File size: 117,155 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
{
    "paper_id": "N15-1005",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T14:34:27.676679Z"
    },
    "title": "Randomized Greedy Inference for Joint Segmentation, POS Tagging and Dependency Parsing",
    "authors": [
        {
            "first": "Yuan",
            "middle": [],
            "last": "Zhang",
            "suffix": "",
            "affiliation": {
                "laboratory": "Artificial Intelligence Laboratory",
                "institution": "Massachusetts Institute of Technology",
                "location": {}
            },
            "email": "yuanzh@csail.mit.edu"
        },
        {
            "first": "Chengtao",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {
                "laboratory": "Artificial Intelligence Laboratory",
                "institution": "Massachusetts Institute of Technology",
                "location": {}
            },
            "email": "ctli@csail.mit.edu"
        },
        {
            "first": "Regina",
            "middle": [],
            "last": "Barzilay",
            "suffix": "",
            "affiliation": {
                "laboratory": "Artificial Intelligence Laboratory",
                "institution": "Massachusetts Institute of Technology",
                "location": {}
            },
            "email": "regina@csail.mit.edu"
        },
        {
            "first": "Kareem",
            "middle": [],
            "last": "Darwish",
            "suffix": "",
            "affiliation": {
                "laboratory": "ALT Research Group Qatar Computing Research Institute",
                "institution": "",
                "location": {}
            },
            "email": "kdarwish@qf.org.qa"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this paper, we introduce a new approach for joint segmentation, POS tagging and dependency parsing. While joint modeling of these tasks addresses the issue of error propagation inherent in traditional pipeline architectures, it also complicates the inference task. Past research has addressed this challenge by placing constraints on the scoring function. In contrast, we propose an approach that can handle arbitrarily complex scoring functions. Specifically, we employ a randomized greedy algorithm that jointly predicts segmentations, POS tags and dependency trees. Moreover, this architecture readily handles different segmentation tasks, such as morphological segmentation for Arabic and word segmentation for Chinese. The joint model outperforms the state-of-the-art systems on three datasets, obtaining 2.1% TedEval absolute gain against the best published results in the 2013 SPMRL shared task. 1",
    "pdf_parse": {
        "paper_id": "N15-1005",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this paper, we introduce a new approach for joint segmentation, POS tagging and dependency parsing. While joint modeling of these tasks addresses the issue of error propagation inherent in traditional pipeline architectures, it also complicates the inference task. Past research has addressed this challenge by placing constraints on the scoring function. In contrast, we propose an approach that can handle arbitrarily complex scoring functions. Specifically, we employ a randomized greedy algorithm that jointly predicts segmentations, POS tags and dependency trees. Moreover, this architecture readily handles different segmentation tasks, such as morphological segmentation for Arabic and word segmentation for Chinese. The joint model outperforms the state-of-the-art systems on three datasets, obtaining 2.1% TedEval absolute gain against the best published results in the 2013 SPMRL shared task. 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Parsing accuracy is greatly impacted by the quality of preprocessing steps such as tagging and word segmentation. Li et al. (2011) report that the difference between using the gold POS tags and using the automatic counterparts reaches about 6% in dependency accuracy. Prior research has demonstrated that joint prediction alleviates error propagation inherent in pipeline architectures, where mistakes cascade from one task to the next (Bohnet et al., 2013; Tratz, 2013; Hatori et al., 2012; Zhang et al., 2014a) . However, jointly modeling all the processing tasks inevitably increases inference complexity. Prior work addressed this challenge by introducing constraints on scoring functions to keep inference tractable (Qian and Liu, 2012) .",
                "cite_spans": [
                    {
                        "start": 114,
                        "end": 130,
                        "text": "Li et al. (2011)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 436,
                        "end": 457,
                        "text": "(Bohnet et al., 2013;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 458,
                        "end": 470,
                        "text": "Tratz, 2013;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 471,
                        "end": 491,
                        "text": "Hatori et al., 2012;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 492,
                        "end": 512,
                        "text": "Zhang et al., 2014a)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 721,
                        "end": 741,
                        "text": "(Qian and Liu, 2012)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we propose a method for joint prediction that imposes no constraints on the scoring function. The method is able to handle high-order and global features for each individual task (e.g., parsing), as well as features that capture interactions between tasks. The algorithm achieves this flexibility by operating over full assignments that specify segmentation, POS tags and dependency tree, moving from one complete configuration to another.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our approach is based on the randomized greedy algorithm from our earlier dependency parsing system (Zhang et al., 2014b) . We extend this algorithm to jointly predict the segmentation and the POS tags in addition to the dependency parse. The search space for the algorithm is a combination of parse trees and lattices that encode alternative morphological and POS analyses. The inference algorithm greedily searches over this space, iteratively making local modifications to POS tags and dependency trees. To overcome local optima, we employ multiple restarts.",
                "cite_spans": [
                    {
                        "start": 100,
                        "end": 121,
                        "text": "(Zhang et al., 2014b)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This simple, yet powerful approach can be easily applied to a range of joint prediction tasks. In prior work, joint models have been designed for a specific language. For instance, joint models for Chinese are designed with word segmentation in mind (Hatori et al., 2012) , while algorithms for processing Semitic languages are tailored for morpho-logical analysis (Tratz, 2013; Goldberg and Elhadad, 2011) . In contrast, we show that our algorithm can be effortlessly applied to all these distinct languages. Language-specific characteristics drive the lattice construction and the feature selection, while the learning and inference methods are languageagnostic.",
                "cite_spans": [
                    {
                        "start": 250,
                        "end": 271,
                        "text": "(Hatori et al., 2012)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 365,
                        "end": 378,
                        "text": "(Tratz, 2013;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 379,
                        "end": 406,
                        "text": "Goldberg and Elhadad, 2011)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We evaluate our model on three datasets: SPMRL (Modern Standard Arabic), classical Arabic and CTB5 (Chinese). Our model consistently outperforms state-of-the-art systems designed for these languages. We obtain a 2.1% TedEval gain against the best published results in the 2013 SPMRL shared task (Seddah et al., 2013 ). The joint model results in significant gains against its pipeline counterpart, yielding 2.4% absolute F-score increase in dependency parsing on the same dataset. Our analysis reveals that most of this gain comes from the improved prediction on OOV words.",
                "cite_spans": [
                    {
                        "start": 295,
                        "end": 315,
                        "text": "(Seddah et al., 2013",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Joint Segmentation, POS tagging and Syntactic Parsing It has been widely recognized that joint prediction is an appealing alternative for pipeline architectures (Goldberg and Tsarfaty, 2008; Hatori et al., 2012; Habash and Rambow, 2005; Gahbiche-Braham et al., 2012; Zhang and Clark, 2008; Bohnet and Nivre, 2012) . These approaches have been particularly prominent for languages with difficult preprocessing, such as morphologically rich languages (e.g., Arabic and Hebrew) and languages that require word segmentation (e.g., Chinese). For the former, joint prediction models typically rely on a lattice structure to represent alternative morphological analyses (Goldberg and Tsarfaty, 2008; Tratz, 2013; Cohen and Smith, 2007) . For instance, transitionbased models intertwine operations on the lattice with operations on a dependency tree. Other joint architectures are more decoupled: in Goldberg and Tsarfaty (2008) , a lattice is used to derive the best morphological analysis for each part-of-speech alternative, which is in turn provided to the parsing algorithm. In both cases, tractable inference is achieved by limiting the representation power of the scoring function. Our model also uses a lattice to encode alternative analyses. However, we employ this structure in a different way. The model samples the full path from the lattice, which corresponds to a valid segmentation and POS tagging assignment. Then the model improves the path and the corresponding tree via a hill-climbing strategy. This architecture allows us to incorporate arbitrary features for segmentation, POS tagging and parsing.",
                "cite_spans": [
                    {
                        "start": 161,
                        "end": 190,
                        "text": "(Goldberg and Tsarfaty, 2008;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 191,
                        "end": 211,
                        "text": "Hatori et al., 2012;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 212,
                        "end": 236,
                        "text": "Habash and Rambow, 2005;",
                        "ref_id": null
                    },
                    {
                        "start": 237,
                        "end": 266,
                        "text": "Gahbiche-Braham et al., 2012;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 267,
                        "end": 289,
                        "text": "Zhang and Clark, 2008;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 290,
                        "end": 313,
                        "text": "Bohnet and Nivre, 2012)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 663,
                        "end": 692,
                        "text": "(Goldberg and Tsarfaty, 2008;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 693,
                        "end": 705,
                        "text": "Tratz, 2013;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 706,
                        "end": 728,
                        "text": "Cohen and Smith, 2007)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 892,
                        "end": 920,
                        "text": "Goldberg and Tsarfaty (2008)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In joint prediction models for Chinese, lattice structures are not typically used. Commonly these models are formulated in a transition-based framework at the character level (Zhang and Clark, 2008; Zhang et al., 2014a; Wang and Xue, 2014) . While this formulation can handle a large space of possible word segmentations, it can only capture features that are instantiated based on the stack and queue status. Our approach offers two advantages over prior work:",
                "cite_spans": [
                    {
                        "start": 175,
                        "end": 198,
                        "text": "(Zhang and Clark, 2008;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 199,
                        "end": 219,
                        "text": "Zhang et al., 2014a;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 220,
                        "end": 239,
                        "text": "Wang and Xue, 2014)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "(1) we can incorporate arbitrary features for word segmentation and parsing;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "(2) we demonstrate that a lattice-based approach commonly used for other languages can be effectively utilized for Chinese.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Randomized Greedy Inference Our prior work has demonstrated that a simple randomized greedy approach delivers near optimal dependency parsing (Zhang et al., 2014b) . Our analysis explains this performance with the particular properties of the search space in dependency parsing. We show how to apply this strategy to a more challenging inference task and demonstrate that a randomized greedy algorithm achieves excellent performance in a significantly larger search space.",
                "cite_spans": [
                    {
                        "start": 142,
                        "end": 163,
                        "text": "(Zhang et al., 2014b)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In this section, we introduce our model for joint morphological segmentation, tagging and parsing. Our description will first assume that word boundaries are provided (e.g., the case of Arabic). Later, we will describe how this model can be applied to a joint prediction task that involves word segmentation (e.g., Chinese).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Randomized Greedy System for Joint Prediction",
                "sec_num": "3"
            },
            {
                "text": "Let x = {x i } |x| i=1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Notation",
                "sec_num": "3.1"
            },
            {
                "text": "be a sentence of length |x| that consists of tokens x i . We use s = {s i } |x| i=1 to denote a segmentation of all the tokens in sentence x, and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Notation",
                "sec_num": "3.1"
            },
            {
                "text": "s i = {s i,j } |s i | j=1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Notation",
                "sec_num": "3.1"
            },
            {
                "text": "to denote a segmentation of the token x i , where s i,j is the jth morpheme of the token x i . Similarly, we use t, t i and t i,j for the POS",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Notation",
                "sec_num": "3.1"
            },
            {
                "text": "w/PRT w/C kAn/V w/C k/P An/N An/C t i,1 2 T i,1 = {C, P RT } t i,2 2 T i,2 = {V } S i T i = T i,1 \u21e5 T i,2 1 s i = w + kAn x i = wkAn s i,1 = w t i,1 t i,1 2 T i,1 = {C, P RT } t i,2 2 T i,2 = {V } S i T i = T i,1 \u21e5 T i,2 1 = {C, PRT} t i,1 2 T i,1 = {C, P RT } t i,2 2 T i,2 = {V } S i T i = T i,1 \u21e5 T i,2 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Notation",
                "sec_num": "3.1"
            },
            {
                "text": "Figure 1: Example lattice structures for the Arabic token \"wkAn\". It has two candidate segmentations: w+kAn or w+k+An. The first segmentation consists of two morphemes. The first morpheme w has two candidate POS.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Notation",
                "sec_num": "3.1"
            },
            {
                "text": "tags for each sentence, token and morpheme. We use y to denote a dependency tree over morphemes, and y i,j to denote the head of morpheme s i,j . During training, the algorithm is provided with tuples that specify ground truth values for all the variables D = {(x,\u015d,t,\u0177)}. We also assume access to a morphological analyzer and a POS tagger that provide candidate analyses. Specifically, for each token x i , the algorithm is provided with candidate segmentations S i , and candidate POS tags T i and T i,j . These alternative analyses are captured in the lattice structure (see Figure 1 for an example). Finally, we use Y to denote the set of all valid dependency trees defined over morphemes.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 578,
                        "end": 584,
                        "text": "Figure",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Notation",
                "sec_num": "3.1"
            },
            {
                "text": "We parameterize the scoring function as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "score(x, s, t, y) = \u03b8 \u2022 f (x, s, t, y)",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "where \u03b8 is the parameter vector and f (x, s, t, y) is the feature vector associated with the sentence and all variables. The goal of decoding is to find a set of valid values for (s, t, y) \u2208 S \u00d7 T \u00d7 Y that maximizes the score defined in Eq. 1. Our randomized greedy algorithm finds a high scoring assignment for (s, t, y) via a hill-climbing process with multiple random restarts. (Section 3.3 describes how the parameters \u03b8 are learned.) Figure 2 shows the framework of our randomized greedy algorithm. First, we draw a full path from the lattice structure in two steps: (1) sampling a morphological segmentation s from S; (2) sampling POS tags t for each morpheme. Next, we sample a dependency tree y from the parse space. Based on this random starting point, we iteratively hill-climb t and y in a bottom-up order. 2 In our earlier work (Zhang et al., 2014b) , we showed this strategy guarantees that we can climb to any target tree in a finite number of steps. We repeat the sampling and the hill-climbing processes above until we do not find a better solution for K iterations. We introduce the details of this process below.",
                "cite_spans": [
                    {
                        "start": 840,
                        "end": 861,
                        "text": "(Zhang et al., 2014b)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 439,
                        "end": 447,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "SampleSeg and SamplePOS: Given a sentence x, we first draw segmentations s and POS tags t (0) from the first-order distribution using the current learned parameter values. For segmentation, firstorder features only depend on each token x i and its morphemes s i,j . Similarly, for POS, first-order features are defined based on s i,j and t i,j . The sampling process is straightforward due to the fact that the candidate sets |S i | and |T i,j | are both small. We can enumerate and compute the probabilities proportional to the exponential of the first-order scores as follows.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "3 p(s i ) \u221d exp{\u03b8 \u2022 f (x, s i )} p(t i,j ) \u221d exp{\u03b8 \u2022 f (x, s i , t i,j )} (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "SampleTree: Given a random sample of the segmentations s and the POS tags t (0) , we draw a random tree y (0) from the first-order distribution using Wilson's algorithm (Wilson, 1996). 4 HillClimbPOS: After sampling the initial values s, t (0) and y (0) , the hill-climbing algorithm improves the solution via locally greedy changes. The hillclimbing algorithm iterates between improving the POS tags and the dependency tree. For POS tagging, it updates each t i,j in a bottom-up order as follows",
                "cite_spans": [
                    {
                        "start": 169,
                        "end": 186,
                        "text": "(Wilson, 1996). 4",
                        "ref_id": null
                    },
                    {
                        "start": 240,
                        "end": 243,
                        "text": "(0)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "t i,j \u2190 arg max t i,j \u2208T i,j score(x, s, t i,j , t \u2212(i,j) , y)",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "where t \u2212(i,j) are the rest of the POS tags when we update t i,j .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "Input: parameter \u03b8, sentence x Output: segmentations s, POS tags t and dependency tree y",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "1: s \u2190 SampleSeg(x) 2: t (0) \u2190 SampleP os(x, s) 3: y (0) \u2190 SampleT ree(x, s, t (0) ) 4: k = 0 5: repeat 6: t (k+1) \u2190 HillClimbP OS(x, s, t (k) , y (k) )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "7:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "y (k+1) \u2190 HillClimbT ree(x, s, t (k+1) , y (k) ) 8:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "k \u2190 k + 1 9: until no change in this iteration 10: return (s, t (k) , y (k) ) Figure 2 : The hill-climbing algorithm with random initializations. Details of the sampling and hillclimbing functions in Line 1-3 and 6-7 are provided in Section 3.2.",
                "cite_spans": [
                    {
                        "start": 64,
                        "end": 67,
                        "text": "(k)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 78,
                        "end": 86,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Decoding",
                "sec_num": "3.2"
            },
            {
                "text": "We improve the dependency tree y via a similar hill-climbing process. Specifically, we greedily update the head y i,j of each morpheme in a bottom-up order as follows",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "HillClimbTree:",
                "sec_num": null
            },
            {
                "text": "y i,j \u2190 arg max y i,j \u2208Y i,j score(x, s, t, y i,j , y \u2212(i,j) ) (4)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "HillClimbTree:",
                "sec_num": null
            },
            {
                "text": "where Y i,j is the set of candidate heads such that changing y i,j to any candidate does not violate the tree constraint.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "HillClimbTree:",
                "sec_num": null
            },
            {
                "text": "We learn the parameters \u03b8 in a max-margin framework, using on-line updates. For each update, we need to compute the segmentations, POS tags and the tree that maximize the cost-augmented score:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.3"
            },
            {
                "text": "(s,t,\u1ef9) = arg max s\u2208S,t\u2208T ,y\u2208Y {\u03b8\u2022f (x, s, t, y)+Err(s, t, y)} (5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.3"
            },
            {
                "text": "where Err(s, t, y) is the number of errors of (s, t, y) against the ground truth (\u015d,t,\u0177). The parameters are then updated to guide the selection against the violation. This is done via standard passive-aggressive updates (Crammer et al., 2006) .",
                "cite_spans": [
                    {
                        "start": 221,
                        "end": 243,
                        "text": "(Crammer et al., 2006)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.3"
            },
            {
                "text": "In this section we describe how the proposed model can be adapted to languages that do not delineate Figure 3 : Example lattice structures for the Chinese sentence \"\u65b0\u534e\u793e\u5317\u4eac\u4e8c\u6708\u5341\u4e09\u65e5\u7535\" (Xinhua Press at Beijing reports on February 13th). The token \u65b0\u534e\u793e has two candidate segmentations: \u65b0 \u534e\u793e or \u65b0\u534e + \u793e.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 101,
                        "end": 109,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Adapting to Chinese Joint Prediction",
                "sec_num": "3.4"
            },
            {
                "text": "! Xinhua News Agency ! Xinhua ! society ! February 13th ! February ! 13th ! Beijing ! report",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adapting to Chinese Joint Prediction",
                "sec_num": "3.4"
            },
            {
                "text": "words with spaces, and thus require word segmentation. The main difference lies in the construction of the lattice structure. We employ a state-of-the-art word segmenter to produce candidate word boundaries. We consider boundaries common across all the top-k candidates as true word boundaries. The remaining tokens (i.e., strings between these boundaries) are treated as words to be further segmented and labeled with POS tags. Figure 3 shows an example of the Chinese word lattice structure we construct. Once the lattice is constructed, the joint prediction model is applied as described above.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 429,
                        "end": 437,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Adapting to Chinese Joint Prediction",
                "sec_num": "3.4"
            },
            {
                "text": "Segmentation Features For both Arabic and Chinese, each segmentation is represented by its score from the preprocessing system, and by the corresponding morphemes (or words in Chinese). Following previous work (Zhang and Clark, 2010) , we also add character-based features for Chinese word segmentation, including the first and the last characters in the word, and the length of the word. Table 1 summarizes the POS tag features employed by the model. First, we use the feature templates proposed in our previous work on Arabic joint parsing and POS correction (Zhang et al., 2014c) . In addition, we incorporate character-based features specifically designed for Chinese. These features are mainly inspired by previous transition-based models on Chinese joint POS tagging and word segmentation (Zhang and Clark, 2010) .",
                "cite_spans": [
                    {
                        "start": 210,
                        "end": 233,
                        "text": "(Zhang and Clark, 2010)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 561,
                        "end": 582,
                        "text": "(Zhang et al., 2014c)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 795,
                        "end": 818,
                        "text": "(Zhang and Clark, 2010)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 389,
                        "end": 396,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4"
            },
            {
                "text": "The feature templates for dependency parsing are mainly drawn from our previous work (Zhang et al., 2014b) ",
                "cite_spans": [
                    {
                        "start": 85,
                        "end": 106,
                        "text": "(Zhang et al., 2014b)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dependency Parsing Features",
                "sec_num": null
            },
            {
                "text": ". Fig- 1-gram t0, w\u22122 , t0, w\u22121 , t0, w0 , t0, w1 , t0, w2 , t0, w\u22121, w0 , t0, w0, w1 , s(t0) , t0, s(t0) 2-gram t\u22121, t0 , t\u22122, t0 , t\u22121, t0, w\u22121 , t\u22121, t0, w0 3-gram t\u22121, t0, t1 , t\u22122, t0, t1, , t\u22121, t0, t2 , t\u22122, t0, t2 4-gram t\u22122, t\u22121, t0, t+1 , t\u22122, t\u22121, t0, t2 , t\u22122, t0, t1, t2 5-gram t\u22122, t\u22121, t0, t1, t2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dependency Parsing Features",
                "sec_num": null
            },
            {
                "text": "Character t0, pre1(w0) , t0, pre2(w0) , t0, suf1(w0) , t0, suf2(w0) , t0, cn(w0) , t0, len(w0) Figure 4 : First-to third-order dependency parsing features.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 95,
                        "end": 103,
                        "text": "Figure 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Dependency Parsing Features",
                "sec_num": null
            },
            {
                "text": "ure 4 shows the first-to third-order feature templates that we use in our model. We also use global features to capture the adjacent conjuncts agreement in a coordination structure, and the valency patterns for each POS category. Note that most dependency features are implicitly cross-task in that they include POS tag and segmentation information. For example, the standard feature involves the POS tags of the words on both ends of the arc. (Seddah et al., 2013) . 5 We follow the official split for training, development and testing set. We use the core set of 12 POS categories provided by Marton et al. (2013) . In the second Arabic dataset, the training set is a dependency conversion of the Arabic Treebank, which primarily includes Modern Standard Arabic (MSA) text. However, we test on a new corpus, which consists of classical Arabic text obtained from the Comprehensive Islamic Library (CIS). 6 A native Arabic speaker with background in computational linguistics annotated the morphological segmentation and POS tags. This corpus is an excellent testbed for a joint model because classical Arabic may use rather different vocabulary from MSA, while their syntactic grammars are very similar to each other. Therefore incorporating syntactic information should be particularly beneficial to morphological segmentation and POS tagging. For Chinese, we use the Chinese Penn Treebank 5.0 (CTB5) and follow the split in previous work (Zhang and Clark, 2010) . Table 2 summarizes the statistics of the datasets. For the SPMRL test set, we follow the common practice which limits the sentence lengths up to 70 (Seddah et al., 2013) . For classical Arabic and Chinese, we evaluate on all the test sentences.",
                "cite_spans": [
                    {
                        "start": 444,
                        "end": 465,
                        "text": "(Seddah et al., 2013)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 468,
                        "end": 469,
                        "text": "5",
                        "ref_id": null
                    },
                    {
                        "start": 595,
                        "end": 615,
                        "text": "Marton et al. (2013)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1441,
                        "end": 1464,
                        "text": "(Zhang and Clark, 2010)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 1615,
                        "end": 1636,
                        "text": "(Seddah et al., 2013)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1467,
                        "end": 1474,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Dependency Parsing Features",
                "sec_num": null
            },
            {
                "text": "In this section we introduce the methodology for constructing candidate sets for segmentation and 2013, we use the MADA system to generate candidate morphological analyses and POS tags. For each token in the sentence, MADA provides a list of possible morphological analyses and POS tags, each associated with a score. The score of each segmentation or POS tag equals the highest score of the MADA analysis in which it appears. In addition, we associate each segmentation with MADA analyses on gender, number and person. Figure 5 shows an example of MADA output for the token Emlyp and the corresponding lattice structure.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 520,
                        "end": 528,
                        "text": "Figure 5",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Generating Lattice Structures",
                "sec_num": "5.2"
            },
            {
                "text": "We construct the lattice for this corpus in a similar fashion to the SPMRL dataset with two main departures. First, we use the Arabic morphological analyzer developed by Darwish et al. (2014) because MADA is primarily trained for MSA and performs poorly on classical Arabic. Second, we implement a CRF-based morpheme-level POS tagger and generate the POS tag candidates for each morpheme based on their marginal probabilities, truncated by a probability threshold.",
                "cite_spans": [
                    {
                        "start": 170,
                        "end": 191,
                        "text": "Darwish et al. (2014)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classical Arabic",
                "sec_num": null
            },
            {
                "text": "We first re-train the Stanford Chinese word segmenter on CTB5 and generate a top-10 list for each sentence. 7 We treat the word boundaries shared across all the 10 candidates as the confident ones, and construct the lattice as described in Section 3.4. Our model then focuses on disambiguating the rest of the word boundaries in the candidates. To generate POS candidates, we apply a CRF-based tagger with Chinese-specific features used in previous work (Hatori et al., 2011) .",
                "cite_spans": [
                    {
                        "start": 108,
                        "end": 109,
                        "text": "7",
                        "ref_id": null
                    },
                    {
                        "start": 454,
                        "end": 475,
                        "text": "(Hatori et al., 2011)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CTB5",
                "sec_num": null
            },
            {
                "text": "Following standard practice in previous work (Hatori et al., 2012; Zhang et al., 2014a) , we use Fscore as the evaluation metric for segmentation, POS tagging and dependency parsing. We report the morpheme-level F-score for Arabic and the wordlevel F-score for Chinese. In addition, we use TedEval (Tsarfaty et al., 2012) to evaluate the joint prediction on the SPMRL dataset, because TedEval score is the only evaluation metric used in the official report. We directly use the evaluation tools provided on the SPMRL official website. 8",
                "cite_spans": [
                    {
                        "start": 45,
                        "end": 66,
                        "text": "(Hatori et al., 2012;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 67,
                        "end": 87,
                        "text": "Zhang et al., 2014a)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 298,
                        "end": 321,
                        "text": "(Tsarfaty et al., 2012)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Measures",
                "sec_num": "5.3"
            },
            {
                "text": "State-of-the-Art Systems For the SPMRL dataset, we directly compare with Bj\u00f6rkelund et al. (2013) . This system achieves the best TedEval score in the track of dependency parsing with predicted information and we directly republish the official result. We also compute the F-score of this system on each task using our own evaluation script. 9 For the CTB5 dataset, we directly compare to the arc-eager system by Zhang et al. (2014a) , which slightly outperforms the arc-standard system by Hatori et al. (2012) . Table 4 : Segmentation, POS tagging and unlabeled attachment dependency F-scores (%) and TedEval score (%) on different datasets. The first line denotes the performance by the pipeline variation of our model. The second row shows the results by our joint model. \"Best Published\" includes the best reported results: Bj\u00f6rkelund et al. (2013) for the SPMRL 2013 shared task and Zhang et al. (2014a) for the CTB5 dataset. Note that the POS F-scores are not directly comparable because Bj\u00f6rkelund et al. 2013 Seen OOV (c) CTB5 Figure 6 : Absolute F-score (%) improvement of the joint model over the pipeline counterpart on seen and out-of-vocabulary (OOV) words.",
                "cite_spans": [
                    {
                        "start": 73,
                        "end": 97,
                        "text": "Bj\u00f6rkelund et al. (2013)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 413,
                        "end": 433,
                        "text": "Zhang et al. (2014a)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 490,
                        "end": 510,
                        "text": "Hatori et al. (2012)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 828,
                        "end": 852,
                        "text": "Bj\u00f6rkelund et al. (2013)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 888,
                        "end": 908,
                        "text": "Zhang et al. (2014a)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 513,
                        "end": 520,
                        "text": "Table 4",
                        "ref_id": null
                    },
                    {
                        "start": 1035,
                        "end": 1043,
                        "text": "Figure 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "5.4"
            },
            {
                "text": "System Variants We also compare against a pipeline variation of our model. In our pipeline model, we predict segmentations and POS tags by the same system that we use to generate candidates.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "5.4"
            },
            {
                "text": "The subsequent standard parsing model then operates on the predicted segmentations and POS tags.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "5.4"
            },
            {
                "text": "Following our earlier work (Zhang et al., 2014b) , we train a first-order classifier to prune the dependency tree space. 10 Following common practice, we average parameters over all iterations after training with passive-aggressive online learning algorithm (Crammer et al., 2006; Collins, 2002) . We use the same adaptive random restart strategy as in our earlier work (Zhang et al., 2014b) and set K = 300. In addition, we also apply an aggressive early-stop strategy during training for efficiency. If we have found a violation against the ground truth during the first 50 iterations, we immediately stop and update the parameters based on the current violation. The reasoning behind this early-stop strategy is that weaker violations for some training sentences are already sufficient for separable training sets (Huang et al., 2012) .",
                "cite_spans": [
                    {
                        "start": 27,
                        "end": 48,
                        "text": "(Zhang et al., 2014b)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 258,
                        "end": 280,
                        "text": "(Crammer et al., 2006;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 281,
                        "end": 295,
                        "text": "Collins, 2002)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 370,
                        "end": 391,
                        "text": "(Zhang et al., 2014b)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 817,
                        "end": 837,
                        "text": "(Huang et al., 2012)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Details",
                "sec_num": "5.5"
            },
            {
                "text": "Comparison to State-of-the-art Systems Table 4 summarizes the performance of our model and the best published results for the SPMRL and the CTB5 datasets. 11 On both datasets, our system outperforms the baselines. On the SPMRL 2013 shared task, our approach yields a 2.1% TedEval score gain over the top performing system (Bj\u00f6rkelund et al., 2013) . We also improve the segmentation and dependency F-scores by 3.1% and 4.8% respectively. Note that the POS F-scores are not directly comparable because Bj\u00f6rkelund et al. (2013) use a different POS tagset from us. On the CTB5 dataset, we outperform the state-of-the-art with respect to all Figure 8 : The normalized score of the output tree as the function of the number of restarts. We normalize scores of each sentence by the highest score among 3,000 restarts for this sentence. We show the curve up to 1,000 restarts because it reaches convergence after 500 restarts.",
                "cite_spans": [
                    {
                        "start": 322,
                        "end": 347,
                        "text": "(Bj\u00f6rkelund et al., 2013)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 501,
                        "end": 525,
                        "text": "Bj\u00f6rkelund et al. (2013)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 39,
                        "end": 46,
                        "text": "Table 4",
                        "ref_id": null
                    },
                    {
                        "start": 638,
                        "end": 646,
                        "text": "Figure 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6"
            },
            {
                "text": "tasks: segmentation (0.3%), tagging (0.1%), and dependency parsing (0.3%). 12 As Table 4 shows, our joint prediction model consistently outperforms the corresponding pipeline model in all three tasks. This observation is consistent with findings in previous work (Hatori et al., 2012; Tratz, 2013) . We also observe that gains are higher (2%) on the classical Arabic dataset, which demonstrates that joint prediction is particularly helpful in bridging the gap between MSA and classical Arabic.",
                "cite_spans": [
                    {
                        "start": 263,
                        "end": 284,
                        "text": "(Hatori et al., 2012;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 285,
                        "end": 297,
                        "text": "Tratz, 2013)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 78,
                        "end": 88,
                        "text": "As Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6"
            },
            {
                "text": "12 Zhang et al. (2014a) improve the dependency F-score to 82.14% by adding manually annotated intra-word dependency information. Even without such gold word structure annotations, our model still achieves a comparable result. Table 5 : F-score error reductions (%) of the joint model over the pipeline counterpart on seen and OOV words. Figure 6 shows the break of the improvement based on seen and out-of-vocabulary (OOV) words. As expected, across all languages OOV words benefit more from the joint prediction, as they constitute a common source of error propagation in a pipeline model. The extent of improvement depends on the underlying accuracy of the preprocessing for segmentation and POS tagging on OOV words. For instance, we observe a higher gain (7%) on Chinese OOV words which have a 61.5% accuracy when processed by the original stand-along POS tagger. On the SPMRL dataset, the gain on OOV words is lower (3%), while preprocessing accuracy is higher (82%). Their error reductions on OOV words are nevertheless close to each other. Table 5 summarizes the results on F-score error reduction.",
                "cite_spans": [
                    {
                        "start": 3,
                        "end": 23,
                        "text": "Zhang et al. (2014a)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 226,
                        "end": 233,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 337,
                        "end": 345,
                        "text": "Figure 6",
                        "ref_id": null
                    },
                    {
                        "start": 1047,
                        "end": 1054,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Impact of the Joint Prediction",
                "sec_num": null
            },
            {
                "text": "We also observe that the error reductions of OOV words/morphemes on the Chinese and the Classical Arabic dataset are larger than that of the invocabulary counterparts (e.g. 26% vs. 20% on Chinese word segmentation). However, we have the opposite observation on the segmentation and POS tagging on the SPMRL dataset (28% vs. 48%). This can be explained by analyzing the oracle performance in which we select the best solution from possible candidates. The oracle error reduction of OOV morphemes in the SPMRL dataset is relatively low (44%), compared to the 61% oracle error reduction of OOV morphemes in the Classical Arabic dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Impact of the Joint Prediction",
                "sec_num": null
            },
            {
                "text": "In Figure 7 , we plot the performance on the SPMRL dataset as a function of the number k of MADA analyses that we use to construct the candidate sets. For low k, increasing the number of analyses improves performance across all evaluation metrics. However, the performance converges at around k = 15. for the number of local optima versus the score of these local optima obtained from each restart, on the SPMRL dataset. The score captures the difference between a local optimum and the best one among 3,000 restarts.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 11,
                        "text": "Figure 7",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Impact of the Number of Alternative Analyses",
                "sec_num": null
            },
            {
                "text": "To assess the quality of the approximation obtained by the randomized greedy inference, we would like to compare it against the optimal solution. Following our earlier work (Zhang et al., 2014b) , we use the highest score among 3,000 restarts for each sentence as a proxy for the optimal solution. Figure 8 shows the normalized score of the retrieved solution as a function of the number of restarts. We observe that most sentences converge quickly. 13 Specifically, more than 97% of the sentences converge within first 300 restarts. Since for the vast majority of cases our system converges fast, we achieve a comparable speed to that of other state-of-the-art joint systems. For example, our model achieves high performance on Chinese at about 0.5 sentences per second. The speed is about the same as that of the transition-based system (Hatori et al., 2012) with beam size 64, the setting that achieved best accuracy in their work. Figure 9 shows the cumulative distribution function (CDF) for the number of local optima versus the score of these local optima obtained from each restart. More specifically, the score captures the difference between a local optimum and the maximal score among 3,000 restarts. We can see that most of the local optima reached by hill-climbing have scores close to the maximum. For instance, about 30% of the local optima are identical to the best solution, namely score max \u2212 score local = 0.",
                "cite_spans": [
                    {
                        "start": 173,
                        "end": 194,
                        "text": "(Zhang et al., 2014b)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 298,
                        "end": 306,
                        "text": "Figure 8",
                        "ref_id": null
                    },
                    {
                        "start": 935,
                        "end": 943,
                        "text": "Figure 9",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Convergence Properties",
                "sec_num": null
            },
            {
                "text": "In this paper, we propose a general randomized greedy algorithm for joint segmentation, POS tagging and dependency parsing. On both Arabic and Chinese, our model achieves improvement on the three tasks over state-of-the-art systems and pipeline variants of our system. In particular, we demonstrate that OOV words benefits more from the power of joint prediction. Finally, our experimental results show that increasing candidate sizes improves performance across all evaluation metrics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7"
            },
            {
                "text": "The source code is available at https://github. com/yuanzh/SegParser.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We do not hill-climb segmentation, or else we have to jointly find the optimal t and y, and the resulting computational cost is too high.3 We notice that the distribution becomes significantly sharper after training for several epochs. Therefore, we also smooth the distribution by multiplying the score with a scaling factor.4 We also smooth the distribution in the same way as in segmentation and POS tagging.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "This dataset is originally provided by the LDC(Maamouri et al., 2004), specifically its SPMRL 2013 dependency instance, derived from the Columbia Catib Treebank and extended according to the SPMRL 2013 extension scheme(Seddah et al., 2013).6 This classical Arabic dataset is publicly available at http: //farasa.qcri.org/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We use 10-fold cross validation to avoid overfitting on the training set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.spmrl.org/spmrl2013-sharedtask.html 9 F-score evaluation for Arabic is not straightforward due to the stem changes in the morphological analysis. Therefore, the comparison of F-scores is only approximate.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We set the probability threshold to 0.05 and limit the number of candidate heads up to 20, which gives a 99.5% pruning recall on both the SPMRL and the CTB5 development sets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We are not aware of any published results on the Classical Arabic Dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "As expected, we also observe that convergence is slower when comparing to standard dependency parsing with a similar randomized greedy algorithm(Zhang et al., 2014b), because joint prediction results in a harder inference problem.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This research is developed in a collaboration of MIT with the Arabic Language Technologies (ALT) group at Qatar Computing Research Institute (QCRI) within the Interactive sYstems for Answer Search (IYAS) project. The authors acknowledge the support of the U.S. Army Research Office under grant number W911NF-10-1-0533, and of the DARPA BOLT program. We thank Meishan Zhang and Anders Bj\u00f6rkelund for answering questions and sharing the outputs of their systems. We also thank the MIT NLP group and the ACL reviewers for their comments. Any opinions, findings, conclusions, or recommendations expressed in this paper are those of the authors, and do not necessarily reflect the views of the funding organizations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "(re)ranking meets morphosyntax: State-of-the-art results from the SPMRL 2013 shared task",
                "authors": [
                    {
                        "first": "Anders",
                        "middle": [],
                        "last": "Bj\u00f6rkelund",
                        "suffix": ""
                    },
                    {
                        "first": "Ozlem",
                        "middle": [],
                        "last": "Cetinoglu",
                        "suffix": ""
                    },
                    {
                        "first": "Rich\u00e1rd",
                        "middle": [],
                        "last": "Farkas",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Mueller",
                        "suffix": ""
                    },
                    {
                        "first": "Wolfgang",
                        "middle": [],
                        "last": "Seeker",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages",
                "volume": "",
                "issue": "",
                "pages": "135--145",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anders Bj\u00f6rkelund, Ozlem Cetinoglu, Rich\u00e1rd Farkas, Thomas Mueller, and Wolfgang Seeker. 2013. (re)ranking meets morphosyntax: State-of-the-art re- sults from the SPMRL 2013 shared task. In Pro- ceedings of the Fourth Workshop on Statistical Pars- ing of Morphologically-Rich Languages, pages 135- 145, Seattle, Washington, USA, October. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A transitionbased system for joint part-of-speech tagging and labeled non-projective dependency parsing",
                "authors": [
                    {
                        "first": "Bernd",
                        "middle": [],
                        "last": "Bohnet",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "1455--1465",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bernd Bohnet and Joakim Nivre. 2012. A transition- based system for joint part-of-speech tagging and la- beled non-projective dependency parsing. In Proceed- ings of the 2012 Joint Conference on Empirical Meth- ods in Natural Language Processing and Computa- tional Natural Language Learning, pages 1455-1465. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Joint morphological and syntactic analysis for richly inflected languages",
                "authors": [
                    {
                        "first": "Bernd",
                        "middle": [],
                        "last": "Bohnet",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Igor",
                        "middle": [],
                        "last": "Boguslavsky",
                        "suffix": ""
                    },
                    {
                        "first": "Rich\u00e1rd",
                        "middle": [],
                        "last": "Farkas",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Ginter",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "TACL",
                "volume": "1",
                "issue": "",
                "pages": "415--428",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bernd Bohnet, Joakim Nivre, Igor Boguslavsky, Rich\u00e1rd Farkas, Filip Ginter, and Jan Hajic. 2013. Joint mor- phological and syntactic analysis for richly inflected languages. TACL, 1:415-428.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Joint morphological and syntactic disambiguation",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Shay",
                        "suffix": ""
                    },
                    {
                        "first": "Noah A",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shay B Cohen and Noah A Smith. 2007. Joint morpho- logical and syntactic disambiguation. In Proceedings of EMNLP.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
                "volume": "10",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Collins. 2002. Discriminative training meth- ods for hidden markov models: Theory and experi- ments with perceptron algorithms. In Proceedings of the Conference on Empirical Methods in Natural Lan- guage Processing -Volume 10, EMNLP '02. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Shai Shalev-Shwartz, and Yoram Singer",
                "authors": [
                    {
                        "first": "Koby",
                        "middle": [],
                        "last": "Crammer",
                        "suffix": ""
                    },
                    {
                        "first": "Ofer",
                        "middle": [],
                        "last": "Dekel",
                        "suffix": ""
                    },
                    {
                        "first": "Joseph",
                        "middle": [],
                        "last": "Keshet",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "The Journal of Machine Learning Research",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev- Shwartz, and Yoram Singer. 2006. Online passive- aggressive algorithms. The Journal of Machine Learn- ing Research.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Using stem-templates to improve arabic pos and gender/number tagging",
                "authors": [
                    {
                        "first": "Kareem",
                        "middle": [],
                        "last": "Darwish",
                        "suffix": ""
                    },
                    {
                        "first": "Ahmed",
                        "middle": [],
                        "last": "Abdelali",
                        "suffix": ""
                    },
                    {
                        "first": "Hamdy",
                        "middle": [],
                        "last": "Mubarak",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "International Conference on Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kareem Darwish, Ahmed Abdelali, and Hamdy Mubarak. 2014. Using stem-templates to improve arabic pos and gender/number tagging. In Inter- national Conference on Language Resources and Evaluation (LREC-2014).",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Joint segmentation and pos tagging for arabic using a crfbased classifier",
                "authors": [
                    {
                        "first": "Souhir",
                        "middle": [],
                        "last": "Gahbiche-Braham",
                        "suffix": ""
                    },
                    {
                        "first": "H\u00e9lene",
                        "middle": [],
                        "last": "Bonneau-Maynard",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Lavergne",
                        "suffix": ""
                    },
                    {
                        "first": "Fran\u00e7ois",
                        "middle": [],
                        "last": "Yvon",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "2107--2113",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Souhir Gahbiche-Braham, H\u00e9lene Bonneau-Maynard, Thomas Lavergne, and Fran\u00e7ois Yvon. 2012. Joint segmentation and pos tagging for arabic using a crf- based classifier. In LREC, pages 2107-2113.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Joint hebrew segmentation and parsing using a pcfg-la lattice parser",
                "authors": [
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Elhadad",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers",
                "volume": "2",
                "issue": "",
                "pages": "704--709",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoav Goldberg and Michael Elhadad. 2011. Joint he- brew segmentation and parsing using a pcfg-la lattice parser. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Hu- man Language Technologies: short papers-Volume 2, pages 704-709. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Arabic tokenization, part-of-speech tagging and morphological disambiguation in one fell swoop",
                "authors": [
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Reut",
                        "middle": [],
                        "last": "Tsarfaty",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "573--580",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoav Goldberg and Reut Tsarfaty. 2008. A single gener- ative model for joint morphological segmentation and syntactic parsing. In ACL, pages 371-379. Citeseer. Nizar Habash and Owen Rambow. 2005. Arabic tok- enization, part-of-speech tagging and morphological disambiguation in one fell swoop. In Proceedings of the 43rd Annual Meeting on Association for Compu- tational Linguistics, pages 573-580. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Catib: The columbia arabic treebank",
                "authors": [
                    {
                        "first": "Nizar",
                        "middle": [],
                        "last": "Habash",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the ACL-IJCNLP 2009 Conference Short Papers",
                "volume": "",
                "issue": "",
                "pages": "221--224",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nizar Habash and Ryan Roth. 2009. Catib: The columbia arabic treebank. In Proceedings of the ACL- IJCNLP 2009 Conference Short Papers, pages 221- 224, Suntec, Singapore, August. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Incremental joint pos tagging and dependency parsing in chinese",
                "authors": [
                    {
                        "first": "Nizar",
                        "middle": [],
                        "last": "Habash",
                        "suffix": ""
                    },
                    {
                        "first": "Reem",
                        "middle": [],
                        "last": "Faraj",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of MEDAR International Conference on Arabic Language Resources and Tools",
                "volume": "",
                "issue": "",
                "pages": "1216--1224",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nizar Habash, Reem Faraj, and Ryan Roth. 2009. Syn- tactic Annotation in the Columbia Arabic Treebank. In Proceedings of MEDAR International Conference on Arabic Language Resources and Tools, Cairo, Egypt. Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun'ichi Tsujii. 2011. Incremental joint pos tagging and dependency parsing in chinese. In IJCNLP, pages 1216-1224. Citeseer.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Incremental joint approach to word segmentation, pos tagging, and dependency parsing in chinese",
                "authors": [
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Hatori",
                        "suffix": ""
                    },
                    {
                        "first": "Takuya",
                        "middle": [],
                        "last": "Matsuzaki",
                        "suffix": ""
                    },
                    {
                        "first": "Yusuke",
                        "middle": [],
                        "last": "Miyao",
                        "suffix": ""
                    },
                    {
                        "first": "Jun'ichi",
                        "middle": [],
                        "last": "Tsujii",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers",
                "volume": "1",
                "issue": "",
                "pages": "1045--1053",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun'ichi Tsujii. 2012. Incremental joint approach to word segmentation, pos tagging, and dependency pars- ing in chinese. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguis- tics: Long Papers-Volume 1, pages 1045-1053. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Structured perceptron with inexact search",
                "authors": [
                    {
                        "first": "Liang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Suphan",
                        "middle": [],
                        "last": "Fayong",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "142--151",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liang Huang, Suphan Fayong, and Yang Guo. 2012. Structured perceptron with inexact search. In Proceed- ings of the 2012 Conference of the North American Chapter of the Association for Computational Linguis- tics: Human Language Technologies, pages 142-151. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Joint models for chinese pos tagging and dependency parsing",
                "authors": [
                    {
                        "first": "Zhenghua",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Wanxiang",
                        "middle": [],
                        "last": "Che",
                        "suffix": ""
                    },
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Wenliang",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Haizhou",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1180--1191",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wen- liang Chen, and Haizhou Li. 2011. Joint models for chinese pos tagging and dependency parsing. In Pro- ceedings of the 2011 Conference on Empirical Meth- ods in Natural Language Processing, pages 1180- 1191. Association for Computational Linguistics, July.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "The Penn Arabic Treebank: Building a Large-Scale Annotated Arabic Corpus",
                "authors": [
                    {
                        "first": "Mohamed",
                        "middle": [],
                        "last": "Maamouri",
                        "suffix": ""
                    },
                    {
                        "first": "Ann",
                        "middle": [],
                        "last": "Bies",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Buckwalter",
                        "suffix": ""
                    },
                    {
                        "first": "Wigdan",
                        "middle": [],
                        "last": "Mekki",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "NEMLAR Conference on Arabic Language Resources and Tools",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. 2004. The Penn Arabic Treebank: Building a Large-Scale Annotated Arabic Corpus. In NEMLAR Conference on Arabic Language Resources and Tools.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Spmrl'13 shared task system: The cadim arabic dependency parser",
                "authors": [
                    {
                        "first": "Yuval",
                        "middle": [],
                        "last": "Marton",
                        "suffix": ""
                    },
                    {
                        "first": "Nizar",
                        "middle": [],
                        "last": "Habash",
                        "suffix": ""
                    },
                    {
                        "first": "Owen",
                        "middle": [],
                        "last": "Rambow",
                        "suffix": ""
                    },
                    {
                        "first": "Sarah",
                        "middle": [],
                        "last": "Alkhulani",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages",
                "volume": "",
                "issue": "",
                "pages": "76--80",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yuval Marton, Nizar Habash, Owen Rambow, and Sarah Alkhulani. 2013. Spmrl'13 shared task system: The cadim arabic dependency parser. In Proceed- ings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 76-80.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Joint chinese word segmentation, pos tagging and parsing",
                "authors": [
                    {
                        "first": "Xian",
                        "middle": [],
                        "last": "Qian",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "501--511",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xian Qian and Yang Liu. 2012. Joint chinese word seg- mentation, pos tagging and parsing. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 501-511. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Overview of the SPMRL 2013 shared task: A cross-framework evaluation of parsing morphologically rich languages",
                "authors": [
                    {
                        "first": "Djam\u00e9",
                        "middle": [],
                        "last": "Seddah",
                        "suffix": ""
                    },
                    {
                        "first": "Reut",
                        "middle": [],
                        "last": "Tsarfaty",
                        "suffix": ""
                    },
                    {
                        "first": "Sandra",
                        "middle": [],
                        "last": "K\u00fcbler",
                        "suffix": ""
                    },
                    {
                        "first": "Marie",
                        "middle": [],
                        "last": "Candito",
                        "suffix": ""
                    },
                    {
                        "first": "Jinho",
                        "middle": [
                            "D"
                        ],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Rich\u00e1rd",
                        "middle": [],
                        "last": "Farkas",
                        "suffix": ""
                    },
                    {
                        "first": "Jennifer",
                        "middle": [],
                        "last": "Foster",
                        "suffix": ""
                    },
                    {
                        "first": "Iakes",
                        "middle": [],
                        "last": "Goenaga",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Koldo Gojenola Galletebeitia",
                        "suffix": ""
                    },
                    {
                        "first": "Spence",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Nizar",
                        "middle": [],
                        "last": "Green",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Habash",
                        "suffix": ""
                    },
                    {
                        "first": "Wolfgang",
                        "middle": [],
                        "last": "Kuhlmann",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Maier",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Przepi\u00f3rkowski",
                        "suffix": ""
                    },
                    {
                        "first": "Wolfgang",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    },
                    {
                        "first": "Yannick",
                        "middle": [],
                        "last": "Seeker",
                        "suffix": ""
                    },
                    {
                        "first": "Veronika",
                        "middle": [],
                        "last": "Versley",
                        "suffix": ""
                    },
                    {
                        "first": "Marcin",
                        "middle": [],
                        "last": "Vincze",
                        "suffix": ""
                    },
                    {
                        "first": "Alina",
                        "middle": [],
                        "last": "Woli\u0144ski",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Wr\u00f3blewska",
                        "suffix": ""
                    },
                    {
                        "first": "Clergerie",
                        "middle": [],
                        "last": "Villemonte De La",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages",
                "volume": "",
                "issue": "",
                "pages": "146--182",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Djam\u00e9 Seddah, Reut Tsarfaty, Sandra K\u00fcbler, Marie Can- dito, Jinho D. Choi, Rich\u00e1rd Farkas, Jennifer Fos- ter, Iakes Goenaga, Koldo Gojenola Galletebeitia, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam Przepi\u00f3rkowski, Ryan Roth, Wolfgang Seeker, Yan- nick Versley, Veronika Vincze, Marcin Woli\u0144ski, Alina Wr\u00f3blewska, and Eric Villemonte de la Clergerie. 2013. Overview of the SPMRL 2013 shared task: A cross-framework evaluation of parsing morpholog- ically rich languages. In Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically- Rich Languages, pages 146-182, Seattle, Washington, USA, October. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "A cross-task flexible transition model for arabic tokenization, affix detection, affix labeling, pos tagging, and dependency parsing",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Tratz",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Fourth Workshop on Statistical Parsing of Morphologically Rich Languages",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen Tratz. 2013. A cross-task flexible transition model for arabic tokenization, affix detection, affix labeling, pos tagging, and dependency parsing. In Fourth Workshop on Statistical Parsing of Morpholog- ically Rich Languages, page 34. Citeseer.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Joint evaluation of morphological segmentation and syntactic parsing",
                "authors": [
                    {
                        "first": "Reut",
                        "middle": [],
                        "last": "Tsarfaty",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Evelina",
                        "middle": [],
                        "last": "Andersson",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 50th",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Reut Tsarfaty, Joakim Nivre, and Evelina Andersson. 2012. Joint evaluation of morphological segmenta- tion and syntactic parsing. In Proceedings of the 50th",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Annual Meeting of the Association for Computational Linguistics",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "2",
                "issue": "",
                "pages": "6--10",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2, pages 6-10. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Joint pos tagging and transition-based constituent parsing in chinese with non-local features",
                "authors": [
                    {
                        "first": "Zhiguo",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Nianwen",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "733--742",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhiguo Wang and Nianwen Xue. 2014. Joint pos tag- ging and transition-based constituent parsing in chi- nese with non-local features. In Proceedings of the 52nd Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), pages 733-742, Baltimore, Maryland, June. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Generating random spanning trees more quickly than the cover time",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Wilson",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceedings of the twenty-eighth annual ACM symposium on Theory of computing",
                "volume": "",
                "issue": "",
                "pages": "296--303",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Wilson. 1996. Generating random spanning trees more quickly than the cover time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 296-303. ACM.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Joint word segmentation and pos tagging using a single perceptron",
                "authors": [
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "888--896",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yue Zhang and Stephen Clark. 2008. Joint word seg- mentation and pos tagging using a single perceptron. In ACL, pages 888-896.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "A fast decoder for joint word segmentation and pos-tagging using a single discriminative model",
                "authors": [
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "843--852",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yue Zhang and Stephen Clark. 2010. A fast decoder for joint word segmentation and pos-tagging using a single discriminative model. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 843-852. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Character-level chinese dependency parsing",
                "authors": [
                    {
                        "first": "Meishan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Wanxiang",
                        "middle": [],
                        "last": "Che",
                        "suffix": ""
                    },
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting Liu. 2014a. Character-level chinese dependency pars- ing. In ACL.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Greed is good if randomized: New inference for dependency parsing",
                "authors": [
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Lei",
                        "suffix": ""
                    },
                    {
                        "first": "Regina",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    },
                    {
                        "first": "Tommi",
                        "middle": [],
                        "last": "Jaakkola",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2014b. Greed is good if randomized: New inference for dependency parsing. In EMNLP.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Steps to excellence: Simple inference with refined scoring of dependency trees",
                "authors": [
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Lei",
                        "suffix": ""
                    },
                    {
                        "first": "Regina",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    },
                    {
                        "first": "Tommi",
                        "middle": [],
                        "last": "Jaakkola",
                        "suffix": ""
                    },
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Globerson",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola, and Amir Globerson. 2014c. Steps to excellence: Simple inference with refined scoring of dependency trees. In ACL.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "text": "Example MADA analysis for the word Emlyp and the corresponding lattice structure. POS tagging. Table 3 provides statistics on the generated candidate sets. SPMRL 2013 Following Marton et al.",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF2": {
                "num": null,
                "text": "Performance with different sizes of the candidate sets on the SPMRL dataset. The graph shows the TedEval and F-scores when considering the best k analyses by MADA, and the variation is achieved by changing k.",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF3": {
                "num": null,
                "text": "Cumulative distribution function(CDF)",
                "uris": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "type_str": "table",
                "content": "<table><tr><td>arc!</td><td colspan=\"4\">consecutive sibling!</td><td colspan=\"3\">grandparent!</td></tr><tr><td>h</td><td>m</td><td>h</td><td>m</td><td>s</td><td>g</td><td>h</td><td>m</td></tr><tr><td/><td>tri-siblings!</td><td/><td/><td colspan=\"3\">grand-sibling!</td><td/></tr><tr><td>h</td><td>m s</td><td>t</td><td/><td>g</td><td>h</td><td>m</td><td>s</td></tr></table>",
                "num": null,
                "text": "POS tag feature templates. t 0 and w 0 denotes the POS tag and the word at the current position. t \u2212x and t x denote left and right context tags, and similarly for words. s(\u2022) denotes the score of the POS tag produced by the preprocessing tagger.",
                "html": null
            },
            "TABREF2": {
                "type_str": "table",
                "content": "<table><tr><td>Morphologically Rich Languages (SPMRL) Shared</td></tr><tr><td>Task 2013</td></tr></table>",
                "num": null,
                "text": "Statistics of datasets.",
                "html": null
            },
            "TABREF3": {
                "type_str": "table",
                "content": "<table><tr><td>MADA analysis</td><td/><td/></tr><tr><td/><td>Word Emlyp</td><td/></tr><tr><td>Emly/Lattice structure</td><td/><td/></tr><tr><td colspan=\"2\">Emly/NOUN</td><td>p/NSUFF gen:f/num:s/per:na</td></tr><tr><td/><td>Emly/ADJ</td><td/></tr><tr><td>Eml/NOUN</td><td>y/NSUFF</td><td>p/PRON gen:m/num:d/per:na</td></tr></table>",
                "num": null,
                "text": "NOUN+p/NSUFF, gen:f/num:s/per:na Emly/ADJ+p/NSUFF, gen:f/num:s/per:na Eml/NOUN+y/NSUFF+p/PRON, gen:m/num:d/per:na",
                "html": null
            },
            "TABREF4": {
                "type_str": "table",
                "content": "<table><tr><td colspan=\"4\">Seg Oracle Avg. SPMRL 99.4 Dataset F1 99.8 1.23</td><td>96.9</td><td>POS 1.71</td></tr><tr><td colspan=\"2\">Classical 92.4</td><td>97.0</td><td>1.16</td><td>82.4</td><td>3.01</td></tr><tr><td>CTB5</td><td>95.3</td><td>99.0</td><td>1.22</td><td>91.4</td><td>2.02</td></tr></table>",
                "num": null,
                "text": "|S i | F1 Avg. |T i,j |",
                "html": null
            },
            "TABREF5": {
                "type_str": "table",
                "content": "<table/>",
                "num": null,
                "text": "Quality of the lattice structures on each dataset. For SPMRL and CTB5, we show the statistics on the development sets. For classical Arabic, we directly show the statistics on the testing set because the development set is not available.",
                "html": null
            }
        }
    }
}