File size: 4,771 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
{
    "paper_id": "2005",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:21:18.556529Z"
    },
    "title": "Log-Linear Model Approach to SMT Maximum Entropy framework for the word-alignment MT approach",
    "authors": [],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "",
    "pdf_parse": {
        "paper_id": "2005",
        "_pdf_hash": "",
        "abstract": [],
        "body_text": [
            {
                "text": "Search is over strings of phrases: , 2003) showed that quality of CLA alignments is poorer than for IBM Model 1, we found that such alignments work indeed well for phrase-based SMT. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 35,
                        "end": 42,
                        "text": ", 2003)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": ") 2 \u00a1 \u00a3 \u00a4 \u00a5 \u00a6 \u00a7 \u00a4 \u00a9 3 \u00a7 \u00a4 \u00a9 ! \" # \" % $ \" ) & 1 e 0 e ~2 \u1ebd 3 \u1ebd 4 \u1ebd f 1 f 4 f 6 f 2 f 3 f",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Pittsburgh, 24-25 October 2005",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "M. Federico, ITC-irst IWSLT 2005Pittsburgh, 24-25 October 2005",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "In this real example, the CLA alignment allows to extract the useful phrase \"where is\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase extraction from IBM and CLA alignments",
                "sec_num": null
            },
            {
                "text": "The following statistics are computed on each entry of the 1000-best list: -grams (n=1,2,3,4) within the full n-best list and sums them up according to a linear combination. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 75,
                        "end": 93,
                        "text": "-grams (n=1,2,3,4)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "New Feature Functions in Re-scoring",
                "sec_num": null
            }
        ],
        "bib_entries": {},
        "ref_entries": {
            "FIGREF1": {
                "text": "",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF2": {
                "text": "",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF3": {
                "text": "",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF5": {
                "text": "",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF6": {
                "text": "",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "TABREF0": {
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>Two</td><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>e 1</td><td>e 2</td><td>3</td><td>e 4</td><td>e 5</td><td>e 6</td><td>e 7</td><td>words target</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>3</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>phrases target</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>2</td></tr><tr><td>4</td><td/><td/><td/><td/><td/><td/><td/></tr><tr><td/><td colspan=\"3\">f ~2 f \u1ebd</td><td/><td/><td colspan=\"2\">phrases source 1 3 f</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>1</td></tr><tr><td/><td/><td/><td/><td/><td>5</td><td/><td>words source</td></tr></table>"
            }
        }
    }
}