File size: 93,563 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
{
    "paper_id": "2005",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:19:45.349583Z"
    },
    "title": "The CMU Statistical Machine Translation System for IWSLT 2005",
    "authors": [
        {
            "first": "Sanjika",
            "middle": [],
            "last": "Hewavitharana",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Language Technologies Institute Carnegie Mellon University",
                "location": {
                    "settlement": "Pittsburgh",
                    "country": "USA"
                }
            },
            "email": "sanjika@cs.cmu.edu"
        },
        {
            "first": "Bing",
            "middle": [],
            "last": "Zhao",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Language Technologies Institute Carnegie Mellon University",
                "location": {
                    "settlement": "Pittsburgh",
                    "country": "USA"
                }
            },
            "email": "bzhao@cs.cmu.edu"
        },
        {
            "first": "Silja",
            "middle": [],
            "last": "Hildebrand",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Language Technologies Institute Carnegie Mellon University",
                "location": {
                    "settlement": "Pittsburgh",
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Matthias",
            "middle": [],
            "last": "Eck",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Language Technologies Institute Carnegie Mellon University",
                "location": {
                    "settlement": "Pittsburgh",
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Chiori",
            "middle": [],
            "last": "Hori",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Language Technologies Institute Carnegie Mellon University",
                "location": {
                    "settlement": "Pittsburgh",
                    "country": "USA"
                }
            },
            "email": "chiori@cs.cmu.edu"
        },
        {
            "first": "Stephan",
            "middle": [],
            "last": "Vogel",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Language Technologies Institute Carnegie Mellon University",
                "location": {
                    "settlement": "Pittsburgh",
                    "country": "USA"
                }
            },
            "email": "vogel@cs.cmu.edu"
        },
        {
            "first": "Alex",
            "middle": [],
            "last": "Waibel",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Language Technologies Institute Carnegie Mellon University",
                "location": {
                    "settlement": "Pittsburgh",
                    "country": "USA"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this paper we describe the CMU statistical machine translation system used in the IWSLT 2005 evaluation campaign. This system is based on phrase-to-phrase translations extracted from a bilingual corpus. We experimented with two different phrase extraction methods; PESA on-the-fly phrase extraction and alignment free extraction method. The translation model, language model and other features were combined in a log-linear model during decoding. We present our experiments on model adaptation for new data in a different domain, as well as combining different translation hypotheses to obtain better translations. We participated in the supplied data track for manual transcriptions in the translation directions: Arabic-English, Chinese-English, Japanese-English and Korean-English. For Chinese-English direction we also worked on ASR output of the supplied data, and with additional data in unrestricted and C-STAR tracks.",
    "pdf_parse": {
        "paper_id": "2005",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this paper we describe the CMU statistical machine translation system used in the IWSLT 2005 evaluation campaign. This system is based on phrase-to-phrase translations extracted from a bilingual corpus. We experimented with two different phrase extraction methods; PESA on-the-fly phrase extraction and alignment free extraction method. The translation model, language model and other features were combined in a log-linear model during decoding. We present our experiments on model adaptation for new data in a different domain, as well as combining different translation hypotheses to obtain better translations. We participated in the supplied data track for manual transcriptions in the translation directions: Arabic-English, Chinese-English, Japanese-English and Korean-English. For Chinese-English direction we also worked on ASR output of the supplied data, and with additional data in unrestricted and C-STAR tracks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Large vocabulary text translation has been the primary focus in machine translation research during the past. Much improvements have been achieved with projects such as TIDES, which focused on large vocabulary text translation. With the availability of reliable speech recognition systems and spoken language corpora, now the focus is shifting towards speech translation; and further towards speech-to-speech translation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "With the IBM system [1] in early 90's, statistical machine translation (SMT) has been the most promising approach for machine translation. Many approaches for SMT have been proposed since then [2] , [3] , [4] . Whereas the original IBM system was based on purely word translation models, current SMT systems incorporate more sophisticated models.",
                "cite_spans": [
                    {
                        "start": 20,
                        "end": 23,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 193,
                        "end": 196,
                        "text": "[2]",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 199,
                        "end": 202,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 205,
                        "end": 208,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The CMU statistical machine translation system uses phrase-to-phrase translations as the primary building blocks to capture local context information, leading to better lexical choice and more reliable local reordering. In section 2, we describe the phrase alignment approaches used by our system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The main obstacle in using additional data for a translation task is that the new data may belong to a different domain. We explored methods of adapting both the translation model and the language model to overcome this problem, which are described in section 3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Section 4 outlines the architecture of the decoder that combines the translation model, language model, and other models to generate the complete translation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "When translating speech recognition output, we integrate multiple translation hypotheses into a single structure and then derive the best hypothesis. This approach is described in section 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Finally, in section 6 we give an overview of the data and tasks and present the results of the experiments we carried out for different data conditions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "In this evaluation, we applied a variation of the alignment-free approach, which is an extension to the previous work in [5] and [6] to extract bilingual phrase pairs for the supplied data tracks. In this extension, we used eleven feature functions including phrase level fertilities and phrase level IBM Model-1 probabilities aiming to locate the phrase pairs from the parallel sentences. The feature functions are then combined in a log-linear model as follows:",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 124,
                        "text": "[5]",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 129,
                        "end": 132,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "P (X|e, f )= exp( M m=1 \u03bb m \u03c6 m (X, e, f )) {X } exp( M m=1 \u03bb m \u03c6 m (X ,e,f ))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "X\u2192(f j+l j , e i+k i )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "corresponds to a phrase-pair candidate extracted from a given sentence-pair (e, f ); \u03c6 m is a feature function designed to be informative for phrase extraction. Feature function weights {\u03bb m }, are the same as in our previous experiments [7] . This log-linear model serves as a performance measure function in a local search. The search starts from fetching a test-set specific source phrase (e.g. Chinese ngram); it localizes the candidate ngram's center in the English sentence; and then around the projected center, it finds out all the candidate phrase pairs ranked with the log-linear model scores. In the local search, down-hill moves are allowed so that functional words can be attached to the left or right boundaries of the candidate phrase-pairs.",
                "cite_spans": [
                    {
                        "start": 238,
                        "end": 241,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "The eleven (M =11) feature functions that compute different aspects of phrase pair (f j+l j , e i+k i ) are as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "\u2022 Four of them compute the phrase-level length relevance:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "P (l+1|e i+k i ) and P (J\u2212l\u22121|e i / \u2208[i,i+k] )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": ", where e i / \u2208 [i,i+k] is denoted as the remaining English words in e: e i / \u2208 [i,i+k] ={e i |i / \u2208 [i, i+k]}, and J is the length of f . The probability is computed via dynamic programming using English word-fertility table P (\u03c6|e i ). P (k+1|f ; the remaining parts of (e, f ) excluding the phrasepair is modeled by j,j+l] ) using the translation lexicons of P (f |e) and P (e|f ).",
                "cite_spans": [
                    {
                        "start": 16,
                        "end": 23,
                        "text": "[i,i+k]",
                        "ref_id": null
                    },
                    {
                        "start": 80,
                        "end": 87,
                        "text": "[i,i+k]",
                        "ref_id": null
                    },
                    {
                        "start": 319,
                        "end": 325,
                        "text": "j,j+l]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "P (f j / \u2208[j,j+l] |e i / \u2208[i,i+k] ) and P (e i / \u2208[i,i+k] |f j / \u2208[",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "\u2022 Another two of the scores aim to bracket the sentence pair with the phrase-pair as detailed in [7] .",
                "cite_spans": [
                    {
                        "start": 97,
                        "end": 100,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "\u2022 The last function computes the average word alignment links per source word in the candidate phrasepair.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "We assume each phrase-pair should contain at least one word alignment link. We train the IBM Model-4 with GIZA++ [8] in both directions and grow the intersection with word pairs in the union to collect the word alignment. Because of the last feature-function, our approach is no longer truly \"alignment-free\". More details of the log-linear model and experimental analysis of the feature-functions are given in [7] .",
                "cite_spans": [
                    {
                        "start": 113,
                        "end": 116,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 411,
                        "end": 414,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "To use the extracted phrase-pairs in the decoder, a set of eight scores for each phrase-pair are computed: relative frequency of both directions, phraselevel fertility scores for both directions computed via dynamic programming, the standard IBM Model-1 scores for both directions (i.e.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "P (f j+l j |e i+k i ) = j \u2208[j,j+l] i \u2208[i,i+k] P (f j |e i )/(k+1))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": ", and the unnormalized IBM Model-1 scores for both direction (i.e.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "P (f j+l j |e i+k i ) = j \u2208[j,j+l] i \u2208[i,i+k] P (f j |e i )).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "The standard IBM Model-1 scores prefer short translations; the un-normalized scores prefer longer translations. The scores are combined via the optimization component of the decoder (e.g. Max-BLUE optimization) as described in section 4 in the hope of balancing the sentence length penalty.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Alignment",
                "sec_num": "2."
            },
            {
                "text": "The Unrestricted Data track allows the use of additional publicly available data for both translation and language models. This mainly includes data from LDC and data that is available on the Web.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Adaptation",
                "sec_num": "3."
            },
            {
                "text": "The main problem with additional data is that it usually is from a different domain compared to the original data. Using this data as is, along with the supplied data hurts the performance on the development sets. Therefore, we used a translation model adaptation approach to handle this problem.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Adaptation",
                "sec_num": "3."
            },
            {
                "text": "We adapt the translation model to the test set by selecting a part of the additional out-of-domain data using information retrieval techniques as explained in [9] .",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 162,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Translation Model Adaptation",
                "sec_num": "3.1."
            },
            {
                "text": "For every source language sentence from the test set or the development set, the most similar sentences from the out-of-domain bilingual data are selected using cosine distance with TF-IDF term weights as the similarity measure. The retrieval is done on the source language side with each test sentence as a query, then the information is used to extract respective sentence pair from the bilingual corpus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Translation Model Adaptation",
                "sec_num": "3.1."
            },
            {
                "text": "The selected sentences from the out-of-domain data together with the supplied in-domain data are used to train the translation model for the whole test set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Translation Model Adaptation",
                "sec_num": "3.1."
            },
            {
                "text": "An important question when selecting additional sentences is how much out-of-domain data should be added to the training corpus. Here, we used a perplexity based re-ranking method [9] .",
                "cite_spans": [
                    {
                        "start": 180,
                        "end": 183,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Model Perplexity for Measuring Selection Quality",
                "sec_num": "3.2."
            },
            {
                "text": "The top 1000 retrieved sentences in the source language (which is much more than the optimal number) are split into small batches of 3-10 sentences which are sequentially added to the selection. To determine how well the selection of training data fits the test sentence, we measure the perplexity of a language model trained from each selection against the respective test sentence. Each batch is classified according to whether it decreases (good batch) or increases (bad batch) the perplexity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Model Perplexity for Measuring Selection Quality",
                "sec_num": "3.2."
            },
            {
                "text": "The batches are re-ranked using this information by putting bad batches at the end of the sorted order of sentences. After re-ranking, those sentences that are in the range of twice the lowest perplexity value are included in the final training corpus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Model Perplexity for Measuring Selection Quality",
                "sec_num": "3.2."
            },
            {
                "text": "Still, the main selection criterion is TF-IDF information retrieval, as we look only at the e.g. top 1000 sentences returned by the retrieval and the original TF-IDF ranking is kept among the good as well as the bad batches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Model Perplexity for Measuring Selection Quality",
                "sec_num": "3.2."
            },
            {
                "text": "This method allows to determine the size of the selection without using a development set and shows improvements over the standard method of just choosing the same number for each test sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Model Perplexity for Measuring Selection Quality",
                "sec_num": "3.2."
            },
            {
                "text": "To balance the different sizes of the in-domain and outof-domain training corpora we assigned a stronger weight to the in-domain data. We experimented with different weight combinations. A rule of thumb for the weight w for the in-domain data is as in 1:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Weights",
                "sec_num": "3.3."
            },
            {
                "text": "w = #lines out \u2212 of \u2212 domain #lines in \u2212 domain (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Weights",
                "sec_num": "3.3."
            },
            {
                "text": "We also applied a basic form of language model (domain) adaptation using additional data crawled from the Web. Based on the English in-domain supplied training data the 5000 most common 3-grams and 4-grams were used as queries for the Google Web search engine. After filtering and basic cleaning of the retrieved web pages this data can be added to the Language Model training data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Model Adaptation",
                "sec_num": "3.4."
            },
            {
                "text": "The decoder combines all knowledge sources, i.e. translation model, language model, etc. to find the best translation. In the CMU SMT decoder the decoding process is organized into two states:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder",
                "sec_num": "4."
            },
            {
                "text": "\u2022 Find all available word and phrase translations. These are inserted into a lattice structure, called translation lattice.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder",
                "sec_num": "4."
            },
            {
                "text": "\u2022 Find the best combinations of these partial translations, such that every word in the source sentence is covered exactly once. This amounts to doing a best path search through the translation lattice, which is extended to allow for word reordering.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder",
                "sec_num": "4."
            },
            {
                "text": "In addition, the system needs to be optimized. For each model used in the decoder a scaling factor can be used to modify the contribution of this model to the overall score. Varying this scaling factors can change the performance of the system considerable. Minimum error training is used to find a good set of scaling factors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder",
                "sec_num": "4."
            },
            {
                "text": "In the following sub-sections, these different steps will be described in some more detail.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder",
                "sec_num": "4."
            },
            {
                "text": "The CMU SMT decoder can use phrase tables, generated at training time, but can also do just-in-time phrase alignment. This means that the entire bilingual corpus is loaded and the source side indexed using a suffix array [10] . For all ngrams in the test sentence, occurrences in the corpus are located using the suffix array. For a number of occurrences, where the number can be given as a parameter to the decoder, phrase alignment as described in section 2 is performed and the found target phrase added to the translation lattice.",
                "cite_spans": [
                    {
                        "start": 221,
                        "end": 225,
                        "text": "[10]",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Building Translation Lattice",
                "sec_num": "4.1."
            },
            {
                "text": "If phrase translations have already been collected during training time, then this phrase table is loaded into the decoder and a prefix tree constructed over the source phrases. This allows for an efficient search to find all source phrases in the phrase table which match a sequence of words in the test sentence. If a source phrase is found in the phrase translation table then a new edge is added to the translation lattice for each translation associated with the source phrase.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Building Translation Lattice",
                "sec_num": "4.1."
            },
            {
                "text": "Each edge carries not only the target phrase, but also a number of model scores. There can be several phrase translation model scores, calculated from relative frequency, word lexicon and word fertility. In addition, the sentence stretch model score and the phrase length model score are applied at this stage.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Building Translation Lattice",
                "sec_num": "4.1."
            },
            {
                "text": "The second stage in the decoding is finding a best path through the translation lattice, now also applying the language model. To allow for word reordering, the search algorithm is extended.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Searching for Best Path",
                "sec_num": "4.2."
            },
            {
                "text": "Hypotheses describe partial translations, i.e. a sequence of target language words, which are translations of some of the source words, and a score. As we use a trigram language model, we need to store only the last two words. A hypothesis can be expanded to cover additional source words. To restrict the search space only limited word reordering is done. Essentially, decoding runs from left to right over the source sentence, but words can be skipped within a restricted reordering window and translated later. In other words, the difference between the highest index of already translated words and the index of still untranslated words is smaller than a specified constant, which typically is 4.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Searching for Best Path",
                "sec_num": "4.2."
            },
            {
                "text": "When a hypothesis is expanded, the language model is applied to all target words attached to the edge over which the hypothesis is expanded. In addition, the distortion model is applied, adding a cost depending on the distance of the jump made in the source sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Searching for Best Path",
                "sec_num": "4.2."
            },
            {
                "text": "Hypotheses are recombined whenever the models can not change the ranking of alternative hypotheses in the future. For example, when using a trigram language model, two hypotheses having the same two words at the end of the word sequences generated so far, will get the same increment in language model scores when expanded with an additional word. Therefore, only the better hypothesis needs to be expanded. The translation model and distortion model require that only the hypotheses which cover the same source words are compared.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Searching for Best Path",
                "sec_num": "4.2."
            },
            {
                "text": "As typically too many hypotheses are generated, pruning is necessary. This means that coarser equivalence classes are used to compare hypotheses, but also to keep not only one hypothesis in one equivalence class, as done in recombination, but to keep all hypotheses, which are close to the best one. Pruning can be done with more equivalence classes and smaller beam, or coarser equivalence classes and wider beams. For example, comparing all hypotheses, which have translated the same number of source words, no matter what the final two words are, would be working with a small number of equivalence classes in pruning. The CMU SMT decoder allows two different recombination and pruning settings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Searching for Best Path",
                "sec_num": "4.2."
            },
            {
                "text": "Each model contributes to the total score of the translation hypotheses. As these models are only approximations to the real phenomena they are supposed to describe, and as they are trained on varying, but always limited data, their reliability is restricted. However, the reliability of one model might be higher than the reliability of another model. So, we should put more weight on this model in the overall decision. This can be done by doing a log-linear combination of the models. In other words, each model score is weighted and we have to find an optimal set of these weights or scaling factors. When dealing with two or three models, grid search is still feasible. When adding more and more features (models) this no longer is the case and automatic optimization needs to be done. We use the Minimum Error Training as described in [11] , which uses rescoring of the n-best list to find the scaling factors with maximize BLEU or NIST score.",
                "cite_spans": [
                    {
                        "start": 841,
                        "end": 845,
                        "text": "[11]",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimizing the System",
                "sec_num": "4.3."
            },
            {
                "text": "Starting with some reasonably chosen model weights a first decoding for some development test set is done. An n-best list is generated, typically a 1000-best list. Then a multi-linear search is performed, for each model weight in turn. The weight, for which the change gives the best improvement in the MT evaluation metric, is then fixed to the new value, and the search repeated, till no further improvement is possible.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimizing the System",
                "sec_num": "4.3."
            },
            {
                "text": "The optimization is therefore based on an n-best list, which resulted from sub-optimal model weights, and contained only a limited number of alternative translations. To eliminate any restricting effect, a new full translation is done with the new model weights. The resulting new n-best list is then merged to the old n-best list, and the entire optimization process repeated. Typically, after three iterations of doing translation plus optimization, translation quality, as measured by the MT evaluation metric, converges.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimizing the System",
                "sec_num": "4.3."
            },
            {
                "text": "To improve the translation accuracy of the ASR output, we integrate multiple translation hypotheses and select the best translation. Multiple translations can be obtained either by translating each of the n-best hypotheses produced by a speech recognizer, or selecting the n-best translations by a machine translation system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROVER on SMT n-best Hypotheses",
                "sec_num": "5."
            },
            {
                "text": "The ROVER approach is useful for integrating multiple word sequences [12] . The word sequences can be integrated based on the edit distance between the sequences, and then represented as a word transition network (WTN) which has the same structure as a confusion network (CN). A WTN differs from CN in that the score of each arc is determined based on the occurrences of words aligned to the same position in the WTN unlike posterior probabilities in CN obtained by speech recognition. Figure 1 shows an example of a word transition network. The integrated multiple word sequence begins with <s> and ends with </s>. In each column, words aligned to the same position are included. The symbol \"@\" is a special word indicating the possibility of deletion. To select the best translation from a WTN, we consider two methods. Given a WTN, one method is to simply choose the best scored word sequence\u0174 such that:",
                "cite_spans": [
                    {
                        "start": 69,
                        "end": 73,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 486,
                        "end": 494,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "ROVER",
                "sec_num": "5.1."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "W = arg max W \u2208W T N |W | n=1 P W T N (w n )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "ROVER",
                "sec_num": "5.1."
            },
            {
                "text": "where P W T N (w n ) is a score of w n in the WTN that can be calculated as the proportion of the number of occurrences of w n to the sum of occurrences of words in the same column; |W | is the length of the word sequence W.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROVER",
                "sec_num": "5.1."
            },
            {
                "text": "When ROVER system is combined with a language model, it helps to increase the recognition performances considerably for multiple ASR system outputs [13] . We search for the best sequence using both the score of each arc and probabilities given by a language model of the target language such that:",
                "cite_spans": [
                    {
                        "start": 148,
                        "end": 152,
                        "text": "[13]",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROVER combined with Language model",
                "sec_num": "5.2."
            },
            {
                "text": "W = arg max W \u2208W T N |W | n=1 P W T N (w n )P LM (w n |w n\u22122 w n\u22121 ) \u03bb",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROVER combined with Language model",
                "sec_num": "5.2."
            },
            {
                "text": "(3) where P LM (w n |w n\u22122 w n\u22121 ) is the language model score given by a trigram language model; \u03bb is the scaling factor for the language model. By using a language model, the selected word sequence is expected to be fluent and grammatically correct. The best word sequence can easily be found by using a dynamic programming technique. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROVER combined with Language model",
                "sec_num": "5.2."
            },
            {
                "text": "In consolidation, removing recognition errors, retaining as much information of the original sentence as possible and reconstructing a fluent sentence are important factors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consolidation on ROVER",
                "sec_num": "5.3."
            },
            {
                "text": "We define the consolidation score as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consolidation on ROVER",
                "sec_num": "5.3."
            },
            {
                "text": "S(V ) = M m=1 {\u03bb L L(v m |v 1 ...v m\u22121 ) + \u03bb C C(v m ) + sp.d(v m\u22121 , v m ) + ip} (4)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consolidation on ROVER",
                "sec_num": "5.3."
            },
            {
                "text": "where sp is a skip penalty (sp < 0);",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consolidation on ROVER",
                "sec_num": "5.3."
            },
            {
                "text": "d(v m\u22121 , v m )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consolidation on ROVER",
                "sec_num": "5.3."
            },
            {
                "text": "is the number of skipped words between v m\u22121 and v m ; ip is an insertion penalty [14] . The skip penalty is incorporated to avoid high compression of the original sentence because high compression of a sentence often alters the meaning of the sentence. The insertion penalty is used to control the overall compression ratio.",
                "cite_spans": [
                    {
                        "start": 82,
                        "end": 86,
                        "text": "[14]",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consolidation on ROVER",
                "sec_num": "5.3."
            },
            {
                "text": "The evaluations were primarily based on the Basic Travel Expression Corpus (BTEC) which contains conversations in tourism-related activities. The corpus was originally created in Japanese and English by ATR [15] and was later extended to other languages. We participated in the supplied data track for the translation directions Arabic-English, Chinese-English, Japanese-English and Korean-English. For Chinese-English direction we also worked on ASR output. In both unrestricted and C-STAR tracks, we participated for Chinese-English direction.",
                "cite_spans": [
                    {
                        "start": 207,
                        "end": 211,
                        "text": "[15]",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "6."
            },
            {
                "text": "For each translation direction, except Korean-English, two development sets (C-STAR'03 and IWSLT'04) were made available. For Korean-English only C-STAR'03 test set was available. Table 1 shows corpus statistics for the training and test sets.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 180,
                        "end": 187,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "6."
            },
            {
                "text": "As a preprocessing step, we separated punctuations from words in the English (target) side and converted the text into lowercase. No preprocessing was done on any of the source side data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "6."
            },
            {
                "text": "We report translation results using the well known evaluation metrics BLEU [16] and NIST [17] . For our primary system and the best system, we report results also in WER, PER, METEOR [18] and GTM [19] .",
                "cite_spans": [
                    {
                        "start": 75,
                        "end": 79,
                        "text": "[16]",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 89,
                        "end": 93,
                        "text": "[17]",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 183,
                        "end": 187,
                        "text": "[18]",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 196,
                        "end": 200,
                        "text": "[19]",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "6."
            },
            {
                "text": "During the evaluation our primary focus was on the Chinese-English direction. We applied both PESA and Alignment-Free phrase extraction methods to the supplied data track. In building phrase tables using the Alignment Free method, we extracted phrase-pairs with source side up to 8-gram in length. PESA online phrase extraction method can extract phrases up to full length of the sentence. Table 2 summarizes the official translation results for our primary submissions. We also give contrastive results for the Arabic-English and Chinese-English directions in Table 3 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 390,
                        "end": 397,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 561,
                        "end": 568,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Supplied Data Track",
                "sec_num": "6.1."
            },
            {
                "text": "The primary submission for Chinese-English direction was based on PESA alignment optimized towards BLEU metric. Submissions for other language pairs were based on the Alignment-Free method optimized towards NIST. This resulted in the discrepancy between the BLEU and NIST scores for the Chinese-English direction. The contrastive results in Table 3 are based on the Alignment-Free phrase extraction approach. Compared to PESA which uses only lexical probabilities, Alignment-Free method uses more features as explained in section 2. This resulted in better scores compared to the primary submission. Also it seems optimizing towards NIST score gives a better balance between different evaluation metrics. Table 4 gives translation results for all three test sets. We optimized the system for C-STAR'03 test set and used IWSLT'04 as the unseen test data. In most translation directions we see comparable results between IWSLT'04 and IWSLT'05 test sets.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 341,
                        "end": 348,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 705,
                        "end": 712,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Supplied Data Track",
                "sec_num": "6.1."
            },
            {
                "text": "We also conducted a subjective evaluation for submissions on Chinese-English supplied data track: primary submission (CMU Primary) and contrastive submission (CMU Contrast.). Table 5 gives the results. Evaluator followed the same guidelines as IWSLT'05 subjective evaluation specifications [20] . These results further indicates that Alignment Free approach produced better translations.",
                "cite_spans": [
                    {
                        "start": 290,
                        "end": 294,
                        "text": "[20]",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 175,
                        "end": 182,
                        "text": "Table 5",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Supplied Data Track",
                "sec_num": "6.1."
            },
            {
                "text": "For the Unrestricted and C-STAR data tracks it is possible to use additional bilingual and monolingual training data. We used the TIDES data (Chinese newswire) as an additional source for parallel bilingual data. This data provides approximately 9 million lines of parallel texts in about 140 million words. All available data (the supplied data and the final test set) was re-segmented based on the segmentation of the TIDES data. We also replaced contractions like I'm or We'll with their respective written forms. We selected 86,826 sentences from the TIDES corpus using the translation model adaptation technique described in section 3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Using Additional Data",
                "sec_num": "6.2."
            },
            {
                "text": "For the C-STAR track we also used the full BTEC corpus as additional in-domain data. Table 6 gives an overview of all available bilingual data. As explained in Section 3.4 we also used a language model adaptation technique in the Unrestricted Data track which added 1.8 million sentences (with 18 million words) to the language model training data. This additional data decreased the language model perplexity by over 50 (on Development set 1, C-STAR'03) compared to using only the supplied data. We used this data as additional language modeling data on the actual test set for the Unrestricted Data track. Translation results for the Unrestricted data track on C-STAR'03 set and the Test set are shown in Table 7 . Using only the resegmented data did not give any improvement over the original segmentation. The translation model adaptation (TMA) alone improved the results with further improvements when also using the adapted language model (LMA). Table 8 illustrates the scores for the C-STAR data track. Using the full BTEC corpus alone gives a slight improvement in BLEU scores but leads to a considerably low NIST score especially on the C-STAR03 development set. Adding the selected data from the TIDES corpus further improves all scores. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 85,
                        "end": 92,
                        "text": "Table 6",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 707,
                        "end": 714,
                        "text": "Table 7",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 952,
                        "end": 959,
                        "text": "Table 8",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Using Additional Data",
                "sec_num": "6.2."
            },
            {
                "text": "The Chinese ASR 1-best was translated into English. The 100 best translation hypotheses were merged into a ROVER network and the best path was selected based on the ROVER score (ROVER), the language model score (LM) and the consolidation score (CON). The best scaling factors were experimentally determined using the Dev1 (C-STAR'03) set. Table 9 shows the evaluation result. The performance drastically dropped when using only the rover score. Combining ROVER with the language model helped to increase NIST scores significantly in Dev 2(IWSLT'04) set and the final test set. In addition, the consolidation enhanced the BLEU scores. Al- ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 339,
                        "end": 346,
                        "text": "Table 9",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Results on ASR Output",
                "sec_num": "6.3."
            },
            {
                "text": "In this paper we described the CMU statistical machine translation system that was used for the IWSLT 2005 evaluation campaign. We experimented with two phrase extraction methods; one which uses only lexical probabilities, and another method which uses additional features such as fertility and alignment. For the Chinese-English direction we also experimented with using additional data, both in-domain and out-of-domain, for model adaptation. Results indicate that this adaptation helps to increase the accuracy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7."
            },
            {
                "text": "We did further experiments in integrating multiple translation hypotheses using the ROVER approach and choosing the best translation. This showed some interesting results. However further investigations are required to fully explore the potential of this approach.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7."
            },
            {
                "text": "Optimizing model parameters towards one metric seems to have a negative effect on other metrics. This was especially evident when optimized towards high BLEU scores. A better approach would be optimizing the translation system using a linear combination of the different metrics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7."
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "The mathematics of statistical machine translation: Parameter estimation",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "F"
                        ],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A D"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "J D"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "L"
                        ],
                        "last": "Mercer",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "2",
                "pages": "263--311",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. F. Brown, S. A. D. Pietra, V. J. D. Pietra, and R. L. Mercer, \"The mathematics of statistical ma- chine translation: Parameter estimation,\" Computa- tional Linguistics, vol. 19, no. 2, pp. 263-311, 1993.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Fast decoding for statistical machine translation",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Waibel",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Proc. of the ICSLP 98",
                "volume": "",
                "issue": "",
                "pages": "2775--2778",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Wang and A. Waibel, \"Fast decoding for statisti- cal machine translation,\" in Proc. of the ICSLP 98, Sidney, Australia, December 1998, pp. 2775-2778.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Improved statistical alignment models",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "440--447",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och and H. Ney, \"Improved statistical align- ment models,\" in Proceedings of the 38th Annual Meeting of the Association for Computational Lin- guistics, Hongkong, China, October 2000, pp. 440- 447.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A syntax-based statistical translation model",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Yamada",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "523--530",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Yamada and K. Knight, \"A syntax-based statisti- cal translation model,\" in Proceedings of the 39th Annual Meeting of the Association for Computa- tional Linguistics, Toulouse, France, July 2001, pp. 523-530.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "PESA: Phrase pair extraction as sentence splitting",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of the Machine Translation Summit X",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Vogel, \"PESA: Phrase pair extraction as sentence splitting,\" in Proc. of the Machine Translation Sum- mit X, Phuket, Thailand, September 2005.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A generalized alignmentfree phrase extraction",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the ACL Workshop on Building and Using Parallel Texts",
                "volume": "",
                "issue": "",
                "pages": "141--144",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Zhao and S. Vogel, \"A generalized alignment- free phrase extraction,\" in Proceedings of the ACL Workshop on Building and Using Parallel Texts, Ann Arbor, Michigan, June 2005, pp. 141-144.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Learning a log-linear model with bilingual phrase-pair features for statistical machine translation",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Waibel",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the SigHan Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Zhao and A. Waibel, \"Learning a log-linear model with bilingual phrase-pair features for sta- tistical machine translation,\" in Proceedings of the SigHan Workshop, Jeju, Korea, October 2005.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "A systematic comparison of various statistical alignment models",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Computational Linguistics",
                "volume": "29",
                "issue": "1",
                "pages": "19--51",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och and H. Ney, \"A systematic comparison of various statistical alignment models,\" Computa- tional Linguistics, vol. 29, no. 1, pp. 19-51, 2003.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Adaptation of the translation model for statistical machine translation based on information retrieval",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "S"
                        ],
                        "last": "Hildebrand",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Eck",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Waibel",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of the EAMT 2005",
                "volume": "",
                "issue": "",
                "pages": "133--142",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. S. Hildebrand, M. Eck, S. Vogel, and A. Waibel, \"Adaptation of the translation model for statistical machine translation based on information retrieval,\" in Proc. of the EAMT 2005, Budapest, Hungary, May 2003, pp. 133-142.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Competitive grouping in integrated phrase segmentation and alignment model",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of the ACL Workshop on Building and Using Parallel Texts",
                "volume": "",
                "issue": "",
                "pages": "159--162",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Zhang and S. Vogel, \"Competitive grouping in integrated phrase segmentation and alignment model,\" in Proc. of the ACL Workshop on Build- ing and Using Parallel Texts, Ann Arbor, Michigan, June 2005, pp. 159-162.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Minimum error rate training in statistical machine translation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "160--167",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och, \"Minimum error rate training in statistical machine translation,\" in Proceedings of the 41st An- nual Meeting of the Association for Computational Linguistics, Sapporo, Japan, 2003, pp. 160-167.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "A postprocessing system to yield reduced error word rates: Recognizer output voting error reduction (ROVER)",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "G"
                        ],
                        "last": "Fiscus",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proc. of the IEEE Workshop on Automatic Speech Recognition and Understanding",
                "volume": "",
                "issue": "",
                "pages": "347--354",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. G. Fiscus, \"A postprocessing system to yield re- duced error word rates: Recognizer output voting error reduction (ROVER),\" in Proc. of the IEEE Workshop on Automatic Speech Recognition and Understanding, 1997, pp. 347-354.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Improved rover using language model information",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Schwenk",
                        "suffix": ""
                    },
                    {
                        "first": "J.-L",
                        "middle": [],
                        "last": "Gauvain",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. of the ISCA ITRW Workshop Automatic Speech Recognition: Challenges for the new Millenium",
                "volume": "",
                "issue": "",
                "pages": "47--52",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Schwenk and J.-L. Gauvain, \"Improved rover us- ing language model information,\" in Proc. of the ISCA ITRW Workshop Automatic Speech Recogni- tion: Challenges for the new Millenium, 2000, pp. 47-52.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Spontaneous speech consolidation for spoken language applications",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Hori",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Waible",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of Interspeech",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Hori and A. Waible, \"Spontaneous speech consolidation for spoken language applications,\" in Proc. of Interspeech 2005, Lisbon, Portugal, September 2005.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Towards a broad-coverage bilingual corpus for speech translation of travel conversations in the real world",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Takezawa",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Sumita",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Sugaya",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Yamamoto",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Yamamoto",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of the Third Int. Conf. on Language Resources and Evaluation (LREC)",
                "volume": "",
                "issue": "",
                "pages": "147--152",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto, and S. Yamamoto, \"Towards a broad-coverage bilingual corpus for speech translation of travel con- versations in the real world,\" in Proc. of the Third Int. Conf. on Language Resources and Evaluation (LREC), Las Palmas, Canary Islands, Spain, May 2002, pp. 147-152.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "W.-J",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Prof. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, \"Bleu: a method for automatic evaluation of ma- chine translation,\" in Prof. of the 40th Annual Meet- ing of the Association for Computational Linguis- tics (ACL), Philadelphia, PA, July 2002, pp. 311- 318.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Automatic evaluation of machine translation quality using n-gram co-occurrence statistics",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Doddington",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the Human Language Technology Conference (HLT)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Doddington, \"Automatic evaluation of machine translation quality using n-gram co-occurrence statistics,\" in In Proceedings of the Human Lan- guage Technology Conference (HLT), San Diego, CA, March 2002.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "METEOR: An automatic metric for MT evaluation with improved correlation with human judgments",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Banerjee",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Lavie",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization",
                "volume": "",
                "issue": "",
                "pages": "65--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Banerjee and A. Lavie, \"METEOR: An auto- matic metric for MT evaluation with improved cor- relation with human judgments,\" in Proc. of the ACL Workshop on Intrinsic and Extrinsic Evalua- tion Measures for Machine Translation and/or Sum- marization, Ann Arbor, Michigan, June 2005, pp. 65-72.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Evaluation of machine translation and its evaluation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Turian",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [
                            "D"
                        ],
                        "last": "Melamed",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of the Machine Translation Summit IX",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. P. Turian, L. Shen, and I. D. Melamed, \"Evalu- ation of machine translation and its evaluation,\" in Proc. of the Machine Translation Summit IX, New Orleans, LA, September 2003.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Overview of the iwslt2005 evaluation campaign",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Eck",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Hori",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Eck and C. Hori, \"Overview of the iwslt2005 evaluation campaign,\" in the same proceedings.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "j+l j ) and P (I\u2212k\u22121|f j / \u2208[j,j+l] ) are computed in a similar way. Another four compute the IBM Model-1 scores for the phrase-pairs P (f j+l j |e i+k i ) and P (e i+k i |f j+l j )",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "text": "Word Transition Network.",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "type_str": "table",
                "text": "Corpus statistics for the supplied data.",
                "content": "<table><tr><td/><td/><td/><td colspan=\"3\">Supplied Data Track</td><td/></tr><tr><td/><td/><td>Arabic</td><td colspan=\"2\">Chinese</td><td>Japanese</td><td colspan=\"2\">Korean English</td></tr><tr><td/><td/><td/><td>Manual</td><td>ASR</td><td/><td/></tr><tr><td>Training</td><td>Sentences</td><td/><td/><td colspan=\"2\">20,000</td><td/></tr><tr><td/><td>Words</td><td>131,711</td><td colspan=\"2\">176,199</td><td colspan=\"3\">198,453 208,763 183,452</td></tr><tr><td/><td>Vocabulary</td><td>26,116</td><td>8,687</td><td/><td>9,277</td><td>9,132</td><td>6,956</td></tr><tr><td colspan=\"2\">C-STAR'03 Sentences</td><td/><td/><td/><td>506</td><td/></tr><tr><td/><td>Words</td><td>2,579</td><td colspan=\"2\">3,511 2,835</td><td>4,130</td><td>4,084</td><td>-</td></tr><tr><td/><td>Vocabulary</td><td>1,322</td><td colspan=\"2\">913 1,024</td><td>920</td><td>976</td><td>-</td></tr><tr><td/><td>Unknown Words</td><td>441</td><td>117</td><td>245</td><td>70</td><td>95</td><td>-</td></tr><tr><td>IWSLT'04</td><td>Sentences</td><td/><td/><td/><td>500</td><td/></tr><tr><td/><td>Words</td><td>2,712</td><td colspan=\"2\">3,590 2,896</td><td>4,131</td><td>-</td><td>-</td></tr><tr><td/><td>Vocabulary</td><td>1,399</td><td colspan=\"2\">975 1,068</td><td>945</td><td>-</td><td>-</td></tr><tr><td/><td>Unknown Words</td><td>484</td><td>116</td><td>223</td><td>61</td><td>-</td><td>-</td></tr><tr><td>IWSLT'05</td><td>Sentences</td><td/><td/><td/><td>506</td><td/></tr><tr><td/><td>Words</td><td>2,607</td><td colspan=\"2\">3,743 3,003</td><td>4,226</td><td>4,563</td><td>-</td></tr><tr><td/><td>Vocabulary</td><td>1,387</td><td colspan=\"2\">963 1,091</td><td>975</td><td>969</td><td>-</td></tr><tr><td/><td>Unknown Words</td><td>468</td><td>155</td><td>249</td><td>169</td><td>84</td><td>-</td></tr></table>",
                "num": null,
                "html": null
            },
            "TABREF1": {
                "type_str": "table",
                "text": "Official results for the CMU primary submission on IWSLT'05 test set.",
                "content": "<table><tr><td>Data</td><td>Input</td><td colspan=\"7\">Translation BLEU NIST WER PER METEOR GTM</td></tr><tr><td>Track</td><td/><td>Direction</td><td/><td/><td>[%]</td><td>[%]</td><td/><td/></tr><tr><td>Supplied</td><td>Manual</td><td>AR-EN</td><td>40.9</td><td>8.74</td><td>50.8</td><td>43.0</td><td>0.64</td><td>0.58</td></tr><tr><td/><td/><td>CH-EN</td><td>44.4</td><td>6.19</td><td>58.1</td><td>49.9</td><td>0.52</td><td>0.48</td></tr><tr><td/><td/><td>JP-EN</td><td>39.3</td><td>8.00</td><td>51.3</td><td>45.9</td><td>0.56</td><td>0.52</td></tr><tr><td/><td/><td>KR-EN</td><td>35.8</td><td>8.17</td><td>47.0</td><td>38.0</td><td>0.65</td><td>0.59</td></tr><tr><td/><td>ASR</td><td>CH-EN</td><td>36.3</td><td>6.53</td><td>46.9</td><td>36.5</td><td>0.67</td><td>0.61</td></tr><tr><td colspan=\"2\">Unrestricted Manual</td><td>CH-EN</td><td>47.1</td><td>9.35</td><td>54.7</td><td>45.5</td><td>0.58</td><td>0.47</td></tr><tr><td>C-STAR</td><td>Manual</td><td>CH-EN</td><td>52.7</td><td colspan=\"2\">10.02 42.0</td><td>32.6</td><td>0.71</td><td>0.64</td></tr></table>",
                "num": null,
                "html": null
            },
            "TABREF2": {
                "type_str": "table",
                "text": "Contrastive results for Chinese-English and Arabic-English supplied data tracks.",
                "content": "<table><tr><td>Data</td><td>Input</td><td colspan=\"7\">Translation BLEU NIST WER PER METEOR GTM</td></tr><tr><td>Track</td><td/><td>Direction</td><td/><td/><td>[%]</td><td>[%]</td><td/></tr><tr><td colspan=\"2\">Supplied Manual</td><td>AR-EN</td><td>46.4</td><td>9.05</td><td>46.0</td><td>38.7</td><td>0.66</td><td>0.61</td></tr><tr><td/><td/><td>CH-EN</td><td>46.4</td><td>9.28</td><td>47.0</td><td>39.2</td><td>0.64</td><td>0.57</td></tr></table>",
                "num": null,
                "html": null
            },
            "TABREF3": {
                "type_str": "table",
                "text": "Human judgement for Chinese-English supplied data track. All metrics range between [0-4].",
                "content": "<table><tr><td>System</td><td colspan=\"3\">Fluency Adequacy Meaning Mtns.</td></tr><tr><td>CMU Primary</td><td>2.88</td><td>1.35</td><td>1.34</td></tr><tr><td>CMU Contrast.</td><td>2.82</td><td>2.54</td><td>2.50</td></tr></table>",
                "num": null,
                "html": null
            },
            "TABREF4": {
                "type_str": "table",
                "text": "Additional bilingual training data",
                "content": "<table><tr><td/><td># Lines</td><td># Words</td><td># Words</td></tr><tr><td/><td/><td>(English)</td><td>(Chinese)</td></tr><tr><td>Supplied Data</td><td>20,000</td><td>183,452</td><td>175,690</td></tr><tr><td>TIDES Data</td><td colspan=\"3\">9,106,599 144,030,404 135,486,265</td></tr><tr><td>Selected by TMA</td><td>86,826</td><td>1,649,132</td><td>1,662,906</td></tr><tr><td>Full BTEC Data</td><td>193,326</td><td>1,215,594</td><td>1,140,031</td></tr></table>",
                "num": null,
                "html": null
            },
            "TABREF5": {
                "type_str": "table",
                "text": "Translation result for all test sets.",
                "content": "<table><tr><td>Phrase Alignment</td><td colspan=\"2\">C-STAR'03</td><td colspan=\"2\">IWSLT'04</td><td>Test</td><td/></tr><tr><td/><td colspan=\"6\">BLEU NIST BLEU NIST BLEU NIST</td></tr><tr><td>AR-EN</td><td>44.8</td><td>8.14</td><td>40.3</td><td>8.10</td><td>40.9</td><td>8.74</td></tr><tr><td>CH-EN (PESA)</td><td>41.2</td><td>5.04</td><td>41.1</td><td>5.43</td><td>44.4</td><td>6.19</td></tr><tr><td>CH-EN (Al. Free)</td><td>40.3</td><td>8.10</td><td>42.8</td><td>8.82</td><td>46.4</td><td>9.28</td></tr><tr><td>JP-EN</td><td>50.4</td><td>7.50</td><td>49.1</td><td>7.68</td><td>39.3</td><td>8.00</td></tr><tr><td>KR-EN</td><td>37.9</td><td>7.66</td><td>-</td><td>-</td><td>35.8</td><td>8.17</td></tr></table>",
                "num": null,
                "html": null
            },
            "TABREF6": {
                "type_str": "table",
                "text": "Translation",
                "content": "<table><tr><td/><td colspan=\"4\">results for Chinese-English unre-</td></tr><tr><td>stricted data track.</td><td/><td/><td/><td/></tr><tr><td/><td colspan=\"2\">C-STAR'03</td><td colspan=\"2\">Test set</td></tr><tr><td/><td colspan=\"4\">BLEU NIST BLEU NIST</td></tr><tr><td>Baseline</td><td/><td/><td/><td/></tr><tr><td>New Segment.</td><td>40.6</td><td>8.23</td><td>43.5</td><td>9.02</td></tr><tr><td>+TMA</td><td>43.2</td><td>7.43</td><td>46.5</td><td>9.23</td></tr><tr><td>+TMA +LMA</td><td>43.1</td><td>7.75</td><td>47.1</td><td>9.35</td></tr></table>",
                "num": null,
                "html": null
            },
            "TABREF7": {
                "type_str": "table",
                "text": "Translation results for Chinese-English C-STAR track.",
                "content": "<table><tr><td/><td colspan=\"2\">C-STAR'03</td><td colspan=\"2\">Test set</td></tr><tr><td/><td colspan=\"4\">BLEU NIST BLEU NIST</td></tr><tr><td>Baseline</td><td/><td/><td/><td/></tr><tr><td>New Segment.</td><td>40.6</td><td>8.23</td><td>43.5</td><td>9.02</td></tr><tr><td>+Full BTEC</td><td>42.8</td><td>6.44</td><td>49.4</td><td>8.15</td></tr><tr><td>+TMA</td><td>45.8</td><td>8.39</td><td>52.7</td><td>10.02</td></tr></table>",
                "num": null,
                "html": null
            },
            "TABREF8": {
                "type_str": "table",
                "text": "Evaluation results for ASR 1-best translations. The numbers in parenthesis show the average number of words in a sentence. though the WER is comparable among all experiments, both BLEU and NIST scores have increased.",
                "content": "<table><tr><td/><td/><td>Score</td><td>Dev1</td><td>Dev2</td><td>Test</td></tr><tr><td/><td/><td>BLEU</td><td>35.5</td><td>33.0</td><td>36.3</td></tr><tr><td colspan=\"2\">ASR 1-best</td><td>NIST</td><td>6.25</td><td>4.72</td><td>6.53</td></tr><tr><td/><td/><td>WER</td><td>60.8</td><td>61.5</td><td>59.9</td></tr><tr><td/><td/><td/><td colspan=\"3\">(3.55) (4.75) (5.44)</td></tr><tr><td/><td colspan=\"2\">ROVER BLEU</td><td>34.8</td><td>33.9</td><td>34.5</td></tr><tr><td/><td/><td>NIST</td><td>4.57</td><td>5.59</td><td>4.28</td></tr><tr><td/><td/><td>WER</td><td>71.1</td><td>66.7</td><td>60.9</td></tr><tr><td/><td/><td/><td colspan=\"3\">(3.63) (4.68) (4.59)</td></tr><tr><td colspan=\"3\">MT 1000 ROVER BLEU</td><td>36.3</td><td>34.3</td><td>34.2</td></tr><tr><td>best for</td><td>+ LM</td><td>NIST</td><td>4.87</td><td>7.49</td><td>7.20</td></tr><tr><td>ASR</td><td/><td>WER</td><td>60.4</td><td>63.8</td><td>65.2</td></tr><tr><td>1-best</td><td/><td/><td colspan=\"3\">(4.82) (6.17) (6.33)</td></tr><tr><td/><td colspan=\"2\">ROVER BLEU</td><td>37.3</td><td>35.4</td><td>37.2</td></tr><tr><td/><td>+ LM</td><td>NIST</td><td>3.42</td><td>7.40</td><td>6.58</td></tr><tr><td/><td>+ SUM</td><td>WER</td><td>60.7</td><td>60.5</td><td>61.1</td></tr><tr><td/><td/><td/><td colspan=\"3\">(4.29) (5.38) (5.57)</td></tr></table>",
                "num": null,
                "html": null
            }
        }
    }
}