File size: 96,044 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 |
{
"paper_id": "N06-1034",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T14:45:43.295258Z"
},
"title": "Modelling User Satisfaction and Student Learning in a Spoken Dialogue Tutoring System with Generic, Tutoring, and User Affect Parameters",
"authors": [
{
"first": "Kate",
"middle": [],
"last": "Forbes-Riley",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Ctr University of Pittsburgh Pittsburgh",
"location": {
"postCode": "15260",
"region": "PA"
}
},
"email": ""
},
{
"first": "Diane",
"middle": [
"J"
],
"last": "Litman",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Pittsburgh Pittsburgh",
"location": {
"postCode": "15260",
"region": "PA"
}
},
"email": "litman@cs.pitt.edu"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "We investigate using the PARADISE framework to develop predictive models of system performance in our spoken dialogue tutoring system. We represent performance with two metrics: user satisfaction and student learning. We train and test predictive models of these metrics in our tutoring system corpora. We predict user satisfaction with 2 parameter types: 1) system-generic, and 2) tutoringspecific. To predict student learning, we also use a third type: 3) user affect. Alhough generic parameters are useful predictors of user satisfaction in other PARADISE applications, overall our parameters produce less useful user satisfaction models in our system. However, generic and tutoring-specific parameters do produce useful models of student learning in our system. User affect parameters can increase the usefulness of these models.",
"pdf_parse": {
"paper_id": "N06-1034",
"_pdf_hash": "",
"abstract": [
{
"text": "We investigate using the PARADISE framework to develop predictive models of system performance in our spoken dialogue tutoring system. We represent performance with two metrics: user satisfaction and student learning. We train and test predictive models of these metrics in our tutoring system corpora. We predict user satisfaction with 2 parameter types: 1) system-generic, and 2) tutoringspecific. To predict student learning, we also use a third type: 3) user affect. Alhough generic parameters are useful predictors of user satisfaction in other PARADISE applications, overall our parameters produce less useful user satisfaction models in our system. However, generic and tutoring-specific parameters do produce useful models of student learning in our system. User affect parameters can increase the usefulness of these models.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "In recent years the development of spoken dialogue tutoring systems has become more prevalent, in an attempt to close the performance gap between human and computer tutors (Mostow and Aist, 2001; Pon-Barry et al., 2004; . Student learning is a primary metric for evaluating the performance of these systems; it can be measured, e.g., by comparing student pretests taken prior to system use with posttests taken after system use.",
"cite_spans": [
{
"start": 172,
"end": 195,
"text": "(Mostow and Aist, 2001;",
"ref_id": "BIBREF17"
},
{
"start": 196,
"end": 219,
"text": "Pon-Barry et al., 2004;",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In other types of spoken dialogue systems, the user's subjective judgments about using the system are often considered a primary system performance metric; e.g., user satisfaction has been measured via surveys which ask users to rate systems during use along dimensions such as task ease, speech input/output quality, user expectations and expertise, and user future use (M\u00f6ller, 2005b; Walker et al., 2002; Bonneau-Maynard et al., 2000; Walker et al., 2000; Shriberg et al., 1992) . However, it is expensive to run experiments over large numbers of users to obtain reliable system performance measures.",
"cite_spans": [
{
"start": 371,
"end": 386,
"text": "(M\u00f6ller, 2005b;",
"ref_id": "BIBREF15"
},
{
"start": 387,
"end": 407,
"text": "Walker et al., 2002;",
"ref_id": "BIBREF24"
},
{
"start": 408,
"end": 437,
"text": "Bonneau-Maynard et al., 2000;",
"ref_id": "BIBREF4"
},
{
"start": 438,
"end": 458,
"text": "Walker et al., 2000;",
"ref_id": "BIBREF23"
},
{
"start": 459,
"end": 481,
"text": "Shriberg et al., 1992)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The PARADISE model (Walker et al., 1997) proposes instead to predict system performance, using parameters representing interaction costs and benefits between system and user, including task success, dialogue efficiency, and dialogue quality. More formally, a set of interaction parameters are measured in a spoken dialogue system corpus, then used in a multivariate linear regression to predict the target performance variable. The resulting model is described by the formula below, where there are n interaction parameters, p i , each weighted by the analysis with a coefficient, w i , which will be negative or positive, depending on whether the model treats p i as a cost or benefit, respectively. The model can then be used to estimate performance during system design, with the design goals of minimizing costs and maximizing benefits.",
"cite_spans": [
{
"start": 19,
"end": 40,
"text": "(Walker et al., 1997)",
"ref_id": "BIBREF22"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "System Performance = n i=1 w i * p i We investigate using PARADISE to develop predictive models of performance in our spoken dialogue tutoring system. Although to our knowledge,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Voice #Dialogues #Students #with Survey #with Tests #with Affect SYN03 2003 synthesized 100 20 0 20 20 PR05 2005 pre-recorded 140 28 28 28 17 SYN05 2005 synthesized 145 29 29 29 0 Table 1 : Summary of our 3 ITSPOKE Corpora prior PARADISE applications have only used user satisfaction to represent performance, we hypothesize that other metrics may be more relevant when PARADISE is applied to tasks that are not optimized for user satisfaction, such as our spoken dialogue tutoring system. We thus use 2 metrics to represent performance: 1) a generic metric of user satisfaction computed via user survey, 2) a tutoring-specific metric of student learning computed via student pretest and posttest scores. We train and test predictive models of these metrics on multiple system corpora.",
"cite_spans": [],
"ref_spans": [
{
"start": 58,
"end": 212,
"text": "Affect SYN03 2003 synthesized 100 20 0 20 20 PR05 2005 pre-recorded 140 28 28 28 17 SYN05 2005 synthesized 145 29 29 29 0 Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Date",
"sec_num": null
},
{
"text": "To predict user satisfaction, we use 2 types of interaction parameters: 1) system-generic parameters such as used in other PARADISE applications, e.g. speech recognition performance, and 2) tutoringspecific parameters, e.g. student correctness. To predict student learning, we also use a third type of parameter: 3) manually annotated user affect. Although prior PARADISE applications have tended to use system-generic parameters, we hypothesize that task-specific and user affect parameters may also prove useful. We emphasize that user affect parameters are still system-generic; user affect has been annotated and/or automatically predicted in other types of spoken dialogue systems, e.g. as in (Lee et al., 2002; Ang et al., 2002; Batliner et al., 2003) .",
"cite_spans": [
{
"start": 698,
"end": 716,
"text": "(Lee et al., 2002;",
"ref_id": "BIBREF10"
},
{
"start": 717,
"end": 734,
"text": "Ang et al., 2002;",
"ref_id": "BIBREF0"
},
{
"start": 735,
"end": 757,
"text": "Batliner et al., 2003)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Date",
"sec_num": null
},
{
"text": "Our results show that, although generic parameters were useful predictors of user satisfaction in other PARADISE applications, overall our parameters produce less useful user satisfaction models in our tutoring system. However, generic and tutoringspecific parameters do produce useful models of student learning in our system. Generic user affect parameters increase the usefulness of these models.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Date",
"sec_num": null
},
{
"text": "ITSPOKE (Intelligent Tutoring SPOKEn dialogue system) ) is a speech-enabled tutor built on top of the text-based Why2-Atlas conceptual physics tutor (VanLehn et al., 2002) . In ITSPOKE, a student first types an essay into a web-based interface answering a qualitative physics problem. ITSPOKE then analyzes the essay and engages the student in spoken dialogue to correct misconceptions and elicit more complete explanations. Student speech is digitized from the microphone input and sent to the Sphinx2 recognizer. Sphinx2's most probable \"transcription\" is then sent to Why2-Atlas for syntactic, semantic and dialogue analysis. Finally, the text response produced by Why2-Atlas is converted to speech as described below, then played in the student's headphones and displayed on the interface. After the dialogue, the student revises the essay, thereby ending the tutoring or causing another round of tutoring/essay revision.",
"cite_spans": [
{
"start": 149,
"end": 171,
"text": "(VanLehn et al., 2002)",
"ref_id": "BIBREF21"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Spoken Dialogue Tutoring Corpora",
"sec_num": "2"
},
{
"text": "For this study, we used 3 ITSPOKE corpora, shown in Table 1 . 1 The SYN03 corpus was collected in 2003 for an evaluation comparing learning in typed and spoken human and computer tutoring . ITSPOKE's voice was synthesized with the Cepstral text-to-speech system, and its speech recognizer was trained from pilot IT-SPOKE studies and Why2-Atlas evaluations. The PR05 and SYN05 corpora were collected in 2005, to evaluate the impact of tutor voice quality . For these 2 corpora, ITSPOKE used an updated speech recognizer further trained on the SYN03 corpus. For the SYN05 corpus, IT-SPOKE used the synthesized tutor voice from the SYN03 corpus; for the PR05 corpus, ITSPOKE used a pre-recorded tutor voice from a paid voice talent. Figure 1 gives an annotated (Section 3) PR05 excerpt (ASR shows what ITSPOKE heard).",
"cite_spans": [
{
"start": 62,
"end": 63,
"text": "1",
"ref_id": null
}
],
"ref_spans": [
{
"start": 52,
"end": 59,
"text": "Table 1",
"ref_id": null
},
{
"start": 730,
"end": 738,
"text": "Figure 1",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Spoken Dialogue Tutoring Corpora",
"sec_num": "2"
},
{
"text": "The same experimental procedure was used to collect all 3 ITSPOKE corpora: college students who had taken no college physics: 1) read a small document of background material, 2) took a pretest measuring initial physics knowledge, 3) work through a set of 5 problems (dialogues) with ITSPOKE, 4) took a posttest similar to the pretest. Subjects in the PR05 and SYN05 corpora also completed a survey probing user satisfaction after taking the posttest (SYN03 corpus subjects did not). Our survey, shown in Figure 2 , is essentially the same as the one used in the DARPA Communicator multi-site evaluation (Walker et al., 2002) . Although tailored lexically for a tutoring system, these statements are generally applicable to spoken dialogue systems. Students rated their degree of agreement with each statement on a scale of 1 to 5. ",
"cite_spans": [
{
"start": 603,
"end": 624,
"text": "(Walker et al., 2002)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [
{
"start": 504,
"end": 512,
"text": "Figure 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Spoken Dialogue Tutoring Corpora",
"sec_num": "2"
},
{
"text": "Prior PARADISE applications predicted user satisfaction using a wide range of system-generic param-eters, which include measures of speech recognition quality (e.g. word error rate), measures of dialogue communication and efficiency (e.g. total turns and elapsed time), and measures of task completion (e.g. a binary representation of whether the task was completed) (M\u00f6ller, 2005a; M\u00f6ller, 2005b; Walker et al., 2002; Bonneau-Maynard et al., 2000; Walker et al., 2000; Walker et al., 1997) . In this prior work, each dialogue between user and system represents a single \"task\" (e.g., booking airline travel), thus these measures are calculated on a per-dialogue basis.",
"cite_spans": [
{
"start": 367,
"end": 382,
"text": "(M\u00f6ller, 2005a;",
"ref_id": "BIBREF14"
},
{
"start": 383,
"end": 397,
"text": "M\u00f6ller, 2005b;",
"ref_id": "BIBREF15"
},
{
"start": 398,
"end": 418,
"text": "Walker et al., 2002;",
"ref_id": "BIBREF24"
},
{
"start": 419,
"end": 448,
"text": "Bonneau-Maynard et al., 2000;",
"ref_id": "BIBREF4"
},
{
"start": 449,
"end": 469,
"text": "Walker et al., 2000;",
"ref_id": "BIBREF23"
},
{
"start": 470,
"end": 490,
"text": "Walker et al., 1997)",
"ref_id": "BIBREF22"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Dialogue System-Generic Parameters",
"sec_num": "3.1"
},
{
"text": "In our work, the entire tutoring session represents a single \"task\", and every student in our corpora completed this task. Thus we extract 13 systemgeneric parameters on a per-student basis, i.e. over the 5 dialogues for each user, yielding a single parameter value for each student in our 3 corpora.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dialogue System-Generic Parameters",
"sec_num": "3.1"
},
{
"text": "First, we extracted 9 parameters representing dialogue communication and efficiency. Of these parameters, 7 were used in prior PARADISE applications: Time on Task, Total ITSPOKE Turns and Words, Total User Turns and Words, Average IT-SPOKE Words/Turn, and Average User Words/Turn. Our 2 additional \"communication-related\" (M\u00f6ller, 2005a) parameters measure system-user interactivity, but were not used in prior work (to our knowledge): Ratio of User Words to ITSPOKE Words, Ratio of User Turns to ITSPOKE Turns.",
"cite_spans": [
{
"start": 322,
"end": 337,
"text": "(M\u00f6ller, 2005a)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Dialogue System-Generic Parameters",
"sec_num": "3.1"
},
{
"text": "Second, we extracted 4 parameters representing speech recognition quality, which have also been used in prior work: Word Error Rate, Concept Accuracy, Total Timeouts, Total Rejections 2 .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dialogue System-Generic Parameters",
"sec_num": "3.1"
},
{
"text": "Although prior PARADISE applications tend to use system-generic parameters, we hypothesize that task-specific parameters may also prove useful for predicting performance. We extract 12 tutoringspecific parameters over the 5 dialogues for each student, yielding a single parameter value per student, for each student in our 3 corpora. Although these parameters are specific to our tutoring system, similar parameters are available in other tutoring systems.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tutoring-Specific Parameters",
"sec_num": "3.2"
},
{
"text": "First, we hypothesize that the correctness of the students' turns with respect to the tutoring topic (physics, in our case) may play a role in predicting system performance. Each of our student turns is automatically labeled with 1 of 3 \"Correctness\" labels by the ITSPOKE semantic understanding component: Correct, Incorrect, Partially Correct. Labeled examples are shown in Figure 1 . From these 3 Correctness labels, we derive 9 parameters: a Total and a Percent for each label, and a Ratio of each label to every other label (e.g. Correct/Incorrect).",
"cite_spans": [],
"ref_spans": [
{
"start": 376,
"end": 384,
"text": "Figure 1",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Tutoring-Specific Parameters",
"sec_num": "3.2"
},
{
"text": "Second, students write and then may modify their physics essay at least once during each dialogue with ITSPOKE. We thus hypothesize that like \"Correctness\", the total number of essays per student may play a role in predicting system performance.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tutoring-Specific Parameters",
"sec_num": "3.2"
},
{
"text": "Finally, although student test scores before/after using ITSPOKE will be used as our student learning metric, we hypothesize that these scores may also play a role in predicting user satisfaction.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tutoring-Specific Parameters",
"sec_num": "3.2"
},
{
"text": "We hypothesize that user affect plays a role in predicting user satisfaction and student learning. Although affect parameters have not been used in other PARADISE studies (to our knowledge), they are generic; for example, in various spoken dialogue systems, user affect has been annotated and automatically predicted from e.g., acoustic-prosodic and lexical features (Litman and Forbes-Riley, 2004b; Lee et al., 2002; Ang et al., 2002; Batliner et al., 2003) .",
"cite_spans": [
{
"start": 367,
"end": 399,
"text": "(Litman and Forbes-Riley, 2004b;",
"ref_id": "BIBREF12"
},
{
"start": 400,
"end": 417,
"text": "Lee et al., 2002;",
"ref_id": "BIBREF10"
},
{
"start": 418,
"end": 435,
"text": "Ang et al., 2002;",
"ref_id": "BIBREF0"
},
{
"start": 436,
"end": 458,
"text": "Batliner et al., 2003)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "User Affect Parameters",
"sec_num": "3.3"
},
{
"text": "As part of a larger investigation into emotion adaptation, we are manually annotating the student turns in our corpora for affective state. Currently, we are labeling 1 of 4 states of \"Certainness\": certain, uncertain, neutral, mixed (certain and uncertain), and we are separately labeling 1 of 2 states of \"Frustration/Anger\": frustrated/angry, non-frustrated/angry. These affective states 3 were found in pilot studies to be most prevalent in our tutoring dialogues 4 , and are also of interest in other dialogue research, e.g. tutoring (Bhatt et al., 2004; Moore et al., 2004; Pon-Barry et al., 2004) and spoken dialogue (Ang et al., 2002) . Labeled examples are shown in Figure 1 . 5 To date, one paid annotator has labeled all student turns in our SYN03 corpus, and all the turns of 17 students in our PR05 corpus. 6 From these labels, we derived 25 User Affect parameters per student, over the 5 dialogues for that student. First, for each Certainness label, we computed a Total, a Percent, and a Ratio to each other label. We also computed a Total for each sequence of identical Certainness labels (e.g. Certain:Certain), hypothesizing that states maintained over multiple turns may have more impact on performance than single occurrences. Second, we computed the same parameters for each Frustration/Anger label.",
"cite_spans": [
{
"start": 539,
"end": 559,
"text": "(Bhatt et al., 2004;",
"ref_id": "BIBREF2"
},
{
"start": 560,
"end": 579,
"text": "Moore et al., 2004;",
"ref_id": "BIBREF16"
},
{
"start": 580,
"end": 603,
"text": "Pon-Barry et al., 2004)",
"ref_id": "BIBREF18"
},
{
"start": 624,
"end": 642,
"text": "(Ang et al., 2002)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [
{
"start": 675,
"end": 683,
"text": "Figure 1",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "User Affect Parameters",
"sec_num": "3.3"
},
{
"text": "In this section, we first investigate the usefulness of our system-generic and tutoring-specific parameters for training models of user satisfaction and student learning in our tutoring corpora with the PARADISE framework. We use the SPSS statistical package with a stepwise multivariate linear regression procedure 7 to automatically determine parameter inclusion in the model. We then investigate how well these models generalize across different user-system configurations, by testing the models in different corpora and corpus subsets. Finally, we investigate whether generic user affect parameters increase the usefulness of our student learning models.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models",
"sec_num": "4"
},
{
"text": "Only subjects in the PR05 and SYN05 corpora completed a user survey (Table 1) . Each student's responses were summed to yield a single user satisfaction total per student, ranging from 9 to 24 across corpora (the possible range is 5 to 25), with no difference between corpora (p = .46). This total was used as our user satisfaction metric, as in (M\u00f6ller, 2005b; Walker et al., 2002; Walker et al., 2000) . 8 scription within a speech processing tool.",
"cite_spans": [
{
"start": 346,
"end": 361,
"text": "(M\u00f6ller, 2005b;",
"ref_id": "BIBREF15"
},
{
"start": 362,
"end": 382,
"text": "Walker et al., 2002;",
"ref_id": "BIBREF24"
},
{
"start": 383,
"end": 403,
"text": "Walker et al., 2000)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [
{
"start": 68,
"end": 77,
"text": "(Table 1)",
"ref_id": null
}
],
"eq_spans": [],
"section": "Prediction Models of User Satisfaction",
"sec_num": "4.1"
},
{
"text": "6 In a preliminary agreement study, a second annotator labeled the entire SYN03 corpus for uncertain versus other, yielding 90% inter-annotator agreement (0.68 Kappa).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models of User Satisfaction",
"sec_num": "4.1"
},
{
"text": "7 At each step, the parameter with the highest partial correlation with the target predicted variable, controlled for all previously entered parameters, is entered in the equation, until the remaining parameters do not increase R 2 by a significant amount or do not yield a significant model. 8 Researchers have also used average score (M\u00f6ller, 2005b; Walker et al., 1997) ; single survey statements can also be used (Walker et al., 1997) . We tried these variations, and our R 2 results were similar, indicating robustness across variations. We trained a user satisfaction model on each corpus, then tested it on the other corpus. In addition, we split each corpus in half randomly, then trained a user satisfaction model on each half, and tested it on the other half. We hypothesized that despite the decrease in the dataset size, models trained and tested in the same corpus would have higher generalizability than models trained on one corpus and tested on the other, due to the increased data homogeneity within each corpus, since each corpus used a different ITSPOKE version. As predictors, we used only the 13 system-generic and 12 tutoring-specific parameters that were available for all subjects.",
"cite_spans": [
{
"start": 293,
"end": 294,
"text": "8",
"ref_id": null
},
{
"start": 336,
"end": 351,
"text": "(M\u00f6ller, 2005b;",
"ref_id": "BIBREF15"
},
{
"start": 352,
"end": 372,
"text": "Walker et al., 1997)",
"ref_id": "BIBREF22"
},
{
"start": 417,
"end": 438,
"text": "(Walker et al., 1997)",
"ref_id": "BIBREF22"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models of User Satisfaction",
"sec_num": "4.1"
},
{
"text": "Results are shown in Table 2 . The first and fourth columns show the training and test data, respectively. The second and fifth columns show the user satisfaction variance accounted for by the trained model in the training and test data, respectively. The third column shows the parameters that were selected as predictors of user satisfaction in the trained model, ordered by degree of contribution 9 .",
"cite_spans": [],
"ref_spans": [
{
"start": 21,
"end": 28,
"text": "Table 2",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Prediction Models of User Satisfaction",
"sec_num": "4.1"
},
{
"text": "For example, as shown in the first row, the model trained on the PR05 corpus uses Total Incorrect student turns as the strongest predictor of user satisfaction, followed by Total Essays; these parameters are not highly correlated 10 . This model accounts for 27.4% of the user satisfaction variance in the PR05 corpus. When tested on the SYN05 corpus, it accounts for 0.1% of the user satisfaction variance.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models of User Satisfaction",
"sec_num": "4.1"
},
{
"text": "The low R 2 values for both training and testing in the first two rows show that neither corpus yields a very powerful model of user satisfaction even in the training corpus, and this model does not generalize very well to the test corpus. As hypothesized, training and testing in a single corpus yields higher R 2 values for testing, as shown in the last four rows, although these models still account for less than a quarter of the variance in the test data. The increased R 2 values for training here may indicate over-fitting. Across all 6 experiments, there is almost no overlap of parameters used to predict user satisfaction.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models of User Satisfaction",
"sec_num": "4.1"
},
{
"text": "Overall, these results show that this method of developing an ITSPOKE user satisfaction model is very sensitive to changes in training data; this was also found in other PARADISE applications (M\u00f6ller, 2005b; Walker et al., 2000) . Some applications have also reported similarly low R 2 values for testing both within a corpus (M\u00f6ller, 2005b) and also when a model trained on one system corpus is tested on another system corpus (Walker et al., 2000) . However, most PARADISE applications have yielded higher R 2 values than ours for training (M\u00f6ller, 2005b; Walker et al., 2002; Bonneau-Maynard et al., 2000; Walker et al., 2000) .",
"cite_spans": [
{
"start": 192,
"end": 207,
"text": "(M\u00f6ller, 2005b;",
"ref_id": "BIBREF15"
},
{
"start": 208,
"end": 228,
"text": "Walker et al., 2000)",
"ref_id": "BIBREF23"
},
{
"start": 326,
"end": 341,
"text": "(M\u00f6ller, 2005b)",
"ref_id": "BIBREF15"
},
{
"start": 428,
"end": 449,
"text": "(Walker et al., 2000)",
"ref_id": "BIBREF23"
},
{
"start": 542,
"end": 557,
"text": "(M\u00f6ller, 2005b;",
"ref_id": "BIBREF15"
},
{
"start": 558,
"end": 578,
"text": "Walker et al., 2002;",
"ref_id": "BIBREF24"
},
{
"start": 579,
"end": 608,
"text": "Bonneau-Maynard et al., 2000;",
"ref_id": "BIBREF4"
},
{
"start": 609,
"end": 629,
"text": "Walker et al., 2000)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models of User Satisfaction",
"sec_num": "4.1"
},
{
"text": "We hypothesize two reasons for why our experiments did not yield more useful user satisfaction models. First, in prior PARADISE applications, users completed a survey after every dialogue with the system. In our case, subjects completed only one survey, at the end of the experiment (5 dialogues). It may be that this \"per-student\" unit for user satisfaction is too large to yield a very powerful model; i.e., this measure is not fine-grained enough. In addition, tutoring systems are not designed to maximize user satisfaction, but rather, their design goal is to maximize student learning. Moreover, prior tutoring studies have shown that certain features correlated with student learning do not have the same relationship to user satisfaction (e.g. are not predictive -Barry et al., 2004) . In fact, it may be that user satisfaction is not a metric of primary relevance in our application.",
"cite_spans": [
{
"start": 771,
"end": 791,
"text": "-Barry et al., 2004)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models of User Satisfaction",
"sec_num": "4.1"
},
{
"text": "As in other tutoring research, e.g. (Chi et al., 2001; , we use posttest score (POST) controlled for pretest score (PRE) as our target student learning prediction metric, such that POST is our target variable and PRE is always a parameter in the final model, although it is not necessarily the strongest predictor. 11 In this way, we measure student learning gains, not just final test score.",
"cite_spans": [
{
"start": 36,
"end": 54,
"text": "(Chi et al., 2001;",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models of Student Learning",
"sec_num": "4.2"
},
{
"text": "As shown in Table 1 , all subjects in our 3 corpora took the pretest and posttest. However, in order to compare our student learning models with our user satisfaction models, our first experiments predicting student learning used the same training and testing datasets that were used to predict user satisfaction in Section 4.1 (i.e. we ran the same experiments except we predicted POST controlled for PRE instead of user satisfaction). Results are shown in the first 6 rows of Table 3 .",
"cite_spans": [],
"ref_spans": [
{
"start": 12,
"end": 19,
"text": "Table 1",
"ref_id": null
},
{
"start": 478,
"end": 485,
"text": "Table 3",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Prediction Models of Student Learning",
"sec_num": "4.2"
},
{
"text": "As shown, these 6 models all account for more than 50% of the POST variance in the training data. Furthermore, most of them account for close to, or more than, 50% of the POST variance in the test data. Although again we hypothesized that training and testing in one corpus would yield higher R 2 values for testing, this is not consistently the case; two of these models had the highest R 2 values for train-ing and the lowest R 2 values for testing (PR05:half1 and SYN05:half2), suggesting over-fitting.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models of Student Learning",
"sec_num": "4.2"
},
{
"text": "Overall, these results show that this is an effective method of developing a prediction model of student learning for ITSPOKE, and is less sensitive to changes in training data than it was for user satisfaction. Moreover, there is more overlap in these 6 models of parameters that are useful for predicting student learning (besides PRE); \"Correctness\" parameters and dialogue communication and efficiency parameters appear to be most useful overall.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models of Student Learning",
"sec_num": "4.2"
},
{
"text": "Our next 3 experiments investigated how our student learning models are impacted by including our third SYN03 corpus. Using the same 25 parameters, we trained a learning model on each set of two combined corpora, then tested it on the other corpus. Results are shown in the last 3 rows of Table 3 .",
"cite_spans": [],
"ref_spans": [
{
"start": 289,
"end": 296,
"text": "Table 3",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Prediction Models of Student Learning",
"sec_num": "4.2"
},
{
"text": "As shown, these models still account for close to, or more than, 50% of the student learning variance in the training data. 12 The model trained on PR05+SYN03 accounts for the most student learning variance in the test data, showing that the training data that is most similar to the test data will yield the highest generalizability. That is, the combined PR05+SYN03 corpora contains subjects drawn from the same subject pool (2005) as the SYN05 test data, and also contains subjects who interacted with the same tutor voice (synthesized) as this test data. In contrast, the combined PR05+SYN05 corpora did not overlap in user population with the SYN03 test data, and the combined SYN05+SYN03 corpora did not share a tutor voice with the PR05 test data. \"Correctness\" parameters ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models of Student Learning",
"sec_num": "4.2"
},
{
"text": "Our final experiments investigated whether our 25 user affect parameters impacted the usefulness of the student learning models. As shown in Table 1 , all 20 subjects in our SYN03 corpus were annotated for user affect, and 17 subjects in our PR05 corpus were annotated for user affect. We trained a model of student learning on each of these datasets, then tested it on the other dataset. 13 As predictors, we included our 25 user affect parameters along with the 13 system-generic and 12 tutoring-specific interaction parameters. These results are shown in the first two rows of Table 4 . We also reran these experiments without user affect parameters, to gauge the impact of the user affect parameters. These results are shown in the last two rows of Table 4 . We hypothesized that user affect parameters would produce more useful models, because prior tutoring research has shown correlations between user affect and student learning (e.g. (Craig et al., 2004) ). As shown in the first two rows, user affect predictors appear in both models where these parameters were included. The models trained on SYN03 use pretest score and Total Time on Task as predictors; when affect parameters are included, \"Neutral Certainness\" is added as a predictor, which increases the R 2 values for both training and testing. However, the two models trained on PR05:17 show no predictor overlap (besides PRE). Moreover, the PR05:17 model that includes an affect predictor (Total Sequence of 2 Non-Frustrated/Angry turns) has the highest training R 2 , but the lowest testing R 2 value.",
"cite_spans": [
{
"start": 943,
"end": 963,
"text": "(Craig et al., 2004)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [
{
"start": 141,
"end": 148,
"text": "Table 1",
"ref_id": null
},
{
"start": 580,
"end": 587,
"text": "Table 4",
"ref_id": "TABREF5"
},
{
"start": 753,
"end": 760,
"text": "Table 4",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Adding User Affect Parameters",
"sec_num": "4.3"
},
{
"text": "13 As only 17 subjects have both user affect annotation and user surveys, there is not enough data currently to train and test a user satisfaction model including user affect parameters.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Adding User Affect Parameters",
"sec_num": "4.3"
},
{
"text": "Prior work in the tutoring community has focused on correlations of single features with learning; our results suggest that PARADISE is an effective method of extending these analyses. For the dialogue community, our results suggest that as spoken dialogue systems move into new applications not optimized for user satisfaction, such as tutoring systems, other measures of performance may be more relevant, and generic user affect parameters may be useful.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Current Directions",
"sec_num": "5"
},
{
"text": "Our experiments used many of the same systemgeneric parameters as prior studies, and some of these parameters predicted user satisfaction both in our models and in prior studies' models (e.g., system words/turn (Walker et al., 2002) ). Nonetheless, overall our user satisfaction models were not very powerful even for training, were sensitive to training data changes, showed little predictor overlap, and did not generalize well to test data. Our user satisfaction metric may not be fine-grained enough; in other PARADISE studies, users took a survey after every dialogue with the system. In addition, tutoring systems are not designed to maximize user satisfaction; their goal is to maximize student learning.",
"cite_spans": [
{
"start": 211,
"end": 232,
"text": "(Walker et al., 2002)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Current Directions",
"sec_num": "5"
},
{
"text": "Our student learning models were much more powerful and less sensitive to changes in training data. Our best models explained over 50% of the student learning variance for training and testing, and both student \"Correctness\" parameters and dialogue communication and efficiency parameters were often useful predictors. User affect parameters further improved the predictive power of one student learning model for both training and testing.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Current Directions",
"sec_num": "5"
},
{
"text": "Once our user affect annotations are complete, we can further investigate their use to predict student learning and user satisfaction. Unlike our other parameters, these annotations are not currently available, although they can be predicted automatically (Litman and Forbes-Riley, 2004b) , in our sys-tem. However, as in (Batliner et al., 2003) , our prior work suggests that linguistic features reflective of affective states can replace affect annotation (Forbes-Riley and Litman, 2005) . In future work we will use such features in our prediction models. Finally, we are also annotating tutor and student dialogue acts and automating the tutor act annotations; when complete we can investigate their usefulness in our prediction models; dialogue acts have also been used in prior PARADISE applications (M\u00f6ller, 2005a) .",
"cite_spans": [
{
"start": 256,
"end": 288,
"text": "(Litman and Forbes-Riley, 2004b)",
"ref_id": "BIBREF12"
},
{
"start": 322,
"end": 345,
"text": "(Batliner et al., 2003)",
"ref_id": "BIBREF1"
},
{
"start": 476,
"end": 489,
"text": "Litman, 2005)",
"ref_id": "BIBREF8"
},
{
"start": 806,
"end": 821,
"text": "(M\u00f6ller, 2005a)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Current Directions",
"sec_num": "5"
},
{
"text": "The user populations of the 2005 corpora and 2003 corpus are different, due to variation in year and recruitment method.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "A Timeout occurs when ITSPOKE does not hear speech by a pre-specified time interval. A Rejection occurs when IT-SPOKE's confidence score for its ASR output is too low.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We use \"affect\" and \"affective state\" loosely to cover student emotions and attitudes believed to be relevant for tutoring.4 For a full list of affective states identified in these pilot studies, see(Litman and Forbes-Riley, 2004a).5 Annotations were performed from both audio and tran-",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "The ordering reflects the standardized coefficients (beta weights), which are computed in SPSS based on scaling of the input parameters, to enable an assessment of the predictive power of each parameter relative to the others in a model.10 Hereafter, predictors in a model are not highly correlated (R \u2265 .70) unless noted. Linear regression does not assume that predictors are independent, only that they are not highly correlated. Because correlations above R =.70 can affect the coefficients, deletion of redundant predictors may be advisable.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "In SPSS, we regress two independent variable blocks. The first block contains PRE, which is regressed with POST using the \"enter\" method, forcing inclusion of PRE in the final model. The second block contains all remaining independent variables, which are regressed using the stepwise method.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "However, INCORS/CORS and %INCORRECT are highly correlated in the SYN05+SYN03 model, showing redundancy.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "NSF (0325034 & 0328431) supports this research. We thank Pam Jordan and the NLP Group.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgements",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Prosody-based automatic detection of annoyance and frustration in human-computer dialog",
"authors": [
{
"first": "J",
"middle": [],
"last": "Ang",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Dhillon",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Krupski",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Shriberg",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Stolcke",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. Int. Conf. Spoken Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Ang, R. Dhillon, A. Krupski, E.Shriberg, and A. Stol- cke. 2002. Prosody-based automatic detection of an- noyance and frustration in human-computer dialog. In Proc. Int. Conf. Spoken Language Processing (ICSLP).",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "How to find trouble in communication",
"authors": [
{
"first": "A",
"middle": [],
"last": "Batliner",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Fischer",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Huber",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Spilker",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Noth",
"suffix": ""
}
],
"year": 2003,
"venue": "Speech Communication",
"volume": "40",
"issue": "",
"pages": "117--143",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Batliner, K. Fischer, R. Huber, J. Spilker, and E. Noth. 2003. How to find trouble in communication. Speech Communication, 40:117-143.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Hedged responses and expressions of affect in human/human and human/computer tutorial interactions",
"authors": [
{
"first": "K",
"middle": [],
"last": "Bhatt",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Evens",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Argamon",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. 26th",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. Bhatt, M. Evens, and S. Argamon. 2004. Hedged re- sponses and expressions of affect in human/human and human/computer tutorial interactions. In Proc. 26th",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Annual Meeting of the Cognitive Science Society",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Annual Meeting of the Cognitive Science Society.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Predictive performance of dialog systems",
"authors": [
{
"first": "H",
"middle": [],
"last": "Bonneau-Maynard",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Devillers",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Rosset",
"suffix": ""
}
],
"year": 2000,
"venue": "Proc",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Bonneau-Maynard, L. Devillers, and S. Rosset. 2000. Predictive performance of dialog systems. In Proc.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Language Resources and Evaluation Conf. (LREC)",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Language Resources and Evaluation Conf. (LREC)).",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Learning from human tutoring",
"authors": [
{
"first": "M",
"middle": [
"T H"
],
"last": "Chi",
"suffix": ""
},
{
"first": "S",
"middle": [
"A"
],
"last": "Siler",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Jeong",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Yamauchi",
"suffix": ""
},
{
"first": "R",
"middle": [
"G"
],
"last": "Hausmann",
"suffix": ""
}
],
"year": 2001,
"venue": "Cognitive Science",
"volume": "25",
"issue": "",
"pages": "471--533",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. T. H. Chi, S. A. Siler, H. Jeong, T. Yamauchi, and R. G. Hausmann. 2001. Learning from human tutor- ing. Cognitive Science, 25:471-533.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Affect and learning: An exploratory look into the role of affect in learning",
"authors": [
{
"first": "S",
"middle": [],
"last": "Craig",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Graesser",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Sullins",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Gholson",
"suffix": ""
}
],
"year": 2004,
"venue": "Journal of Educational Media",
"volume": "29",
"issue": "",
"pages": "241--250",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Craig, A. Graesser, J. Sullins, and B. Gholson. 2004. Affect and learning: An exploratory look into the role of affect in learning. Journal of Educational Media, 29:241-250.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Correlating student acoustic-prosodic profiles with student learning in spoken tutoring dialogues",
"authors": [
{
"first": "K",
"middle": [],
"last": "Forbes-Riley",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Litman",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. INTERSPEECH",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. Forbes-Riley and D. Litman. 2005. Correlating stu- dent acoustic-prosodic profiles with student learning in spoken tutoring dialogues. In Proc. INTERSPEECH.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Comparing synthesized versus pre-recorded tutor speech in an intelligent tutoring spoken dialogue system",
"authors": [
{
"first": "K",
"middle": [],
"last": "Forbes-Riley",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Litman",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Silliman",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Tetreault",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. FLAIRS",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. Forbes-Riley, D. Litman, S. Silliman, and J. Tetreault. 2006. Comparing synthesized versus pre-recorded tu- tor speech in an intelligent tutoring spoken dialogue system. In Proc. FLAIRS.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Combining acoustic and language information for emotion recognition",
"authors": [
{
"first": "C",
"middle": [
"M"
],
"last": "Lee",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Narayanan",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Pieraccini",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. ICSLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C.M. Lee, S. Narayanan, and R. Pieraccini. 2002. Com- bining acoustic and language information for emotion recognition. In Proc. ICSLP.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Annotating student emotional states in spoken tutoring dialogues",
"authors": [
{
"first": "D",
"middle": [],
"last": "Litman",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Forbes-Riley",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. SIGdial",
"volume": "",
"issue": "",
"pages": "144--153",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Litman and K. Forbes-Riley. 2004a. Annotating stu- dent emotional states in spoken tutoring dialogues. In Proc. SIGdial, pages 144-153.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Predicting student emotions in computer-human tutoring dialogues",
"authors": [
{
"first": "D",
"middle": [],
"last": "Litman",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Forbes-Riley",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. ACL",
"volume": "",
"issue": "",
"pages": "352--359",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Litman and K. Forbes-Riley. 2004b. Predicting stu- dent emotions in computer-human tutoring dialogues. In Proc. ACL, pages 352-359.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Spoken versus typed human and computer dialogue tutoring. Intnl Jnl of Artificial Intelligence in Education",
"authors": [
{
"first": "D",
"middle": [],
"last": "Litman",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Ros\u00e9",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Forbes-Riley",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Vanlehn",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Bhembe",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Silliman",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Litman, C. Ros\u00e9, K. Forbes-Riley, K. VanLehn, D. Bhembe, and S. Silliman. 2006. Spoken versus typed human and computer dialogue tutoring. Intnl Jnl of Artificial Intelligence in Education, To Appear.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Parameters for quantifying the interactioin with spoken dialogue telephone services",
"authors": [
{
"first": "S",
"middle": [],
"last": "M\u00f6ller",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. SIGdial",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. M\u00f6ller. 2005a. Parameters for quantifying the inter- actioin with spoken dialogue telephone services. In Proc. SIGdial.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Towards generic quality prediction models for spoken dialogue systems -a case study",
"authors": [
{
"first": "S",
"middle": [],
"last": "M\u00f6ller",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. INTERSPEECH",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. M\u00f6ller. 2005b. Towards generic quality prediction models for spoken dialogue systems -a case study. In Proc. INTERSPEECH.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Generating tutorial feedback with affect",
"authors": [
{
"first": "J",
"middle": [
"D"
],
"last": "Moore",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Porayska-Pomsta",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Varges",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Zinn",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. FLAIRS",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. D. Moore, K. Porayska-Pomsta, S. Varges, and C. Zinn. 2004. Generating tutorial feedback with affect. In Proc. FLAIRS.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Evaluating tutors that listen: An overview of Project LISTEN",
"authors": [
{
"first": "J",
"middle": [],
"last": "Mostow",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Aist",
"suffix": ""
}
],
"year": 2001,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Mostow and G. Aist. 2001. Evaluating tutors that lis- ten: An overview of Project LISTEN. In K. Forbus and P. Feltovich, editors, Smart Machines in Educa- tion.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Evaluating the effectiveness of SCoT: a Spoken Conversational Tutor",
"authors": [
{
"first": "H",
"middle": [],
"last": "Pon-Barry",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "E",
"middle": [
"Owen"
],
"last": "Bratt",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Schultz",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Peters",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. of ITS",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Pon-Barry, B. Clark, E. Owen Bratt, K. Schultz, and S. Peters. 2004. Evaluating the effectiveness of SCoT: a Spoken Conversational Tutor. In Proc. of ITS 2004",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Workshop on Dialogue-based Intelligent Tutoring Systems: State of the Art and New Research Directions",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Workshop on Dialogue-based Intelligent Tutoring Sys- tems: State of the Art and New Research Directions.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Humanmachine problem solving using spoken language systems (SLS): Factors affecting performance and user satisfaction",
"authors": [
{
"first": "E",
"middle": [],
"last": "Shriberg",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Wade",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Price",
"suffix": ""
}
],
"year": 1992,
"venue": "Proc. DARPA Speech and NL Workshop",
"volume": "",
"issue": "",
"pages": "49--54",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "E. Shriberg, E. Wade, and P. Price. 1992. Human- machine problem solving using spoken language sys- tems (SLS): Factors affecting performance and user satisfaction. In Proc. DARPA Speech and NL Work- shop, pages 49-54.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "The architecture of Why2-Atlas: A coach for qualitative physics essay writing",
"authors": [
{
"first": "K",
"middle": [],
"last": "Vanlehn",
"suffix": ""
},
{
"first": "P",
"middle": [
"W"
],
"last": "Jordan",
"suffix": ""
},
{
"first": "C",
"middle": [
"P"
],
"last": "Ros\u00e9",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Bhembe",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "B\u00f6ttner",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Gaydos",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Makatchev",
"suffix": ""
},
{
"first": "U",
"middle": [],
"last": "Pappuswamy",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Ringenberg",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Roque",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Siler",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Srivastava",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Wilson",
"suffix": ""
}
],
"year": 2002,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. VanLehn, P. W. Jordan, C. P. Ros\u00e9, D. Bhembe, M. B\u00f6ttner, A. Gaydos, M. Makatchev, U. Pap- puswamy, M. Ringenberg, A. Roque, S. Siler, R. Sri- vastava, and R. Wilson. 2002. The architecture of Why2-Atlas: A coach for qualitative physics essay writing. In Proc. Intelligent Tutoring Systems.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "PARADISE: A framework for evaluating spoken dialogue agents",
"authors": [
{
"first": "M",
"middle": [],
"last": "Walker",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Litman",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Kamm",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Abella",
"suffix": ""
}
],
"year": 1997,
"venue": "Proc. ACL/EACL",
"volume": "",
"issue": "",
"pages": "271--280",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Walker, , D. Litman, C. Kamm, and A. Abella. 1997. PARADISE: A framework for evaluating spoken dia- logue agents. In Proc. ACL/EACL, pages 271-280.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Towards developing general models of usability with PARADISE",
"authors": [
{
"first": "M",
"middle": [],
"last": "Walker",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Kamm",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Litman",
"suffix": ""
}
],
"year": 2000,
"venue": "Natural Language Engineering",
"volume": "6",
"issue": "",
"pages": "363--377",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Walker, C. Kamm, and D. Litman. 2000. Towards de- veloping general models of usability with PARADISE. Natural Language Engineering, 6:363-377.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "DARPA communicator: Crosssystem results for the 2001 evaluation",
"authors": [
{
"first": "M",
"middle": [],
"last": "Walker",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Rudnicky",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Prasad",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Aberdeen",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Bratt",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Garofolo",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Hastie",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Pellom",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Potamianos",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Passonneau",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Sanders",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Seneff",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Stallard",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. Internat. Conf. on Spoken Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Walker, A. Rudnicky, R. Prasad, J. Aberdeen, E. Bratt, J. Garofolo, H. Hastie, A. Le, B. Pellom, A. Potami- anos, R. Passonneau, S. Roukos, G. Sanders, S. Seneff, and D. Stallard. 2002. DARPA communicator: Cross- system results for the 2001 evaluation. In Proc. Inter- nat. Conf. on Spoken Language Processing (ICSLP).",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"text": "Suppose a lightweight car and a massive truck hit a patch of frictionless ice and have a head-on collision. Upon which vehicle is the impact force greater? Which vehicle undergoes the greater change in its motion? Defend your answers.ESSAY UNDER DISCUSSION:The truck exerts an equal and opposite reaction force on the car. The car has a greater acceleration. The car will have a greater change in its motion. . . . excerpt at 28.8 minutes into dialogue. . .TUTOR60:So, when you add forces together, besides the magnitudes of the forces, what must you also consider? STUDENT57: direct-direction (ASR: the truck in direction) [correct, uncertain, non-frustrated/angry] TUTOR61: Yes.[...] The vector sum of the forces acting on the body is also equal to the mass of the body multiplied by its acceleration. What is another term for the vector sum of forces acting on a body? STUDENT58: net force (ASR: net force) [correct, neutral, non-frustrated/angry] TUTOR62: That's super. Another term for the resultant force is the net force. In this relationship, what is the direction of the net force applied to a body and the direction of the body's acceleration? STUDENT59: same same same (ASR: seems same type seems)[correct, certain, frustrated/angry]",
"uris": null,
"type_str": "figure",
"num": null
},
"FIGREF1": {
"text": "Annotated PR05 Corpus Excerpt Task Ease: It was easy to learn from the tutor. TTS Performance: It was easy to understand the tutor. User Expertise: I knew what I could say or do at each point in the conversations with the tutor.",
"uris": null,
"type_str": "figure",
"num": null
},
"FIGREF2": {
"text": "The tutor worked the way I expected it to. Future Use: Based on my experience using the tutor to learn physics, I would like to use such a tutor regularly.ALMOST ALWAYS (5), OFTEN (4), SOMETIMES (3), RARELY (2), ALMOST NEVER (1)",
"uris": null,
"type_str": "figure",
"num": null
},
"FIGREF3": {
"text": "Figure 2: ITSPOKE Survey Questionnaire",
"uris": null,
"type_str": "figure",
"num": null
},
"TABREF1": {
"type_str": "table",
"content": "<table/>",
"text": "Testing the Predictive Power of User Satisfaction Models",
"html": null,
"num": null
},
"TABREF3": {
"type_str": "table",
"content": "<table/>",
"text": "Testing the Predictive Power of Student Learning Models with the Same Datasets or have an opposite relationship) (Pon",
"html": null,
"num": null
},
"TABREF5": {
"type_str": "table",
"content": "<table/>",
"text": "Testing the Predictive Power of Student Learning Models with User Affect Parameters and dialogue communication and efficiency parameters are consistently used as predictors in all 9 of these student learning models.",
"html": null,
"num": null
}
}
}
} |