File size: 151,039 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:24:30.535563Z"
    },
    "title": "Critical Thinking for Language Models",
    "authors": [
        {
            "first": "Gregor",
            "middle": [],
            "last": "Betz",
            "suffix": "",
            "affiliation": {},
            "email": "gregor.betz@kit.edu"
        },
        {
            "first": "Christian",
            "middle": [],
            "last": "Voigt",
            "suffix": "",
            "affiliation": {},
            "email": "christian.voigt@kit.edu"
        },
        {
            "first": "Kyle",
            "middle": [],
            "last": "Richardson",
            "suffix": "",
            "affiliation": {},
            "email": "kyler@allenai.org"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper takes a first step towards a critical thinking curriculum for neural auto-regressive language models. We introduce a synthetic corpus of deductively valid arguments, and generate artificial argumentative texts to train CRiPT: a critical thinking intermediarily pretrained transformer based on GPT-2. Significant transfer learning effects can be observed: Trained on three simple core schemes, CRiPT accurately completes conclusions of different, and more complex types of arguments, too. CRiPT generalizes the core argument schemes in a correct way. Moreover, we obtain consistent and promising results for NLU benchmarks. In particular, CRiPT's zero-shot accuracy on the GLUE diagnostics exceeds GPT-2's performance by 15 percentage points. The findings suggest that intermediary pre-training on texts that exemplify basic reasoning abilities (such as typically covered in critical thinking textbooks) might help language models to acquire a broad range of reasoning skills. The synthetic argumentative texts presented in this paper are a promising starting point for building such a \"critical thinking curriculum for language models.\"",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper takes a first step towards a critical thinking curriculum for neural auto-regressive language models. We introduce a synthetic corpus of deductively valid arguments, and generate artificial argumentative texts to train CRiPT: a critical thinking intermediarily pretrained transformer based on GPT-2. Significant transfer learning effects can be observed: Trained on three simple core schemes, CRiPT accurately completes conclusions of different, and more complex types of arguments, too. CRiPT generalizes the core argument schemes in a correct way. Moreover, we obtain consistent and promising results for NLU benchmarks. In particular, CRiPT's zero-shot accuracy on the GLUE diagnostics exceeds GPT-2's performance by 15 percentage points. The findings suggest that intermediary pre-training on texts that exemplify basic reasoning abilities (such as typically covered in critical thinking textbooks) might help language models to acquire a broad range of reasoning skills. The synthetic argumentative texts presented in this paper are a promising starting point for building such a \"critical thinking curriculum for language models.\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Pre-trained autoregressive language models (LM) such as GPT-2 and GPT-3 achieve, remarkably, competitive results in a variety of language modeling benchmarks without task-specific fine-tuning (Radford et al., 2019; Brown et al., 2020 ). Yet, it is also widely acknowledged that these models struggle with reasoning tasks, such as natural language inference (NLI) or textual entailment (Askell, 2020) . Actually, that doesn't come as a surprise, given the tendency of humans to commit errors in reasoning (Kahneman, 2011; Sunstein and Hastie, 2015) , their limited critical thinking skills (Paglieri, 2017) , and the resulting omnipresence of fallacies and biases in texts and the frequently low argumentative quality of online debates (Hansson, 2004; Guia\u015fu and Tindale, 2018; Cheng et al., 2017) : Neural language models are known to pick up and reproduce normative biases (e.g., regarding gender or race) present in the dataset they are trained on (Gilburt and Claydon, 2019; Blodgett et al., 2020; Nadeem et al., 2020) , as well as other annotation artifacts (Gururangan et al., 2018) ; no wonder this happens with argumentative biases and reasoning flaws, too Talmor et al., 2020) . This diagnosis suggests that there is an obvious remedy for LMs' poor reasoning capability: make sure that the training corpus contains a sufficient amount of exemplary episodes of sound reasoning.",
                "cite_spans": [
                    {
                        "start": 192,
                        "end": 214,
                        "text": "(Radford et al., 2019;",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 215,
                        "end": 233,
                        "text": "Brown et al., 2020",
                        "ref_id": null
                    },
                    {
                        "start": 385,
                        "end": 399,
                        "text": "(Askell, 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 504,
                        "end": 520,
                        "text": "(Kahneman, 2011;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 521,
                        "end": 547,
                        "text": "Sunstein and Hastie, 2015)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 589,
                        "end": 605,
                        "text": "(Paglieri, 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 735,
                        "end": 750,
                        "text": "(Hansson, 2004;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 751,
                        "end": 776,
                        "text": "Guia\u015fu and Tindale, 2018;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 777,
                        "end": 796,
                        "text": "Cheng et al., 2017)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 950,
                        "end": 977,
                        "text": "(Gilburt and Claydon, 2019;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 978,
                        "end": 1000,
                        "text": "Blodgett et al., 2020;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1001,
                        "end": 1021,
                        "text": "Nadeem et al., 2020)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 1062,
                        "end": 1087,
                        "text": "(Gururangan et al., 2018)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1164,
                        "end": 1184,
                        "text": "Talmor et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we take a first step towards the creation of a \"critical thinking curriculum\" for neural language models. Critical thinking can be loosely defined as \"reasonable reflective thinking that is focused on deciding what to believe or do.\" (Norris and Ennis, 1989) Generally speaking, our study exploits an analogy between teaching critical thinking to students and training language models so as to improve their reasoning skill. More specifically, we build on three key assumptions that are typically made in critical thinking courses and textbooks: First, there exist fundamental reasoning skills that are required for, or highly conducive to, a large variety of more specific and advanced critical thinking skills (e.g., Fisher, 2001, p. 7) . Second, drawing deductive inferences is one such basic ability (e.g., Fisher, 2001, pp. 7-8) . Third, reasoning skills are not (just) acquired by learning a theory of correct reasoning, but by studying lots of examples and doing \"lots of good-quality exercises\" (Lau and Chan, 2020) , typically moving from simple to more difficult problems (e.g., Bowell and Kemp, 2014) .",
                "cite_spans": [
                    {
                        "start": 249,
                        "end": 273,
                        "text": "(Norris and Ennis, 1989)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 734,
                        "end": 753,
                        "text": "Fisher, 2001, p. 7)",
                        "ref_id": null
                    },
                    {
                        "start": 826,
                        "end": 848,
                        "text": "Fisher, 2001, pp. 7-8)",
                        "ref_id": null
                    },
                    {
                        "start": 1018,
                        "end": 1038,
                        "text": "(Lau and Chan, 2020)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 1104,
                        "end": 1126,
                        "text": "Bowell and Kemp, 2014)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "These insights from teaching critical thinking translate, with respect to our study, as follows (see Fig. 1 ). First of all, we design and build 'lots of good-quality exercises': a synthetic corpus of de- Here comes a valid argument: To begin with, Susan is a friend of Chloe. Moreover, no sister of Lisa is a friend of Chloe. Therefore, it is false that Susan is a sister of Lisa.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 101,
                        "end": 107,
                        "text": "Fig. 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Step 1: multistep templating",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "synthetic argumentative texts",
                "sec_num": null
            },
            {
                "text": "Step 3: assessment on reasoning tasks:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "synthetic argumentative texts",
                "sec_num": null
            },
            {
                "text": "\u2022 conclusion completion \u2022 GLUE AX, SNLI, etc. Step 2: intermediary pretraining CRiPT Figure 1 : Training and testing of CRiPT language models (critical thinking intermediarily pre-trained transformer) with synthetic argumentative texts.",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 45,
                        "text": "GLUE AX, SNLI, etc.",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 85,
                        "end": 93,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "synthetic argumentative texts",
                "sec_num": null
            },
            {
                "text": "ductively valid arguments which instantiate a variety of (syllogistic) argument schemes, and which are rendered as text paragraphs (Section 3). Next, we use our synthetic argument text corpus to train and to evaluate GPT-2 (Section 4). The training, which maximizes a causal language modeling objective, can be conceived of as a generic, intermediary pre-training in the spirit of STILTS (Phang et al., 2018) and yields models we term CRiPT (critical thinking intermediarily pre-trained transformer).",
                "cite_spans": [
                    {
                        "start": 388,
                        "end": 408,
                        "text": "(Phang et al., 2018)",
                        "ref_id": "BIBREF35"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "synthetic argumentative texts",
                "sec_num": null
            },
            {
                "text": "Evaluating CRiPT's ability to correctly complete conclusions of arguments, we observe strong transfer learning effects/generalization (Section 5): Just training CRiPT on a few central core schemes (generalized modus ponens, contraposition and chain rule) allows it to accurately complete conclusions of different types of arguments, too (e.g., complex argumentative forms that involve dilemma and de Morgan). The language models appear to connect and generalize the core argument schemes in a correct way. In addition, CRiPT is equally able to apply learned argument patterns beyond the training corpus' domain.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "synthetic argumentative texts",
                "sec_num": null
            },
            {
                "text": "Moreover, we test CRiPT on different reasoning benchmarks. Because we are particularly interested in transfer learning effects, we do so in a zero-shot set-up (i.e., evaluating our argumentation models on entirely unrelated NLU tasks, which follows recent work by Mitra et al. (2019) ; Shwartz et al. (2020) ; Ma et al. (2020) ). We obtain consistent and promising results for the GLUE diagnostics (Wang et al., 2018) and SNLI (Bowman et al., 2015) benchmarks (Section 5), finding that training on core schemes clearly improves the NLU skills of pre-trained models.",
                "cite_spans": [
                    {
                        "start": 264,
                        "end": 283,
                        "text": "Mitra et al. (2019)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 286,
                        "end": 307,
                        "text": "Shwartz et al. (2020)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 310,
                        "end": 326,
                        "text": "Ma et al. (2020)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 398,
                        "end": 417,
                        "text": "(Wang et al., 2018)",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 422,
                        "end": 448,
                        "text": "SNLI (Bowman et al., 2015)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "synthetic argumentative texts",
                "sec_num": null
            },
            {
                "text": "All these transfer learning effects observed strengthen the analogy between teaching critical thinking and training language models: A variety of reasoning skills are improved by generic, inter-mediary pre-training on high-quality texts that exemplify a basic reasoning skill, namely simple deductive argumentation. Obviously, drawing correct inferences is just one of the elementary skills typically covered in critical thinking courses (Fisher, 2001) . Critical thinking involves more than deduction. And it would hence, by analogy, be unreasonable to expect that intermediary pre-training on the synthetic argument corpus suffices to turn language models into accomplished reasoners. However, we have shown that argumentative texts (with valid syllogistic arguments) are certainly a good starting point when building a more comprehensive dataset for initial or intermediary pre-training that might help language models to acquire a broad range of reasoning skills. Or, to put it differently, the synthetic argumentative texts might belong to the core of a \"critical thinking curriculum for language models.\" In the final section, we advance some ideas for complementing the artificial argument corpus so as to further improve the performance of LMs with regard to different reasoning benchmarks.",
                "cite_spans": [
                    {
                        "start": 438,
                        "end": 452,
                        "text": "(Fisher, 2001)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "synthetic argumentative texts",
                "sec_num": null
            },
            {
                "text": "To our knowledge, this paper is, together with Gontier et al. 2020, among the first to show that autoregressive language models like GPT-2 can learn to reason by training on a text corpus of correct natural language arguments. By contrast, previous work in this field, described below, has typically modeled natural language reasoning problems as classification tasks and trained neural systems to accomplish them. For example, Schick and Sch\u00fctze (2021); Schick and Sch\u00fctze (2020) find that a masked language model with classification head achieves remarkable NLU performance by pre-structuring the training data. This paper explores the opposite route: We start with highly structured (synthetic) data, render it as unstructured, plain text and train a uni-directional language model on the synthetic text corpus.",
                "cite_spans": [
                    {
                        "start": 455,
                        "end": 480,
                        "text": "Schick and Sch\u00fctze (2020)",
                        "ref_id": "BIBREF41"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Over and above the methodological novelty of our approach, we discuss, in the following, related reasoning benchmarks and explain what sets our synthetic argument corpus apart from this work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Rule reasoning in natural language Various datasets have been developed for (deductive) rule reasoning in natural language. One-step rule application (cf. Weston et al., 2016; closely resembles the conclusion completion task for gen-eralized modus ponens and generalized modus tollens schemes described below. However, we go beyond previous work in investigating the ability of LMs to infer conclusions that have a more complex logico-semantic structure (e.g., existential or universal statements). RuleTaker, arguably the most general system for rule reasoning in natural language so far, is a transformer model for multi-hop inference (Clark et al., 2020) . PRover (Saha et al., 2020) extends RuleTaker by a component for proof generation and is able to construct valid proofs and outperforms RuleTaker in terms answer accuracy in a zero-shot setting.",
                "cite_spans": [
                    {
                        "start": 155,
                        "end": 175,
                        "text": "Weston et al., 2016;",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 637,
                        "end": 657,
                        "text": "(Clark et al., 2020)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 667,
                        "end": 686,
                        "text": "(Saha et al., 2020)",
                        "ref_id": "BIBREF39"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Benchmarks for enthymematic reasoning An 'enthymeme' is an argument whose premises are not explicitly stated, e.g.: \"Jerry is a mouse. Therefore, Jerry is afraid of cats.\" The following studies involve such reasoning with implicit assumptions, whereas our synthetic argument corpus doesn't: all premises are transparent and explicitly given. COMET generates and extends commonsense knowledge graphs (Bosselut et al., 2019) . Trained on seed data, the model is able to meaningfully relate subject phrases to object phrases (by doing the type of completion tasks we introduce in Section 4). The Argument Reasoning Comprehension (ARC) dataset (Habernal et al., 2018) comprises simple informal arguments. The task consists in identifying which of two alternative statements is the missing premise in the argument (see also Niven and Kao, 2019 ). CLUTRR is a task generator for relational reasoning on kinship graphs (Sinha et al., 2019) . CLUTTR takes a set of (conceptual) rules about family relations as given and constructs set-theoretic possible worlds (represented as graphs) which instantiate these rules. The task consists in inferring the target fact from the base facts alone -the conceptual rules remain implicit. Gontier et al. (2020) show that Transformers do not only learn to draw the correct conclusion (given a CLUTTR task), but also seems to acquire the ability to generate valid proof chains. Finally, training on synthetic knowledge-graph data from scratch, find that BERT (Devlin et al., 2019) is able to correctly infer novel facts implicit in the training data.",
                "cite_spans": [
                    {
                        "start": 399,
                        "end": 422,
                        "text": "(Bosselut et al., 2019)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 640,
                        "end": 663,
                        "text": "(Habernal et al., 2018)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 819,
                        "end": 838,
                        "text": "Niven and Kao, 2019",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 912,
                        "end": 932,
                        "text": "(Sinha et al., 2019)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 1220,
                        "end": 1241,
                        "text": "Gontier et al. (2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Critical thinking tasks LogiQA (Liu et al., 2020 ) is a collection of publicly available critical thinking questions, used by the National Civil Servants Examination of China to assess candidates' critical thinking and problem solving skills. Its scope is much broader than our highly specific and carefully designed argument corpus.",
                "cite_spans": [
                    {
                        "start": 31,
                        "end": 48,
                        "text": "(Liu et al., 2020",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "This section describes the construction of a synthetic corpus of natural language arguments used for training and evaluating CRiPT. 1 The corpus is built around eight simple, deductively valid syllogistic argument schemes (top row in Fig. 2 ). These eight base schemes have been chosen because of their logical simplicity as well as their relevance in critical thinking and argument analysis (Feldman, 2014; Bowell and Kemp, 2014; Brun and Betz, 2016) . Each of these eight base schemes is manually varied in specific ways to create further deductively correct variants, which are verified for correctness using an off-the-shelf theorem prover.",
                "cite_spans": [
                    {
                        "start": 132,
                        "end": 133,
                        "text": "1",
                        "ref_id": null
                    },
                    {
                        "start": 392,
                        "end": 407,
                        "text": "(Feldman, 2014;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 408,
                        "end": 430,
                        "text": "Bowell and Kemp, 2014;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 431,
                        "end": 451,
                        "text": "Brun and Betz, 2016)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 234,
                        "end": 240,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "Negation variants of base schemes are created by substituting a sub-formula with its negation (e.g., F x \u00acF 1 x) and/or by applying duplex negatio affirmat. Complex predicates variants build on base schemes or their respective negation variants and are obtained by substituting atomic predicates with compound disjunctive or conjunctive ones (e.g.,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "F x F 1 x \u2228 F 2 x).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "De Morgan variants of base schemes are finally derived by applying de Morgan's law to the respective variants created before (a de Morgan variant of modus ponens is, for instance: \u2200x : \u00ac(F x \u2228 Gx) \u2192 Hx; \u00acF a; \u00acGa \u21d2 Ha).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "With 2-3 different versions for each of these variations of a base scheme (parameter n in Fig. 2 ), we obtain, in total, 71 distinct handcrafted argument schemes. In view of their simplicity and prominence in natural language argumentation, three of the eight base schemes are marked as core schemes: generalized modus ponens, generalized contraposition, hypothetical syllogism 1.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 90,
                        "end": 96,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "Natural language instances of the argument schemes can be created by means of a first-orderlogic domain (with names and predicates) and natural language templates for the formal schemes. In order to obtain a large variety of realistic natural language arguments, we have devised (i) a multi-stage templating process with (ii) alternative templates at each stage and (iii) multiple domains.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "\u2200x Fx\u2192Gx Fa --\u21e9-- Ga \u2200x Fx\u2192\u00acGx Fa --\u21e9-- \u00acGa \u2200x Fx\u2227Hx\u2192Gx Fa Ha --\u21e9-- Ga \u2200x Fx\u2192\u00acGx --\u21e9-- \u2200x Gx\u2192\u00acFx \u2200x Fx\u2192Gx --\u21e9-- \u2200x \u00acGx\u2192\u00acFx \u2200x (Fx\u2227Hx)\u2192\u00acGx --\u21e9-- \u2200x Gx\u2192\u00ac(Fx\u2227Hx) \u2200x Fx\u2192Gx \u2200x Gx\u2192Hx --\u21e9-- \u2200x Fx\u2192Hx \u2200x Fx\u2192\u00acGx \u2200x \u00acGx\u2192Hx --\u21e9-- \u2200x Fx\u2192Hx \u2200x Fx\u2192Gx \u2200x Fx\u2192Ix \u2200x Gx\u2227Ix\u2192Hx --\u21e9-- \u2200x Fx\u2192Hx \u2200x Fx\u2192Gx \u2200x \u00acHx\u2192\u00acGx --\u21e9-- \u2200x Fx\u2192Hx \u2200x Fx\u2192\u00acGx \u2200x \u00acHx\u2192Gx --\u21e9-- \u2200x Fx\u2192Hx \u2200x Fx\u2192\u00ac(Gx\u2228Ix) \u2200x Hx\u2192\u00ac(Gx\u2228Ix) --\u21e9-- \u2200x Fx\u2192Hx \u2200x Fx\u2192Gx \u2203x Hx\u2227\u00acGx --\u21e9-- \u2203x Hx\u2227\u00acFx \u2200x \u00acFx\u2192Gx \u2203x Hx\u2227\u00acGx --\u21e9-- \u2203x Hx\u2227Fx \u2200x Fx\u2192Gx \u2200x Fx\u2192Ix \u2203x Hx\u2227\u00ac(Gx\u2227Ix) --\u21e9-- \u2203x Hx\u2227\u00acFx \u2200x Fx\u2192Gx\u2228Hx \u2200x Fx\u2192\u00acGx --\u21e9-- \u2200x Fx\u2192Hx \u2200x Fx\u2192Gx\u2228Hx \u2200x Gx\u2192\u00acFx --\u21e9-- \u2200x Fx\u2192Hx \u2200x Fx\u2192Gx\u2228Hx\u2228Ix \u2200x Fx\u2192\u00acGx \u2200x Fx\u2192\u00acIx --\u21e9-- \u2200x Fx\u2192Hx \u2200x Fx\u2192Gx\u2228Hx \u2200x Gx\u2192Jx \u2200x Hx\u2192Jx --\u21e9-- \u2200x Fx\u2192Jx \u2200x Fx\u2192Gx\u2228Hx \u2200x Jx\u2192\u00acGx \u2200x Jx\u2192\u00acHx --\u21e9-- \u2200x Fx\u2192\u00acJx \u2200x Fx\u2192Gx\u2228Hx\u2228Ix \u2200x Gx\u2192Jx \u2200x Hx\u2192Jx --\u21e9-- \u2200x Fx\u2192Jx\u2228Ix \u2200x Fx\u2192Gx \u00acGa --\u21e9-- \u00acFa \u2200x Fx\u2192\u00acGx Ga --\u21e9-- \u00acFa \u2200x Fx\u2192Gx\u2227Hx \u00acGa --\u21e9-- \u00acFa n=2 n=3 n=3 n=3 n=3 n=2 n=3 n=3 n=3 n=2 n=3 n=3 n=3 n=2 n=3 n=3 de_morgan \u2200x (\u00acFx\u2227\u00acIx)\u2192Gx \u2200x Gx \u2192 Hx --\u21e9-- \u2200x \u00ac(Fx \u2228 Ix)\u2192Hx \u2200x \u00ac(Fx\u2228Hx)\u2192Gx \u00acFa \u00acHa --\u21e9-- Ga \u2200x (Fx\u2227Hx)\u2192\u00acGx --\u21e9-- \u2200x Gx\u2192\u00acFx\u2228\u00acHx \u2200x Fx\u2192\u00ac(Gx\u2228Ix) \u2200x Hx\u2192\u00acGx\u2227\u00acIx --\u21e9-- \u2200x Fx\u2192Hx \u2200x Fx\u2192Gx \u2200x Fx\u2192Ix \u2203x Hx\u2227(\u00acGx\u2228\u00acIx) --\u21e9-- \u2203x Hx\u2227\u00acFx \u2200x Fx\u2227Ix\u2192Gx\u2228Hx \u2200x Gx\u2192\u00acFx\u2228\u00acIx --\u21e9-- \u2200x Fx\u2227Ix\u2192Hx \u2200x Fx\u2192\u00ac(Gx\u2227Hx) \u2200x \u00acGx\u2192Jx \u2200x \u00acHx\u2192Jx --\u21e9--",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "This process can be split into five consecutive steps.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "In step 1, the argument scheme, which serves as formal template for the natural language argument, is chosen at random.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "In step 2, each sentence in the formal scheme (premises and conclusion) is individually replaced by a natural language pattern in accordance with a randomly chosen template. For example, the formula \"\u2200xF x \u2192 Gx\" might be replaced by any of the following natural language sentence schemes: \"Every F is a G\", \"Whoever is a F is also a G\", \"Being a G is necessary for being a F\", \"If someone is a F, then they are a G\". Some of these patterns (e.g., the fourth one in the above list) are reserved for generating an out-of-domain test dataset, and are not used for training.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "In step 3, the entity-and property-placeholders in the resulting argument scheme are replaced argument-wise with names and predicates from a domain. We hence obtain an instance of the formal argument scheme as premise-conclusion list. Each domain provides hundreds of entity-names, which can be paired with different binary predi-cates to create thousands of different unary predicates. For example, the text in Fig. 1 is obtained by substituting predicates from the domain female relatives, which includes predicates like being a \"sister of Anna\", \"granddaughter of Elsa\", \"cousin of Sarah\", . . . Once more, some domains are used for testing only, and not for training (see below and Section 4.2).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 412,
                        "end": 418,
                        "text": "Fig. 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "In step 4, the premises of the natural language argument are randomly re-ordered.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "In step 5, the premise-conclusion list is packed into a text paragraph by adding an argument intro, framing the premises, and adding an inference indicator. Again, multiple templates are available for doing so, which yields a large variety of textual renderings of an argument.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "Following this pipeline, we generate natural language instances of each formal argument scheme, thus creating:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "1. a training set of argumentative texts, based on the default domains and templates (TRAIN); 2. an evaluation set of argumentative texts, based on the default domains and templates, which are used for development (DEV); 3. a test set of argumentative texts, based on the default domains and templates and used for final tests (TEST_OUT-OF-SAMPLE); 4. a test set of argumentative texts, based on the domains and templates reserved for testing (TEST_OUT-OF-DOMAIN).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "This represents the artificial argument text corpus we use to train and evaluate CRiPT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "An Artificial Argument Corpus",
                "sec_num": "3"
            },
            {
                "text": "Our basis for training and evaluating CRiPT are three compact versions of GPT-2 with 117M, 345M and 762M parameters, as implemented by Wolf et al. (2019) . We note that all of these models fall short of the full-scale model with 1542M parameters. 2",
                "cite_spans": [
                    {
                        "start": 135,
                        "end": 153,
                        "text": "Wolf et al. (2019)",
                        "ref_id": "BIBREF49"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments with CRiPT",
                "sec_num": "4"
            },
            {
                "text": "From the training items in the Artificial Argument Corpus (TRAIN) we sample three types of differently-sized training sets TRAIN01 \u2282 TRAIN02 \u2282 TRAIN03 as follows (see also the color pattern in Fig. 2 ):",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 193,
                        "end": 199,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 TRAIN01: all training items which are instances of a core scheme, i.e. generalized modus ponens, generalized contraposition, hypothetical syllogism 1 (N=4.5K, 9K, 18K, 36K) \u2022 TRAIN02: all training items which are instances of a base scheme (N=4.5K, 9K, 18K, 36K) \u2022 TRAIN03: all training items in the corpus (N=4.5K, 9K, 18K, 36K)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.1"
            },
            {
                "text": "In an attempt to avoid over-fitting, we blend the training arguments with snippets from Reuters news stories (Lewis et al., 2004) and the standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2018) , trying a mixing ratio of 1:1 and thus doubling training size to N=9K, 18K, 36K, 72K. 3 Training the BASE model (pre-trained GPT-2) on TRAIN01-TRAIN03 yields three corresponding CRiPT models (see Appendix B) . For purpose of comparison, we have similarly trained three randomly initialized Transformer models (structurally identical with GPT-2) -none of these random models gains any performance through training on our critical thinking corpus.",
                "cite_spans": [
                    {
                        "start": 109,
                        "end": 129,
                        "text": "(Lewis et al., 2004)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 176,
                        "end": 205,
                        "text": "(Gerlach and Font-Clos, 2018)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 403,
                        "end": 414,
                        "text": "Appendix B)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.1"
            },
            {
                "text": "Corpus To test whether language models can reason correctly, we assess their ability to accurately complete conclusions of arguments in the artificial argument corpus. Here, we make use of the fact that, by construction, the conclusion of every argument in the corpus ends with a predicate (a property-term such as \"sister of Chloe\" or \"supporter of Tottenham Hotspurs\"), which is potentially preceded by a negator. First of all, as shown in Table 1 , we test whether the model is able to correctly fill in the final predicate (task split). The second, more difficult task consists in completing the final predicate plus, if present, the preceding negator (task extended). With a third, adverserial task we check how frequently the model wrongly adjoins the complement of the correct completion of the extended task (task inverted).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 442,
                        "end": 449,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Testing Conclusion Completion on Artificial Argument",
                "sec_num": "4.2"
            },
            {
                "text": "Conclusion with cloze-style prompt Clearly, the higher the accuracy in the split and extended tasks, and the lower the accuracy in the inverted task, the stronger the model's reasoning performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task",
                "sec_num": null
            },
            {
                "text": "Completion split Every F is a G G Some F is not a G G a is a F or not a G G extended Every F is a G a G Some F is not a G not a G a is a F or not a G not a G inverted Every F is a G not a G Some F is not a G not a G a is a F or not a G not a G",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task",
                "sec_num": null
            },
            {
                "text": "Based on the artificial argument corpus (see Section 3), we generate and distinguish three different test datasets, each of which comprises the three tasks described above, as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task",
                "sec_num": null
            },
            {
                "text": "\u2022 out of sample (oos): contains items from TEST_OUT-OF-SAMPLE, which share domain and natural language templates with the training data; \u2022 paraphrased (para): a sample of 100 items, randomly drawn from TEST_OUT-OF-SAMPLE, which have been manually reformulated so as to alter the premises' grammatical structure imposed by the natural language templates; \u2022 out of domain (ood): contains items from TEST_OUT-OF-DOMAIN, which belong to different domains and instantiate grammatical patterns other than the training data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task",
                "sec_num": null
            },
            {
                "text": "Technically, conclusion completions, in all tasks and tests, are generated by the language model with nucleus sampling and top-p = 0.9 (Holtzman et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 135,
                        "end": 158,
                        "text": "(Holtzman et al., 2019)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task",
                "sec_num": null
            },
            {
                "text": "Classification for NLU Benchmarks To investigate transfer learning effects, we evaluate the trained models on standard NLU benchmarks, such as GLUE AX and SNLI. These benchmark tasks are classification problems. In the following, we describe how we use the generative language models to perform such classification.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task",
                "sec_num": null
            },
            {
                "text": "Using simple templates, we translate each benchmark entry into alternative prompts (e.g., context and question) and/or alternative completions (e.g., answers). Consider for example a GLUE-style problem given by two sentences \"The girl is eating a pizza.\" and \"The girl is eating food\" and the question whether one entails, contradicts, or is independent of the other. We can construct three prompts, corresponding to the three possible answers (entail / contradict / independent): Prompt1: The girl is eating a pizza. Therefore, Prompt2: The girl is eating a pizza. This rules out that Prompt3: The girl is eating a pizza. This neither entails nor rules out that Completion: the girl is eating food.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task",
                "sec_num": null
            },
            {
                "text": "In this case, the correct match is obviously Prompt1-Completion. The ability of a language model to discern that \"The girl is eating pizza\" entails (and does not contradict) \"The girl is eating food\" will be reflected in a comparatively low conditional perplexity of Completion given Prompt1 and a correspondingly high conditional perplexity of Completion given Prompt2 or Prompt3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task",
                "sec_num": null
            },
            {
                "text": "Generally put, we classify a given input X by constructing N alternative prompts p 1 , . . . p N and a completion c, such that each pair (p i , c) corresponds to a class i \u2208 {1 . . . N } of the classification problem. The conditional perplexity of the completion c given prompt p i according to the language model serves as prediction score for our classifier (as for instance in Shwartz et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 380,
                        "end": 401,
                        "text": "Shwartz et al., 2020)",
                        "ref_id": "BIBREF42"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task",
                "sec_num": null
            },
            {
                "text": "Corpus Does CRiPT correctly complete conclusions of natural language arguments? Fig. 3 displays the evaluation results in an aggregated way. Each subplot visualizes the accuracy of the models in the three completion tasks for a different test dataset (see Section 4.2). We may observe, first of all, that pre-training on the argument corpus effectively improves conclusion-completion-skill. In all three test datasets, the accuracy in the split and extended tasks increases as models are trained on more and more argument schemes, far exceeding the base model's performance. Once CRiPT has seen all schemes (TRAIN03), accuracy levels reach 100% for in-domain and 70%-90% for out-of-domain tests. However, the TRAIN01 and TRAIN02 models do also generate more incorrect completions than the BASE model (inverted task). But the frequency of such incorrect completions increases much less than the frequency of correct ones (the gap between blue and gray curve widens), and it actually falls back to almost zero with the TRAIN03 model. Outof-domain performance of CRiPT (right-hand plot) is qualitatively similar and only slightly less strong than in-domain performance (left-hand and middle plot). CRiPT models trained on a given domain are able to effectively exercise the acquired skill in other domains, and have hence gained topic-neutral, universal reasoning ability.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 80,
                        "end": 86,
                        "text": "Fig. 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion Completion on Artificial Argument",
                "sec_num": null
            },
            {
                "text": "The strong performance of TRAIN01 models (Fig. 3) indicates that training on a few argument schemes positively affects performance on other schemes, too. To further investigate transfer learning, Table 2 contrasts (a) CRiPT's accuracy on schemes it has not been trained on -averaged over TRAIN01 and TRAIN02 models -with (b) its accuracy on schemes present in the respective train- ing corpus -averaged over TRAIN01, TRAIN02, and TRAIN03 models. The upshot is that CRiPT performs much more strongly than the base model not only on argument schemes it has been trained on, but also on those schemes not seen yet. We take this to be a promising result as it strengthens the analogy between teaching critical thinking and training language models: intermediary pre-training on highquality texts that exemplify a specific, basic reasoning skill -namely, simple deductive argumentation -improves other, more complex reasoning skills. Moreover, a closer look at the scheme-specific performance suggests important variations in CRiPT's ability to generalize, for it seems to struggle with unseen schemes which involve negations (e.g., CRiPT-TRAIN02 generates more incorrect than correct completions of the negation_variants of generalized modus ponens, see Appendix C). This is consistent with the finding that some NLMs seemingly fail to understand simple negation Talmor et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 1359,
                        "end": 1379,
                        "text": "Talmor et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 41,
                        "end": 49,
                        "text": "(Fig. 3)",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 196,
                        "end": 203,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion Completion on Artificial Argument",
                "sec_num": null
            },
            {
                "text": "To further understand transfer learning effects, we next examine CRiPT's zero-shot performance in other NLP reasoning tasks (i.e., without taskspecific fine-tuning).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion Completion on Artificial Argument",
                "sec_num": null
            },
            {
                "text": "The GLUE datasets (Wang et al., 2018) represent standard benchmarks for natural language understanding (NLU). We evaluate our models' NLU skill in terms of accuracy on the curated GLUE diagnostics dataset (Fig. 4) .",
                "cite_spans": [
                    {
                        "start": 18,
                        "end": 37,
                        "text": "(Wang et al., 2018)",
                        "ref_id": "BIBREF47"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 205,
                        "end": 213,
                        "text": "(Fig. 4)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "GLUE AX",
                "sec_num": null
            },
            {
                "text": "Training on the artificial argument corpus substantially boosts accuracy on the GLUE diagnostics. Accuracy increases by at least 5 and up to 17 percentage points, depending on model size. Remarkably, training on the core scheme alone suffices to Figure 4: Gains in accuracy due to fine-tuning on the AAC (accuracy TRAIN model -accuracy BASE model) for differently sized models and different NLP benchmark tasks: the GLUE diagnostics data, and the SNLI dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "GLUE AX",
                "sec_num": null
            },
            {
                "text": "bring about these improvements. This is a major finding and our clearest evidence so far that critical thinking pre-training involves substantial transfer learning effects.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "GLUE AX",
                "sec_num": null
            },
            {
                "text": "SNLI Our assessment of CRiPT with respect to SNLI data (Bowman et al., 2015) proceeds in close analogy to the GLUE benchmark. The results (Fig. 4) are consistent with, albeit less definite than our previous findings for the GLUE benchmark: First and foremost, training on all schemes (TRAIN03) improves the performance by up to 8 percentage points. Training on fewer schemes is slightly less effective. However, only small and medium sized CRiPT profit from pre-training on the AAC; while the performance of the 762M model drops. This might be due to a coincidentally strong performance of the corresponding BASE model (see Appendix D), or suggest that large GPT-2 has already learned during general pre-training whatever is of relevance for SNLI in argumentative texts. (Further experiments, preferably involving more model versions, are required to clarify this.)",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 138,
                        "end": 146,
                        "text": "(Fig. 4)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "GLUE AX",
                "sec_num": null
            },
            {
                "text": "Besides GLUE AX and SNLI, we have assessed CRiPT on the semantically more demanding Argument Reasoning Comprehension task (Habernal et al., 2018) or the critical thinking assessment compiled in LogiQA (Liu et al., 2020) , but found no performance increase compared to the base model.",
                "cite_spans": [
                    {
                        "start": 122,
                        "end": 145,
                        "text": "(Habernal et al., 2018)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 201,
                        "end": 219,
                        "text": "(Liu et al., 2020)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "GLUE AX",
                "sec_num": null
            },
            {
                "text": "This paper has taken a first step towards the creation of a critical thinking curriculum for neural language models. It presents a corpus of deductively valid, artificial arguments, and uses this artificial argument corpus to train and evaluate CRiPT -a Transformer language model based on GPT-2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "As our main finding, we observe strong transfer learning effects/generalization: Training CRiPT on a few central core schemes allows it to accurately complete conclusions of different types of arguments, too. The language models seem to connect and to generalize the core argument schemes in a correct way. Moreover, CRiPT is equally able to apply learned argument patterns beyond the domain it has been trained on, and there is evidence that generic language modeling skill facilitates the successful generalization of learned argument patterns as randomly initialized models fail to acquire any inference skill by critical thinking pre-training. (Accordingly, we expect our approach to scale to even larger versions of GPT-2.) These findings are consistent with previous work on rule reasoning (Clark et al., 2020) . Moreover, CRiPT has been tested on different reasoning benchmarks. We obtain clear and promising results for the GLUE AX and SNLI benchmarks. All this suggests that there exist (learning-wise) fundamental reasoning skills in the sense that generic intermediary pre-training on texts which exemplify these skills leads to spillover effects and can improve performance on a broad variety of reasoning tasks. The synthetic argumentative texts might be a good starting point for building such a \"critical thinking curriculum for language models.\"",
                "cite_spans": [
                    {
                        "start": 796,
                        "end": 816,
                        "text": "(Clark et al., 2020)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "There are different directions for advancing the approach adopted in this paper and further improving the general reasoning skill of neural language models:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "\u2022 The syllogistic argument text corpus might be complemented with corpora of arguments that instantiate different kinds of correct schemes, e.g., propositional inference schemes, modal schemes, argument schemes for practical reasoning, complex argument schemes with intermediary conclusions or assumptions for the sake of the argument, etc. (Technically, we provide the infrastructure for doing so, as all this might be achieved through adjusting the argument corpus configuration file.) \u2022 To succeed in NLI tasks, it doesn't suffice",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "to understand 'what follows.' In addition, a system needs to be able to explicitly discern contradictions and non sequiturs (relations of logical independence). This suggests that the artificial argument corpus might be fruitfully supplemented with corpora of correctly identified aporetic clusters (Rescher, 1987) as well as corpora containing correctly diagnosed fallacies. \u2022 In addition, the idea of curriculum learning for ML (Bengio et al., 2009 ) might be given a try. Accordingly, a critical thinking curriculum with basic exemplars of good reasoning would not only be used to fine-tune a pretrained model, but would be employed as starting point for training a language model from scratch.",
                "cite_spans": [
                    {
                        "start": 299,
                        "end": 314,
                        "text": "(Rescher, 1987)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 430,
                        "end": 450,
                        "text": "(Bengio et al., 2009",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "In conclusion, designing a critical thinking curriculum for pre-training neural language models seems to be a promising and worthwhile research program to pursue. texts used to train and test CRiPT -specifically the various domains covered in the corpus. Links to the entire dataset and source code for generating synthetic arguments are released at https: //github.com/debatelab/aacorpus. Domain: female_relatives. Base scheme group: Generalized modus tollens. Scheme variant: base scheme. Text: It is not always easy to see who is related to whom -and in which ways. The following argument pertains to this question: To start with, Daisy is not a sister of Melissia. Now, being an ancestor of Kerstin is sufficient for being a sister of Melissia. Hence, it is false that Daisy is an ancestor of Kerstin.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Domain: male_relatives. Base scheme group: Hypothetical Syllogism 1. Scheme variant: nega-tion_variant. Text: Is Fred a cousin of Robert? Is Joe related to Bob? In large families, it is sometimes difficult to keep track of all one's relatives. The following argument seeks to clarify some such relations: First of all, no schoolmate of Erik is a classmate of Andy. Next, whoever is not a classmate of Andy is a schoolmate of Marvin. We may conclude that every schoolmate of Erik is a schoolmate of Marvin.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Domain: consumers_personalcare. Base scheme group: Disjunctive Syllogism. Scheme variant: negation_variant. Text: Consumer research aims at understanding whether users of some products also tend to consume other ones, or not. The following argument seeks to clarify some such relations: Everyone who is an occasional purchaser of Bio Ionic shampoo is a rare consumer of The Body Shop soap, too. Every occasional purchaser of Bio Ionic shampoo is not a rare consumer of The Body Shop soap or a frequent consumer of Shiseido shampoo. It follows that everyone who is an occasional purchaser of Bio Ionic shampoo is a frequent consumer of Shiseido shampoo, too.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Domain: chemical_ingredients. Base scheme group: Generalized Contraposition. Scheme variant: complex_predicates. Text: Here comes a perfectly valid argument: No ingredient of Eyeshadow Quad is an ingredient of Midnight Black or an ingredient of Bubble Gum Laquer. We may conclude that no ingredient of Bubble Gum Laquer and no ingredient of Midnight Black is an ingredient of Eyeshadow Quad.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Domain: football_fans. Base scheme group: Generalized Dilemma. Scheme variant: base scheme. Text: Is Fred a fan of Liverpool? Are supporters of Real Madrid devotees of PSG? In European football, it is sometimes difficult to keep track of the mutual admiration and dislike. The following argument seeks to clarify some such relations: Every friend of FC Olexandriya is either a backer of The New Saints FC or an ex-fan of Olympique Lyonnais, or both. Everyone who is an ex-fan of Olympique Lyonnais is a devotee of RC Celta de Vigo, too. Everyone who is a backer of The New Saints FC is a devotee of RC Celta de Vigo, too. In consequence, being a devotee of RC Celta de Vigo is necessary for being a friend of FC Olexandriya.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Domain: dinos. Base scheme group: Modus barbara. Scheme variant: base scheme. Text: Consider the following argument: If someone is a predator of Iguanodon, then they are a prey of Stegosaurus. Parasaurolophus is a predator of Iguanodon. Thus, Parasaurolophus is a prey of Stegosaurus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Domain: philosophers. Base scheme group: Hypothetical Syllogism 3 Scheme variant: nega-tion_variant Text: Here comes a perfectly valid argument: If someone is not a teacher of Diodorus of Adramyttium, then they are a teacher of Dexippus. Moreover, someone is a student of Alexicrates and not a teacher of Dexippus. Thus, someone is a student of Alexicrates and a teacher of Diodorus of Adramyttium.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "We train differently sized versions of GPT-2 with causal language modeling objective (using default training scripts by Wolf et al. (2019) ) on each of the 12 enhanced, differently sized training sets. This gives us 36 fine-tuned CRiPT models plus the three BASE models to evaluate. Unless explicitly stated otherwise, the main article reports results of the 762M parameter model trained on 72K items. We train the models on 8 GPUs for 2 epochs with batch size = 2, learning rate = 5 \u00d7 10 \u22125 , gradient accumulation steps = 2, and default parameters of the Hug-gingFace implementation otherwise (Wolf et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 138,
                        "text": "Wolf et al. (2019)",
                        "ref_id": "BIBREF49"
                    },
                    {
                        "start": 595,
                        "end": 614,
                        "text": "(Wolf et al., 2019)",
                        "ref_id": "BIBREF49"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Appendix: Training Parameters",
                "sec_num": null
            },
            {
                "text": "Different Argument Schemes Fig. 5 displays CRiPT's accuracy on conclusion completion tasks on specific argument schemes. Its subplots are arranged in a grid that mirrors the organisation of argument schemes as presented in the main article. Each subplot visualizes the abil-ity of CRiPT to correctly complete arguments of the corresponding scheme (given the out-of-sample test dataset). Reported accuracy values that fall within gray background areas are attained by models which have seen the corresponding scheme during training. Vice versa, thick lines on white background visualize model performance on unknown schemes. Fig. 5 reveals, first of all, that even the BASE models (only pre-training, no fine-tuning) display a significant ability to correctly complete conclusions of some kinds of arguments. For example, GPT-2-762M achieves 50% accuracy (split task) in completing contrapositions, 30% accuracy in completing generalized modus ponens, and still 20% accuracy in completing disjunctive syllogism and dilemma arguments. These findings further corroborate the hypothesis that NLMs learn (basic) linguistic and reasoning skills \"on the fly\" by training on a large generic corpus (Radford et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 1190,
                        "end": 1212,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 27,
                        "end": 33,
                        "text": "Fig. 5",
                        "ref_id": "FIGREF5"
                    },
                    {
                        "start": 624,
                        "end": 630,
                        "text": "Fig. 5",
                        "ref_id": "FIGREF5"
                    }
                ],
                "eq_spans": [],
                "section": "C Appendix: Performance Metrics on",
                "sec_num": null
            },
            {
                "text": "D Appendix: Performance Metrics for Differently Sized Training Sets Fig. 6 displays accuracy values on conclusion completion tasks for models trained on differently sized datasets. Fig. 7 reports perplexity and NLU accuracy metrics for models trained on differently sized datasets. de_morgan BASE TR01 TR02 TR03 BASE TR01 TR02 TR03 BASE TR01 TR02 TR03 BASE TR01 TR02 TR03 BASE TR01 TR02 TR03 BASE TR01 TR02 TR03 BASE TR01 TR02 TR03 task: split task: extended task: inverted not trained on scheme trained on scheme Figure 7: Perplexity and NLI metrics as a function of training corpus size.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 68,
                        "end": 74,
                        "text": "Fig. 6",
                        "ref_id": "FIGREF6"
                    },
                    {
                        "start": 181,
                        "end": 187,
                        "text": "Fig. 7",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "C Appendix: Performance Metrics on",
                "sec_num": null
            },
            {
                "text": "The corpus as well as the source code used to generate it are available at https://github.com/debatelab/ aacorpus. Selected example texts which illustrate, in particular, the multiple domains covered by the corpus are presented in Appendix A.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The fine-tuned models are released through https:// huggingface.co/debatelab.3 We find that fine-tuning on the accordingly enhanced argument corpus still increases the model's perplexity on the Wiki103 dataset by a factor of 1.5 (see Appendix D), which suggests to mix a higher proportion of common texts into the training data in future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "An earlier version of this work has been presented at Allen AIs Aristo Group, we profited from critical and constructive feedback.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Gpt-3: Towards renaissance models",
                "authors": [],
                "year": null,
                "venue": "Daily Nous Blog: Philosophers On GPT-3",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amanda Askell. 2020. Gpt-3: Towards renaissance models. In Daily Nous Blog: Philosophers On GPT- 3.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Curriculum learning",
                "authors": [
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00e9r\u00f4me",
                        "middle": [],
                        "last": "Louradour",
                        "suffix": ""
                    },
                    {
                        "first": "Ronan",
                        "middle": [],
                        "last": "Collobert",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09",
                "volume": "",
                "issue": "",
                "pages": "41--48",
                "other_ids": {
                    "DOI": [
                        "10.1145/1553374.1553380"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yoshua Bengio, J\u00e9r\u00f4me Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum learning. In Proceedings of the 26th Annual International Con- ference on Machine Learning, ICML '09, pages 41- 48, New York, NY, USA. ACM.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Language (technology) is power: A critical survey of \"bias\" in NLP",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Su Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Solon",
                        "middle": [],
                        "last": "Blodgett",
                        "suffix": ""
                    },
                    {
                        "first": "Hal",
                        "middle": [],
                        "last": "Barocas",
                        "suffix": ""
                    },
                    {
                        "first": "Iii",
                        "middle": [],
                        "last": "Daum\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "Hanna",
                        "middle": [],
                        "last": "Wallach",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5454--5476",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.485"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Su Lin Blodgett, Solon Barocas, Hal Daum\u00e9 III, and Hanna Wallach. 2020. Language (technology) is power: A critical survey of \"bias\" in NLP. In Pro- ceedings of the 58th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 5454- 5476, Online. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Comet: Commonsense transformers for automatic knowledge graph construction",
                "authors": [
                    {
                        "first": "Antoine",
                        "middle": [],
                        "last": "Bosselut",
                        "suffix": ""
                    },
                    {
                        "first": "Hannah",
                        "middle": [],
                        "last": "Rashkin",
                        "suffix": ""
                    },
                    {
                        "first": "Maarten",
                        "middle": [],
                        "last": "Sap",
                        "suffix": ""
                    },
                    {
                        "first": "Chaitanya",
                        "middle": [],
                        "last": "Malaviya",
                        "suffix": ""
                    },
                    {
                        "first": "Asli",
                        "middle": [],
                        "last": "\u00c7elikyilmaz",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai- tanya Malaviya, Asli \u00c7elikyilmaz, and Yejin Choi. 2019. Comet: Commonsense transformers for au- tomatic knowledge graph construction. In Proceed- ings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL).",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Critical Thinking: A Concise Guide",
                "authors": [
                    {
                        "first": "Tracey",
                        "middle": [],
                        "last": "Bowell",
                        "suffix": ""
                    },
                    {
                        "first": "Gary",
                        "middle": [],
                        "last": "Kemp",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tracey Bowell and Gary Kemp. 2014. Critical Think- ing: A Concise Guide, 4th edition edition. Rout- ledge, London.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A large annotated corpus for learning natural language inference",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Samuel",
                        "suffix": ""
                    },
                    {
                        "first": "Gabor",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Angeli",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Potts",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large anno- tated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Analysing practical argumentation",
                "authors": [
                    {
                        "first": "Georg",
                        "middle": [],
                        "last": "Brun",
                        "suffix": ""
                    },
                    {
                        "first": "Gregor",
                        "middle": [],
                        "last": "Betz",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "The Argumentative Turn in Policy Analysis. Reasoning about Uncertainty",
                "volume": "",
                "issue": "",
                "pages": "39--77",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Georg Brun and Gregor Betz. 2016. Analysing prac- tical argumentation. In Sven Ove Hansson and Gertrude Hirsch-Hadorn, editors, The Argumenta- tive Turn in Policy Analysis. Reasoning about Un- certainty, pages 39-77. Springer, Cham.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Anyone can become a troll: Causes of trolling behavior in online discussions",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Bernstein",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Danescu-Niculescu-Mizil",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Leskovec",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "CSCW: Proceedings of the Conference on Computer-Supported Cooperative Work. Conference on Computer-Supported Cooperative Work",
                "volume": "",
                "issue": "",
                "pages": "1217--1230",
                "other_ids": {
                    "DOI": [
                        "10.1145/2998181.2998213"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "J. Cheng, M. Bernstein, C. Danescu-Niculescu-Mizil, and J. Leskovec. 2017. Anyone can become a troll: Causes of trolling behavior in online discus- sions. CSCW: Proceedings of the Conference on Computer-Supported Cooperative Work. Conference on Computer-Supported Cooperative Work, 2017, page 1217-1230.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Transformers as soft reasoners over language",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Oyvind",
                        "middle": [],
                        "last": "Tafjord",
                        "suffix": ""
                    },
                    {
                        "first": "Kyle",
                        "middle": [],
                        "last": "Richardson",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)",
                "volume": "",
                "issue": "",
                "pages": "3882--3890",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020. Transformers as soft reasoners over language. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI- 20), pages 3882-3890.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "NAACL-HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirec- tional transformers for language understanding. In NAACL-HLT.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Reason and Argument. Pearson",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Feldman",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Feldman. 2014. Reason and Argument. Pear- son, Harlow.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Critical Thinking: An Introduction",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Fisher",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Fisher. 2001. Critical Thinking: An Introduction. Cambridge University Press, Cambridge.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "A standardized project gutenberg corpus for statistical analysis of natural language and quantitative linguistics",
                "authors": [
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Gerlach",
                        "suffix": ""
                    },
                    {
                        "first": "Francesc",
                        "middle": [],
                        "last": "Font-Clos",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Martin Gerlach and Francesc Font-Clos. 2018. A stan- dardized project gutenberg corpus for statistical anal- ysis of natural language and quantitative linguistics. CoRR, abs/1812.08092.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Examining gender bias in OpenAI's GPT-2 language model",
                "authors": [
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Gilburt",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Claydon",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ben Gilburt and Mark Claydon. 2019. Examining gen- der bias in OpenAI's GPT-2 language model. to- wardsdatascience.com.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Measuring systematic generalization in neural proof generation with transformers",
                "authors": [
                    {
                        "first": "Nicolas",
                        "middle": [],
                        "last": "Gontier",
                        "suffix": ""
                    },
                    {
                        "first": "Koustuv",
                        "middle": [],
                        "last": "Sinha",
                        "suffix": ""
                    },
                    {
                        "first": "Siva",
                        "middle": [],
                        "last": "Reddy",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Pal",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nicolas Gontier, Koustuv Sinha, Siva Reddy, and Christopher Pal. 2020. Measuring systematic gener- alization in neural proof generation with transform- ers.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Logical fallacies and invasion biology",
                "authors": [
                    {
                        "first": "Cornel",
                        "middle": [],
                        "last": "Radu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Guia\u015fu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Christopher W Tindale",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Biology & philosophy",
                "volume": "33",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Radu Cornel Guia\u015fu and Christopher W Tindale. 2018. Logical fallacies and invasion biology. Biology & philosophy, 33(5-6):34.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Annotation artifacts in natural language inference data",
                "authors": [
                    {
                        "first": "Swabha",
                        "middle": [],
                        "last": "Suchin Gururangan",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Swayamdipta",
                        "suffix": ""
                    },
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Schwartz",
                        "suffix": ""
                    },
                    {
                        "first": "Noah A",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and Noah A Smith. 2018. Annotation artifacts in natural lan- guage inference data. In Proceedings of the 2018",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "2",
                "issue": "",
                "pages": "107--112",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 107-112.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "The argument reasoning comprehension task: Identification and reconstruction of implicit warrants",
                "authors": [
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Habernal",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018",
                "volume": "1",
                "issue": "",
                "pages": "1930--1940",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/n18-1175"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ivan Habernal, Henning Wachsmuth, Iryna Gurevych, and Benno Stein. 2018. The argument reasoning comprehension task: Identification and reconstruc- tion of implicit warrants. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 1930-1940. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Fallacies of risk",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sven Ove Hansson",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Journal of Risk Research",
                "volume": "7",
                "issue": "3",
                "pages": "353--360",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sven Ove Hansson. 2004. Fallacies of risk. Journal of Risk Research, 7(3):353-360.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "The curious case of neural text degeneration",
                "authors": [
                    {
                        "first": "Ari",
                        "middle": [],
                        "last": "Holtzman",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Buys",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Maxwell",
                        "middle": [],
                        "last": "Forbes",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The curious case of neural text de- generation. In International Conference on Learn- ing Representations.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Thinking, fast and slow",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Kahneman",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Kahneman. 2011. Thinking, fast and slow, 1st edition. Farrar, Straus and Giroux, New York.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Are pretrained language models symbolic reasoners over knowledge?",
                "authors": [
                    {
                        "first": "Nora",
                        "middle": [],
                        "last": "Kassner",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Krojer",
                        "suffix": ""
                    },
                    {
                        "first": "Hinrich",
                        "middle": [],
                        "last": "Sch\u00fctze",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 24th Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "552--564",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nora Kassner, Benno Krojer, and Hinrich Sch\u00fctze. 2020. Are pretrained language models symbolic reasoners over knowledge? In Proceedings of the 24th Conference on Computational Natural Lan- guage Learning, pages 552-564, Online. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Negated and misprimed probes for pretrained language models: Birds can talk, but cannot fly",
                "authors": [
                    {
                        "first": "Nora",
                        "middle": [],
                        "last": "Kassner",
                        "suffix": ""
                    },
                    {
                        "first": "Hinrich",
                        "middle": [],
                        "last": "Sch\u00fctze",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "7811--7818",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.698"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nora Kassner and Hinrich Sch\u00fctze. 2020. Negated and misprimed probes for pretrained language models: Birds can talk, but cannot fly. In Proceedings of the 58th Annual Meeting of the Association for Compu- tational Linguistics, pages 7811-7818, Online. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Critical thinking web",
                "authors": [
                    {
                        "first": "Joe",
                        "middle": [],
                        "last": "Lau",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Chan",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joe Lau and Jonathan Chan. 2020. Critical thinking web. https://philosophy.hku.hk/think.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Rcv1: A new benchmark collection for text categorization research",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "D"
                        ],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Rose",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Journal of Machine Learning Research",
                "volume": "5",
                "issue": "",
                "pages": "361--397",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. D. Lewis, Y. Yang, T. Rose, and F. Li. 2004. Rcv1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5:361-397.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Reasoning over paragraph effects in situations",
                "authors": [
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Oyvind",
                        "middle": [],
                        "last": "Tafjord",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proc. MRQA Workshop (EMNLP'19)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kevin Lin, Oyvind Tafjord, Peter Clark, and Matt Gard- ner. 2019. Reasoning over paragraph effects in situ- ations. Proc. MRQA Workshop (EMNLP'19).",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Logiqa: A challenge dataset for machine reading comprehension with logical reasoning",
                "authors": [
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Leyang",
                        "middle": [],
                        "last": "Cui",
                        "suffix": ""
                    },
                    {
                        "first": "Hanmeng",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Dandan",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Yile",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence",
                "volume": "2020",
                "issue": "",
                "pages": "3622--3628",
                "other_ids": {
                    "DOI": [
                        "10.24963/ijcai.2020/501"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. 2020. Logiqa: A challenge dataset for machine reading comprehen- sion with logical reasoning. In Proceedings of the Twenty-Ninth International Joint Conference on Ar- tificial Intelligence, IJCAI 2020, pages 3622-3628. ijcai.org.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Knowledge-driven self-supervision for zeroshot commonsense question answering",
                "authors": [
                    {
                        "first": "Kaixin",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Ilievski",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Francis",
                        "suffix": ""
                    },
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Bisk",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Nyberg",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Oltramari",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kaixin Ma, Filip Ilievski, Jonathan Francis, Yonatan Bisk, Eric Nyberg, and Alessandro Oltramari. 2020. Knowledge-driven self-supervision for zero- shot commonsense question answering. CoRR, abs/2011.03863.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Exploring ways to incorporate additional knowledge to improve natural language commonsense question answering",
                "authors": [
                    {
                        "first": "Arindam",
                        "middle": [],
                        "last": "Mitra",
                        "suffix": ""
                    },
                    {
                        "first": "Pratyay",
                        "middle": [],
                        "last": "Banerjee",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Arindam Mitra, Pratyay Banerjee, Kuntal Kumar Pal, Swaroop Mishra, and Chitta Baral. 2019. Explor- ing ways to incorporate additional knowledge to im- prove natural language commonsense question an- swering. CoRR, abs/1909.08855.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Stereoset: Measuring stereotypical bias in pretrained language models",
                "authors": [
                    {
                        "first": "Moin",
                        "middle": [],
                        "last": "Nadeem",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Bethke",
                        "suffix": ""
                    },
                    {
                        "first": "Siva",
                        "middle": [],
                        "last": "Reddy",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Moin Nadeem, Anna Bethke, and Siva Reddy. 2020. Stereoset: Measuring stereotypical bias in pre- trained language models. CoRR, abs/2004.09456.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Probing neural network comprehension of natural language arguments",
                "authors": [
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Niven",
                        "suffix": ""
                    },
                    {
                        "first": "Hung-Yu",
                        "middle": [],
                        "last": "Kao",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4658--4664",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1459"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Timothy Niven and Hung-Yu Kao. 2019. Probing neu- ral network comprehension of natural language ar- guments. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 4658-4664, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "What is critical thinking. The practitioner's guide to teaching thinking series: Evaluating critical thinking",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "P"
                        ],
                        "last": "Norris",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ennis",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "1--26",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "SP Norris and RH Ennis. 1989. What is critical think- ing. The practitioner's guide to teaching thinking series: Evaluating critical thinking, pages 1-26.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "A plea for ecological argument technologies",
                "authors": [],
                "year": 2017,
                "venue": "Philosophy & Technology",
                "volume": "30",
                "issue": "2",
                "pages": "209--238",
                "other_ids": {
                    "DOI": [
                        "10.1007/s13347-016-0222-6"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Fabio Paglieri. 2017. A plea for ecological argument technologies. Philosophy & Technology, 30(2):209- 238.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Sentence encoders on stilts: Supplementary training on intermediate labeled-data tasks",
                "authors": [
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Phang",
                        "suffix": ""
                    },
                    {
                        "first": "Thibault",
                        "middle": [],
                        "last": "F\u00e9vry",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [
                            "R"
                        ],
                        "last": "Bowman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jason Phang, Thibault F\u00e9vry, and Samuel R. Bowman. 2018. Sentence encoders on stilts: Supplementary training on intermediate labeled-data tasks. CoRR, abs/1811.01088.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Lan- guage models are unsupervised multitask learners. Preprint.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Aporetic method in philosophy. The Review of metaphysics",
                "authors": [
                    {
                        "first": "Nicholas",
                        "middle": [],
                        "last": "Rescher",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "",
                "volume": "41",
                "issue": "",
                "pages": "283--297",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nicholas Rescher. 1987. Aporetic method in philoso- phy. The Review of metaphysics, 41(2):283-297.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Probing natural language inference models through semantic fragments",
                "authors": [
                    {
                        "first": "Kyle",
                        "middle": [],
                        "last": "Richardson",
                        "suffix": ""
                    },
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Lawrence",
                        "middle": [
                            "S"
                        ],
                        "last": "Moss",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Sabharwal",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference",
                "volume": "2020",
                "issue": "",
                "pages": "8713--8721",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kyle Richardson, Hai Hu, Lawrence S. Moss, and Ashish Sabharwal. 2020. Probing natural language inference models through semantic fragments. In The Thirty-Fourth AAAI Conference on Artificial In- telligence, AAAI 2020, The Thirty-Second Innova- tive Applications of Artificial Intelligence Confer- ence, IAAI 2020, The Tenth AAAI Symposium on Ed- ucational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 8713-8721. AAAI Press.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Prover: Proof generation for interpretable reasoning over rules",
                "authors": [
                    {
                        "first": "Swarnadeep",
                        "middle": [],
                        "last": "Saha",
                        "suffix": ""
                    },
                    {
                        "first": "Sayan",
                        "middle": [],
                        "last": "Ghosh",
                        "suffix": ""
                    },
                    {
                        "first": "Shashank",
                        "middle": [],
                        "last": "Srivastava",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
                "volume": "2020",
                "issue": "",
                "pages": "122--136",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.9"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava, and Mohit Bansal. 2020. Prover: Proof generation for interpretable reasoning over rules. In Proceed- ings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, On- line, November 16-20, 2020, pages 122-136. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Exploiting cloze-questions for few-shot text classification and natural language inference",
                "authors": [
                    {
                        "first": "Timo",
                        "middle": [],
                        "last": "Schick",
                        "suffix": ""
                    },
                    {
                        "first": "Hinrich",
                        "middle": [],
                        "last": "Sch\u00fctze",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021",
                "volume": "",
                "issue": "",
                "pages": "255--269",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Timo Schick and Hinrich Sch\u00fctze. 2021. Exploiting cloze-questions for few-shot text classification and natural language inference. In Proceedings of the 16th Conference of the European Chapter of the As- sociation for Computational Linguistics: Main Vol- ume, EACL 2021, Online, April 19 -23, 2021, pages 255-269. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "It's not just size that matters: Small language models are also few-shot learners",
                "authors": [
                    {
                        "first": "Timo",
                        "middle": [],
                        "last": "Schick",
                        "suffix": ""
                    },
                    {
                        "first": "Hinrich",
                        "middle": [],
                        "last": "Sch\u00fctze",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Timo Schick and Hinrich Sch\u00fctze. 2020. It's not just size that matters: Small language models are also few-shot learners.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Unsupervised commonsense question answering with self-talk",
                "authors": [
                    {
                        "first": "Vered",
                        "middle": [],
                        "last": "Shwartz",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "West",
                        "suffix": ""
                    },
                    {
                        "first": "Le",
                        "middle": [],
                        "last": "Ronan",
                        "suffix": ""
                    },
                    {
                        "first": "Chandra",
                        "middle": [],
                        "last": "Bras",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Bhagavatula",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
                "volume": "2020",
                "issue": "",
                "pages": "4615--4629",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.373"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2020. Unsupervised commonsense question answering with self-talk. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 4615- 4629. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "CLUTRR: A diagnostic benchmark for inductive reasoning from text",
                "authors": [
                    {
                        "first": "Koustuv",
                        "middle": [],
                        "last": "Sinha",
                        "suffix": ""
                    },
                    {
                        "first": "Shagun",
                        "middle": [],
                        "last": "Sodhani",
                        "suffix": ""
                    },
                    {
                        "first": "Jin",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Joelle",
                        "middle": [],
                        "last": "Pineau",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [
                            "L"
                        ],
                        "last": "Hamilton",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "4505--4514",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1458"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. 2019. CLUTRR: A diagnostic benchmark for inductive reasoning from text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Nat- ural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 4505-4514. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Wiser: getting beyond groupthink to make groups smarter",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Cass",
                        "suffix": ""
                    },
                    {
                        "first": "Reid",
                        "middle": [],
                        "last": "Sunstein",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hastie",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cass R Sunstein and Reid Hastie. 2015. Wiser: getting beyond groupthink to make groups smarter. Harvard Business Review Press, Boston.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Quartz: An open-domain dataset of qualitative relationship questions",
                "authors": [
                    {
                        "first": "Oyvind",
                        "middle": [],
                        "last": "Tafjord",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019",
                "volume": "",
                "issue": "",
                "pages": "5940--5945",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1608"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter Clark. 2019. Quartz: An open-domain dataset of qualitative relationship questions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Interna- tional Joint Conference on Natural Language Pro- cessing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 5940-5945. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "2020. olmpics -on what language model pre-training captures",
                "authors": [
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Talmor",
                        "suffix": ""
                    },
                    {
                        "first": "Yanai",
                        "middle": [],
                        "last": "Elazar",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Berant",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Trans. Assoc. Comput. Linguistics",
                "volume": "8",
                "issue": "",
                "pages": "743--758",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. 2020. olmpics -on what language model pre-training captures. Trans. Assoc. Comput. Linguistics, 8:743-758.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "Glue: A multi-task benchmark and analysis platform for natural language understanding",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Amanpreet",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Julian",
                        "middle": [],
                        "last": "Michael",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Hill",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP",
                "volume": "",
                "issue": "",
                "pages": "353--355",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. Glue: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: An- alyzing and Interpreting Neural Networks for NLP, pages 353-355.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Towards ai-complete question answering: A set of prerequisite toy tasks",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Bordes",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Chopra",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Weston, A. Bordes, S. Chopra, and T. Mikolov. 2016. Towards ai-complete question answering: A set of prerequisite toy tasks. ICLR.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "Huggingface's transformers: Stateof-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "R\u00e9mi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R\u00e9mi Louf, Morgan Funtow- icz, et al. 2019. Huggingface's transformers: State- of-the-art natural language processing. ArXiv, pages arXiv-1910.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Illustrative Examples of Synthetic Argumentative Texts The following items are drawn from the artificial argument corpus and illustrate the synthetic",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Appendix",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A Appendix: Illustrative Examples of Synthetic Argumentative Texts The following items are drawn from the artifi- cial argument corpus and illustrate the synthetic",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "uris": null,
                "text": "Syllogistic argument schemes used to create an artificial argument corpus with eight base schemes (upper row), three of which are core schemes (left). Parameter n indicates the number of different schemes belonging to one and the same base scheme group (column) and variant (row).",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF2": {
                "uris": null,
                "text": "Accuracy of CRiPT in three conclusion completion tasks and on different test datasets (out of sample, paraphrased, out of domain).",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF5": {
                "uris": null,
                "text": "Accuracy of CRiPT in three conclusion completion tasks and on different test datasets (out of sample, paraphrased, out of domain) by argument scheme.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF6": {
                "uris": null,
                "text": "Accuracy on three conclusion completion tasks as a function of training corpus size.",
                "num": null,
                "type_str": "figure"
            },
            "TABREF2": {
                "text": "",
                "html": null,
                "num": null,
                "type_str": "table",
                "content": "<table/>"
            },
            "TABREF4": {
                "text": "Accuracy of CRiPT models in three conclusion completion tasks and on different test datasets (out of sample: oos, paraphrased: para, out of domain: ood).",
                "html": null,
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>Columns report, separately, the performance (A) on</td></tr><tr><td>schemes the model has not been trained on (TR01-02),</td></tr><tr><td>and (B) on schemes that are covered by the model's</td></tr><tr><td>training data (TR01-03). For comparison, column BASE</td></tr><tr><td>reports the performance of pre-trained GPT-2, averaged</td></tr><tr><td>over all schemes.</td></tr></table>"
            }
        }
    }
}