File size: 96,044 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
{
    "paper_id": "N06-1034",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T14:45:43.295258Z"
    },
    "title": "Modelling User Satisfaction and Student Learning in a Spoken Dialogue Tutoring System with Generic, Tutoring, and User Affect Parameters",
    "authors": [
        {
            "first": "Kate",
            "middle": [],
            "last": "Forbes-Riley",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Ctr University of Pittsburgh Pittsburgh",
                "location": {
                    "postCode": "15260",
                    "region": "PA"
                }
            },
            "email": ""
        },
        {
            "first": "Diane",
            "middle": [
                "J"
            ],
            "last": "Litman",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Pittsburgh Pittsburgh",
                "location": {
                    "postCode": "15260",
                    "region": "PA"
                }
            },
            "email": "litman@cs.pitt.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We investigate using the PARADISE framework to develop predictive models of system performance in our spoken dialogue tutoring system. We represent performance with two metrics: user satisfaction and student learning. We train and test predictive models of these metrics in our tutoring system corpora. We predict user satisfaction with 2 parameter types: 1) system-generic, and 2) tutoringspecific. To predict student learning, we also use a third type: 3) user affect. Alhough generic parameters are useful predictors of user satisfaction in other PARADISE applications, overall our parameters produce less useful user satisfaction models in our system. However, generic and tutoring-specific parameters do produce useful models of student learning in our system. User affect parameters can increase the usefulness of these models.",
    "pdf_parse": {
        "paper_id": "N06-1034",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We investigate using the PARADISE framework to develop predictive models of system performance in our spoken dialogue tutoring system. We represent performance with two metrics: user satisfaction and student learning. We train and test predictive models of these metrics in our tutoring system corpora. We predict user satisfaction with 2 parameter types: 1) system-generic, and 2) tutoringspecific. To predict student learning, we also use a third type: 3) user affect. Alhough generic parameters are useful predictors of user satisfaction in other PARADISE applications, overall our parameters produce less useful user satisfaction models in our system. However, generic and tutoring-specific parameters do produce useful models of student learning in our system. User affect parameters can increase the usefulness of these models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In recent years the development of spoken dialogue tutoring systems has become more prevalent, in an attempt to close the performance gap between human and computer tutors (Mostow and Aist, 2001; Pon-Barry et al., 2004; . Student learning is a primary metric for evaluating the performance of these systems; it can be measured, e.g., by comparing student pretests taken prior to system use with posttests taken after system use.",
                "cite_spans": [
                    {
                        "start": 172,
                        "end": 195,
                        "text": "(Mostow and Aist, 2001;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 196,
                        "end": 219,
                        "text": "Pon-Barry et al., 2004;",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In other types of spoken dialogue systems, the user's subjective judgments about using the system are often considered a primary system performance metric; e.g., user satisfaction has been measured via surveys which ask users to rate systems during use along dimensions such as task ease, speech input/output quality, user expectations and expertise, and user future use (M\u00f6ller, 2005b; Walker et al., 2002; Bonneau-Maynard et al., 2000; Walker et al., 2000; Shriberg et al., 1992) . However, it is expensive to run experiments over large numbers of users to obtain reliable system performance measures.",
                "cite_spans": [
                    {
                        "start": 371,
                        "end": 386,
                        "text": "(M\u00f6ller, 2005b;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 387,
                        "end": 407,
                        "text": "Walker et al., 2002;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 408,
                        "end": 437,
                        "text": "Bonneau-Maynard et al., 2000;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 438,
                        "end": 458,
                        "text": "Walker et al., 2000;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 459,
                        "end": 481,
                        "text": "Shriberg et al., 1992)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The PARADISE model (Walker et al., 1997) proposes instead to predict system performance, using parameters representing interaction costs and benefits between system and user, including task success, dialogue efficiency, and dialogue quality. More formally, a set of interaction parameters are measured in a spoken dialogue system corpus, then used in a multivariate linear regression to predict the target performance variable. The resulting model is described by the formula below, where there are n interaction parameters, p i , each weighted by the analysis with a coefficient, w i , which will be negative or positive, depending on whether the model treats p i as a cost or benefit, respectively. The model can then be used to estimate performance during system design, with the design goals of minimizing costs and maximizing benefits.",
                "cite_spans": [
                    {
                        "start": 19,
                        "end": 40,
                        "text": "(Walker et al., 1997)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "System Performance = n i=1 w i * p i We investigate using PARADISE to develop predictive models of performance in our spoken dialogue tutoring system. Although to our knowledge,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Voice #Dialogues #Students #with Survey #with Tests #with Affect  SYN03  2003  synthesized  100  20  0  20  20  PR05  2005 pre-recorded  140  28  28  28  17  SYN05  2005  synthesized  145  29  29  29  0   Table 1 : Summary of our 3 ITSPOKE Corpora prior PARADISE applications have only used user satisfaction to represent performance, we hypothesize that other metrics may be more relevant when PARADISE is applied to tasks that are not optimized for user satisfaction, such as our spoken dialogue tutoring system. We thus use 2 metrics to represent performance: 1) a generic metric of user satisfaction computed via user survey, 2) a tutoring-specific metric of student learning computed via student pretest and posttest scores. We train and test predictive models of these metrics on multiple system corpora.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 58,
                        "end": 212,
                        "text": "Affect  SYN03  2003  synthesized  100  20  0  20  20  PR05  2005 pre-recorded  140  28  28  28  17  SYN05  2005  synthesized  145  29  29  29  0   Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Date",
                "sec_num": null
            },
            {
                "text": "To predict user satisfaction, we use 2 types of interaction parameters: 1) system-generic parameters such as used in other PARADISE applications, e.g. speech recognition performance, and 2) tutoringspecific parameters, e.g. student correctness. To predict student learning, we also use a third type of parameter: 3) manually annotated user affect. Although prior PARADISE applications have tended to use system-generic parameters, we hypothesize that task-specific and user affect parameters may also prove useful. We emphasize that user affect parameters are still system-generic; user affect has been annotated and/or automatically predicted in other types of spoken dialogue systems, e.g. as in (Lee et al., 2002; Ang et al., 2002; Batliner et al., 2003) .",
                "cite_spans": [
                    {
                        "start": 698,
                        "end": 716,
                        "text": "(Lee et al., 2002;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 717,
                        "end": 734,
                        "text": "Ang et al., 2002;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 735,
                        "end": 757,
                        "text": "Batliner et al., 2003)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Date",
                "sec_num": null
            },
            {
                "text": "Our results show that, although generic parameters were useful predictors of user satisfaction in other PARADISE applications, overall our parameters produce less useful user satisfaction models in our tutoring system. However, generic and tutoringspecific parameters do produce useful models of student learning in our system. Generic user affect parameters increase the usefulness of these models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Date",
                "sec_num": null
            },
            {
                "text": "ITSPOKE (Intelligent Tutoring SPOKEn dialogue system) ) is a speech-enabled tutor built on top of the text-based Why2-Atlas conceptual physics tutor (VanLehn et al., 2002) . In ITSPOKE, a student first types an essay into a web-based interface answering a qualitative physics problem. ITSPOKE then analyzes the essay and engages the student in spoken dialogue to correct misconceptions and elicit more complete explanations. Student speech is digitized from the microphone input and sent to the Sphinx2 recognizer. Sphinx2's most probable \"transcription\" is then sent to Why2-Atlas for syntactic, semantic and dialogue analysis. Finally, the text response produced by Why2-Atlas is converted to speech as described below, then played in the student's headphones and displayed on the interface. After the dialogue, the student revises the essay, thereby ending the tutoring or causing another round of tutoring/essay revision.",
                "cite_spans": [
                    {
                        "start": 149,
                        "end": 171,
                        "text": "(VanLehn et al., 2002)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Spoken Dialogue Tutoring Corpora",
                "sec_num": "2"
            },
            {
                "text": "For this study, we used 3 ITSPOKE corpora, shown in Table 1 . 1 The SYN03 corpus was collected in 2003 for an evaluation comparing learning in typed and spoken human and computer tutoring . ITSPOKE's voice was synthesized with the Cepstral text-to-speech system, and its speech recognizer was trained from pilot IT-SPOKE studies and Why2-Atlas evaluations. The PR05 and SYN05 corpora were collected in 2005, to evaluate the impact of tutor voice quality . For these 2 corpora, ITSPOKE used an updated speech recognizer further trained on the SYN03 corpus. For the SYN05 corpus, IT-SPOKE used the synthesized tutor voice from the SYN03 corpus; for the PR05 corpus, ITSPOKE used a pre-recorded tutor voice from a paid voice talent. Figure 1 gives an annotated (Section 3) PR05 excerpt (ASR shows what ITSPOKE heard).",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 63,
                        "text": "1",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 52,
                        "end": 59,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 730,
                        "end": 738,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Spoken Dialogue Tutoring Corpora",
                "sec_num": "2"
            },
            {
                "text": "The same experimental procedure was used to collect all 3 ITSPOKE corpora: college students who had taken no college physics: 1) read a small document of background material, 2) took a pretest measuring initial physics knowledge, 3) work through a set of 5 problems (dialogues) with ITSPOKE, 4) took a posttest similar to the pretest. Subjects in the PR05 and SYN05 corpora also completed a survey probing user satisfaction after taking the posttest (SYN03 corpus subjects did not). Our survey, shown in Figure 2 , is essentially the same as the one used in the DARPA Communicator multi-site evaluation (Walker et al., 2002) . Although tailored lexically for a tutoring system, these statements are generally applicable to spoken dialogue systems. Students rated their degree of agreement with each statement on a scale of 1 to 5. ",
                "cite_spans": [
                    {
                        "start": 603,
                        "end": 624,
                        "text": "(Walker et al., 2002)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 504,
                        "end": 512,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Spoken Dialogue Tutoring Corpora",
                "sec_num": "2"
            },
            {
                "text": "Prior PARADISE applications predicted user satisfaction using a wide range of system-generic param-eters, which include measures of speech recognition quality (e.g. word error rate), measures of dialogue communication and efficiency (e.g. total turns and elapsed time), and measures of task completion (e.g. a binary representation of whether the task was completed) (M\u00f6ller, 2005a; M\u00f6ller, 2005b; Walker et al., 2002; Bonneau-Maynard et al., 2000; Walker et al., 2000; Walker et al., 1997) . In this prior work, each dialogue between user and system represents a single \"task\" (e.g., booking airline travel), thus these measures are calculated on a per-dialogue basis.",
                "cite_spans": [
                    {
                        "start": 367,
                        "end": 382,
                        "text": "(M\u00f6ller, 2005a;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 383,
                        "end": 397,
                        "text": "M\u00f6ller, 2005b;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 398,
                        "end": 418,
                        "text": "Walker et al., 2002;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 419,
                        "end": 448,
                        "text": "Bonneau-Maynard et al., 2000;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 449,
                        "end": 469,
                        "text": "Walker et al., 2000;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 470,
                        "end": 490,
                        "text": "Walker et al., 1997)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dialogue System-Generic Parameters",
                "sec_num": "3.1"
            },
            {
                "text": "In our work, the entire tutoring session represents a single \"task\", and every student in our corpora completed this task. Thus we extract 13 systemgeneric parameters on a per-student basis, i.e. over the 5 dialogues for each user, yielding a single parameter value for each student in our 3 corpora.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dialogue System-Generic Parameters",
                "sec_num": "3.1"
            },
            {
                "text": "First, we extracted 9 parameters representing dialogue communication and efficiency. Of these parameters, 7 were used in prior PARADISE applications: Time on Task, Total ITSPOKE Turns and Words, Total User Turns and Words, Average IT-SPOKE Words/Turn, and Average User Words/Turn. Our 2 additional \"communication-related\" (M\u00f6ller, 2005a) parameters measure system-user interactivity, but were not used in prior work (to our knowledge): Ratio of User Words to ITSPOKE Words, Ratio of User Turns to ITSPOKE Turns.",
                "cite_spans": [
                    {
                        "start": 322,
                        "end": 337,
                        "text": "(M\u00f6ller, 2005a)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dialogue System-Generic Parameters",
                "sec_num": "3.1"
            },
            {
                "text": "Second, we extracted 4 parameters representing speech recognition quality, which have also been used in prior work: Word Error Rate, Concept Accuracy, Total Timeouts, Total Rejections 2 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dialogue System-Generic Parameters",
                "sec_num": "3.1"
            },
            {
                "text": "Although prior PARADISE applications tend to use system-generic parameters, we hypothesize that task-specific parameters may also prove useful for predicting performance. We extract 12 tutoringspecific parameters over the 5 dialogues for each student, yielding a single parameter value per student, for each student in our 3 corpora. Although these parameters are specific to our tutoring system, similar parameters are available in other tutoring systems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tutoring-Specific Parameters",
                "sec_num": "3.2"
            },
            {
                "text": "First, we hypothesize that the correctness of the students' turns with respect to the tutoring topic (physics, in our case) may play a role in predicting system performance. Each of our student turns is automatically labeled with 1 of 3 \"Correctness\" labels by the ITSPOKE semantic understanding component: Correct, Incorrect, Partially Correct. Labeled examples are shown in Figure 1 . From these 3 Correctness labels, we derive 9 parameters: a Total and a Percent for each label, and a Ratio of each label to every other label (e.g. Correct/Incorrect).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 376,
                        "end": 384,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Tutoring-Specific Parameters",
                "sec_num": "3.2"
            },
            {
                "text": "Second, students write and then may modify their physics essay at least once during each dialogue with ITSPOKE. We thus hypothesize that like \"Correctness\", the total number of essays per student may play a role in predicting system performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tutoring-Specific Parameters",
                "sec_num": "3.2"
            },
            {
                "text": "Finally, although student test scores before/after using ITSPOKE will be used as our student learning metric, we hypothesize that these scores may also play a role in predicting user satisfaction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tutoring-Specific Parameters",
                "sec_num": "3.2"
            },
            {
                "text": "We hypothesize that user affect plays a role in predicting user satisfaction and student learning. Although affect parameters have not been used in other PARADISE studies (to our knowledge), they are generic; for example, in various spoken dialogue systems, user affect has been annotated and automatically predicted from e.g., acoustic-prosodic and lexical features (Litman and Forbes-Riley, 2004b; Lee et al., 2002; Ang et al., 2002; Batliner et al., 2003) .",
                "cite_spans": [
                    {
                        "start": 367,
                        "end": 399,
                        "text": "(Litman and Forbes-Riley, 2004b;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 400,
                        "end": 417,
                        "text": "Lee et al., 2002;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 418,
                        "end": 435,
                        "text": "Ang et al., 2002;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 436,
                        "end": 458,
                        "text": "Batliner et al., 2003)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "User Affect Parameters",
                "sec_num": "3.3"
            },
            {
                "text": "As part of a larger investigation into emotion adaptation, we are manually annotating the student turns in our corpora for affective state. Currently, we are labeling 1 of 4 states of \"Certainness\": certain, uncertain, neutral, mixed (certain and uncertain), and we are separately labeling 1 of 2 states of \"Frustration/Anger\": frustrated/angry, non-frustrated/angry. These affective states 3 were found in pilot studies to be most prevalent in our tutoring dialogues 4 , and are also of interest in other dialogue research, e.g. tutoring (Bhatt et al., 2004; Moore et al., 2004; Pon-Barry et al., 2004) and spoken dialogue (Ang et al., 2002) . Labeled examples are shown in Figure 1 . 5 To date, one paid annotator has labeled all student turns in our SYN03 corpus, and all the turns of 17 students in our PR05 corpus. 6 From these labels, we derived 25 User Affect parameters per student, over the 5 dialogues for that student. First, for each Certainness label, we computed a Total, a Percent, and a Ratio to each other label. We also computed a Total for each sequence of identical Certainness labels (e.g. Certain:Certain), hypothesizing that states maintained over multiple turns may have more impact on performance than single occurrences. Second, we computed the same parameters for each Frustration/Anger label.",
                "cite_spans": [
                    {
                        "start": 539,
                        "end": 559,
                        "text": "(Bhatt et al., 2004;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 560,
                        "end": 579,
                        "text": "Moore et al., 2004;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 580,
                        "end": 603,
                        "text": "Pon-Barry et al., 2004)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 624,
                        "end": 642,
                        "text": "(Ang et al., 2002)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 675,
                        "end": 683,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "User Affect Parameters",
                "sec_num": "3.3"
            },
            {
                "text": "In this section, we first investigate the usefulness of our system-generic and tutoring-specific parameters for training models of user satisfaction and student learning in our tutoring corpora with the PARADISE framework. We use the SPSS statistical package with a stepwise multivariate linear regression procedure 7 to automatically determine parameter inclusion in the model. We then investigate how well these models generalize across different user-system configurations, by testing the models in different corpora and corpus subsets. Finally, we investigate whether generic user affect parameters increase the usefulness of our student learning models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Models",
                "sec_num": "4"
            },
            {
                "text": "Only subjects in the PR05 and SYN05 corpora completed a user survey (Table 1) . Each student's responses were summed to yield a single user satisfaction total per student, ranging from 9 to 24 across corpora (the possible range is 5 to 25), with no difference between corpora (p = .46). This total was used as our user satisfaction metric, as in (M\u00f6ller, 2005b; Walker et al., 2002; Walker et al., 2000) . 8 scription within a speech processing tool.",
                "cite_spans": [
                    {
                        "start": 346,
                        "end": 361,
                        "text": "(M\u00f6ller, 2005b;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 362,
                        "end": 382,
                        "text": "Walker et al., 2002;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 383,
                        "end": 403,
                        "text": "Walker et al., 2000)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 68,
                        "end": 77,
                        "text": "(Table 1)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Prediction Models of User Satisfaction",
                "sec_num": "4.1"
            },
            {
                "text": "6 In a preliminary agreement study, a second annotator labeled the entire SYN03 corpus for uncertain versus other, yielding 90% inter-annotator agreement (0.68 Kappa).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Models of User Satisfaction",
                "sec_num": "4.1"
            },
            {
                "text": "7 At each step, the parameter with the highest partial correlation with the target predicted variable, controlled for all previously entered parameters, is entered in the equation, until the remaining parameters do not increase R 2 by a significant amount or do not yield a significant model. 8 Researchers have also used average score (M\u00f6ller, 2005b; Walker et al., 1997) ; single survey statements can also be used (Walker et al., 1997) . We tried these variations, and our R 2 results were similar, indicating robustness across variations. We trained a user satisfaction model on each corpus, then tested it on the other corpus. In addition, we split each corpus in half randomly, then trained a user satisfaction model on each half, and tested it on the other half. We hypothesized that despite the decrease in the dataset size, models trained and tested in the same corpus would have higher generalizability than models trained on one corpus and tested on the other, due to the increased data homogeneity within each corpus, since each corpus used a different ITSPOKE version. As predictors, we used only the 13 system-generic and 12 tutoring-specific parameters that were available for all subjects.",
                "cite_spans": [
                    {
                        "start": 293,
                        "end": 294,
                        "text": "8",
                        "ref_id": null
                    },
                    {
                        "start": 336,
                        "end": 351,
                        "text": "(M\u00f6ller, 2005b;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 352,
                        "end": 372,
                        "text": "Walker et al., 1997)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 417,
                        "end": 438,
                        "text": "(Walker et al., 1997)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Models of User Satisfaction",
                "sec_num": "4.1"
            },
            {
                "text": "Results are shown in Table 2 . The first and fourth columns show the training and test data, respectively. The second and fifth columns show the user satisfaction variance accounted for by the trained model in the training and test data, respectively. The third column shows the parameters that were selected as predictors of user satisfaction in the trained model, ordered by degree of contribution 9 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 21,
                        "end": 28,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Prediction Models of User Satisfaction",
                "sec_num": "4.1"
            },
            {
                "text": "For example, as shown in the first row, the model trained on the PR05 corpus uses Total Incorrect student turns as the strongest predictor of user satisfaction, followed by Total Essays; these parameters are not highly correlated 10 . This model accounts for 27.4% of the user satisfaction variance in the PR05 corpus. When tested on the SYN05 corpus, it accounts for 0.1% of the user satisfaction variance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Models of User Satisfaction",
                "sec_num": "4.1"
            },
            {
                "text": "The low R 2 values for both training and testing in the first two rows show that neither corpus yields a very powerful model of user satisfaction even in the training corpus, and this model does not generalize very well to the test corpus. As hypothesized, training and testing in a single corpus yields higher R 2 values for testing, as shown in the last four rows, although these models still account for less than a quarter of the variance in the test data. The increased R 2 values for training here may indicate over-fitting. Across all 6 experiments, there is almost no overlap of parameters used to predict user satisfaction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Models of User Satisfaction",
                "sec_num": "4.1"
            },
            {
                "text": "Overall, these results show that this method of developing an ITSPOKE user satisfaction model is very sensitive to changes in training data; this was also found in other PARADISE applications (M\u00f6ller, 2005b; Walker et al., 2000) . Some applications have also reported similarly low R 2 values for testing both within a corpus (M\u00f6ller, 2005b) and also when a model trained on one system corpus is tested on another system corpus (Walker et al., 2000) . However, most PARADISE applications have yielded higher R 2 values than ours for training (M\u00f6ller, 2005b; Walker et al., 2002; Bonneau-Maynard et al., 2000; Walker et al., 2000) .",
                "cite_spans": [
                    {
                        "start": 192,
                        "end": 207,
                        "text": "(M\u00f6ller, 2005b;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 208,
                        "end": 228,
                        "text": "Walker et al., 2000)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 326,
                        "end": 341,
                        "text": "(M\u00f6ller, 2005b)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 428,
                        "end": 449,
                        "text": "(Walker et al., 2000)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 542,
                        "end": 557,
                        "text": "(M\u00f6ller, 2005b;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 558,
                        "end": 578,
                        "text": "Walker et al., 2002;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 579,
                        "end": 608,
                        "text": "Bonneau-Maynard et al., 2000;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 609,
                        "end": 629,
                        "text": "Walker et al., 2000)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Models of User Satisfaction",
                "sec_num": "4.1"
            },
            {
                "text": "We hypothesize two reasons for why our experiments did not yield more useful user satisfaction models. First, in prior PARADISE applications, users completed a survey after every dialogue with the system. In our case, subjects completed only one survey, at the end of the experiment (5 dialogues). It may be that this \"per-student\" unit for user satisfaction is too large to yield a very powerful model; i.e., this measure is not fine-grained enough. In addition, tutoring systems are not designed to maximize user satisfaction, but rather, their design goal is to maximize student learning. Moreover, prior tutoring studies have shown that certain features correlated with student learning do not have the same relationship to user satisfaction (e.g. are not predictive -Barry et al., 2004) . In fact, it may be that user satisfaction is not a metric of primary relevance in our application.",
                "cite_spans": [
                    {
                        "start": 771,
                        "end": 791,
                        "text": "-Barry et al., 2004)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Models of User Satisfaction",
                "sec_num": "4.1"
            },
            {
                "text": "As in other tutoring research, e.g. (Chi et al., 2001; , we use posttest score (POST) controlled for pretest score (PRE) as our target student learning prediction metric, such that POST is our target variable and PRE is always a parameter in the final model, although it is not necessarily the strongest predictor. 11 In this way, we measure student learning gains, not just final test score.",
                "cite_spans": [
                    {
                        "start": 36,
                        "end": 54,
                        "text": "(Chi et al., 2001;",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Models of Student Learning",
                "sec_num": "4.2"
            },
            {
                "text": "As shown in Table 1 , all subjects in our 3 corpora took the pretest and posttest. However, in order to compare our student learning models with our user satisfaction models, our first experiments predicting student learning used the same training and testing datasets that were used to predict user satisfaction in Section 4.1 (i.e. we ran the same experiments except we predicted POST controlled for PRE instead of user satisfaction). Results are shown in the first 6 rows of Table 3 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 12,
                        "end": 19,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 478,
                        "end": 485,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Prediction Models of Student Learning",
                "sec_num": "4.2"
            },
            {
                "text": "As shown, these 6 models all account for more than 50% of the POST variance in the training data. Furthermore, most of them account for close to, or more than, 50% of the POST variance in the test data. Although again we hypothesized that training and testing in one corpus would yield higher R 2 values for testing, this is not consistently the case; two of these models had the highest R 2 values for train-ing and the lowest R 2 values for testing (PR05:half1 and SYN05:half2), suggesting over-fitting.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Models of Student Learning",
                "sec_num": "4.2"
            },
            {
                "text": "Overall, these results show that this is an effective method of developing a prediction model of student learning for ITSPOKE, and is less sensitive to changes in training data than it was for user satisfaction. Moreover, there is more overlap in these 6 models of parameters that are useful for predicting student learning (besides PRE); \"Correctness\" parameters and dialogue communication and efficiency parameters appear to be most useful overall.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Models of Student Learning",
                "sec_num": "4.2"
            },
            {
                "text": "Our next 3 experiments investigated how our student learning models are impacted by including our third SYN03 corpus. Using the same 25 parameters, we trained a learning model on each set of two combined corpora, then tested it on the other corpus. Results are shown in the last 3 rows of Table 3 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 289,
                        "end": 296,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Prediction Models of Student Learning",
                "sec_num": "4.2"
            },
            {
                "text": "As shown, these models still account for close to, or more than, 50% of the student learning variance in the training data. 12 The model trained on PR05+SYN03 accounts for the most student learning variance in the test data, showing that the training data that is most similar to the test data will yield the highest generalizability. That is, the combined PR05+SYN03 corpora contains subjects drawn from the same subject pool (2005) as the SYN05 test data, and also contains subjects who interacted with the same tutor voice (synthesized) as this test data. In contrast, the combined PR05+SYN05 corpora did not overlap in user population with the SYN03 test data, and the combined SYN05+SYN03 corpora did not share a tutor voice with the PR05 test data. \"Correctness\" parameters ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Models of Student Learning",
                "sec_num": "4.2"
            },
            {
                "text": "Our final experiments investigated whether our 25 user affect parameters impacted the usefulness of the student learning models. As shown in Table 1 , all 20 subjects in our SYN03 corpus were annotated for user affect, and 17 subjects in our PR05 corpus were annotated for user affect. We trained a model of student learning on each of these datasets, then tested it on the other dataset. 13 As predictors, we included our 25 user affect parameters along with the 13 system-generic and 12 tutoring-specific interaction parameters. These results are shown in the first two rows of Table 4 . We also reran these experiments without user affect parameters, to gauge the impact of the user affect parameters. These results are shown in the last two rows of Table 4 . We hypothesized that user affect parameters would produce more useful models, because prior tutoring research has shown correlations between user affect and student learning (e.g. (Craig et al., 2004) ). As shown in the first two rows, user affect predictors appear in both models where these parameters were included. The models trained on SYN03 use pretest score and Total Time on Task as predictors; when affect parameters are included, \"Neutral Certainness\" is added as a predictor, which increases the R 2 values for both training and testing. However, the two models trained on PR05:17 show no predictor overlap (besides PRE). Moreover, the PR05:17 model that includes an affect predictor (Total Sequence of 2 Non-Frustrated/Angry turns) has the highest training R 2 , but the lowest testing R 2 value.",
                "cite_spans": [
                    {
                        "start": 943,
                        "end": 963,
                        "text": "(Craig et al., 2004)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 141,
                        "end": 148,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 580,
                        "end": 587,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 753,
                        "end": 760,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Adding User Affect Parameters",
                "sec_num": "4.3"
            },
            {
                "text": "13 As only 17 subjects have both user affect annotation and user surveys, there is not enough data currently to train and test a user satisfaction model including user affect parameters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adding User Affect Parameters",
                "sec_num": "4.3"
            },
            {
                "text": "Prior work in the tutoring community has focused on correlations of single features with learning; our results suggest that PARADISE is an effective method of extending these analyses. For the dialogue community, our results suggest that as spoken dialogue systems move into new applications not optimized for user satisfaction, such as tutoring systems, other measures of performance may be more relevant, and generic user affect parameters may be useful.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Current Directions",
                "sec_num": "5"
            },
            {
                "text": "Our experiments used many of the same systemgeneric parameters as prior studies, and some of these parameters predicted user satisfaction both in our models and in prior studies' models (e.g., system words/turn (Walker et al., 2002) ). Nonetheless, overall our user satisfaction models were not very powerful even for training, were sensitive to training data changes, showed little predictor overlap, and did not generalize well to test data. Our user satisfaction metric may not be fine-grained enough; in other PARADISE studies, users took a survey after every dialogue with the system. In addition, tutoring systems are not designed to maximize user satisfaction; their goal is to maximize student learning.",
                "cite_spans": [
                    {
                        "start": 211,
                        "end": 232,
                        "text": "(Walker et al., 2002)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Current Directions",
                "sec_num": "5"
            },
            {
                "text": "Our student learning models were much more powerful and less sensitive to changes in training data. Our best models explained over 50% of the student learning variance for training and testing, and both student \"Correctness\" parameters and dialogue communication and efficiency parameters were often useful predictors. User affect parameters further improved the predictive power of one student learning model for both training and testing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Current Directions",
                "sec_num": "5"
            },
            {
                "text": "Once our user affect annotations are complete, we can further investigate their use to predict student learning and user satisfaction. Unlike our other parameters, these annotations are not currently available, although they can be predicted automatically (Litman and Forbes-Riley, 2004b) , in our sys-tem. However, as in (Batliner et al., 2003) , our prior work suggests that linguistic features reflective of affective states can replace affect annotation (Forbes-Riley and Litman, 2005) . In future work we will use such features in our prediction models. Finally, we are also annotating tutor and student dialogue acts and automating the tutor act annotations; when complete we can investigate their usefulness in our prediction models; dialogue acts have also been used in prior PARADISE applications (M\u00f6ller, 2005a) .",
                "cite_spans": [
                    {
                        "start": 256,
                        "end": 288,
                        "text": "(Litman and Forbes-Riley, 2004b)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 322,
                        "end": 345,
                        "text": "(Batliner et al., 2003)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 476,
                        "end": 489,
                        "text": "Litman, 2005)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 806,
                        "end": 821,
                        "text": "(M\u00f6ller, 2005a)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Current Directions",
                "sec_num": "5"
            },
            {
                "text": "The user populations of the 2005 corpora and 2003 corpus are different, due to variation in year and recruitment method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "A Timeout occurs when ITSPOKE does not hear speech by a pre-specified time interval. A Rejection occurs when IT-SPOKE's confidence score for its ASR output is too low.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We use \"affect\" and \"affective state\" loosely to cover student emotions and attitudes believed to be relevant for tutoring.4 For a full list of affective states identified in these pilot studies, see(Litman and Forbes-Riley, 2004a).5 Annotations were performed from both audio and tran-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The ordering reflects the standardized coefficients (beta weights), which are computed in SPSS based on scaling of the input parameters, to enable an assessment of the predictive power of each parameter relative to the others in a model.10 Hereafter, predictors in a model are not highly correlated (R \u2265 .70) unless noted. Linear regression does not assume that predictors are independent, only that they are not highly correlated. Because correlations above R =.70 can affect the coefficients, deletion of redundant predictors may be advisable.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In SPSS, we regress two independent variable blocks. The first block contains PRE, which is regressed with POST using the \"enter\" method, forcing inclusion of PRE in the final model. The second block contains all remaining independent variables, which are regressed using the stepwise method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "However, INCORS/CORS and %INCORRECT are highly correlated in the SYN05+SYN03 model, showing redundancy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "NSF (0325034 & 0328431) supports this research. We thank Pam Jordan and the NLP Group.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Prosody-based automatic detection of annoyance and frustration in human-computer dialog",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Ang",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Dhillon",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Krupski",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Shriberg",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Stolcke",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. Int. Conf. Spoken Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Ang, R. Dhillon, A. Krupski, E.Shriberg, and A. Stol- cke. 2002. Prosody-based automatic detection of an- noyance and frustration in human-computer dialog. In Proc. Int. Conf. Spoken Language Processing (ICSLP).",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "How to find trouble in communication",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Batliner",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Fischer",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Huber",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Spilker",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Noth",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Speech Communication",
                "volume": "40",
                "issue": "",
                "pages": "117--143",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Batliner, K. Fischer, R. Huber, J. Spilker, and E. Noth. 2003. How to find trouble in communication. Speech Communication, 40:117-143.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Hedged responses and expressions of affect in human/human and human/computer tutorial interactions",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Bhatt",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Evens",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Argamon",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. 26th",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Bhatt, M. Evens, and S. Argamon. 2004. Hedged re- sponses and expressions of affect in human/human and human/computer tutorial interactions. In Proc. 26th",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Annual Meeting of the Cognitive Science Society",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Annual Meeting of the Cognitive Science Society.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Predictive performance of dialog systems",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bonneau-Maynard",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Devillers",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Rosset",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Bonneau-Maynard, L. Devillers, and S. Rosset. 2000. Predictive performance of dialog systems. In Proc.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Language Resources and Evaluation Conf. (LREC)",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Language Resources and Evaluation Conf. (LREC)).",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Learning from human tutoring",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "T H"
                        ],
                        "last": "Chi",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Siler",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Jeong",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Yamauchi",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "G"
                        ],
                        "last": "Hausmann",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Cognitive Science",
                "volume": "25",
                "issue": "",
                "pages": "471--533",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. T. H. Chi, S. A. Siler, H. Jeong, T. Yamauchi, and R. G. Hausmann. 2001. Learning from human tutor- ing. Cognitive Science, 25:471-533.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Affect and learning: An exploratory look into the role of affect in learning",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Craig",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Graesser",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Sullins",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Gholson",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Journal of Educational Media",
                "volume": "29",
                "issue": "",
                "pages": "241--250",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Craig, A. Graesser, J. Sullins, and B. Gholson. 2004. Affect and learning: An exploratory look into the role of affect in learning. Journal of Educational Media, 29:241-250.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Correlating student acoustic-prosodic profiles with student learning in spoken tutoring dialogues",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Forbes-Riley",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Litman",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. INTERSPEECH",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Forbes-Riley and D. Litman. 2005. Correlating stu- dent acoustic-prosodic profiles with student learning in spoken tutoring dialogues. In Proc. INTERSPEECH.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Comparing synthesized versus pre-recorded tutor speech in an intelligent tutoring spoken dialogue system",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Forbes-Riley",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Litman",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Silliman",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Tetreault",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. FLAIRS",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Forbes-Riley, D. Litman, S. Silliman, and J. Tetreault. 2006. Comparing synthesized versus pre-recorded tu- tor speech in an intelligent tutoring spoken dialogue system. In Proc. FLAIRS.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Combining acoustic and language information for emotion recognition",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "M"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Narayanan",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Pieraccini",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. ICSLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C.M. Lee, S. Narayanan, and R. Pieraccini. 2002. Com- bining acoustic and language information for emotion recognition. In Proc. ICSLP.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Annotating student emotional states in spoken tutoring dialogues",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Litman",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Forbes-Riley",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. SIGdial",
                "volume": "",
                "issue": "",
                "pages": "144--153",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Litman and K. Forbes-Riley. 2004a. Annotating stu- dent emotional states in spoken tutoring dialogues. In Proc. SIGdial, pages 144-153.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Predicting student emotions in computer-human tutoring dialogues",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Litman",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Forbes-Riley",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. ACL",
                "volume": "",
                "issue": "",
                "pages": "352--359",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Litman and K. Forbes-Riley. 2004b. Predicting stu- dent emotions in computer-human tutoring dialogues. In Proc. ACL, pages 352-359.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Spoken versus typed human and computer dialogue tutoring. Intnl Jnl of Artificial Intelligence in Education",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Litman",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Ros\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Forbes-Riley",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Vanlehn",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Bhembe",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Silliman",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Litman, C. Ros\u00e9, K. Forbes-Riley, K. VanLehn, D. Bhembe, and S. Silliman. 2006. Spoken versus typed human and computer dialogue tutoring. Intnl Jnl of Artificial Intelligence in Education, To Appear.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Parameters for quantifying the interactioin with spoken dialogue telephone services",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "M\u00f6ller",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. SIGdial",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. M\u00f6ller. 2005a. Parameters for quantifying the inter- actioin with spoken dialogue telephone services. In Proc. SIGdial.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Towards generic quality prediction models for spoken dialogue systems -a case study",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "M\u00f6ller",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. INTERSPEECH",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. M\u00f6ller. 2005b. Towards generic quality prediction models for spoken dialogue systems -a case study. In Proc. INTERSPEECH.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Generating tutorial feedback with affect",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Moore",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Porayska-Pomsta",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Varges",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Zinn",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. FLAIRS",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. D. Moore, K. Porayska-Pomsta, S. Varges, and C. Zinn. 2004. Generating tutorial feedback with affect. In Proc. FLAIRS.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Evaluating tutors that listen: An overview of Project LISTEN",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Mostow",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Aist",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Mostow and G. Aist. 2001. Evaluating tutors that lis- ten: An overview of Project LISTEN. In K. Forbus and P. Feltovich, editors, Smart Machines in Educa- tion.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Evaluating the effectiveness of SCoT: a Spoken Conversational Tutor",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Pon-Barry",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [
                            "Owen"
                        ],
                        "last": "Bratt",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Schultz",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Peters",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of ITS",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Pon-Barry, B. Clark, E. Owen Bratt, K. Schultz, and S. Peters. 2004. Evaluating the effectiveness of SCoT: a Spoken Conversational Tutor. In Proc. of ITS 2004",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Workshop on Dialogue-based Intelligent Tutoring Systems: State of the Art and New Research Directions",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Workshop on Dialogue-based Intelligent Tutoring Sys- tems: State of the Art and New Research Directions.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Humanmachine problem solving using spoken language systems (SLS): Factors affecting performance and user satisfaction",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Shriberg",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Wade",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Price",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Proc. DARPA Speech and NL Workshop",
                "volume": "",
                "issue": "",
                "pages": "49--54",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "E. Shriberg, E. Wade, and P. Price. 1992. Human- machine problem solving using spoken language sys- tems (SLS): Factors affecting performance and user satisfaction. In Proc. DARPA Speech and NL Work- shop, pages 49-54.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "The architecture of Why2-Atlas: A coach for qualitative physics essay writing",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Vanlehn",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "W"
                        ],
                        "last": "Jordan",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "P"
                        ],
                        "last": "Ros\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Bhembe",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "B\u00f6ttner",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Gaydos",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Makatchev",
                        "suffix": ""
                    },
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Pappuswamy",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ringenberg",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Roque",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Siler",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Srivastava",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Wilson",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. VanLehn, P. W. Jordan, C. P. Ros\u00e9, D. Bhembe, M. B\u00f6ttner, A. Gaydos, M. Makatchev, U. Pap- puswamy, M. Ringenberg, A. Roque, S. Siler, R. Sri- vastava, and R. Wilson. 2002. The architecture of Why2-Atlas: A coach for qualitative physics essay writing. In Proc. Intelligent Tutoring Systems.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "PARADISE: A framework for evaluating spoken dialogue agents",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Litman",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Kamm",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Abella",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proc. ACL/EACL",
                "volume": "",
                "issue": "",
                "pages": "271--280",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Walker, , D. Litman, C. Kamm, and A. Abella. 1997. PARADISE: A framework for evaluating spoken dia- logue agents. In Proc. ACL/EACL, pages 271-280.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Towards developing general models of usability with PARADISE",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Kamm",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Litman",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Natural Language Engineering",
                "volume": "6",
                "issue": "",
                "pages": "363--377",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Walker, C. Kamm, and D. Litman. 2000. Towards de- veloping general models of usability with PARADISE. Natural Language Engineering, 6:363-377.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "DARPA communicator: Crosssystem results for the 2001 evaluation",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Rudnicky",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Prasad",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Aberdeen",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Bratt",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Garofolo",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Hastie",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Pellom",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Potamianos",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Passonneau",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Sanders",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Seneff",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Stallard",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. Internat. Conf. on Spoken Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Walker, A. Rudnicky, R. Prasad, J. Aberdeen, E. Bratt, J. Garofolo, H. Hastie, A. Le, B. Pellom, A. Potami- anos, R. Passonneau, S. Roukos, G. Sanders, S. Seneff, and D. Stallard. 2002. DARPA communicator: Cross- system results for the 2001 evaluation. In Proc. Inter- nat. Conf. on Spoken Language Processing (ICSLP).",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Suppose a lightweight car and a massive truck hit a patch of frictionless ice and have a head-on collision. Upon which vehicle is the impact force greater? Which vehicle undergoes the greater change in its motion? Defend your answers.ESSAY UNDER DISCUSSION:The truck exerts an equal and opposite reaction force on the car. The car has a greater acceleration. The car will have a greater change in its motion. . . . excerpt at 28.8 minutes into dialogue. . .TUTOR60:So, when you add forces together, besides the magnitudes of the forces, what must you also consider? STUDENT57: direct-direction (ASR: the truck in direction) [correct, uncertain, non-frustrated/angry] TUTOR61: Yes.[...]  The vector sum of the forces acting on the body is also equal to the mass of the body multiplied by its acceleration. What is another term for the vector sum of forces acting on a body? STUDENT58: net force (ASR: net force) [correct, neutral, non-frustrated/angry] TUTOR62: That's super. Another term for the resultant force is the net force. In this relationship, what is the direction of the net force applied to a body and the direction of the body's acceleration? STUDENT59: same same same (ASR: seems same type seems)[correct, certain, frustrated/angry]",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF1": {
                "text": "Annotated PR05 Corpus Excerpt Task Ease: It was easy to learn from the tutor. TTS Performance: It was easy to understand the tutor. User Expertise: I knew what I could say or do at each point in the conversations with the tutor.",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF2": {
                "text": "The tutor worked the way I expected it to. Future Use: Based on my experience using the tutor to learn physics, I would like to use such a tutor regularly.ALMOST ALWAYS (5), OFTEN (4), SOMETIMES (3), RARELY (2), ALMOST NEVER (1)",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF3": {
                "text": "Figure 2: ITSPOKE Survey Questionnaire",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "TABREF1": {
                "type_str": "table",
                "content": "<table/>",
                "text": "Testing the Predictive Power of User Satisfaction Models",
                "html": null,
                "num": null
            },
            "TABREF3": {
                "type_str": "table",
                "content": "<table/>",
                "text": "Testing the Predictive Power of Student Learning Models with the Same Datasets or have an opposite relationship) (Pon",
                "html": null,
                "num": null
            },
            "TABREF5": {
                "type_str": "table",
                "content": "<table/>",
                "text": "Testing the Predictive Power of Student Learning Models with User Affect Parameters and dialogue communication and efficiency parameters are consistently used as predictors in all 9 of these student learning models.",
                "html": null,
                "num": null
            }
        }
    }
}