File size: 85,977 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
{
    "paper_id": "N06-1013",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T14:46:29.649132Z"
    },
    "title": "A Maximum Entropy Approach to Combining Word Alignments",
    "authors": [
        {
            "first": "Necip",
            "middle": [],
            "last": "Fazil",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Maryland College Park",
                "location": {
                    "postCode": "20742",
                    "region": "MD"
                }
            },
            "email": ""
        },
        {
            "first": "Bonnie",
            "middle": [
                "J"
            ],
            "last": "Dorr",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Maryland College Park",
                "location": {
                    "postCode": "20742",
                    "region": "MD"
                }
            },
            "email": "bonnie@umiacs.umd.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper presents a new approach to combining outputs of existing word alignment systems. Each alignment link is represented with a set of feature functions extracted from linguistic features and input alignments. These features are used as the basis of alignment decisions made by a maximum entropy approach. The learning method has been evaluated on three language pairs, yielding significant improvements over input alignments and three heuristic combination methods. The impact of word alignment on MT quality is investigated, using a phrase-based MT system.",
    "pdf_parse": {
        "paper_id": "N06-1013",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper presents a new approach to combining outputs of existing word alignment systems. Each alignment link is represented with a set of feature functions extracted from linguistic features and input alignments. These features are used as the basis of alignment decisions made by a maximum entropy approach. The learning method has been evaluated on three language pairs, yielding significant improvements over input alignments and three heuristic combination methods. The impact of word alignment on MT quality is investigated, using a phrase-based MT system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Word alignment-detection of corresponding words between two sentences that are translations of each other-is usually an intermediate step of statistical machine translation (MT) (Brown et al., 1993; Och and Ney, 2003; Koehn et al., 2003) , but also has been shown useful for other applications such as construction of bilingual lexicons, word-sense disambiguation, projection of resources, and crosslanguage information retrieval.",
                "cite_spans": [
                    {
                        "start": 178,
                        "end": 198,
                        "text": "(Brown et al., 1993;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 199,
                        "end": 217,
                        "text": "Och and Ney, 2003;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 218,
                        "end": 237,
                        "text": "Koehn et al., 2003)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Maximum entropy (ME) models have been used in bilingual sense disambiguation, word reordering, and sentence segmentation (Berger et al., 1996) , parsing, POS tagging and PP attachment (Ratnaparkhi, 1998) , machine translation , and FrameNet classification (Fleischman et al., 2003) . They have also been used to solve the word alignment problem (Garcia-Varea et al., 2002; Ittycheriah and Roukos, 2005; Liu et al., 2005 ), but a sentence-level approach to combining knowledge sources is used rather than a word-level approach. This paper describes an approach to combining evidence from alignments generated by existing systems to obtain an alignment that is closer to the true alignment than the individual alignments. The alignment-combination approach (called ACME) operates at the level of alignment links, rather than at the sentence level (as in previous ME approaches). ACME uses ME to decide whether to include/exclude a particular alignment link based on feature functions that are extracted from the input alignments and linguistic features of the words. Since alignment combination relies on evidence from existing alignments, we focus on alignment links that exist in at least one input alignment. An important challenge in this approach is the selection of appropriate links when two aligners make different alignment choices.",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 142,
                        "text": "(Berger et al., 1996)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 184,
                        "end": 203,
                        "text": "(Ratnaparkhi, 1998)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 256,
                        "end": 281,
                        "text": "(Fleischman et al., 2003)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 345,
                        "end": 372,
                        "text": "(Garcia-Varea et al., 2002;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 373,
                        "end": 402,
                        "text": "Ittycheriah and Roukos, 2005;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 403,
                        "end": 419,
                        "text": "Liu et al., 2005",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We show that ACME yields a significant relative error reduction over the input alignment systems and heuristic-based combinations on three different language pairs. Using a higher number of input alignments and partitioning the training data into disjoint subsets yield further error-rate reductions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The next section briefly overviews ME models. Section 3 presents a new ME approach to combining existing word alignment systems. Section 4 describes the evaluation data, input alignments, and evaluation metrics. Section 5 presents experiments on three language pairs, upper bounds for alignment error rate in alignment combination, and MT evaluation on English-Chinese and English-Arabic. Section 6 describes previous work on alignment combination and ME models on word alignment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In a statistical classification problem, the goal is to estimate the probability of a class y in a given context x, i.e., p(y|x). In an ideal scenario, if the training data contain evidence for all pairs of (y, x), it is trivial to compute the probability distribution p. Unfortunately, due to training-data sparsity, p is generally modeled using only the available evidence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy (ME) Models",
                "sec_num": "2"
            },
            {
                "text": "Given a collection of facts, ME chooses a model consistent with all the facts, but otherwise as uniform as possible (Berger et al., 1996) . Formally, the evidence is represented as feature functions, i.e., binary valued functions that map a class y and a context x to either 0 or 1, i.e., h m : Y \u00d7 X \u2192 {0, 1}, where Y is the set of all classes and X is the set of all facts. The biggest advantage of maximum entropy models is that they are able to focus on the selection of feature functions rather than on how such functions are used. Any context can be used to define feature functions without concern for the independence of the feature functions from each other or the relevance of the feature functions to the final decision (Ratnaparkhi, 1998) .",
                "cite_spans": [
                    {
                        "start": 116,
                        "end": 137,
                        "text": "(Berger et al., 1996)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 731,
                        "end": 750,
                        "text": "(Ratnaparkhi, 1998)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy (ME) Models",
                "sec_num": "2"
            },
            {
                "text": "Each feature function h m is associated with a model parameter \u03bb m . Given a set of M feature functions h 1 , . . . , h M , the probability of class y given a context x is equal to:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy (ME) Models",
                "sec_num": "2"
            },
            {
                "text": "p(y|x) = 1 Z x exp M m=1 \u03bb m h m (y, x)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy (ME) Models",
                "sec_num": "2"
            },
            {
                "text": "where Z x is a normalization constant. The contribution of each feature function to the final decision, i.e., \u03bb m , can be automatically computed using Generalized Iterative Scaling (GIS) algorithm (Darroch and Ratcliff, 1972) . The final classification for a given instance is the class y that maximizes p(y|x).",
                "cite_spans": [
                    {
                        "start": 198,
                        "end": 226,
                        "text": "(Darroch and Ratcliff, 1972)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy (ME) Models",
                "sec_num": "2"
            },
            {
                "text": "Let e = e 1 , . . . , e I and f = f 1 , . . . , f J be two sentences in two different languages. An alignment link (i, j) corresponds to a translational equivalence between words e i and f j . Let A k be an alignment between sentences e and f , where each element a \u2208 A k is an alignment link (i, j). Let A = {A 1 , . . . , A n } be a set of alignments between e and f . We refer to the true alignment as T , where each a \u2208 T is of the form (i, j). The goal of ACME is to combine the information in A such that the combined alignment A C is closer to T . A straightforward solution is to take the intersection or union of the individual alignments. In this paper, an additional model is learned to combine outputs of A 1 , . . . , A n .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Combination: ACME",
                "sec_num": "3"
            },
            {
                "text": "In our combination framework, first, n different word-alignment systems, A 1 , . . . , A n , generate word alignments between a given English sentence and a foreign-language (FL) sentence. Then a Feature Extractor takes the output of these alignment systems and the parallel corpus (which might be enriched with linguistic features) and extracts a set of feature functions based on linguistic properties of the words and the input alignments. Each feature function h m is associated with a model parameter \u03bb m . Next, an Alignment Combiner decides whether to include or exclude an alignment link based on the extracted feature functions and the model parameters associated with them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Combination: ACME",
                "sec_num": "3"
            },
            {
                "text": "For each possible alignment link a set of features is extracted from the input alignments and linguistic properties of words. The features that are used for representing an alignment link (i, j) are as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Combination: ACME",
                "sec_num": "3"
            },
            {
                "text": "1. Part-of-speech tags (posE, posF, prevposE, prevposF, nextpostE, nextposF) : POS tags for the previous, current, and the next English and FL words. 2. Outputs of input aligners (out): Whether (i, j) exists in a given input alignment A k . 3. Neighbors (neigh): A neighborhood of an alignment link (i, j)-denoted by N (i, j)consists of 8 possible alignment links in a 3\u00d73 window with (i, j) in the center of the window. Each element of N (i, j) is called a neighboring link of (i, j). Neighbor features include:",
                "cite_spans": [
                    {
                        "start": 23,
                        "end": 76,
                        "text": "(posE, posF, prevposE, prevposF, nextpostE, nextposF)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Combination: ACME",
                "sec_num": "3"
            },
            {
                "text": "(1) Whether a particular neighbor of (i, j) exists in a given input alignment A k ; and (2) Total number of neighbors of (i, j) in a given input alignment A k . 4. Fertilities (fertE, fertF): The number of words that e i (or f j ) is aligned to in a given input alignment A k . 5. Monotonicity (mon): The absolute difference between i and j.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Combination: ACME",
                "sec_num": "3"
            },
            {
                "text": "Our combination approach employs feature functions derived from a subset of the features above. Assuming Y = {yes, no} represents the set of classes, where each class denotes the existence or absence of a link in the combined alignment, and X is the set of features above, we generate various feature functions h (y, x) , where y \u2208 Y and x are instantiations of one or more features in X . Table 1 lists the feature sets with an example feature func- tion for each. 1 For example, the feature function in the fifth row has a value of 1 if there are 2 neighboring links to (i, j) that exist in the input alignment A k and the alignment link",
                "cite_spans": [
                    {
                        "start": 313,
                        "end": 319,
                        "text": "(y, x)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 390,
                        "end": 397,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Alignment Combination: ACME",
                "sec_num": "3"
            },
            {
                "text": "Features Example Feature Function posE h( yes , i, j) = 1 if (i, j) \u2208 AC and pos(ei) = N oun posF h( no , i, j) = 1 if (i, j) / \u2208 AC and pos(fj) = V erb out h( yes , i, j, k) = 1 if (i, j) \u2208 AC and (i, j) \u2208 A k out, neigh h( yes , i, j, k) = 1 if (i, j) \u2208 AC and (i \u2212 1, j + 1) \u2208 A k h( yes , i, j, k) = 1 if (i, j) \u2208 AC and |N C| = 2 where N C = {n|n \u2208 N (i, j), n \u2208 A k } out, f ertE h( no , i, j, k) = 1 if (i, j) / \u2208 AC and |F T | = 0 where F T = {t|(i, t) \u2208 A k } out, f ertF h( no , i, j, k) = 1 if (i, j) / \u2208 AC and |F T | = 1 where F T = {t|(t, j) \u2208 A k } mon h( yes , i, j) = 1 if (i, j) \u2208 AC and |i \u2212 j| = 2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Combination: ACME",
                "sec_num": "3"
            },
            {
                "text": "(i, j) exists in A C .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Combination: ACME",
                "sec_num": "3"
            },
            {
                "text": "In combining evidence from different alignments, it is assumed that, when an alignment link is left out by all aligners, that particular link should not be included in the final output. Since the majority of all possible word pairs are unaligned in real data, the inclusion of all possible word pairs in the training data leads to skewed results, where the learning algorithm is biased toward labeling the links as invalid. To offset this problem, our training data includes only alignment links that appear in at least one input alignment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Combination: ACME",
                "sec_num": "3"
            },
            {
                "text": "Once the feature functions are extracted, we learn the model parameters using the YASMET ME package (Och, 2002) , which is an efficient implementation of the GIS algorithm.",
                "cite_spans": [
                    {
                        "start": 100,
                        "end": 111,
                        "text": "(Och, 2002)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Combination: ACME",
                "sec_num": "3"
            },
            {
                "text": "The alignment combination techniques are evaluated in this paper using data from three language pairs, as shown in Table 2 . Input alignments are generated using two existing word alignment systems: GIZA++ (Och, 2000) 1 In Table 1 , NC corresponds to the set of (i, j)'s neighbors that exist in the alignment A k , and FT represents the set of words that ei (or fj) is aligned to.",
                "cite_spans": [
                    {
                        "start": 206,
                        "end": 217,
                        "text": "(Och, 2000)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 115,
                        "end": 122,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 223,
                        "end": 230,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment Data, Alignment Inputs, and Metrics",
                "sec_num": "4"
            },
            {
                "text": "2 From (Ayan et al., 2005 ).",
                "cite_spans": [
                    {
                        "start": 2,
                        "end": 25,
                        "text": "From (Ayan et al., 2005",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment Data, Alignment Inputs, and Metrics",
                "sec_num": "4"
            },
            {
                "text": "3 From (Ittycheriah and Roukos, 2005) . 4 From (Mihalcea and Pedersen, 2003) .",
                "cite_spans": [
                    {
                        "start": 7,
                        "end": 37,
                        "text": "(Ittycheriah and Roukos, 2005)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 40,
                        "end": 41,
                        "text": "4",
                        "ref_id": null
                    },
                    {
                        "start": 47,
                        "end": 76,
                        "text": "(Mihalcea and Pedersen, 2003)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment Data, Alignment Inputs, and Metrics",
                "sec_num": "4"
            },
            {
                "text": "and SAHMM (Lopez and Resnik, 2005) . Both systems are run in two different directions with default configurations. We indicate the two directions using the notation Aligner(en \u2192 f l) and Aligner(f l \u2192 en), where en is English, f l is either Chinese (ch), Arabic (ar), or Romanian (ro).",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 34,
                        "text": "(Lopez and Resnik, 2005)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment Data, Alignment Inputs, and Metrics",
                "sec_num": "4"
            },
            {
                "text": "To train both systems, additional data was used for the three language pairs: 107K English-Chinese sentence pairs (4.1M/3.3M English/Chinese words); 44K English-Arabic sentence pairs (1.4M/1M English/Arabic words); 48K English-Romanian sentence pairs (1M/1M English/Romanian words). 5 POS tags were generated using the MXPOST tagger (Ratnaparkhi, 1998) . POS tagger for English was trained on Sections 0-18 of the Penn Treebank Wall Street Journal corpus. On the FL side, we used POS tagger for only Chinese and it was trained on Sections 16-299 of Chinese Treebank.",
                "cite_spans": [
                    {
                        "start": 283,
                        "end": 284,
                        "text": "5",
                        "ref_id": null
                    },
                    {
                        "start": 333,
                        "end": 352,
                        "text": "(Ratnaparkhi, 1998)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment Data, Alignment Inputs, and Metrics",
                "sec_num": "4"
            },
            {
                "text": "For comparison purposes, three additional heuristically-induced alignments are generated for each system: (1) Intersection of both directions (Aligner(int)); (2) Union of both directions (Aligner(union)); and (3) The previously bestknown heuristic combination approach called growdiag-final (Koehn et al., 2003 ) (Aligner(gdf)).",
                "cite_spans": [
                    {
                        "start": 291,
                        "end": 310,
                        "text": "(Koehn et al., 2003",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment Data, Alignment Inputs, and Metrics",
                "sec_num": "4"
            },
            {
                "text": "In our evaluation, we take A to be the set of alignment links for a set of sentences, S to be the set of sure alignment links, and P be the set of probable alignment links (in the gold standard). Precision (P r), recall (Rc) and alignment error rate (AER) are defined as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment Data, Alignment Inputs, and Metrics",
                "sec_num": "4"
            },
            {
                "text": "6 P r = |A \u2229 P | |A| Rc = |A \u2229 S| |S| AER = 1 \u2212 |A \u2229 S| + |A \u2229 P | |A| + |S|",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment Data, Alignment Inputs, and Metrics",
                "sec_num": "4"
            },
            {
                "text": "Our gold standard for each language pair is a manually aligned corpus. English-Chinese annotations distinguish between sure and probable alignment links (i.e., S \u2282 P ), but there is no such distinction for the other two language pairs (i.e., P = S).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment Data, Alignment Inputs, and Metrics",
                "sec_num": "4"
            },
            {
                "text": "Because of the availability of limited manually annotated data, evaluations are performed using 5fold cross validation. Once the alignments are generated for each fold (using one as the test set and the other 4 folds as training set), the results are concatenated to compute precision, recall and error rate on the entire set of sentence pairs for each data set. 7",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment Data, Alignment Inputs, and Metrics",
                "sec_num": "4"
            },
            {
                "text": "This section presents several experiments and results comparing AER of ACME to those of standard alignment approaches on English-Chinese data. We also present experiments on additional languages, analyses based on precision and recall, an upperbound oracle analysis, and MT evaluations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "5"
            },
            {
                "text": "The experiments below test the effects of input alignments, feature set, data partitioning, number of inputs, and size of training data on the performance of ACME. Table 3 shows the AER for GIZA++ and SAHMM (in each direction), three heuristic-based combinations and ACME using 2 uni-directional alignments as input and all features described in Section 3. 8 (We use 'ACME[2]' in this section to refer to ACME applied to two input alignments and ACME[4] in later sections to refer to ACME applied to four input alignments.)",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 164,
                        "end": 171,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "English-Chinese Experiments",
                "sec_num": "5.1"
            },
            {
                "text": "Using 2 GIZA++ uni-directional alignments as input, ACME yields a 22.0% AER-a relative error reduction of 25.9% over GIZA++(gdf). Similarly, using 2 SAHMM uni-directional alignments as input, ACME produces a 20.6% AER-a relative error reduction of 28.0% and 25.4% over SAHMM(gdf) and SAHMM(int), respectively. 7 Because the NIST MTEval data include sentences that may be related (according to the document in which they appear), the training and test material could potentially be related; however, given the types of features used in our experiments, we do not believe this biases our results.",
                "cite_spans": [
                    {
                        "start": 310,
                        "end": 311,
                        "text": "7",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input alignments:",
                "sec_num": "2"
            },
            {
                "text": "8 For ease of readability, in the rest of this paper, we will report precision, recall, and AER in percentages. Table 4 presents the AER for ACME[2], using either two GIZA++ alignments or two SAHMM alignments, on English-Chinese data. Without any partitioning, ACME achieves an AER of 22.0 (GIZA++) and 20.6 (SAHMM). Using English POS tags for data partitioning results in a significant reduction in AER: 19.8% (GIZA++) and 18.0% (SAHMM). Interestingly, using foreign-language (FL) tags on their own or together with English POS tags does not provide any improvement. Overall when ACME[2] is applied to partitioned data (using posE for partitioning) a relative error reduction of 33-37% over GIZA++(gdf) and SAHMM(gdf) is achieved. Table 5 presents the English-Chinese AER for ACME[1] (using either GIZA++ or SAHMM in only one direction), ACME[2] (using either GIZA++ or SAHMM in two directions) and ACME[4] (using GIZA++ and SAHMM, each in two directions).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 112,
                        "end": 119,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 732,
                        "end": 739,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Input alignments:",
                "sec_num": "2"
            },
            {
                "text": "Regardless of the number of inputs, partitioning the data (using English POS tags) yields lower AER than no partitioning. Using one GIZA++ alignment as input, ACME Size of Training Data to Obtain Input Alignments: In general, statistical alignment systems improve as the size of the training data increases. We present the AER for GIZA++ and ACME[2] using GIZA++ alignments as input, where GIZA++ is trained on different sizes of data. We started with 20K sentence pairs of FBIS data and increased it to all available FBIS data (241K sentence pairs). Figure 1 compares the alignment performance of: (1) uni-directional GIZA++ (each direction);",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 551,
                        "end": 559,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Number of Input Alignments:",
                "sec_num": null
            },
            {
                "text": "(2) GIZA++(gdf); and (3) ACME[2] with all fea- We should emphasize that ACME[2] on only 20K sentence pairs yields a lower AER than those of all GIZA++ alignments obtained on 241K sentence pairs. Overall ACME[2] achieves a relative error reduction of 31-38% over the input alignments, and a relative error reduction of 31-34% over GIZA++(gdf) for different sizes of training data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Number of Input Alignments:",
                "sec_num": null
            },
            {
                "text": "We also investigated the applicability of ACME to additional language pairs. Table 6 presents the AER for GIZA++ and SAHMM (in each direction), three combination heuristics (gdf, int and union), and ACME[2] and ACME[4] on English-Arabic and English-Romanian data. We should emphasize that no POS tagger on the FL side was used for these experiments.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 77,
                        "end": 84,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Expanding to Additional Languages",
                "sec_num": "5.2"
            },
            {
                "text": "On English-Arabic data, ACME[2] (with POS partitioning and including all features) yields 21.4% (20.7%) AER-a relative error reduction of 24.6% (13.0%) over the best combination heuristic with GIZA++ (SAHMM) alignments. ACME[4] reduces the AER to 18.1%-a relative error reduction of 36.3% and 23.9% over GIZA++(int) Table 6 : AER for Input Alignments, Heuristic-based Alignments, and ACME Using 2 and 4 Input Alignments (on English-Arabic and English-Romanian).",
                "cite_spans": [
                    {
                        "start": 304,
                        "end": 315,
                        "text": "GIZA++(int)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 316,
                        "end": 323,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Expanding to Additional Languages",
                "sec_num": "5.2"
            },
            {
                "text": "duces the AER to 22.3%-a relative error reduction of 22.6% and 23.9% over GIZA++(int) and SAHMM(int), respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expanding to Additional Languages",
                "sec_num": "5.2"
            },
            {
                "text": "We now turn to a precision vs. recall analysis of different alignments to elucidate the nature of the differences between two alignments. Figure 2 presents precision and recall values for three combined alignments using GIZA++ (int, union, gdf) as well as results for ACME[2] and ACME[4] on three different language pairs. For all three pairs, the ranking of the combined alignments is the same with respect to precision and recall. GIZA++(int) yields the highest precision (nearly 95%) but the lowest recall (53-57%). Both union and gdf methods achieve low precision (56-68%) but high recall (75-83%), and gdf is better than union. By contrast, ACME[2] yields significantly higher precision (nearly 87%) but lower recall (67-75%) with respect to union and gdf. ACME[4] has higher precision and recall than ACME[2]-an absolute increase of 2-3% and 4%, respectively.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 138,
                        "end": 146,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Precision, Recall and Upper-Bound Analysis",
                "sec_num": "5.3"
            },
            {
                "text": "Next we compute an oracle upper-bound in AER where mismatched input alignments are assumed to be resolved perfectly within the alignment combination framework (i.e., an oracle chooses the correct output in cases where the input aligners make different choices). 9 Table 7 presents the upper bounds using a generic alignment combiner (denoted Oracle) with 2 and 4 input alignments on three language pairs, assuming a perfect resolution of mismatched input alignments. For English-Chinese, the upper bound is 9.4% (us- [4] ). The English-Arabic data exhibits a slightly higher upper bound of 5.5% for Oracle [4] . The upper bounds for AER on English-Romanian data are even higher (up to 17.7%), which indicates that the input alignments are significantly worse than others. This may be one of the main contributing factors to the lower improvement of ACME on English-Romanian in comparison to the other two language pairs.",
                "cite_spans": [
                    {
                        "start": 606,
                        "end": 609,
                        "text": "[4]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 264,
                        "end": 271,
                        "text": "Table 7",
                        "ref_id": "TABREF11"
                    },
                    {
                        "start": 517,
                        "end": 520,
                        "text": "[4]",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Precision, Recall and Upper-Bound Analysis",
                "sec_num": "5.3"
            },
            {
                "text": "To determine the contribution of improved alignment in an external application, we examined the improvement in an off-the-shelf phrase-based MT system Pharaoh (Koehn, 2004) on both Chinese and Arabic data. In these experiments, all components of the MT system were kept the same except for the component that generates a phrase table from a given alignment. The input alignments were generated using GIZA++ and SAHMM on 107K (44K) sentence pairs for Chinese (Arabic). ACME (with English POS partitioning) combines alignments using model parameters learned from the corresponding manually aligned data. MT output is evaluated using the standard MT evaluation metric BLEU (Papineni et al., 2002) . 10 Table 8 presents the BLEU scores on Figure 2 : Precision and Recall Scores for GIZA++ and ACME Using 2 and 4 Input Alignments.",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 172,
                        "text": "(Koehn, 2004)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 670,
                        "end": 693,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 696,
                        "end": 698,
                        "text": "10",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 699,
                        "end": 706,
                        "text": "Table 8",
                        "ref_id": "TABREF13"
                    },
                    {
                        "start": 735,
                        "end": 743,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "MT Evaluation",
                "sec_num": "5.4"
            },
            {
                "text": "MTEval'03 data for 5 different Pharaoh runs, one for each alignment. The parameters of the MT system were optimized on MTEval'02 data using minimum error rate training (Och, 2003) .",
                "cite_spans": [
                    {
                        "start": 168,
                        "end": 179,
                        "text": "(Och, 2003)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "MT Evaluation",
                "sec_num": "5.4"
            },
            {
                "text": "For the language model, the SRI Language Modeling Toolkit was used to train a trigram model with modified Kneser-Ney smoothing on 155M words of English newswire text, mostly from the Xinhua portion of the Gigaword corpus. During decoding, the number of English phrases per FL phrase was limited to 100 and the distortion of phrases was limited by 4. Based on the observations in (Koehn et al., 2003) , we also limited the phrase length to 3 for computational reasons. ACME[4] , for instance, yields the BLEU scores of 25.59% for Chinese and 45.54% for Arabic-an absolute 1.6-1.7% BLEU point increase over the best of the other three alignment combinations. The differences between the BLEU scores for ACME and the other three BLEU scores are statistically significant, using a significance test with bootstrap resampling (Zhang et al., 2004) .",
                "cite_spans": [
                    {
                        "start": 379,
                        "end": 399,
                        "text": "(Koehn et al., 2003)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 468,
                        "end": 475,
                        "text": "ACME[4]",
                        "ref_id": null
                    },
                    {
                        "start": 821,
                        "end": 841,
                        "text": "(Zhang et al., 2004)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "MT Evaluation",
                "sec_num": "5.4"
            },
            {
                "text": "ME models have been previously applied to several NLP problems, including word alignments. For intings: case-insensitive matching of n-grams up to n = 4, and the shortest reference sentence for the brevity penalty. stance, the IBM models (Brown et al., 1993) can be improved by adding more context dependencies into the translation model using a ME framework rather than using only p(f j |e i ) (Garcia-Varea et al., 2002) . In a later study, Och and Ney (2003) present a loglinear combination of the HMM and IBM Model 4 that produces better alignments than either of those. The major advantage of these two methods is that they do not require manually annotated data.",
                "cite_spans": [
                    {
                        "start": 238,
                        "end": 258,
                        "text": "(Brown et al., 1993)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 395,
                        "end": 422,
                        "text": "(Garcia-Varea et al., 2002)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 443,
                        "end": 461,
                        "text": "Och and Ney (2003)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "6"
            },
            {
                "text": "The alignment process can be modeled as a product of a transition model and an observation model, where ME models the observations (Ittycheriah and Roukos, 2005) . Significant improvements are reported using this approach but the need for large manually aligned data is a bottleneck. An alternative ME approach models alignment directly as a log-linear combination of feature functions (Liu et al., 2005) . Moore (2005) and Taskar et al. (2005) represent alignments with several feature functions that are then combined in a weighted sum to model word alignments. Once a confidence score is assigned to all links, a non-trivial search is invoked to find the best alignment using the scores associated with the links. The major difference between these approaches and that of ACME is that we use the ME model to predict the correct class for each alignment link independently using outputs of existing alignment systems, instead of generating them from scratch at the level of the whole sentence, thus eliminating the need for an exhaustive search over all possible alignments, i.e., previous approaches work globally while ACME is a localized model. A discussion of these two contrasting approaches can be found in (Tillmann and Zhang, 2005) .",
                "cite_spans": [
                    {
                        "start": 131,
                        "end": 161,
                        "text": "(Ittycheriah and Roukos, 2005)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 386,
                        "end": 404,
                        "text": "(Liu et al., 2005)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 407,
                        "end": 419,
                        "text": "Moore (2005)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 424,
                        "end": 444,
                        "text": "Taskar et al. (2005)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 1215,
                        "end": 1241,
                        "text": "(Tillmann and Zhang, 2005)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "6"
            },
            {
                "text": "A recent attempt to combine outputs of different alignments views the combination problem as a classifier ensemble in the neural network framework (Ayan et al., 2005) . However, this method is subject to the unpredictability of random network initialization, whereas ACME is guaranteed to find the model that maximizes the likelihood of training data.",
                "cite_spans": [
                    {
                        "start": 147,
                        "end": 166,
                        "text": "(Ayan et al., 2005)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "6"
            },
            {
                "text": "We presented a new approach, ACME, to combining the outputs of different word alignment systems by reducing the combination problem to the level of alignment links and using a maximum entropy model to learn whether a particular alignment link is included in the final alignment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7"
            },
            {
                "text": "Our results indicate that ACME yields significant relative error reduction over the input alignments and their heuristic-based combinations on three different language pairs. Moreover, ACME provides similar relative improvements for different sizes of training data for the input alignment systems. We have also shown that using a higher number of input alignments, and partitioning the training data into disjoint subsets and learning a different model for each partition yield further improvements.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7"
            },
            {
                "text": "We have tested impact of the reduced AER on MT and have shown that alignments generated by ACME yield statistically significant improvements in BLEU scores in two different languages, even if we don't employ a POS tagger on the FL side. However, additional studies are needed to investigate why huge improvements in AER result in relatively smaller improvements in BLEU scores.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7"
            },
            {
                "text": "Because ACME is a supervised learning approach, it requires annotated data; however, our experiments have shown that significant improvements can be obtained using a small set of annotated data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7"
            },
            {
                "text": "Note that both GIZA++ and SAHMM are unsupervised learning systems. Sentence-aligned parallel texts are the only required input.6 Note that AER= 1 -F-score when there is no distinction between probable and sure alignment links.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "If the input aligners agree on a particular link, that decision is taken as the final output in computing the upper bound.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We used the NIST script (version 11a) with its default set-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Acknowledgments This work has been supported, in part, under ONR MURI Contract FCPO.810548265 and the GALE program of the Defense Advanced Research Projects Agency, Contracts No. HR0011-06-2-0001. We also thank anonymous reviewers for their helpful comments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "acknowledgement",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Neuralign: Combining word alignments using neural networks",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Necip",
                        "suffix": ""
                    },
                    {
                        "first": "Bonnie",
                        "middle": [
                            "J"
                        ],
                        "last": "Ayan",
                        "suffix": ""
                    },
                    {
                        "first": "Christof",
                        "middle": [],
                        "last": "Dorr",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Monz",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of EMNLP'2005",
                "volume": "",
                "issue": "",
                "pages": "65--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Necip F. Ayan, Bonnie J. Dorr, and Christof Monz. 2005. Neu- ralign: Combining word alignments using neural networks. In Proceedings of EMNLP'2005, pages 65-72.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A maximum entropy approach to natural language processing",
                "authors": [
                    {
                        "first": "Adam",
                        "middle": [
                            "L"
                        ],
                        "last": "Berger",
                        "suffix": ""
                    },
                    {
                        "first": "Stephan",
                        "middle": [
                            "A"
                        ],
                        "last": "Della-Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "Vincent",
                        "middle": [
                            "J"
                        ],
                        "last": "Della-Pietra",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Computational Linguistics",
                "volume": "",
                "issue": "1",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adam L. Berger, Stephan A. Della-Pietra, and Vincent J. Della- Pietra. 1996. A maximum entropy approach to natural lan- guage processing. Computational Linguistics, 22(1).",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "The mathematics of statistical machine translation: Parameter estimation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "Stephan",
                        "middle": [
                            "A"
                        ],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [
                            "L"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mercer",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "2",
                "pages": "263--311",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter F. Brown, Stephan A. Della Pietra, and Robert L. Mer- cer. 1993. The mathematics of statistical machine trans- lation: Parameter estimation. Computational Linguistics, 19(2):263-311.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Generalized iterative scaling for log-linear models",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "N"
                        ],
                        "last": "Darroch",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Ratcliff",
                        "suffix": ""
                    }
                ],
                "year": 1972,
                "venue": "Annals of Mathematical Statistics",
                "volume": "43",
                "issue": "",
                "pages": "1470--1480",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. N. Darroch and D. Ratcliff. 1972. Generalized iterative scal- ing for log-linear models. Annals of Mathematical Statistics, 43:1470-1480.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Maximum entropy models for framenet classification",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Fleischman",
                        "suffix": ""
                    },
                    {
                        "first": "Namhee",
                        "middle": [],
                        "last": "Kwon",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Fleischman, Namhee Kwon, and Eduard Hovy. 2003. Maximum entropy models for framenet classification. In Proceedings of EMNLP'2003.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Improving alignment quality in statistical machine translation using context-dependent maximum entropy models",
                "authors": [
                    {
                        "first": "Ismael",
                        "middle": [],
                        "last": "Garcia-Varea",
                        "suffix": ""
                    },
                    {
                        "first": "Franz",
                        "middle": [
                            "Josef"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    },
                    {
                        "first": "Francisco",
                        "middle": [],
                        "last": "Casacuberta",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of COLING",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ismael Garcia-Varea, Franz Josef Och, Hermann Ney, and Fran- cisco Casacuberta. 2002. Improving alignment quality in statistical machine translation using context-dependent max- imum entropy models. In Proceedings of COLING'2002.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A maximum entropy word aligner for arabic-english machine translation",
                "authors": [
                    {
                        "first": "Abraham",
                        "middle": [],
                        "last": "Ittycheriah",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of EMNLP'2005",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abraham Ittycheriah and Salim Roukos. 2005. A maximum entropy word aligner for arabic-english machine translation. In Proceedings of EMNLP'2005.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Statistical phrase-based translation",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Franz",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Marcu",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of HLT-NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003. Sta- tistical phrase-based translation. In Proceedings of HLT- NAACL'2003.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Pharaoh: A beam search decoder for phrase-based statistical machine translation",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of AMTA",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn. 2004. Pharaoh: A beam search decoder for phrase-based statistical machine translation. In Proceedings of AMTA'2004.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Log-linear models for word alignment",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Qun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Shouxun",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of ACL'2005",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yang Liu, Qun Liu, and Shouxun Lin. 2005. Log-linear models for word alignment. In Proceedings of ACL'2005.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Improved HMM alignment models for languages with scarce resources",
                "authors": [
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Lopez",
                        "suffix": ""
                    },
                    {
                        "first": "Philip",
                        "middle": [],
                        "last": "Resnik",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the ACL'2005 Workshop on Building and Using Parallel Texts: Data Driven Machine Translation and Beyond",
                "volume": "",
                "issue": "",
                "pages": "83--86",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adam Lopez and Philip Resnik. 2005. Improved HMM align- ment models for languages with scarce resources. In Pro- ceedings of the ACL'2005 Workshop on Building and Using Parallel Texts: Data Driven Machine Translation and Be- yond, pages 83-86.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "An evaluation exercise for word alignment",
                "authors": [
                    {
                        "first": "Rada",
                        "middle": [],
                        "last": "Mihalcea",
                        "suffix": ""
                    },
                    {
                        "first": "Ted",
                        "middle": [],
                        "last": "Pedersen",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the HLT-NAACL'2003 Workshop: Building and Using Parallel Texts: Data Driven Machine Translation and Beyond",
                "volume": "",
                "issue": "",
                "pages": "1--10",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rada Mihalcea and Ted Pedersen. 2003. An evaluation ex- ercise for word alignment. In Proceedings of the HLT- NAACL'2003 Workshop: Building and Using Parallel Texts: Data Driven Machine Translation and Beyond, pages 1-10.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "A discriminative framework for bilingual word alignment",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [
                            "C"
                        ],
                        "last": "Moore",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of EMNLP'2005",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert C. Moore. 2005. A discriminative framework for bilin- gual word alignment. In Proceedings of EMNLP'2005.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Discriminative training and maximum entropy models for statistical machine translation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Franz",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of ACL'2002",
                "volume": "",
                "issue": "",
                "pages": "295--302",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franz J. Och and Hermann Ney. 2002. Discriminative training and maximum entropy models for statistical machine trans- lation. In Proceedings of ACL'2002, pages 295-302.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A systematic comparison of various statistical alignment models",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Franz",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Computational Linguistics",
                "volume": "29",
                "issue": "1",
                "pages": "9--51",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franz J. Och and Hermann Ney. 2003. A systematic compari- son of various statistical alignment models. Computational Linguistics, 29(1):9-51, March.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "GIZA++: Training of statistical translation models",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Franz",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franz J. Och. 2000. GIZA++: Training of statistical transla- tion models. Technical report, RWTH Aachen, University of Technology.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Yet another maxent toolkit: YASMET",
                "authors": [
                    {
                        "first": "Franz",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franz J. Och. 2002. Yet another maxent toolkit: YASMET. Available at http://www.fjoch.com/YASMET.html.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Minimum error rate training in statistical machine translation",
                "authors": [
                    {
                        "first": "Franz",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of ACL'2003",
                "volume": "",
                "issue": "",
                "pages": "160--167",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franz J. Och. 2003. Minimum error rate training in statisti- cal machine translation. In Proceedings of ACL'2003, pages 160-167.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "BLEU: A method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of ACL'2002",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A method for automatic evaluation of machine translation. In Proceedings of ACL'2002, pages 311-318.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Maximum Entropy Models for Natural Language Ambiguity Resolution",
                "authors": [
                    {
                        "first": "Adwait",
                        "middle": [],
                        "last": "Ratnaparkhi",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adwait Ratnaparkhi. 1998. Maximum Entropy Models for Nat- ural Language Ambiguity Resolution. Ph.D. thesis, Univer- sity of Pennsylvania, Philadelphia, PA.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A discriminative matching approach to word alignment",
                "authors": [
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Taskar",
                        "suffix": ""
                    },
                    {
                        "first": "Simon",
                        "middle": [],
                        "last": "Lacoste-Julien",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ben Taskar, Simon Lacoste-Julien, and Dan Klein. 2005. A discriminative matching approach to word alignment. In Proceedings of EMNLP'2005.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "A localized prediction model for statistical machine translation",
                "authors": [
                    {
                        "first": "Christoph",
                        "middle": [],
                        "last": "Tillmann",
                        "suffix": ""
                    },
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christoph Tillmann and Tong Zhang. 2005. A localized predic- tion model for statistical machine translation. In Proceed- ings of ACL'2005.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Interpreting BLEU/NIST scores: How much improvement do we need to have a better system?",
                "authors": [
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Stephan",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Waibel",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of LREC'2004",
                "volume": "",
                "issue": "",
                "pages": "2051--2054",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ying Zhang, Stephan Vogel, and Alex Waibel. 2004. Inter- preting BLEU/NIST scores: How much improvement do we need to have a better system? In Proceedings of LREC'2004, pages 2051-2054.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "type_str": "table",
                "text": "Feature Functions.",
                "html": null,
                "content": "<table/>",
                "num": null
            },
            "TABREF2": {
                "type_str": "table",
                "text": "",
                "html": null,
                "content": "<table/>",
                "num": null
            },
            "TABREF4": {
                "type_str": "table",
                "text": "Comparison of GIZA++ and SAHMM to ACME[2] (on English-Chinese).",
                "html": null,
                "content": "<table><tr><td colspan=\"2\">Feature Set: To examine the effects of each fea-ture on the performance of ACME, we compute the</td></tr><tr><td colspan=\"2\">AER under a variety of conditions, removing each</td></tr><tr><td colspan=\"2\">feature one at a time. ACME is evaluated using</td></tr><tr><td colspan=\"2\">2 uni-directional GIZA++ alignments as input on</td></tr><tr><td colspan=\"2\">English-Chinese data. Using all features, the AER</td></tr><tr><td colspan=\"2\">is 22.0%. Our experiments show that there is no sig-</td></tr><tr><td colspan=\"2\">nificant increase in AER for the removal of features</td></tr><tr><td colspan=\"2\">corresponding to monotonicity (22.1%), neighbors</td></tr><tr><td colspan=\"2\">(22.8%), POS on English side (22.9%), POS on</td></tr><tr><td colspan=\"2\">foreign-language side (22.9%). On the other hand,</td></tr><tr><td colspan=\"2\">deleting POS tags on both sides yields an AER of</td></tr><tr><td colspan=\"2\">25.2% and deleting the fertility features increases</td></tr><tr><td colspan=\"2\">the AER to 25.9%. This indicates that both POS</td></tr><tr><td colspan=\"2\">tags (or fertilities) contribute heavily toward the de-</td></tr><tr><td colspan=\"2\">cision as to whether a particular alignment should be</td></tr><tr><td>included/excluded.</td><td/></tr><tr><td colspan=\"2\">Partitioning Data: Previous work showed that partitioning the data into disjoint subsets and learn-</td></tr><tr><td colspan=\"2\">ing a different model for each partition improves</td></tr><tr><td colspan=\"2\">the performance of the alignment systems (Ayan et</td></tr><tr><td colspan=\"2\">al., 2005). To test whether this same principle ap-</td></tr><tr><td colspan=\"2\">plies to alignment combination with maximum en-</td></tr><tr><td colspan=\"2\">tropy modeling, the training data was partitioned us-</td></tr><tr><td colspan=\"2\">ing POS tags for English and the FL, and different</td></tr><tr><td colspan=\"2\">weights were learned for each partition.</td></tr><tr><td>Alignments ACME[2] ACME[2]-Part[posE] ACME[2]-Part[posF ] ACME[2]-Part[posE, posF ]</td><td>GIZA++ SAHMM 22.0 20.6 19.8 18.0 20.0 18.1 20.0 18.4</td></tr></table>",
                "num": null
            },
            "TABREF5": {
                "type_str": "table",
                "text": "",
                "html": null,
                "content": "<table><tr><td>: Application of ACME[2] on Partitioned</td></tr><tr><td>Data (on English-Chinese).</td></tr></table>",
                "num": null
            },
            "TABREF6": {
                "type_str": "table",
                "text": "[1] with partitioning improves the AER to 26.9% and 25.5% for each direction, respectively. Similarly, using one SAHMM alignment as input, ACME[1] with partitioning reduces the AER to 22.9% and 24.7%. ACME[2] with partitioning reduces the AER to 19.8% and 18.0% for GIZA++ and SAHMM, respectively. Finally, using all four input alignments, ACME[4] with partitioning yields a 15.6% AER-a relative error reduction of 21.2% and 13.3% over each ACME[2] case.",
                "html": null,
                "content": "<table><tr><td>Alignments ACME[1](en \u2192 f l) ACME[1]-Part[posE](en \u2192 f l) ACME[1](f l \u2192 en) ACME[1]-Part[posE](f l \u2192 en) ACME[2] ACME[2]-Part[posE]</td><td>GIZA++ SAHMM 28.1 24.4 26.9 22.9 26.6 26.9 25.5 24.7 22.0 20.6 19.8 18.0</td></tr><tr><td>ACME[4] ACME[4]-Part[posE]</td><td>17.8 15.6</td></tr></table>",
                "num": null
            },
            "TABREF7": {
                "type_str": "table",
                "text": "",
                "html": null,
                "content": "<table><tr><td>: Application of ACME to 1, 2 and 4 Input</td></tr><tr><td>Alignments (on English-Chinese).</td></tr></table>",
                "num": null
            },
            "TABREF11": {
                "type_str": "table",
                "text": "",
                "html": null,
                "content": "<table><tr><td>: Oracle Upper Bounds on AER for Align-</td></tr><tr><td>ment Combination</td></tr><tr><td>ing Oracle[2]) and 4.7% (using Oracle</td></tr></table>",
                "num": null
            },
            "TABREF13": {
                "type_str": "table",
                "text": "",
                "html": null,
                "content": "<table><tr><td>: Evaluation of Pharaoh with Different Initial</td></tr><tr><td>Alignments using BLEU (in percentages)</td></tr><tr><td>For both languages, ACME[2] and ACME[4]</td></tr><tr><td>outperform the other three alignment combination</td></tr><tr><td>techniques.</td></tr></table>",
                "num": null
            }
        }
    }
}