spans": [
{
"start": 96,
"end": 130,
"text": "(Hochreiter and Schmidhuber, 1997)",
"ref_id": "BIBREF26"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "h (f w) t = LSTM (f w) (x 1...T ) (t) h (bw) t = LSTM (bw) (x T...1 ) (T \u2212t) h (f b) t = h (f w) t ; h (bw) t (2)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "The BiLSTM output at each timestep t is concatenated with that of the predicate's timestep and passed through a sequentially-applied linear transformation followed by a leaky ReLu (\u03b1 = 0.1):",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "x (mlp) pt = \u03c3 W (mlp) h (f b) t ; h (f b) p + b (mlp) (3)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "We apply a final linear projection from x (mlp) pt to IOB-encoded role labels:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "s (srl) pt = W (srl) x (mlp) pt + b (srl)",
"eq_num": "(4)"
}
],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "where s",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "(srl) pt \u2208 R K provides the unnormalized scores for each of K possible role labels, with the probability of predicting a label for a given token t and predicate p given by:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "P (y (srl) pt |w 1...T , w p ) = softmax(s (srl) pt )",
"eq_num": "(5)"
}
],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "Like He et al. 2017, we apply constrained Viterbi decoding to restrict inferred label sequences to produce valid IOB sequences.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Role Labeling with BERT",
"sec_num": "3"
},
{
"text": "Verbs belonging to the same VN class share syntactic and semantic properties and the same set of thematic roles and syntactic frames. Replacing a predicate in a sentence with a different verb from the same class typically produces a syntactically coherent sentence and does not impact the proposition's thematic role labels. VN classes may thus provide an effective level of abstraction for predicates in SRL. We hypothesize that using VN classes as predicate-specific features may help reduce sparsity issues for low-frequency and out-of-vocabulary (OOV) verbs. Intuitively, training examples for each member verb within a class contribute to the estimation of parameters associated with all other members of the same class, enabling the fine-tuning of predicate-level features even for OOV predicates. For example, a verb like traipse may rarely or never occur during training, but may belong to a class which appears hundreds of times in the form of more common verbs like run or rush. We investigate whether by sharing parameter updates across VN members, we can further improve generalization on infrequent verbs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes as Predicate Features",
"sec_num": "4"
},
{
"text": "Methodology Intuitively, BERT's NSP pretraining task encourages some level of focus on Sent. B tokens from attention heads when processing tokens in Sent. A. The predicate feature presented by Shi and Lin (2019) and applied in our baseline model uses the predicate token as the Sent. B input to BERT and thus allows the encodings of tokens in a sentence to be conditioned directly on the predicate.",
"cite_spans": [
{
"start": 193,
"end": 211,
"text": "Shi and Lin (2019)",
"ref_id": "BIBREF44"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes as Predicate Features",
"sec_num": "4"
},
{
"text": "We propose to include tokens corresponding to the predicate's VN class as additional features as part of Sent. B. To realize this, we concatenate the corresponding VN class ID to Sent. B along with the predicate, updating the inputs given in Equation 1:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes as Predicate Features",
"sec_num": "4"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "LM(w 1...T , w p w s )",
"eq_num": "(6)"
}
],
"section": "VerbNet Classes as Predicate Features",
"sec_num": "4"
},
{
"text": "where w s is a token corresponding to the VN class of the predicate w p 2 .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes as Predicate Features",
"sec_num": "4"
},
{
"text": "VerbNet Classification VN classes can be predicted automatically using a word sense disambiguation system. We propose a simple model for VerbNet classification: fine tune a pre-trained BERT encoder by applying a feedforward multilayer perceptron (MLP) classifier over all VN classes to the BERT encoding associated with the first WordPiece of the target predicate. We again condition BERT on the target predicate by including it as a feature (w p ) in Sent. B:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes as Predicate Features",
"sec_num": "4"
},
{
"text": "x p = LM(w 1...T , w p ) (p) x (mlp) p = \u03c3 W (mlp) x p + b (mlp) s (vncls) p = W (vncls) x (mlp) p + b (vncls) (7)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes as Predicate Features",
"sec_num": "4"
},
{
"text": "where W (vncls) \u2208 R D mlp \u00d7V projects over all V VN classes for all predicates. The probability for predicting a VN class y (vncls) p for a given predicate and sentence is given by:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes as Predicate Features",
"sec_num": "4"
},
{
"text": "P (y (vncls) p |w 1...T , w p ) = softmax(s (vncls) p ) (8)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes as Predicate Features",
"sec_num": "4"
},
{
"text": "This single classifier formulation is possible for lexicons like VN and FrameNet in which predicates share senses from a global sense inventory. While individual predicates have a specific set of valid senses, their senses are shared from the global lexicon. Kawahara and Palmer (2014) demonstrate that a single classifier approach to VN classification achieves competitive performance when using shared semantic features. Intuitively, by training the classifier across multiple verbs, the model parameters specific to each sense receive more updates, with infrequent verb-class pairs also benefiting from the examples of other verbs within the same class. At inference time, we constrain sense predictions to predicate-sense combinations observed in the training data, selecting the highestscoring valid sense given the predicate. We evaluate models using both predicted and gold (ground truth) classes for w s as PREDICTED CLASS and GOLD CLASS respectively.",
"cite_spans": [
{
"start": 259,
"end": 285,
"text": "Kawahara and Palmer (2014)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes as Predicate Features",
"sec_num": "4"
},
{
"text": "Like SRL, VerbNet classification accuracy declines in the long tail of low frequency senses and predicates. For this reason, incorrect sense predictions may negate the benefits of VN class features on precisely the instances for which they might be expected to be beneficial: OOV or rare predicates.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes without Disambiguation",
"sec_num": null
},
{
"text": "To avoid this problem while still retaining the benefits of parameter sharing for low frequency predicates with higher-frequency predicates belonging to the same VN class, we propose including the set of all possible classes for a given predicate as Sent. B features. To incorporate multiple senses, we simply concatenate them sequentially to Sent. B:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes without Disambiguation",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "LM(w 1...T , w p w s 1...k )",
"eq_num": "(9)"
}
],
"section": "VerbNet Classes without Disambiguation",
"sec_num": null
},
{
"text": "This allows the BERT encoder to attend over all possible VerbNet classes for a given predicate and sentence, without making a discrete decision about which class is correct. The extent and way in which the model incorporates the Sent. B tokens associated with the available classes is learned during training. The inputs to this model, later referred to as ALL CLASSES are identical to PREDICTED CLASS and GOLD CLASS models for monosemous predicates.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Classes without Disambiguation",
"sec_num": null
},
{
"text": "Features that are useful for SRL may also be useful in predicting the sense of a predicate. For example, surface-level syntactic awareness that the argument of a predicate is a clause instead of a noun phrase may change the expected sense of a verb (bring-11.3 vs. characterize-29.2):",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "Bob took Mary to the doctor. John took Mary to be a doctor.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "The semantic classes of arguments are also often important in determining the sense of a given predicate (dub-29.3.2 vs. get-13.5.1):",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "John called Mary a name. John called Mary a car.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "This dependency between SRL and predicate sense disambiguation together with the prevalence of shared features between the two tasks makes them a good candidate for multi-task learning (Caruana, 1998) .",
"cite_spans": [
{
"start": 185,
"end": 200,
"text": "(Caruana, 1998)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "Multi-task Model Much of recent work in multitask learning for SRL has focused on syntactic tasks such as syntactic parsing as auxiliary objectives (Strubell et al., 2018; Swayamdipta et al., 2018; Xia et al., 2019; Zhou et al., 2020) . We first investigate an MTL approach that predicts semantic role labels and predicate senses independently given a shared BERT encoder. We extend our baseline SRL model, adding an additional head that is trained to predict the target predicate's sense, as described in Equation 8. The negative log likelihood of a single training instance with predicate p and token sequence x = w 1...T with T tokens is then given by:",
"cite_spans": [
{
"start": 148,
"end": 171,
"text": "(Strubell et al., 2018;",
"ref_id": "BIBREF46"
},
{
"start": 172,
"end": 197,
"text": "Swayamdipta et al., 2018;",
"ref_id": "BIBREF47"
},
{
"start": 198,
"end": 215,
"text": "Xia et al., 2019;",
"ref_id": "BIBREF53"
},
{
"start": 216,
"end": 234,
"text": "Zhou et al., 2020)",
"ref_id": "BIBREF58"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "\u2212 T t=1 log P (y (srl) pt |x, p) + \u03bb vncls log P (y (vncls) p |x, p) (10)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "with \u03bb vncls weighting the contribution of VerbNet class prediction to the overall objective. For brevity, we henceforth refer to this model as SRL + VSD.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "We also investigate conditioning role labeling directly on predicted predicate senses. We implement this by concatenating a weighted label embedding of the target predicate's predicted class to each of the SRL head's input vectors, x ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "y (vncls) p = K k=1 P (y (vncls) p = k|x, p)W (vncls) (k) (11) with W (vncls) \u2208 R K\u00d7D vncls and y (srl) p \u2208 R D vncls .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "The input to the SRL head is then given by:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "x (srl) pt = LM(w 1...T , w p ) (t) ; W (mark) (t=p) ; y (vncls) p (12)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "VerbNet class embeddings are initialized using the average of word embeddings corresponding to members of each class. During training, we use embeddings of predicted labels to avoid a discrepancy between the inputs to the SRL head between training and inference, when the gold labels are no longer available. In preliminary experiments, we used gold labels, similar to teacher forcing as described in Williams and Zipser (1989) , but found that performance degraded when applied to predicted labels. We refer to the model described in this section as SRL | VSD.",
"cite_spans": [
{
"start": 401,
"end": 427,
"text": "Williams and Zipser (1989)",
"ref_id": "BIBREF51"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Joint VerbNet Classification and SRL",
"sec_num": "5"
},
{
"text": "All models are implemented using Tensorflow 1.13 (Abadi et al., 2016) and are trained on a single NVIDIA GTX 1080 Ti GPU. We use the 110M parameter cased BERT-Base model available in Tensorflow Hub 3 , with D LM = 768. To align with Shi and Lin (2019) , D mark is set to 10, and LSTM and MLP hidden state sizes are set to 768 and 300 respectively. Dropout rates of 0.1 are applied to BERT outputs as well as after ReLu transforms in MLPs. Recurrent dropout (Gal and Ghahramani, 2016) with a rate of 0.1 is applied in LSTMs on hidden states and outputs. To initialize VerbNet class embeddings, we use 100-dimensional GloVe embeddings (Pennington et al., 2014) averaged over member verbs (D vncls = 100). \u03bb vncls is set to 0.5 after a preliminary search over {0.1, 0.5, 1.0}.",
"cite_spans": [
{
"start": 49,
"end": 69,
"text": "(Abadi et al., 2016)",
"ref_id": "BIBREF0"
},
{
"start": 233,
"end": 251,
"text": "Shi and Lin (2019)",
"ref_id": "BIBREF44"
},
{
"start": 457,
"end": 483,
"text": "(Gal and Ghahramani, 2016)",
"ref_id": "BIBREF19"
},
{
"start": 633,
"end": 658,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF40"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "6"
},
{
"text": "We follow the fine-tuning methodology described in Devlin et al. (2019) , using Adam (Kingma and Ba, 2014) with a batch size of 16. The learning rate is warmed up linearly from 0 to 5e-5 for 10% of training, then decayed linearly to 0 for the rest of training. Models are trained for up to 8 epochs. The best-performing checkpoint on the development set, evaluated at every half epoch, is selected for evaluation.",
"cite_spans": [
{
"start": 51,
"end": 71,
"text": "Devlin et al. (2019)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "6"
},
{
"text": "Unless otherwise mentioned, we train and evaluate all models with at least 7 independent random initializations, and present mean scores in our comparisons. To establish statistical significance, we apply a test for Almost Stochastic Dominance (Dror et al., 2019) between test score distributions, using \u03b1 = 0.05. Numbers in bold indicate highest average performance within a given evaluative setting, with a single star indicating statistical significance of almost stochastic dominance over our baseline Datasets We use English PropBank datasets from CoNLL-2005 (Carreras and M\u00e0rquez, 2005) and the CoNLL-2012 split (Pradhan et al., 2013) for OntoNotes (Hovy et al., 2006) in order to situate our baseline mode among recent work in PB SRL. We compare against models of similar size (120M parameters) with pre-identified predicates. The SemLink corpus (Palmer, 2009) is currently the only dataset that contains explicit VerbNet thematic role annotations with VN sense annotations. SemLink contains mappings between VN, PB and FrameNet, with annotations performed over a subset of the CoNLL-2005 PB WSJ annotations and Brown corpus out-of-domain test set (Carreras and M\u00e0rquez, 2005) . Using SemLink thus allows us to evaluate performance for both PB and VN roles on the same source text. Following Zapirain et al. (2008), we restrict evaluation to propositions with PB core arguments fully mapped to VN thematic roles. This accounts for 56% of the original corpus. We include PB modifier roles in addition to VN thematic roles.",
"cite_spans": [
{
"start": 244,
"end": 263,
"text": "(Dror et al., 2019)",
"ref_id": "BIBREF17"
},
{
"start": 553,
"end": 577,
"text": "CoNLL-2005 (Carreras and",
"ref_id": null
},
{
"start": 578,
"end": 592,
"text": "M\u00e0rquez, 2005)",
"ref_id": "BIBREF7"
},
{
"start": 618,
"end": 640,
"text": "(Pradhan et al., 2013)",
"ref_id": "BIBREF42"
},
{
"start": 655,
"end": 674,
"text": "(Hovy et al., 2006)",
"ref_id": "BIBREF27"
},
{
"start": 853,
"end": 867,
"text": "(Palmer, 2009)",
"ref_id": "BIBREF37"
},
{
"start": 1155,
"end": 1183,
"text": "(Carreras and M\u00e0rquez, 2005)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "6"
},
{
"text": "Baseline Comparisons Our baseline SRL model achieves comparable performance to Shi and Lin (2019) on both CoNLL-2012 and CoNLL-2005 and thus has performance similar to state-of-the-art models of the same size.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "6"
},
{
"text": "To compare our VerbNet classification models against prior work, we train and evaluate a publicly available state-of-the-art VN classification system directly on the SemLink corpus. We use Clear-WSD 4 , which is a sense disambiguation library tailored for verb sense disambiguation based on linear models over features constructed from an ensemble of word representations applied over syntactic relations (Palmer et al., 2017) .",
"cite_spans": [
{
"start": 405,
"end": 426,
"text": "(Palmer et al., 2017)",
"ref_id": "BIBREF39"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "6"
},
{
"text": "The results of our experiments are shown in Table 3 . First, we find that incorporating gold VerbNet classes (GOLD CLASS) significantly improves VerbNet SRL, providing a 15% relative error reduction on out-of-domain data (80.1 to 83.0), and 6% reduction on in-domain data (87.4 to 88.2). In PB SRL, gold classes are also beneficial, but to a lesser degree. ALL CLASSES and PRE-DICTED CLASS models improve both in-domain and out-of-domain VN SRL.",
"cite_spans": [],
"ref_spans": [
{
"start": 44,
"end": 51,
"text": "Table 3",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "VerbNet Models",
"sec_num": null
},
{
"text": "Predicting both VN classes and semantic roles from a single encoder reduces the total computational resources required to make predictions from separate models, providing a practical benefit. Additionally, we are interested in determining whether our multi-task models lead to improvements in generalization. Our multi-task model SRL + VSD, which does not condition thematic role prediction on predicted senses, does not have a significant effect on VN SRL performance. However, we do find that conditioning SRL on VN class predictions in a multi-task model (SRL | VSD) leads to a significant improvement in performance on the out-of-domain Brown test set for VN SRL. No significant change is observed on the in-domain WSJ test set, or when the model is applied to PB SRL.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VerbNet Models",
"sec_num": null
},
{
"text": "We also evaluate the impact of multi-task learning on predicate disambiguation (VN classification). First, we find that even our baseline model is competitive with the highly-specialized approach for verb sense disambiguation provided in Clear-WSD (Table 4) . Comparing our joint VN SRL models with a single task baseline for VN classification, we observe a significant improvement on WSJ test data when incorporating multi-task supervision from SRL. This approach is related to earlier use of SRL features for verb sense disambiguation reported in Dang and Palmer (2005) , and the positive result is consistent with their findings.",
"cite_spans": [
{
"start": 549,
"end": 571,
"text": "Dang and Palmer (2005)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [
{
"start": 248,
"end": 257,
"text": "(Table 4)",
"ref_id": "TABREF6"
}
],
"eq_spans": [],
"section": "VerbNet Models",
"sec_num": null
},
{
"text": "Monosemous vs. Polysemous Predicates To understand the impact of VerbNet class features, we break down our evaluation by polysemous and 4 https://github.com/clearwsd/clearwsd monosemous verbs in Table 5 . First, we observe that incorporating VN classes improves F 1 scores for monosemous verbs in both models. This is expected, as monosemous verbs are typically lower frequency, with low-frequency and OOV verbs benefiting the most from parameter sharing with other verbs belonging to the same VN classes. We also observe a significant improvement on polysemous verbs in the WSJ (in-domain) test set when including VN features. However, polysemous verbs in the Brown (out-of-domain) test set only benefit from using explicitly predicted classes, but not when using all valid classes for each predicate.",
"cite_spans": [],
"ref_spans": [
{
"start": 195,
"end": 202,
"text": "Table 5",
"ref_id": "TABREF8"
}
],
"eq_spans": [],
"section": "Analysis",
"sec_num": "7"
},
{
"text": "Why does ALL CLASSES improve performance on out-of-domain data for monosemous verbs, but not polysemous verbs? Intuitively, the per-verb distributions of VerbNet classes may change considerably between two domains. Using a correctlypredicted class may help mitigate errors on verbs for which one class was dominant during training, but a different class or set of classes are observed during testing in the new domain. This benefit would not be observed with ALL CLASSES as for a given verb, the same classes used as model inputs during training would be used as inputs on out-ofdomain data. However, VN classes receive fewer updates during training when using only predicted classes. Thus, verbs appearing in classes that never or rarely appeared during training will not benefit from PREDICTED CLASS features. ALL CLASSES may mitigate this issue, since even if a specific class does not appear in the training data, it still can receive updates from examples of polysemous member verbs that belong to other classes (and improved performance over PREDICTED CLASS on monosemous verbs on the out-of-domain Brown test set supports this). As future work, a promising direction may therefore be to combine PREDICTED CLASS and ALL CLASSES features.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Analysis",
"sec_num": "7"
},
{
"text": "Out-of-Vocabulary Predicates How well do models incorporating VerbNet features generalize on out-of-vocabulary and rare predicates? We split an evaluation on the WSJ development set into 5 bins by training set predicate frequency (shown in Figure 1 ). Comparing development F 1 scores for ALL CLASSES and PREDICTED CLASS models against our baseline model, we note that VN classes improve SRL performance most for predicates appearing 0-50 times in the training data, which account for 24.4% of instances in the development set. Focusing on low-frequency predicates, we further divide our evaluation of predicates occurring fewer than 50 times in the training data into 6 bins, one of which is reserved for OOV predicates (Figure 2) . From this analysis, we find that VN classes are most impactful on predicates appearing fewer than 10 times in the training data, with a large improvement over the baseline on OOV predicates when applying predicted classes.",
"cite_spans": [],
"ref_spans": [
{
"start": 240,
"end": 248,
"text": "Figure 1",
"ref_id": "FIGREF1"
},
{
"start": 721,
"end": 731,
"text": "(Figure 2)",
"ref_id": null
}
],
"eq_spans": [],
"section": "Analysis",
"sec_num": "7"
},
{
"text": "We investigate VerbNet classes as an effective level of abstraction for predicates when performing semantic role labeling. We find that incorporating features based on gold VerbNet classes improves both VerbNet and PropBank SRL, but when predicted classes are used, this effect is only observed for VerbNet. An improvement is also observed without explicit prediction of classes by including a list of all VerbNet classes the target predicate belongs to as features. Breaking down our evaluation into polysemous and monosemous predicates, we find that predicted classes help more on outof-domain polysemous predicates, while using all valid VerbNet classes helps more on out-of-domain low-frequency predicates. In multi-task learning experiments motivated by the interdependence of VN classification and SRL, we find that joint training improves both tasks when conditioning role labeling on predicted predicates, facilitating VN semantic parsing. In future work, we will investigate alternative approaches incorporating the structure of VerbNet into the parsing of VerbNet semantic representations. Finally, we hope to expand our evaluations to larger, more diverse datasets to further investigate domain transfer. Predicted Class All Classes Baseline Figure 2 : Evaluation by training set predicate frequency similar to Figure 1 , but focused on lowfrequency predicates. Most improvements are for predicates appearing fewer than 10 times in the training data.",
"cite_spans": [],
"ref_spans": [
{
"start": 1253,
"end": 1261,
"text": "Figure 2",
"ref_id": null
},
{
"start": 1322,
"end": 1330,
"text": "Figure 1",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Conclusions and Future Work",
"sec_num": "8"
},
{
"text": "Our code is available at https://github.com/ jgung/verbnet-parsing-iwcs-2021.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "In preliminary experiments, we found that directly modifying Sent. A drastically reduces the performance of the model and slows convergence.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We gratefully acknowledge the support of C3 (Cognitively Coherent Human-Computer Communication, subcontracts from UIUC and SIFT), DARPA AIDA Award FA8750-18-2-0016 (RAM-FIS), and DTRA HDTRA1-16-1-0002/Project 1553695 (eTASC -Empirical Evidence for a Theoretical Approach to Semantic Components). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of any government agency. This work was partially supported by research credits from Google Cloud. Finally, we thank the anonymous IWCS reviewers for their insightful comments and suggestions.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Tensorflow: A system for large-scale machine learning",
"authors": [
{
"first": "Mart\u00edn",
"middle": [],
"last": "Abadi",
"suffix": ""
},
{
"first": "Paul",
"middle": [],
"last": "Barham",
"suffix": ""
},
{
"first": "Jianmin",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Zhifeng",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Davis",
"suffix": ""
},
{
"first": "Jeffrey",
"middle": [],
"last": "Dean",
"suffix": ""
},
{
"first": "Matthieu",
"middle": [],
"last": "Devin",
"suffix": ""
},
{
"first": "Sanjay",
"middle": [],
"last": "Ghemawat",
"suffix": ""
},
{
"first": "Geoffrey",
"middle": [],
"last": "Irving",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Isard",
"suffix": ""
}
],
"year": 2016,
"venue": "OSDI",
"volume": "",
"issue": "",
"pages": "265--283",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mart\u00edn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In OSDI, pages 265-283.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "The Berkeley FrameNet project",
"authors": [
{
"first": "Collin",
"middle": [
"F"
],
"last": "Baker",
"suffix": ""
},
{
"first": "Charles",
"middle": [
"J"
],
"last": "Fillmore",
"suffix": ""
},
{
"first": "John",
"middle": [
"B"
],
"last": "Lowe",
"suffix": ""
}
],
"year": 1998,
"venue": "36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "86--90",
"other_ids": {
"DOI": [
"10.3115/980845.980860"
]
},
"num": null,
"urls": [],
"raw_text": "Collin F. Baker, Charles J. Fillmore, and John B. Lowe. 1998. The Berkeley FrameNet project. In 36th An- nual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Volume 1, pages 86-90, Montreal, Quebec, Canada. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Semantic roles for string to tree machine translation",
"authors": [
{
"first": "Marzieh",
"middle": [],
"last": "Bazrafshan",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Gildea",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "419--423",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marzieh Bazrafshan and Daniel Gildea. 2013. Seman- tic roles for string to tree machine translation. In Proceedings of the 51st Annual Meeting of the As- sociation for Computational Linguistics (Volume 2: Short Papers), pages 419-423, Sofia, Bulgaria. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Modeling biological processes for reading comprehension",
"authors": [
{
"first": "Jonathan",
"middle": [],
"last": "Berant",
"suffix": ""
},
{
"first": "Vivek",
"middle": [],
"last": "Srikumar",
"suffix": ""
},
{
"first": "Pei-Chun",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Abby",
"middle": [],
"last": "Vander Linden",
"suffix": ""
},
{
"first": "Brittany",
"middle": [],
"last": "Harding",
"suffix": ""
},
{
"first": "Brad",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "1499--1510",
"other_ids": {
"DOI": [
"10.3115/v1/D14-1159"
]
},
"num": null,
"urls": [],
"raw_text": "Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany Harding, Brad Huang, Peter Clark, and Christopher D. Manning. 2014. Modeling biological processes for reading compre- hension. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1499-1510, Doha, Qatar. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "PropBank Annotation Guidelines",
"authors": [
{
"first": "Claire",
"middle": [],
"last": "Bonial",
"suffix": ""
},
{
"first": "Olga",
"middle": [],
"last": "Babko-Malaya",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Jinho",
"suffix": ""
},
{
"first": "Jena",
"middle": [],
"last": "Choi",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Hwang",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Claire Bonial, Olga Babko-Malaya, Jinho D Choi, Jena Hwang, and Martha Palmer. 2010. PropBank Anno- tation Guidelines. Technical report, Center for Com- putational Language and Education Research Insti- tute of Cognitive Science University of Colorado at Boulder.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "VerbNet representations: Subevent semantics for transfer verbs",
"authors": [
{
"first": "Julia",
"middle": [],
"last": "Susan Windisch Brown",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Bonn",
"suffix": ""
},
{
"first": "Annie",
"middle": [],
"last": "Gung",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Zaenen",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Pustejovsky",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the First International Workshop on Designing Meaning Representations",
"volume": "",
"issue": "",
"pages": "154--163",
"other_ids": {
"DOI": [
"10.18653/v1/W19-3318"
]
},
"num": null,
"urls": [],
"raw_text": "Susan Windisch Brown, Julia Bonn, James Gung, An- nie Zaenen, James Pustejovsky, and Martha Palmer. 2019. VerbNet representations: Subevent semantics for transfer verbs. In Proceedings of the First Inter- national Workshop on Designing Meaning Represen- tations, pages 154-163, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Integrating Generative Lexicon event structures into VerbNet",
"authors": [
{
"first": "James",
"middle": [],
"last": "Susan Windisch Brown",
"suffix": ""
},
{
"first": "Annie",
"middle": [],
"last": "Pustejovsky",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Zaenen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Susan Windisch Brown, James Pustejovsky, Annie Za- enen, and Martha Palmer. 2018. Integrating Gen- erative Lexicon event structures into VerbNet. In Proceedings of the Eleventh International Confer- ence on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Re- sources Association (ELRA).",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Introduction to the CoNLL-2005 shared task: Semantic role labeling",
"authors": [
{
"first": "Xavier",
"middle": [],
"last": "Carreras",
"suffix": ""
},
{
"first": "Llu\u00eds",
"middle": [],
"last": "M\u00e0rquez",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005)",
"volume": "",
"issue": "",
"pages": "152--164",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xavier Carreras and Llu\u00eds M\u00e0rquez. 2005. Introduc- tion to the CoNLL-2005 shared task: Semantic role labeling. In Proceedings of the Ninth Confer- ence on Computational Natural Language Learning (CoNLL-2005), pages 152-164, Ann Arbor, Michi- gan. Association for Computational Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Multitask learning",
"authors": [
{
"first": "Rich",
"middle": [],
"last": "Caruana",
"suffix": ""
}
],
"year": 1998,
"venue": "Learning to Learn",
"volume": "",
"issue": "",
"pages": "95--133",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rich Caruana. 1998. Multitask learning. In Learning to Learn, pages 95-133. Springer.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Unsupervised Induction and Filling of Semantic Slots for Spoken Dialogue Systems Using Frame-Semantic Parsing",
"authors": [
{
"first": "Yun-Nung",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "William",
"middle": [
"Yang"
],
"last": "Wang",
"suffix": ""
},
{
"first": "Alexander",
"middle": [
"I"
],
"last": "Rudnicky",
"suffix": ""
}
],
"year": 2013,
"venue": "ASRU",
"volume": "",
"issue": "",
"pages": "120--125",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yun-nung Chen, William Yang Wang, and Alexander I Rudnicky. 2013. Unsupervised Induction and Fill- ing of Semantic Slots for Spoken Dialogue Systems Using Frame-Semantic Parsing. ASRU, pages 120- 125.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "What happened? leveraging verbnet to predict the effects of actions in procedural text",
"authors": [
{
"first": "Peter",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Bhavana",
"middle": [],
"last": "Dalvi",
"suffix": ""
},
{
"first": "Niket",
"middle": [],
"last": "Tandon",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1804.05435"
]
},
"num": null,
"urls": [],
"raw_text": "Peter Clark, Bhavana Dalvi, and Niket Tandon. 2018. What happened? leveraging verbnet to predict the effects of actions in procedural text. arXiv:1804.05435.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Joint learning of preposition senses and semantic roles of prepositional phrases",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Dahlmeier",
"suffix": ""
},
{
"first": "Tanja",
"middle": [],
"last": "Hwee Tou Ng",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Schultz",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "450--458",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Dahlmeier, Hwee Tou Ng, and Tanja Schultz. 2009. Joint learning of preposition senses and se- mantic roles of prepositional phrases. In Proceed- ings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 450-458, Singapore. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "The role of semantic roles in disambiguating verb senses",
"authors": [
{
"first": "Trang",
"middle": [],
"last": "Hoa",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Dang",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05)",
"volume": "",
"issue": "",
"pages": "42--49",
"other_ids": {
"DOI": [
"10.3115/1219840.1219846"
]
},
"num": null,
"urls": [],
"raw_text": "Hoa Trang Dang and Martha Palmer. 2005. The role of semantic roles in disambiguating verb senses. In Proceedings of the 43rd Annual Meeting of the As- sociation for Computational Linguistics (ACL'05), pages 42-49, Ann Arbor, Michigan. Association for Computational Linguistics.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Frame-semantic parsing",
"authors": [
{
"first": "Dipanjan",
"middle": [],
"last": "Das",
"suffix": ""
},
{
"first": "Desai",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "F",
"middle": [
"T"
],
"last": "Andr\u00e9",
"suffix": ""
},
{
"first": "Nathan",
"middle": [],
"last": "Martins",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Schneider",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Smith",
"suffix": ""
}
],
"year": 2014,
"venue": "Computational Linguistics",
"volume": "40",
"issue": "1",
"pages": "9--56",
"other_ids": {
"DOI": [
"10.1162/COLI_a_00163"
]
},
"num": null,
"urls": [],
"raw_text": "Dipanjan Das, Desai Chen, Andr\u00e9 F. T. Martins, Nathan Schneider, and Noah A. Smith. 2014. Frame-semantic parsing. Computational Linguis- tics, 40(1):9-56.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "NAACL",
"volume": "",
"issue": "",
"pages": "4171--4186",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Un- derstanding. In NAACL, pages 4171-4186.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Syn-QG: Syntactic and shallow semantic rules for question generation",
"authors": [
{
"first": "Kaustubh",
"middle": [],
"last": "Dhole",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Christopher",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "752--765",
"other_ids": {
"DOI": [
"10.18653/v1/2020.acl-main.69"
]
},
"num": null,
"urls": [],
"raw_text": "Kaustubh Dhole and Christopher D. Manning. 2020. Syn-QG: Syntactic and shallow semantic rules for question generation. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics, pages 752-765, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Thematic Proto-Roles and Argument Selection",
"authors": [
{
"first": "David",
"middle": [],
"last": "Dowty",
"suffix": ""
}
],
"year": 1991,
"venue": "Language",
"volume": "67",
"issue": "3",
"pages": "547--619",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David Dowty. 1991. Thematic Proto-Roles and Argu- ment Selection. Language, 67(3):547-619.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Deep dominance -how to properly compare deep neural models",
"authors": [
{
"first": "Rotem",
"middle": [],
"last": "Dror",
"suffix": ""
},
{
"first": "Segev",
"middle": [],
"last": "Shlomov",
"suffix": ""
},
{
"first": "Roi",
"middle": [],
"last": "Reichart",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2773--2785",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1266"
]
},
"num": null,
"urls": [],
"raw_text": "Rotem Dror, Segev Shlomov, and Roi Reichart. 2019. Deep dominance -how to properly compare deep neural models. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin- guistics, pages 2773-2785, Florence, Italy. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Semantic role labeling with neural network factors",
"authors": [
{
"first": "Nicholas",
"middle": [],
"last": "Fitzgerald",
"suffix": ""
},
{
"first": "Oscar",
"middle": [],
"last": "T\u00e4ckstr\u00f6m",
"suffix": ""
},
{
"first": "Kuzman",
"middle": [],
"last": "Ganchev",
"suffix": ""
},
{
"first": "Dipanjan",
"middle": [],
"last": "Das",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "960--970",
"other_ids": {
"DOI": [
"10.18653/v1/D15-1112"
]
},
"num": null,
"urls": [],
"raw_text": "Nicholas FitzGerald, Oscar T\u00e4ckstr\u00f6m, Kuzman Ganchev, and Dipanjan Das. 2015. Semantic role la- beling with neural network factors. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 960-970, Lis- bon, Portugal. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "A theoretically grounded application of dropout in recurrent neural networks",
"authors": [
{
"first": "Yarin",
"middle": [],
"last": "Gal",
"suffix": ""
},
{
"first": "Zoubin",
"middle": [],
"last": "Ghahramani",
"suffix": ""
}
],
"year": 2016,
"venue": "Advances in Neural Information Processing Systems",
"volume": "29",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yarin Gal and Zoubin Ghahramani. 2016. A theoret- ically grounded application of dropout in recurrent neural networks. In Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Automatic labeling of semantic roles",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Gildea",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Jurafsky",
"suffix": ""
}
],
"year": 2000,
"venue": "Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "512--520",
"other_ids": {
"DOI": [
"10.3115/1075218.1075283"
]
},
"num": null,
"urls": [],
"raw_text": "Daniel Gildea and Daniel Jurafsky. 2000. Automatic labeling of semantic roles. In Proceedings of the 38th Annual Meeting of the Association for Com- putational Linguistics, pages 512-520, Hong Kong. Association for Computational Linguistics.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Using Relations for Identification and Normalization of Disorders: Team CLEAR in the ShARe/CLEF 2013 eHealth Evaluation Lab",
"authors": [
{
"first": "James",
"middle": [],
"last": "Gung",
"suffix": ""
}
],
"year": 2013,
"venue": "CLEF (Working Notes)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "James Gung. 2013. Using Relations for Identification and Normalization of Disorders: Team CLEAR in the ShARe/CLEF 2013 eHealth Evaluation Lab. In CLEF (Working Notes).",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "A joint many-task model: Growing a neural network for multiple NLP tasks",
"authors": [
{
"first": "Kazuma",
"middle": [],
"last": "Hashimoto",
"suffix": ""
},
{
"first": "Caiming",
"middle": [],
"last": "Xiong",
"suffix": ""
},
{
"first": "Yoshimasa",
"middle": [],
"last": "Tsuruoka",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1923--1933",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1206"
]
},
"num": null,
"urls": [],
"raw_text": "Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu- ruoka, and Richard Socher. 2017. A joint many-task model: Growing a neural network for multiple NLP tasks. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1923-1933, Copenhagen, Denmark. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Jointly predicting predicates and arguments in neural semantic role labeling",
"authors": [
{
"first": "Luheng",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "364--369",
"other_ids": {
"DOI": [
"10.18653/v1/P18-2058"
]
},
"num": null,
"urls": [],
"raw_text": "Luheng He, Kenton Lee, Omer Levy, and Luke Zettle- moyer. 2018. Jointly predicting predicates and argu- ments in neural semantic role labeling. In Proceed- ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Pa- pers), pages 364-369, Melbourne, Australia. Asso- ciation for Computational Linguistics.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Deep semantic role labeling: What works and what's next",
"authors": [
{
"first": "Luheng",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "473--483",
"other_ids": {
"DOI": [
"10.18653/v1/P17-1044"
]
},
"num": null,
"urls": [],
"raw_text": "Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle- moyer. 2017. Deep semantic role labeling: What works and what's next. In Proceedings of the 55th Annual Meeting of the Association for Computa- tional Linguistics (Volume 1: Long Papers), pages 473-483, Vancouver, Canada. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Semantic frame identification with distributed word representations",
"authors": [
{
"first": "Karl",
"middle": [],
"last": "Moritz Hermann",
"suffix": ""
},
{
"first": "Dipanjan",
"middle": [],
"last": "Das",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Weston",
"suffix": ""
},
{
"first": "Kuzman",
"middle": [],
"last": "Ganchev",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "1448--1458",
"other_ids": {
"DOI": [
"10.3115/v1/P14-1136"
]
},
"num": null,
"urls": [],
"raw_text": "Karl Moritz Hermann, Dipanjan Das, Jason Weston, and Kuzman Ganchev. 2014. Semantic frame iden- tification with distributed word representations. In Proceedings of the 52nd Annual Meeting of the As- sociation for Computational Linguistics (Volume 1: Long Papers), pages 1448-1458, Baltimore, Mary- land. Association for Computational Linguistics.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Long Short-Term Memory",
"authors": [
{
"first": "Sepp",
"middle": [],
"last": "Hochreiter",
"suffix": ""
},
{
"first": "J\u00fcrgen",
"middle": [],
"last": "Schmidhuber",
"suffix": ""
}
],
"year": 1997,
"venue": "Neural Computation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "OntoNotes: The 90% solution",
"authors": [
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": ""
},
{
"first": "Mitchell",
"middle": [],
"last": "Marcus",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
},
{
"first": "Lance",
"middle": [],
"last": "Ramshaw",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Weischedel",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers",
"volume": "",
"issue": "",
"pages": "57--60",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph Weischedel. 2006. OntoNotes: The 90% solution. In Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers, pages 57-60, New York City, USA. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Single classifier approach for verb sense disambiguation based on generalized features",
"authors": [
{
"first": "Daisuke",
"middle": [],
"last": "Kawahara",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)",
"volume": "",
"issue": "",
"pages": "4210--4213",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daisuke Kawahara and Martha Palmer. 2014. Sin- gle classifier approach for verb sense disambigua- tion based on generalized features. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pages 4210- 4213, Reykjavik, Iceland. European Language Re- sources Association (ELRA).",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Adam: A Method for Stochastic Optimization",
"authors": [
{
"first": "P",
"middle": [],
"last": "Diederik",
"suffix": ""
},
{
"first": "Jimmy",
"middle": [],
"last": "Kingma",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ba",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1412.6980"
]
},
"num": null,
"urls": [],
"raw_text": "Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. arXiv:1412.6980.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "A matter of framing: The impact of linguistic formalism on probing results",
"authors": [
{
"first": "Ilia",
"middle": [],
"last": "Kuznetsov",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "171--182",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-main.13"
]
},
"num": null,
"urls": [],
"raw_text": "Ilia Kuznetsov and Iryna Gurevych. 2020. A matter of framing: The impact of linguistic formalism on prob- ing results. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 171-182, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Dependency or Span, End-to-End Uniform Semantic Role Labeling",
"authors": [
{
"first": "Zuchao",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Shexia",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Hai",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Yiqing",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Zhuosheng",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Xi",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Zhou",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "33",
"issue": "",
"pages": "6730--6737",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang, Zhu- osheng Zhang, Xi Zhou, and Xiang Zhou. 2019. De- pendency or Span, End-to-End Uniform Semantic Role Labeling. AAAI, 33:6730-6737.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Semantic role features for machine translation",
"authors": [
{
"first": "Ding",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Gildea",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 23rd International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "716--724",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ding Liu and Daniel Gildea. 2010. Semantic role features for machine translation. In Proceedings of the 23rd International Conference on Computa- tional Linguistics (Coling 2010), pages 716-724, Beijing, China. Coling 2010 Organizing Committee.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "GUIR at SemEval-2017 task 12: A framework for cross-domain clinical temporal information extraction",
"authors": [
{
"first": "Sean",
"middle": [],
"last": "Macavaney",
"suffix": ""
},
{
"first": "Arman",
"middle": [],
"last": "Cohan",
"suffix": ""
},
{
"first": "Nazli",
"middle": [],
"last": "Goharian",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)",
"volume": "",
"issue": "",
"pages": "1024--1029",
"other_ids": {
"DOI": [
"10.18653/v1/S17-2180"
]
},
"num": null,
"urls": [],
"raw_text": "Sean MacAvaney, Arman Cohan, and Nazli Goharian. 2017. GUIR at SemEval-2017 task 12: A frame- work for cross-domain clinical temporal information extraction. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 1024-1029, Vancouver, Canada. Association for Computational Linguistics.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Abstraction and generalisation in semantic role labels: PropBank, VerbNet or both?",
"authors": [
{
"first": "Paola",
"middle": [],
"last": "Merlo",
"suffix": ""
},
{
"first": "Lonneke",
"middle": [],
"last": "Van Der",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Plas",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP",
"volume": "",
"issue": "",
"pages": "288--296",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Paola Merlo and Lonneke Van Der Plas. 2009. Ab- straction and generalisation in semantic role labels: PropBank, VerbNet or both? In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pages 288-296, Suntec, Singapore. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "The Role of Verb Sense Disambiguation in Semantic Role Labeling",
"authors": [
{
"first": "Paloma",
"middle": [],
"last": "Moreda",
"suffix": ""
},
{
"first": "Manuel",
"middle": [],
"last": "Palomar",
"suffix": ""
}
],
"year": 2006,
"venue": "Lecture Notes in Computer Science Advances in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "684--695",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Paloma Moreda and Manuel Palomar. 2006. The Role of Verb Sense Disambiguation in Semantic Role Labeling. Lecture Notes in Computer Science Ad- vances in Natural Language Processing, pages 684- 695.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "A span selection model for semantic role labeling",
"authors": [
{
"first": "Hiroki",
"middle": [],
"last": "Ouchi",
"suffix": ""
},
{
"first": "Hiroyuki",
"middle": [],
"last": "Shindo",
"suffix": ""
},
{
"first": "Yuji",
"middle": [],
"last": "Matsumoto",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1630--1642",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1191"
]
},
"num": null,
"urls": [],
"raw_text": "Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto. 2018. A span selection model for semantic role la- beling. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1630-1642, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "SemLink: Linking PropBank, VerbNet and FrameNet",
"authors": [
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the Generative Lexicon Conference",
"volume": "",
"issue": "",
"pages": "9--15",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Martha Palmer. 2009. SemLink: Linking PropBank, VerbNet and FrameNet. In Proceedings of the Gen- erative Lexicon Conference, pages 9-15. Pisa Italy.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "The Proposition Bank: An annotated corpus of semantic roles",
"authors": [
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Gildea",
"suffix": ""
},
{
"first": "Paul",
"middle": [],
"last": "Kingsbury",
"suffix": ""
}
],
"year": 2005,
"venue": "Computational Linguistics",
"volume": "31",
"issue": "1",
"pages": "71--106",
"other_ids": {
"DOI": [
"10.1162/0891201053630264"
]
},
"num": null,
"urls": [],
"raw_text": "Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The Proposition Bank: An annotated cor- pus of semantic roles. Computational Linguistics, 31(1):71-106.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "The Pitfalls of Shortcuts: Tales from the Word Sense Tagging Trenches. Springer series Text, Speech and Language Technology",
"authors": [
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Gung",
"suffix": ""
},
{
"first": "Claire",
"middle": [],
"last": "Bonial",
"suffix": ""
},
{
"first": "Jinho",
"middle": [],
"last": "Choi",
"suffix": ""
},
{
"first": "Orin",
"middle": [],
"last": "Hargraves",
"suffix": ""
},
{
"first": "Derek",
"middle": [],
"last": "Palmer",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Stowe",
"suffix": ""
}
],
"year": 2017,
"venue": "Essays in Lexical Semantics and Computational Lexicography",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Martha Palmer, James Gung, Claire Bonial, Jinho Choi, Orin Hargraves, Derek Palmer, and Kevin Stowe. 2017. The Pitfalls of Shortcuts: Tales from the Word Sense Tagging Trenches. Springer series Text, Speech and Language Technology, Essays in Lexi- cal Semantics and Computational Lexicography -In Honor of Adam Kilgarriff.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "GloVe: Global vectors for word representation",
"authors": [
{
"first": "Jeffrey",
"middle": [],
"last": "Pennington",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "1532--1543",
"other_ids": {
"DOI": [
"10.3115/v1/D14-1162"
]
},
"num": null,
"urls": [],
"raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Confer- ence on Empirical Methods in Natural Language Processing (EMNLP), pages 1532-1543, Doha, Qatar. Association for Computational Linguistics.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Deep contextualized word representations",
"authors": [
{
"first": "Matthew",
"middle": [],
"last": "Peters",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Neumann",
"suffix": ""
},
{
"first": "Mohit",
"middle": [],
"last": "Iyyer",
"suffix": ""
},
{
"first": "Matt",
"middle": [],
"last": "Gardner",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "2227--2237",
"other_ids": {
"DOI": [
"10.18653/v1/N18-1202"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word rep- resentations. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana. Association for Computational Linguistics.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Towards robust linguistic analysis using OntoNotes",
"authors": [
{
"first": "Alessandro",
"middle": [],
"last": "Sameer Pradhan",
"suffix": ""
},
{
"first": "Nianwen",
"middle": [],
"last": "Moschitti",
"suffix": ""
},
{
"first": "Hwee Tou",
"middle": [],
"last": "Xue",
"suffix": ""
},
{
"first": "Anders",
"middle": [],
"last": "Ng",
"suffix": ""
},
{
"first": "Olga",
"middle": [],
"last": "Bj\u00f6rkelund",
"suffix": ""
},
{
"first": "Yuchen",
"middle": [],
"last": "Uryupina",
"suffix": ""
},
{
"first": "Zhi",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Zhong",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
"volume": "",
"issue": "",
"pages": "143--152",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders Bj\u00f6rkelund, Olga Uryupina, Yuchen Zhang, and Zhi Zhong. 2013. Towards ro- bust linguistic analysis using OntoNotes. In Pro- ceedings of the Seventeenth Conference on Computa- tional Natural Language Learning, pages 143-152, Sofia, Bulgaria. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "VerbNet: A Broad-Coverage",
"authors": [
{
"first": "Karin Kipper",
"middle": [],
"last": "Schuler",
"suffix": ""
}
],
"year": 2005,
"venue": "Comprehensive Verb Lexicon. Dissertation Abstracts International, B: Sciences and Engineering",
"volume": "66",
"issue": "6",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Karin Kipper Schuler. 2005. VerbNet: A Broad- Coverage, Comprehensive Verb Lexicon. Disserta- tion Abstracts International, B: Sciences and Engi- neering, 66(6).",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Simple BERT Models for Relation Extraction and Semantic Role Labeling",
"authors": [
{
"first": "Peng",
"middle": [],
"last": "Shi",
"suffix": ""
},
{
"first": "Jimmy",
"middle": [],
"last": "Lin",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1904.05255"
]
},
"num": null,
"urls": [],
"raw_text": "Peng Shi and Jimmy Lin. 2019. Simple BERT Models for Relation Extraction and Semantic Role Labeling. arXiv:1904.05255.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Linguistic analysis improves neural metaphor detection",
"authors": [
{
"first": "Kevin",
"middle": [],
"last": "Stowe",
"suffix": ""
},
{
"first": "Sarah",
"middle": [],
"last": "Moeller",
"suffix": ""
},
{
"first": "Laura",
"middle": [],
"last": "Michaelis",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
"volume": "",
"issue": "",
"pages": "362--371",
"other_ids": {
"DOI": [
"10.18653/v1/K19-1034"
]
},
"num": null,
"urls": [],
"raw_text": "Kevin Stowe, Sarah Moeller, Laura Michaelis, and Martha Palmer. 2019. Linguistic analysis improves neural metaphor detection. In Proceedings of the 23rd Conference on Computational Natural Lan- guage Learning (CoNLL), pages 362-371, Hong Kong, China. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "Linguistically-informed self-attention for semantic role labeling",
"authors": [
{
"first": "Emma",
"middle": [],
"last": "Strubell",
"suffix": ""
},
{
"first": "Patrick",
"middle": [],
"last": "Verga",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Andor",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Weiss",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Mccallum",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "5027--5038",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1548"
]
},
"num": null,
"urls": [],
"raw_text": "Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum. 2018. Linguistically-informed self-attention for semantic role labeling. In Proceedings of the 2018 Confer- ence on Empirical Methods in Natural Language Processing, pages 5027-5038, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "Syntactic scaffolds for semantic structures",
"authors": [
{
"first": "Swabha",
"middle": [],
"last": "Swayamdipta",
"suffix": ""
},
{
"first": "Sam",
"middle": [],
"last": "Thomson",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "3772--3782",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1412"
]
},
"num": null,
"urls": [],
"raw_text": "Swabha Swayamdipta, Sam Thomson, Kenton Lee, Luke Zettlemoyer, Chris Dyer, and Noah A. Smith. 2018. Syntactic scaffolds for semantic structures. In Proceedings of the 2018 Conference on Em- pirical Methods in Natural Language Processing, pages 3772-3782, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "Semi-Supervised Learning for Spoken Language Understanding Using Semantic Role Labeling. Language",
"authors": [
{
"first": "Gokhan",
"middle": [],
"last": "Tur",
"suffix": ""
},
{
"first": "Dilek",
"middle": [],
"last": "Hakkani-T\u00fcr",
"suffix": ""
}
],
"year": 2005,
"venue": "",
"volume": "",
"issue": "",
"pages": "232--237",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gokhan Tur and Dilek Hakkani-T\u00fcr. 2005. Semi- Supervised Learning for Spoken Language Under- standing Using Semantic Role Labeling. Language, pages 232-237.",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "Attention is all you need",
"authors": [
{
"first": "Ashish",
"middle": [],
"last": "Vaswani",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Shazeer",
"suffix": ""
},
{
"first": "Niki",
"middle": [],
"last": "Parmar",
"suffix": ""
},
{
"first": "Jakob",
"middle": [],
"last": "Uszkoreit",
"suffix": ""
},
{
"first": "Llion",
"middle": [],
"last": "Jones",
"suffix": ""
},
{
"first": "Aidan",
"middle": [
"N"
],
"last": "Gomez",
"suffix": ""
},
{
"first": "Illia",
"middle": [],
"last": "Kaiser",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Polosukhin",
"suffix": ""
}
],
"year": 2017,
"venue": "Advances in Neural Information Processing Systems",
"volume": "30",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141 ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Pro- cessing Systems, volume 30. Curran Associates, Inc.",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "Machine comprehension with syntax, frames, and semantics",
"authors": [
{
"first": "Hai",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Mohit",
"middle": [],
"last": "Bansal",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Gimpel",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Mcallester",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "2",
"issue": "",
"pages": "700--706",
"other_ids": {
"DOI": [
"10.3115/v1/P15-2115"
]
},
"num": null,
"urls": [],
"raw_text": "Hai Wang, Mohit Bansal, Kevin Gimpel, and David McAllester. 2015. Machine comprehension with syntax, frames, and semantics. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 700-706, Beijing, China. Association for Computational Linguistics.",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "A Learning Algorithm for Continually Running Fully Recurrent Neural Networks",
"authors": [
{
"first": "Ronald",
"middle": [
"J"
],
"last": "Williams",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Zipser",
"suffix": ""
}
],
"year": 1989,
"venue": "Neural Computation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ronald J. Williams and David Zipser. 1989. A Learn- ing Algorithm for Continually Running Fully Recur- rent Neural Networks. Neural Computation.",
"links": null
},
"BIBREF52": {
"ref_id": "b52",
"title": "Google's neural machine translation system: Bridging the gap between human and machine translation",
"authors": [
{
"first": "Yonghui",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "Zhifeng",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Wolfgang",
"middle": [],
"last": "Norouzi",
"suffix": ""
},
{
"first": "Maxim",
"middle": [],
"last": "Macherey",
"suffix": ""
},
{
"first": "Yuan",
"middle": [],
"last": "Krikun",
"suffix": ""
},
{
"first": "Qin",
"middle": [],
"last": "Cao",
"suffix": ""
},
{
"first": "Klaus",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Macherey",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1609.08144"
]
},
"num": null,
"urls": [],
"raw_text": "Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv:1609.08144.",
"links": null
},
"BIBREF53": {
"ref_id": "b53",
"title": "A syntax-aware multi-task learning framework for Chinese semantic role labeling",
"authors": [
{
"first": "Qingrong",
"middle": [],
"last": "Xia",
"suffix": ""
},
{
"first": "Zhenghua",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Min",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "5382--5392",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1541"
]
},
"num": null,
"urls": [],
"raw_text": "Qingrong Xia, Zhenghua Li, and Min Zhang. 2019. A syntax-aware multi-task learning framework for Chinese semantic role labeling. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5382-5392, Hong Kong, China. Association for Computational Linguistics.",
"links": null
},
"BIBREF54": {
"ref_id": "b54",
"title": "Robust Semantic Role Labeling Using Parsing Variations and Semantic Classes",
"authors": [
{
"first": "Yi",
"middle": [],
"last": "Szu-Ting",
"suffix": ""
}
],
"year": 2007,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Szu-ting Yi. 2007. Robust Semantic Role Labeling Us- ing Parsing Variations and Semantic Classes. Ph.D. thesis, University of Pennsylvania.",
"links": null
},
"BIBREF55": {
"ref_id": "b55",
"title": "Can semantic roles generalize across genres?",
"authors": [
{
"first": "Edward",
"middle": [],
"last": "Szu-Ting Yi",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Loper",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 2007,
"venue": "Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference",
"volume": "",
"issue": "",
"pages": "548--555",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Szu-ting Yi, Edward Loper, and Martha Palmer. 2007. Can semantic roles generalize across genres? In Hu- man Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, pages 548-555, Rochester, New York. Association for Computational Linguistics.",
"links": null
},
"BIBREF56": {
"ref_id": "b56",
"title": "Robustness and generalization of role sets: PropBank vs. VerbNet",
"authors": [
{
"first": "Eneko",
"middle": [],
"last": "Be\u00f1at Zapirain",
"suffix": ""
},
{
"first": "Llu\u00eds",
"middle": [],
"last": "Agirre",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "M\u00e0rquez",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of ACL-08: HLT",
"volume": "",
"issue": "",
"pages": "550--558",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Be\u00f1at Zapirain, Eneko Agirre, and Llu\u00eds M\u00e0rquez. 2008. Robustness and generalization of role sets: PropBank vs. VerbNet. In Proceedings of ACL-08: HLT, pages 550-558, Columbus, Ohio. Association for Computational Linguistics.",
"links": null
},
"BIBREF57": {
"ref_id": "b57",
"title": "End-to-end learning of semantic role labeling using recurrent neural networks",
"authors": [
{
"first": "Jie",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Xu",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "1",
"issue": "",
"pages": "1127--1137",
"other_ids": {
"DOI": [
"10.3115/v1/P15-1109"
]
},
"num": null,
"urls": [],
"raw_text": "Jie Zhou and Wei Xu. 2015. End-to-end learning of se- mantic role labeling using recurrent neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Lan- guage Processing (Volume 1: Long Papers), pages 1127-1137, Beijing, China. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF58": {
"ref_id": "b58",
"title": "LIMIT-BERT : Linguistics informed multi-task BERT",
"authors": [
{
"first": "Junru",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Zhuosheng",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Hai",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Shuailiang",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2020,
"venue": "Findings of the Association for Computational Linguistics: EMNLP 2020",
"volume": "",
"issue": "",
"pages": "4450--4461",
"other_ids": {
"DOI": [
"10.18653/v1/2020.findings-emnlp.399"
]
},
"num": null,
"urls": [],
"raw_text": "Junru Zhou, Zhuosheng Zhang, Hai Zhao, and Shuail- iang Zhang. 2020. LIMIT-BERT : Linguistics in- formed multi-task BERT. In Findings of the Associ- ation for Computational Linguistics: EMNLP 2020, pages 4450-4461, Online. Association for Computa- tional Linguistics.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"text": "compute the weighted label embedding of a given VN class y (vncls) p we follow Hashimoto et al. (2017):",
"type_str": "figure",
"uris": null
},
"FIGREF1": {
"num": null,
"text": "Evaluation by training set predicate frequency on the SemLink development data comparing the impact of VerbNet features.",
"type_str": "figure",
"uris": null
},
"TABREF1": {
"text": "Comparison of PropBank (PB) and VerbNet (VN) roles for predicates console and walk. VerbNet's thematic role assignments (e.g. Stimulus vs. Agent and Experiencer vs. Theme) are more dependent on the predicate than PropBank's numbered arguments.",
"type_str": "table",
"html": null,
"num": null,
"content": "<table/>"
},
"TABREF3": {
"text": "",
"type_str": "table",
"html": null,
"num": null,
"content": "<table><tr><td>: Comparison of baseline SRL system on</td></tr><tr><td>CoNLL-2005 and CoNLL-2012 against models apply-</td></tr><tr><td>ing pre-trained encoders of comparable size (F 1 ).</td></tr><tr><td>models for each experiment, and two stars indicat-</td></tr><tr><td>ing stochastic dominance ( = 0). For example,</td></tr><tr><td>a value in a table of 88.2 \u00b10.2 indicates that a</td></tr><tr><td>model has a mean test score (e.g. F 1 or accuracy)</td></tr><tr><td>of 88.2, with a standard deviation of 0.2, and is</td></tr><tr><td>stochastically dominant over the baseline.</td></tr></table>"
},
"TABREF4": {
"text": "\u00b10.0 82.8 \u00b10.2 88.2 \u00b10.2 83.0 \u00b10.9",
"type_str": "table",
"html": null,
"num": null,
"content": "<table><tr><td/><td>PropBank</td><td/><td>VerbNet</td><td/></tr><tr><td>System</td><td>WSJ</td><td>Brown</td><td>WSJ</td><td>Brown</td></tr><tr><td colspan=\"2\">Zapirain et al. (2008) 78.9\u00b10.9</td><td/><td>77.0\u00b10.9</td><td>62.9\u00b11.0</td></tr><tr><td>Baseline</td><td>88.5\u00b10.1</td><td>82.4\u00b10.5</td><td>87.4\u00b10.2</td><td>80.1\u00b10.4</td></tr><tr><td>SRL + VSD</td><td>88.2\u00b10.2</td><td colspan=\"2\">82.8 \u00b10.6 87.3\u00b10.1</td><td>80.0\u00b10.7</td></tr><tr><td>SRL | VSD</td><td>88.3\u00b10.2</td><td>82.2\u00b10.4</td><td>87.4\u00b10.2</td><td>80.6 \u00b10.4</td></tr><tr><td>PREDICTED CLASS</td><td>88.3\u00b10.1</td><td>81.2\u00b10.6</td><td colspan=\"2\">87.6 \u00b10.1 80.9 \u00b10.6</td></tr><tr><td>ALL CLASSES</td><td colspan=\"2\">88.6 \u00b10.3 82.3\u00b10.5</td><td colspan=\"2\">87.6 \u00b10.2 81.1 \u00b10.6</td></tr><tr><td>GOLD CLASS</td><td>88.7</td><td/><td/><td/></tr></table>"
},
"TABREF5": {
"text": "F 1 scores of models incorporating different predicate representations and sense distinctions on VerbNet and PropBank SRL on SemLink. SRL + VSD and SRL | VSD are multitask models for SRL and VerbNet classification, with the latter using predicted classes as features for SRL. ALL CLASSES, PREDICTED CLASS, and GOLD CLASS are SRL models using VerbNet class features (the list of all VerbNet classes the predicate belongs to, predicted VerbNet classes, and gold VerbNet classes respectively). VSD 97.7 \u00b10.1 91.3\u00b10.4 SRL | VSD 97.6 \u00b10.1 91.3\u00b10",
"type_str": "table",
"html": null,
"num": null,
"content": "<table><tr><td>System</td><td>WSJ</td><td>Brown</td></tr><tr><td colspan=\"2\">ClearWSD 97.0\u00b10</td><td>89.3\u00b10</td></tr><tr><td>Baseline</td><td>97.3\u00b10.1</td><td>90.7\u00b10</td></tr><tr><td>SRL +</td><td/><td/></tr></table>"
},
"TABREF6": {
"text": "VerbNet classification (sense disambiguation) accuracy on SemLink.",
"type_str": "table",
"html": null,
"num": null,
"content": "<table/>"
},
"TABREF7": {
"text": "+0.0) 88.2\u00b10.3 (+0.0) 81.8\u00b10.8 (+0.0) 85.9\u00b10.3 (+0.0) 77.7\u00b11.3 ALL CLASSES (+0.4) 88.6 \u00b10.2 (\u22120.2) 81.6\u00b10.8 (+0.2) 86.1 \u00b10.4 (+2.6) 80.3 \u00b10.8 PREDICTED CLASS (+0.3) 88.5 \u00b10.2 (+0.5) 82.3 \u00b10.8 (+0.2) 86.1 \u00b10.2 (+0.9) 78.6 \u00b11.3",
"type_str": "table",
"html": null,
"num": null,
"content": "<table><tr><td/><td>Polysemous</td><td/><td>Monosemous</td><td/></tr><tr><td>System</td><td>WSJ</td><td>Brown</td><td>WSJ</td><td>Brown</td></tr><tr><td>Baseline</td><td>(</td><td/><td/><td/></tr></table>"
},
"TABREF8": {
"text": "Evaluation of contribution of VerbNet features on polysemous vs. monosemous predicates for VerbNet SRL averaged over all models. Average change over the baseline performance is given in parentheses.",
"type_str": "table",
"html": null,
"num": null,
"content": "<table><tr><td/><td>90</td></tr><tr><td/><td>80</td></tr><tr><td>Dev Set F 1</td><td>70</td></tr><tr><td/><td>60</td></tr><tr><td/><td>50</td></tr><tr><td/><td>0</td><td>1-10 11-20 21-30 31-40 41-50</td></tr><tr><td/><td colspan=\"2\">Predicate Frequency in Training Data</td></tr></table>"
}
}
}
} |