File size: 83,291 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
{
    "paper_id": "N06-1044",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T14:45:42.512391Z"
    },
    "title": "Estimation of Consistent Probabilistic Context-free Grammars",
    "authors": [
        {
            "first": "Mark-Jan",
            "middle": [],
            "last": "Nederhof",
            "suffix": "",
            "affiliation": {},
            "email": "markjan.nederhof@mpi.nl"
        },
        {
            "first": "Giorgio",
            "middle": [],
            "last": "Satta",
            "suffix": "",
            "affiliation": {},
            "email": "satta@dei.unipd.it"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We consider several empirical estimators for probabilistic context-free grammars, and show that the estimated grammars have the so-called consistency property, under the most general conditions. Our estimators include the widely applied expectation maximization method, used to estimate probabilistic context-free grammars on the basis of unannotated corpora. This solves a problem left open in the literature, since for this method the consistency property has been shown only under restrictive assumptions on the rules of the source grammar.",
    "pdf_parse": {
        "paper_id": "N06-1044",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We consider several empirical estimators for probabilistic context-free grammars, and show that the estimated grammars have the so-called consistency property, under the most general conditions. Our estimators include the widely applied expectation maximization method, used to estimate probabilistic context-free grammars on the basis of unannotated corpora. This solves a problem left open in the literature, since for this method the consistency property has been shown only under restrictive assumptions on the rules of the source grammar.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Probabilistic context-free grammars are one of the most widely used formalisms in current work in statistical natural language parsing and stochastic language modeling. An important property for a probabilistic context-free grammar is that it be consistent, that is, the grammar should assign probability of one to the set of all finite strings or parse trees that it generates. In other words, the grammar should not lose probability mass with strings or trees of infinite length.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Several methods for the empirical estimation of probabilistic context-free grammars have been proposed in the literature, based on the optimization of some function on the probabilities of the observed data, such as the maximization of the likelihood of a tree bank or a corpus of unannotated sentences. It has been conjectured in (Wetherell, 1980 ) that these methods always provide probabilistic context-free grammars with the consistency property. A first result in this direction was presented in (Chaudhuri et al., 1983) , by showing that a probabilistic contextfree grammar estimated by maximizing the likelihood of a sample of parse trees is always consistent.",
                "cite_spans": [
                    {
                        "start": 331,
                        "end": 347,
                        "text": "(Wetherell, 1980",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 501,
                        "end": 525,
                        "text": "(Chaudhuri et al., 1983)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In later work by (S\u00e1nchez and Bened\u00ed, 1997) and (Chi and Geman, 1998) , the result was independently extended to expectation maximization, which is an unsupervised method exploited to estimate probabilistic context-free grammars by finding local maxima of the likelihood of a sample of unannotated sentences. The proof in (S\u00e1nchez and Bened\u00ed, 1997) makes use of spectral analysis of expectation matrices, while the proof in (Chi and Geman, 1998 ) is based on a simpler counting argument. Both these proofs assume restrictions on the underlying context-free grammars. More specifically, in (Chi and Geman, 1998) empty rules and unary rules are not allowed, thus excluding infinite ambiguity, that is, the possibility that some string in the input sample has an infinite number of derivations in the grammar. The treatment of general form contextfree grammars has been an open problem so far.",
                "cite_spans": [
                    {
                        "start": 17,
                        "end": 43,
                        "text": "(S\u00e1nchez and Bened\u00ed, 1997)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 48,
                        "end": 69,
                        "text": "(Chi and Geman, 1998)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 322,
                        "end": 348,
                        "text": "(S\u00e1nchez and Bened\u00ed, 1997)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 424,
                        "end": 444,
                        "text": "(Chi and Geman, 1998",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 589,
                        "end": 610,
                        "text": "(Chi and Geman, 1998)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper we consider several estimation methods for probabilistic context-free grammars, and we show that the resulting grammars have the consistency property. Our proofs are applicable under the most general conditions, and our results also include the expectation maximization method, thus solving the open problem discussed above. We use an alternative proof technique with respect to pre-vious work, based on an already known renormalization construction for probabilistic context-free grammars, which has been used in the context of language modeling.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The structure of this paper is as follows. We provide some preliminary definitions in Section 2, followed in Section 3 by a brief overview of the estimation methods we investigate in this paper. In Section 4 we prove some properties of a renormalization technique for probabilistic context-free grammars, and use this property to show our main results in Section 5. Section 6 closes with some concluding remarks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper we use mostly standard notation, as for instance in (Hopcroft and Ullman, 1979) and (Booth and Thompson, 1973) , which we summarize below.",
                "cite_spans": [
                    {
                        "start": 66,
                        "end": 93,
                        "text": "(Hopcroft and Ullman, 1979)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 98,
                        "end": 124,
                        "text": "(Booth and Thompson, 1973)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "A context-free grammar (CFG) is a 4-tuple G = (N, \u03a3, S, R) where N and \u03a3 are finite disjoint sets of nonterminal and terminal symbols, respectively, S \u2208 N is the start symbol and R is a finite set of rules. Each rule has the form A \u2192 \u03b1, where A \u2208 N and \u03b1 \u2208 (\u03a3 \u222a N ) * . We write V for set \u03a3 \u222a N .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "Each CFG G is associated with a left-most derive relation \u21d2, defined on triples consisting of two strings \u03b3, \u03b4 \u2208 V * and a rule \u03c0 \u2208 R. We write \u03b3 \u03c0 \u21d2 \u03b4 if and only if \u03b3 = uA\u03b3 and \u03b4 = u\u03b1\u03b3 , for some u \u2208 \u03a3 * , \u03b3 \u2208 V * , and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "\u03c0 = (A \u2192 \u03b1). A left- most derivation for G is a string d = \u03c0 1 \u2022 \u2022 \u2022 \u03c0 m , m \u2265 0, such that \u03b3 0 \u03c0 1 \u21d2 \u03b3 1 \u03c0 2 \u21d2 \u2022 \u2022 \u2022 \u03c0m \u21d2 \u03b3 m , for some \u03b3 0 , . . . , \u03b3 m \u2208 V * ; d = \u03b5 (",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "where \u03b5 denotes the empty string) is also a left-most derivation. In the remainder of this paper, we will let the term derivation always refer to left-most derivation. If",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "\u03b3 0 \u03c0 1 \u21d2 \u2022 \u2022 \u2022 \u03c0m \u21d2 \u03b3 m for some \u03b3 0 , . . . , \u03b3 m \u2208 V * , then we say that d = \u03c0 1 \u2022 \u2022 \u2022 \u03c0 m derives \u03b3 m from \u03b3 0 and we write \u03b3 0 d \u21d2 \u03b3 m ; d = \u03b5 derives any \u03b3 0 \u2208 V * from itself. A (left-most) derivation d such that S d \u21d2 w, w \u2208 \u03a3 * ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "is called a complete derivation. If d is a complete derivation, we write y(d) to denote the (unique) string w \u2208 \u03a3 * such that S d \u21d2 w. We define D(G) to be the set of all complete derivations for G. The language generated by G is the set of all strings derived by complete derivations, i.e.,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "L(G) = {y(d) | d \u2208 D(G)}. It is well-known that",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "there is a one-to-one correspondence between complete derivations and parse trees for strings in L(G).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "For X \u2208 V and \u03b1 \u2208 V * , we write f (X, \u03b1) to denote the number of occurrences of X in \u03b1. For (A \u2192 \u03b1) \u2208 R and a derivation d, f (A \u2192 \u03b1, d) denotes the number of occurrences of A \u2192 \u03b1 in d.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "We let f (A, d) = \u03b1 f (A \u2192 \u03b1, d).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "A probabilistic CFG (PCFG) is a pair G = (G, p G ), where G is a CFG and p G is a function from R to real numbers in the interval [0, 1] . We say that G is proper if, for every A \u2208 N , we have",
                "cite_spans": [
                    {
                        "start": 130,
                        "end": 133,
                        "text": "[0,",
                        "ref_id": null
                    },
                    {
                        "start": 134,
                        "end": 136,
                        "text": "1]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "A\u2192\u03b1 p G (A \u2192 \u03b1) = 1.",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "Function p G can be used to assign probabilities to derivations of the underlying CFG G, in the following way.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "For d = \u03c0 1 \u2022 \u2022 \u2022 \u03c0 m \u2208 R * , m \u2265 0, we define p G (d) = m i=1 p G (\u03c0 i ).",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "Note that p G (\u03b5) = 1. The probability of a string w \u2208 \u03a3 * is defined as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p G (w) = y(d)=w p G (d).",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "A PCFG is consistent if",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "w p G (w) = 1.",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "Consistency implies that the PCFG defines a probability distribution over both sets D(G) and L(G). If a PCFG is proper, then consistency means that no probability mass is lost in derivations of infinite length. All PCFGs in this paper are implicitly assumed to be proper, unless otherwise stated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "2"
            },
            {
                "text": "In this section we give a brief overview of some estimation methods for PCFGs. These methods will be later investigated to show that they always provide consistent PCFGs. In natural language processing applications, estimation of a PCFG is usually carried out on the basis of a tree bank, which in this paper we assume to be a sample, that is, a finite multiset, of complete derivations. Let D be such a sample, and let D be the underlying set of derivations. For d \u2208 D, we let f (d, D) be the multiplicity of d in D, that is, the number of occurrences of d in D. We define",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "f (A \u2192 \u03b1, D) = d\u2208D f (d, D) \u2022 f (A \u2192 \u03b1, d),",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "let f (A, D) = \u03b1 f (A \u2192 \u03b1, D).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "Consider a CFG G = (N, \u03a3, R, S) defined by all and only the nonterminals, terminals and rules observed in D. The criterion of maximum likelihood estimation (MLE) prescribes the construction of a PCFG",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "G = (G, p G ) such that p G maximizes the likelihood of D, defined as p G (D) = d\u2208D p G (d) f (d,D) ,",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "subject to the properness conditions \u03b1 p G (A \u2192 \u03b1) = 1 for each A \u2208 N . The maximization problem above has a unique solution, provided by the estimator (see for instance (Chi and Geman, 1998) )",
                "cite_spans": [
                    {
                        "start": 170,
                        "end": 191,
                        "text": "(Chi and Geman, 1998)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p G (A \u2192 \u03b1) = f (A \u2192 \u03b1, D) f (A, D) .",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "We refer to this as the supervised MLE method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "In applications in which a tree bank is not available, one might still use the MLE criterion to train a PCFG in an unsupervised way, on the basis of a sample of unannotated sentences, also called a corpus. Let us call C such a sample and C the underlying set of sentences. For w \u2208 C, we let f (w, C) be the multiplicity of w in C.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "Assume a CFG G = (N, \u03a3, R, S) that is able to generate all of the sentences in C, and possibly more. The MLE criterion prescribes the construction of a PCFG G = (G, p G ) such that p G maximizes the likelihood of C, defined as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p G (C) = w\u2208C p G (w) f (w,C) ,",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "subject to the properness conditions as in the supervised case above. The above maximization problem provides a system of |R| nonlinear equations (see (Chi and Geman, 1998) )",
                "cite_spans": [
                    {
                        "start": 151,
                        "end": 172,
                        "text": "(Chi and Geman, 1998)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p G (A \u2192 \u03b1) = w\u2208C f (w, C) \u2022 E p G (d | w) f (A \u2192 \u03b1, d) w\u2208C f (w, C) \u2022 E p G (d | w) f (A, d) ,",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "where E p denotes an expectation computed under distribution p, and p G (d | w) is the probability of derivation d conditioned by sentence w (so that",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "p G (d | w) > 0 only if y(d) = w)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": ". The solution to the above system is not unique, because of the nonlinearity. Furthermore, each solution of (9) identifies a point where the curve in (8) has partial derivatives of zero, but this does not necessarily correspond to a local maximum, let alone an absolute maximum. (A point with partial derivatives of zero that is not a local maximum could be a local minimum or even a so-called saddle point.) In practice, this system is typically solved by means of an iterative algorithm called inside/outside (Charniak, 1993) , which implements the expectation maximization (EM) method (Dempster et al., 1977) . Starting with an initial function p G that probabilistically extends G, a so-called growth transformation is computed, defined as",
                "cite_spans": [
                    {
                        "start": 512,
                        "end": 528,
                        "text": "(Charniak, 1993)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 589,
                        "end": 612,
                        "text": "(Dempster et al., 1977)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "p G (A \u2192 \u03b1) = w\u2208C f (w, C)\u2022 y(d)=w p G (d) p G (w) \u2022f (A \u2192 \u03b1, d) w\u2208C f (w, C)\u2022 y(d)=w p G (d) p G (w) \u2022f (A, d)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": ". 10Following (Baum, 1972) , one can show that p G (C) \u2265 p G (C). Thus, by iterating the growth transformation above, we are guaranteed to reach a local maximum for (8), or possibly a saddle point. We refer to this as the unsupervised MLE method. We now discuss a third estimation method for PCFGs, which was proposed in (Corazza and Satta, 2006) . This method can be viewed as a generalization of the supervised MLE method to probability distributions defined over infinite sets of complete derivations. Let D be an infinite set of complete derivations using nonterminal symbols in N , start symbol S \u2208 N and terminal symbols in \u03a3. We assume that the set of rules that are observed in D is drawn from some finite set R. Let p D be a probability distribution defined over D, that is, a function from set D to interval",
                "cite_spans": [
                    {
                        "start": 14,
                        "end": 26,
                        "text": "(Baum, 1972)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 321,
                        "end": 346,
                        "text": "(Corazza and Satta, 2006)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "[0, 1] such that d\u2208D p D (d) = 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "Consider the CFG G = (N, \u03a3, R, S). Note that D \u2286 D(G). We wish to extend G to some PCFG G = (G, p G ) in such a way that p D is approximated by p G (viewed as a distribution over complete derivations) as well as possible according to some criterion. One possible criterion is minimization of the cross-entropy between p D and p G , defined as the expectation, under distribution p D , of the information of the derivations in D computed under distribution p G , that is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "H(p D || p G ) = E p D log 1 p G (d) = \u2212 d\u2208D p D (d) \u2022 log p G (d). (11)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "We thus want to assign to the parameters p G (A \u2192 \u03b1), A \u2192 \u03b1 \u2208 R, the values that minimize (11), subject to the conditions \u03b1 p G (A \u2192 \u03b1) = 1 for each A \u2208 N . Note that minimization of the cross-entropy above is equivalent to minimization of the Kullback-Leibler distance between p D and p G . Also note that the likelihood of an infinite set of derivations would always be zero and therefore cannot be considered here.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "The solution to the above minimization problem provides the estimator",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p G (A \u2192 \u03b1) = E p D f (A \u2192 \u03b1, d) E p D f (A, d) .",
                        "eq_num": "(12)"
                    }
                ],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "A proof of this result appears in (Corazza and Satta, 2006) , and is briefly summarized in Appendix A, in order to make this paper self-contained. We call the above estimator the cross-entropy minimization method. The cross-entropy minimization method can be viewed as a generalization of the supervised MLE method in (7), as shown in what follows. Let D and D be defined as for the supervised MLE method. We define a distribution over D as",
                "cite_spans": [
                    {
                        "start": 34,
                        "end": 59,
                        "text": "(Corazza and Satta, 2006)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p D (d) = f (d, D) |D| .",
                        "eq_num": "(13)"
                    }
                ],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "Distribution p D is usually called the empirical distribution associated with D. Applying the estimator in (12) to p D , we obtain",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p G (A \u2192 \u03b1) = = d\u2208D p D (d) \u2022 f (A \u2192 \u03b1, d) d\u2208D p D (d) \u2022 f (A, d) = d\u2208D f (d,D) |D| \u2022 f (A \u2192 \u03b1, d) d\u2208D f (d,D) |D| \u2022 f (A, d) = d\u2208D f (d, D) \u2022 f (A \u2192 \u03b1, d) d\u2208D f (d, D) \u2022 f (A, d) .",
                        "eq_num": "(14)"
                    }
                ],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "This is the supervised MLE estimator in (7). This reminds us of the well-known fact that maximizing the likelihood of a (finite) sample through a PCFG distribution amounts to minimizing the cross-entropy between the empirical distribution of the sample and the PCFG distribution itself.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimation of PCFGs",
                "sec_num": "3"
            },
            {
                "text": "In this section we recall a renormalization technique for PCFGs that was used before in (Abney et al., 1999) , (Chi, 1999) and (Nederhof and Satta, 2003) for different purposes, and is exploited in the next section to prove our main results. In the remainder of this section, we assume a fixed, not necessarily proper PCFG G = (G, p G ), with G = (N, \u03a3, S, R).",
                "cite_spans": [
                    {
                        "start": 88,
                        "end": 108,
                        "text": "(Abney et al., 1999)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 111,
                        "end": 122,
                        "text": "(Chi, 1999)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 127,
                        "end": 153,
                        "text": "(Nederhof and Satta, 2003)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Renormalization",
                "sec_num": "4"
            },
            {
                "text": "We define the renormalization of G as the PCFG",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Renormalization",
                "sec_num": "4"
            },
            {
                "text": "R(G) = (G, p R ) with p R specified by p R (A \u2192 \u03b1) = p G (A \u2192 \u03b1) \u2022 d,w p G (\u03b1 d \u21d2 w) d,w p G (A d \u21d2 w)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Renormalization",
                "sec_num": "4"
            },
            {
                "text": ". 15It is not difficult to see that R(G) is a proper PCFG. We now show an important property of R(G), discussed before in (Nederhof and Satta, 2003) in the context of so-called weighted context-free grammars.",
                "cite_spans": [
                    {
                        "start": 122,
                        "end": 148,
                        "text": "(Nederhof and Satta, 2003)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Renormalization",
                "sec_num": "4"
            },
            {
                "text": "A d \u21d2 w, A \u2208 N and w \u2208 \u03a3 * , we have p R (A d \u21d2 w) = p G (A d \u21d2 w) d ,w p G (A d \u21d2 w )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": ". 16Proof. The proof is by induction on the length of d, written |d|. If |d| = 1 we must have d = (A \u2192 w), and thus p R (d) = p R (A \u2192 w). In this case, the statement of the lemma directly follows from (15). Assume now |d| > 1 and let \u03c0 = (A \u2192 \u03b1) be the first rule used in d. Note that there must be at least one nonterminal symbol in \u03b1. We can then write \u03b1 as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "u 0 A 1 u 1 A 2 \u2022 \u2022 \u2022 u q\u22121 A q u q , for q \u2265 1, A i \u2208 N , 1 \u2264 i \u2264 q, and u j \u2208 \u03a3 * , 0 \u2264 j \u2264 q.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "In words, A 1 , . . . , A q are all of the occurrences of nonterminals in \u03b1, as they appear from left to right. Consequently, we can write d in the form",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "d = \u03c0 \u2022 d 1 \u2022 \u2022 \u2022 d q for some derivations d i , 1 \u2264 i \u2264 q, with A i d i \u21d2 w i , |d i | \u2265 1 and with w = u 0 w 1 u 1 w 2 \u2022 \u2022 \u2022 u q\u22121 w q u q . Below we use the fact that p R (u j \u03b5 \u21d2 u j ) = p G (u j \u03b5",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "\u21d2 u j ) = 1 for each j with 0 \u2264 j \u2264 q, and further using the definition of p R and the inductive hypothesis, we can write",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p R (A d \u21d2 w) = = p R (A \u2192 \u03b1) \u2022 q i=1 p R (A i d i \u21d2 w i ) = p G (A \u2192 \u03b1) \u2022 d ,w p G (\u03b1 d \u21d2 w ) d ,w p G (A d \u21d2 w ) \u2022 \u2022 q i=1 p R (A i d i \u21d2 w i ) = p G (A \u2192 \u03b1) \u2022 d ,w p G (\u03b1 d \u21d2 w ) d ,w p G (A d \u21d2 w ) \u2022 \u2022 q i=1 p G (A i d i \u21d2 w i ) d ,w p G (A i d \u21d2 w ) = p G (A \u2192 \u03b1) \u2022 d ,w p G (\u03b1 d \u21d2 w ) d ,w p G (A d \u21d2 w ) \u2022 \u2022 q i=1 p G (A i d i \u21d2 w i ) q i=1 d ,w p G (A i d \u21d2 w ) = p G (A \u2192 \u03b1) \u2022 d ,w p G (\u03b1 d \u21d2 w ) d ,w p G (A d \u21d2 w ) \u2022 \u2022 q i=1 p G (A i d i \u21d2 w i ) d ,w p G (\u03b1 d \u21d2 w ) = p G (A \u2192 \u03b1) \u2022 q i=1 p G (A i d i \u21d2 w i ) d ,w p G (A d \u21d2 w ) \u2022 = p G (A d \u21d2 w) d ,w p G (A d \u21d2 w ) .",
                        "eq_num": "(17)"
                    }
                ],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "As an easy corollary of Lemma 1, we have that R(G) is a consistent PCFG, as we can write",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "d,w p R (S d \u21d2 w) = = d,w p G (S d \u21d2 w) d ,w p G (S d \u21d2 w ) = d,w p G (S d \u21d2 w) d ,w p G (S d \u21d2 w ) = 1.",
                        "eq_num": "(18)"
                    }
                ],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "5 Consistency",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "In this section we prove the main results of this paper, namely that all of the estimation methods discussed in Section 3 always provide consistent PCFGs. We start with a technical lemma, central to our results, showing that a PCFG that minimizes the cross-entropy with a distribution over any set of derivations must be consistent.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "Lemma 2 Let G = (G, p G ) be a proper PCFG and let p D be a probability distribution defined over some set",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "D \u2286 D(G). If G minimizes function H(p D || p G ), then G is consistent.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "Proof. Let G = (N, \u03a3, S, R), and assume that G is not consistent. We establish a contradiction. Since G is not consistent, we must",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "have d,w p G (S d \u21d2 w) < 1. Let then R(G) = (G, p R ) be the renormalization of G, defined as in (15). For any derivation S d \u21d2 w, w \u2208 \u03a3 * , with d in D,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "we can use Lemma 1 and write",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p R (S d \u21d2 w) = = 1 d ,w p G (S d \u21d2 w ) \u2022 p G (S d \u21d2 w) > p G (S d \u21d2 w).",
                        "eq_num": "(19)"
                    }
                ],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "In words, every complete derivation d in D has a probability in R(G) that is strictly greater than in G. But this means",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "H(p D || p R ) < H(p D || p G )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": ", against our hypothesis. Therefore, G is consistent and p G is a probability distribution over set D(G).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "Thus function H(p D || p G ) can be interpreted as the cross-entropy. (Observe that in the statement of the lemma we have avoided the term 'cross-entropy', since cross-entropies are only defined for probability distributions.) Lemma 2 directly implies that the cross-entropy minimization method in (12) always provides a consistent PCFG, since it minimizes cross-entropy for a distribution defined over a subset of D(G). We have already seen in Section 3 that the supervised MLE method is a special case of the cross-entropy minimization method. Thus we can also conclude that a PCFG trained with the supervised MLE method is always consistent. This provides an alternative proof of a property that was first shown in (Chaudhuri et al., 1983) , as discussed in Section 1.",
                "cite_spans": [
                    {
                        "start": 718,
                        "end": 742,
                        "text": "(Chaudhuri et al., 1983)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "We now prove the same result for the unsupervised MLE method, without any restrictive assumption on the rules of our CFGs. This solves a problem that was left open in the literature (Chi and Geman, 1998) ; see again Section 1 for discussion. Let C and C be defined as in Section 3. We define the empirical distribution of C as",
                "cite_spans": [
                    {
                        "start": 182,
                        "end": 203,
                        "text": "(Chi and Geman, 1998)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p C (w) = f (w, C) |C| .",
                        "eq_num": "(20)"
                    }
                ],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "Let G = (N, \u03a3, S, R) be a CFG such that C \u2286 L(G). Let D(C) be the set of all complete derivations for G that generate sentences in C, that is,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "D(C) = {d | d \u2208 D(G), y(d) \u2208 C}.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "Further, assume some probabilistic extension",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "G = (G, p G ) of G, such that p G (d) > 0 for every d \u2208 D(C). We define a distribution over D(C) by p D(C) (d) = p C (y(d)) \u2022 p G (d) p G (y(d))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": ". 21It is not difficult to verify that",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "d\u2208D(C) p D(C) (d) = 1.",
                        "eq_num": "(22)"
                    }
                ],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "We now apply to G the estimator in (12), in order to obtain a new PCFG\u011c = (G,p G ) that minimizes the cross-entropy between p D(C) andp G . According to Lemma 2, we have that\u011c is a consistent PCFG. Distributionp G is specified b\u0177",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "p G (A \u2192 \u03b1) = = d\u2208D(C) p D(C) (d)\u2022f (A \u2192 \u03b1, d) d\u2208D(C) p D(C) (d)\u2022f (A, d) = d\u2208D(C) f (y(d),C) |C| \u2022 p G (d) p G (y(d)) \u2022f (A \u2192 \u03b1, d) d\u2208D(C) f (y(d),C) |C| \u2022 p G (d) p G (y(d)) \u2022f (A, d) = w\u2208C f (w, C)\u2022 y(d)=w p G (d) p G (w) \u2022f (A \u2192 \u03b1, d) w\u2208C f (w, C)\u2022 y(d)=w p G (d) p G (w) \u2022f (A, d) = w\u2208C f (w, C)\u2022E p G (d | w) f (A \u2192 \u03b1, d) w\u2208C f (w, C)\u2022E p G (d | w) f (A, d)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": ".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "Since distribution p G was arbitrarily chosen, subject to the only restriction that p G (d) > 0 for every d \u2208 D(C), we have that (23) is the growth estimator (10) already discussed in Section 3. In fact, for each w \u2208 L(G) and d \u2208 D(G), we have w) . We conclude with the desired result, namely that a general form PCFG obtained at any iteration of the EM method for the unsupervised MLE is always consistent.",
                "cite_spans": [
                    {
                        "start": 244,
                        "end": 246,
                        "text": "w)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "p G (d | w) = p G (d) p G (",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lemma 1 For each derivation d with",
                "sec_num": null
            },
            {
                "text": "In this paper we have investigated a number of methods for the empirical estimation of probabilistic context-free grammars, and have shown that the resulting grammars have the so-called consistency property. This property guarantees that all the probability mass of the grammar is used for the finite strings it derives. Thus if the grammar is used in combination with other probabilistic models, as for instance in a speech processing system, consistency allows us to combine or compare scores from different modules in a sound way.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "6"
            },
            {
                "text": "To obtain our results, we have used a novel proof technique that exploits an already known construction for the renormalization of probabilistic contextfree grammars. Our proof technique seems more intuitive than arguments previously used in the literature to prove the consistency property, based on counting arguments or on spectral analysis. It is not difficult to see that our proof technique can also be used with probabilistic rewriting formalisms whose underlying derivations can be characterized by means of context-free rewriting. This is for instance the case with probabilistic tree-adjoining grammars (Schabes, 1992; Sarkar, 1998) , for which consistency results have not yet been shown in the literature.",
                "cite_spans": [
                    {
                        "start": 613,
                        "end": 628,
                        "text": "(Schabes, 1992;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 629,
                        "end": 642,
                        "text": "Sarkar, 1998)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "6"
            },
            {
                "text": "In order to make this paper self-contained, we sketch a proof of the claim in Section 3 that the estimator in (12) minimizes the cross entropy in (11). A full proof appears in (Corazza and Satta, 2006) .",
                "cite_spans": [
                    {
                        "start": 176,
                        "end": 201,
                        "text": "(Corazza and Satta, 2006)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "Let D, p D and G = (N, \u03a3, R, S) be defined as in Section 3. We want to find a proper PCFG G = (G, p G ) such that the cross-entropy H(p D || p G ) is minimal. We use Lagrange multipliers \u03bb A for each A \u2208 N and define the form",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2207 = A\u2208N \u03bb A \u2022 ( \u03b1 p G (A \u2192 \u03b1) \u2212 1) + \u2212 d\u2208D p D (d) \u2022 log p G (d).",
                        "eq_num": "(24)"
                    }
                ],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "We now consider all the partial derivatives of \u2207. For each A \u2208 N we have",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2202\u2207 \u2202\u03bb A = \u03b1 p G (A \u2192 \u03b1) \u2212 1.",
                        "eq_num": "(25)"
                    }
                ],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "For each (A \u2192 \u03b1) \u2208 R we have",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2202\u2207 \u2202p G (A \u2192 \u03b1) = = \u03bb A \u2212 \u2202 \u2202p G (A \u2192 \u03b1) d\u2208D p D (d) \u2022 log p G (d) = \u03bb A \u2212 d\u2208D p D (d) \u2022 \u2202 \u2202p G (A \u2192 \u03b1) log p G (d) = \u03bb A \u2212 d\u2208D p D (d) \u2022 \u2202 \u2202p G (A \u2192 \u03b1) log (B\u2192\u03b2)\u2208R p G (B \u2192 \u03b2) f (B\u2192\u03b2,d) = \u03bb A \u2212 d\u2208D p D (d) \u2022 \u2202 \u2202p G (A \u2192 \u03b1) (B\u2192\u03b2)\u2208R f (B \u2192 \u03b2, d) \u2022 log p G (B \u2192 \u03b2) = \u03bb A \u2212 d\u2208D p D (d) \u2022 (B\u2192\u03b2)\u2208R f (B \u2192 \u03b2, d) \u2022 \u2202 \u2202p G (A \u2192 \u03b1) log p G (B \u2192 \u03b2) = \u03bb A \u2212 d\u2208D p D (d) \u2022 f (A \u2192 \u03b1, d) \u2022 \u2022 1 ln(2) \u2022 1 p G (A \u2192 \u03b1) = \u03bb A \u2212 1 ln(2) \u2022 1 p G (A \u2192 \u03b1) \u2022 \u2022 d\u2208D p D (d) \u2022 f (A \u2192 \u03b1, d) = \u03bb A \u2212 1 ln(2) \u2022 1 p G (A \u2192 \u03b1) \u2022 \u2022 E p D f (A \u2192 \u03b1, d).",
                        "eq_num": "(26)"
                    }
                ],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "By setting to zero all of the above partial derivatives, we obtain a system of |N |+|R| equations, which we must solve. From \u2202\u2207 \u2202p G (A\u2192\u03b1) = 0 we obtain",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03bb A \u2022 ln(2) \u2022 p G (A \u2192 \u03b1) = E p D f (A \u2192 \u03b1, d).",
                        "eq_num": "(27)"
                    }
                ],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "We sum over all strings \u03b1 such that (A \u2192 \u03b1) \u2208 R, deriving",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03bb A \u2022 ln(2) \u2022 \u03b1 p G (A \u2192 \u03b1) = = \u03b1 E p D f (A \u2192 \u03b1, d) = \u03b1 d\u2208D p D (d) \u2022 f (A \u2192 \u03b1, d) = d\u2208D p D (d) \u2022 \u03b1 f (A \u2192 \u03b1, d) = d\u2208D p D (d) \u2022 f (A, d) = E p D f (A, d).",
                        "eq_num": "(28)"
                    }
                ],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "From each equation \u2202\u2207 \u2202\u03bb A = 0 we obtain \u03b1 p G (A \u2192 \u03b1) = 1 for each A \u2208 N (our original constraints). Combining this with (28) we obtain",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03bb A \u2022 ln(2) = E p D f (A, d).",
                        "eq_num": "(29)"
                    }
                ],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "Replacing 29into (27) we obtain, for every rule",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "(A \u2192 \u03b1) \u2208 R, p G (A \u2192 \u03b1) = E p D f (A \u2192 \u03b1, d) E p D f (A, d) .",
                        "eq_num": "(30)"
                    }
                ],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            },
            {
                "text": "This is the estimator introduced in Section 3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Cross-entropy minimization",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Relating probabilistic grammars and automata",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Abney",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Mcallester",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "37th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference",
                "volume": "",
                "issue": "",
                "pages": "542--549",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abney, D. McAllester, and F. Pereira. 1999. Relating probabilistic grammars and automata. In 37th Annual Meeting of the Association for Computational Linguis- tics, Proceedings of the Conference, pages 542-549, Maryland, USA, June.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "An inequality and associated maximization technique in statistical estimations of probabilistic functions of Markov processes",
                "authors": [
                    {
                        "first": "L",
                        "middle": [
                            "E"
                        ],
                        "last": "Baum",
                        "suffix": ""
                    }
                ],
                "year": 1972,
                "venue": "Inequalities",
                "volume": "3",
                "issue": "",
                "pages": "1--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. E. Baum. 1972. An inequality and associated max- imization technique in statistical estimations of prob- abilistic functions of Markov processes. Inequalities, 3:1-8.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Applying probabilistic measures to abstract languages",
                "authors": [
                    {
                        "first": "T",
                        "middle": [
                            "L"
                        ],
                        "last": "Booth",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "A"
                        ],
                        "last": "Thompson",
                        "suffix": ""
                    }
                ],
                "year": 1973,
                "venue": "IEEE Transactions on Computers, C",
                "volume": "22",
                "issue": "5",
                "pages": "442--450",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T.L. Booth and R.A. Thompson. 1973. Applying prob- abilistic measures to abstract languages. IEEE Trans- actions on Computers, C-22(5):442-450, May.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Statistical Language Learning",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Charniak",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "E. Charniak. 1993. Statistical Language Learning. MIT Press.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Solution of an open problem on probabilistic grammars",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Chaudhuri",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Pham",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [
                            "N"
                        ],
                        "last": "Garcia",
                        "suffix": ""
                    }
                ],
                "year": 1983,
                "venue": "IEEE Transactions on Computers",
                "volume": "32",
                "issue": "8",
                "pages": "748--750",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Chaudhuri, S. Pham, and O. N. Garcia. 1983. Solution of an open problem on probabilistic grammars. IEEE Transactions on Computers, 32(8):748-750.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Estimation of probabilistic context-free grammars",
                "authors": [
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Chi",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Geman",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Computational Linguistics",
                "volume": "24",
                "issue": "2",
                "pages": "299--305",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Z. Chi and S. Geman. 1998. Estimation of probabilis- tic context-free grammars. Computational Linguistics, 24(2):299-305.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Statistical properties of probabilistic context-free grammars",
                "authors": [
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Chi",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Computational Linguistics",
                "volume": "25",
                "issue": "1",
                "pages": "131--160",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Z. Chi. 1999. Statistical properties of probabilistic context-free grammars. Computational Linguistics, 25(1):131-160.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Cross-entropy and estimation of probabilistic context-free grammars",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Corazza",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Satta",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of HLT/NAACL 2006 Conference (this volume)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Corazza and G. Satta. 2006. Cross-entropy and es- timation of probabilistic context-free grammars. In Proc. of HLT/NAACL 2006 Conference (this volume), New York.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Maximum likelihood from incomplete data via the EM algorithm",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "P"
                        ],
                        "last": "Dempster",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [
                            "M"
                        ],
                        "last": "Laird",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "B"
                        ],
                        "last": "Rubin",
                        "suffix": ""
                    }
                ],
                "year": 1977,
                "venue": "Journal of the Royal Statistical Society, B",
                "volume": "39",
                "issue": "",
                "pages": "1--38",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B, 39:1-38.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Introduction to Automata Theory, Languages, and Computation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "E"
                        ],
                        "last": "Hopcroft",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Ullman",
                        "suffix": ""
                    }
                ],
                "year": 1979,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J.E. Hopcroft and J.D. Ullman. 1979. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Probabilistic parsing as intersection",
                "authors": [
                    {
                        "first": "M.-J",
                        "middle": [],
                        "last": "Nederhof",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Satta",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "8th International Workshop on Parsing Technologies",
                "volume": "",
                "issue": "",
                "pages": "137--148",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M.-J. Nederhof and G. Satta. 2003. Probabilistic pars- ing as intersection. In 8th International Workshop on Parsing Technologies, pages 137-148, LORIA, Nancy, France, April.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Consistency of stochastic context-free grammars from probabilistic estimation based on growth transformations",
                "authors": [
                    {
                        "first": "J.-A",
                        "middle": [],
                        "last": "S\u00e1nchez",
                        "suffix": ""
                    },
                    {
                        "first": "J.-M",
                        "middle": [],
                        "last": "Bened\u00ed",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "IEEE Transactions on Pattern Analysis and Machine Intelligence",
                "volume": "19",
                "issue": "9",
                "pages": "1052--1055",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J.-A. S\u00e1nchez and J.-M. Bened\u00ed. 1997. Consistency of stochastic context-free grammars from probabilis- tic estimation based on growth transformations. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 19(9):1052-1055, September.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Conditions on consistency of probabilistic tree adjoining grammars",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Sarkar",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Proc. of the 36 th ACL",
                "volume": "",
                "issue": "",
                "pages": "1164--1170",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Sarkar. 1998. Conditions on consistency of proba- bilistic tree adjoining grammars. In Proc. of the 36 th ACL, pages 1164-1170, Montreal, Canada.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Stochastic lexicalized tree-adjoining grammars",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Schabes",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Proc. of the 14 th COLING",
                "volume": "",
                "issue": "",
                "pages": "426--432",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Schabes. 1992. Stochastic lexicalized tree-adjoining grammars. In Proc. of the 14 th COLING, pages 426- 432, Nantes, France.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Probabilistic languages: A review and some open questions",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "S"
                        ],
                        "last": "Wetherell",
                        "suffix": ""
                    }
                ],
                "year": 1980,
                "venue": "Computing Surveys",
                "volume": "12",
                "issue": "4",
                "pages": "361--379",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. S. Wetherell. 1980. Probabilistic languages: A re- view and some open questions. Computing Surveys, 12(4):361-379.",
                "links": null
            }
        },
        "ref_entries": {}
    }
}