File size: 117,155 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 |
{
"paper_id": "N15-1005",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T14:34:27.676679Z"
},
"title": "Randomized Greedy Inference for Joint Segmentation, POS Tagging and Dependency Parsing",
"authors": [
{
"first": "Yuan",
"middle": [],
"last": "Zhang",
"suffix": "",
"affiliation": {
"laboratory": "Artificial Intelligence Laboratory",
"institution": "Massachusetts Institute of Technology",
"location": {}
},
"email": "yuanzh@csail.mit.edu"
},
{
"first": "Chengtao",
"middle": [],
"last": "Li",
"suffix": "",
"affiliation": {
"laboratory": "Artificial Intelligence Laboratory",
"institution": "Massachusetts Institute of Technology",
"location": {}
},
"email": "ctli@csail.mit.edu"
},
{
"first": "Regina",
"middle": [],
"last": "Barzilay",
"suffix": "",
"affiliation": {
"laboratory": "Artificial Intelligence Laboratory",
"institution": "Massachusetts Institute of Technology",
"location": {}
},
"email": "regina@csail.mit.edu"
},
{
"first": "Kareem",
"middle": [],
"last": "Darwish",
"suffix": "",
"affiliation": {
"laboratory": "ALT Research Group Qatar Computing Research Institute",
"institution": "",
"location": {}
},
"email": "kdarwish@qf.org.qa"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "In this paper, we introduce a new approach for joint segmentation, POS tagging and dependency parsing. While joint modeling of these tasks addresses the issue of error propagation inherent in traditional pipeline architectures, it also complicates the inference task. Past research has addressed this challenge by placing constraints on the scoring function. In contrast, we propose an approach that can handle arbitrarily complex scoring functions. Specifically, we employ a randomized greedy algorithm that jointly predicts segmentations, POS tags and dependency trees. Moreover, this architecture readily handles different segmentation tasks, such as morphological segmentation for Arabic and word segmentation for Chinese. The joint model outperforms the state-of-the-art systems on three datasets, obtaining 2.1% TedEval absolute gain against the best published results in the 2013 SPMRL shared task. 1",
"pdf_parse": {
"paper_id": "N15-1005",
"_pdf_hash": "",
"abstract": [
{
"text": "In this paper, we introduce a new approach for joint segmentation, POS tagging and dependency parsing. While joint modeling of these tasks addresses the issue of error propagation inherent in traditional pipeline architectures, it also complicates the inference task. Past research has addressed this challenge by placing constraints on the scoring function. In contrast, we propose an approach that can handle arbitrarily complex scoring functions. Specifically, we employ a randomized greedy algorithm that jointly predicts segmentations, POS tags and dependency trees. Moreover, this architecture readily handles different segmentation tasks, such as morphological segmentation for Arabic and word segmentation for Chinese. The joint model outperforms the state-of-the-art systems on three datasets, obtaining 2.1% TedEval absolute gain against the best published results in the 2013 SPMRL shared task. 1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Parsing accuracy is greatly impacted by the quality of preprocessing steps such as tagging and word segmentation. Li et al. (2011) report that the difference between using the gold POS tags and using the automatic counterparts reaches about 6% in dependency accuracy. Prior research has demonstrated that joint prediction alleviates error propagation inherent in pipeline architectures, where mistakes cascade from one task to the next (Bohnet et al., 2013; Tratz, 2013; Hatori et al., 2012; Zhang et al., 2014a) . However, jointly modeling all the processing tasks inevitably increases inference complexity. Prior work addressed this challenge by introducing constraints on scoring functions to keep inference tractable (Qian and Liu, 2012) .",
"cite_spans": [
{
"start": 114,
"end": 130,
"text": "Li et al. (2011)",
"ref_id": "BIBREF14"
},
{
"start": 436,
"end": 457,
"text": "(Bohnet et al., 2013;",
"ref_id": "BIBREF2"
},
{
"start": 458,
"end": 470,
"text": "Tratz, 2013;",
"ref_id": "BIBREF19"
},
{
"start": 471,
"end": 491,
"text": "Hatori et al., 2012;",
"ref_id": "BIBREF12"
},
{
"start": 492,
"end": 512,
"text": "Zhang et al., 2014a)",
"ref_id": "BIBREF26"
},
{
"start": 721,
"end": 741,
"text": "(Qian and Liu, 2012)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, we propose a method for joint prediction that imposes no constraints on the scoring function. The method is able to handle high-order and global features for each individual task (e.g., parsing), as well as features that capture interactions between tasks. The algorithm achieves this flexibility by operating over full assignments that specify segmentation, POS tags and dependency tree, moving from one complete configuration to another.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Our approach is based on the randomized greedy algorithm from our earlier dependency parsing system (Zhang et al., 2014b) . We extend this algorithm to jointly predict the segmentation and the POS tags in addition to the dependency parse. The search space for the algorithm is a combination of parse trees and lattices that encode alternative morphological and POS analyses. The inference algorithm greedily searches over this space, iteratively making local modifications to POS tags and dependency trees. To overcome local optima, we employ multiple restarts.",
"cite_spans": [
{
"start": 100,
"end": 121,
"text": "(Zhang et al., 2014b)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "This simple, yet powerful approach can be easily applied to a range of joint prediction tasks. In prior work, joint models have been designed for a specific language. For instance, joint models for Chinese are designed with word segmentation in mind (Hatori et al., 2012) , while algorithms for processing Semitic languages are tailored for morpho-logical analysis (Tratz, 2013; Goldberg and Elhadad, 2011) . In contrast, we show that our algorithm can be effortlessly applied to all these distinct languages. Language-specific characteristics drive the lattice construction and the feature selection, while the learning and inference methods are languageagnostic.",
"cite_spans": [
{
"start": 250,
"end": 271,
"text": "(Hatori et al., 2012)",
"ref_id": "BIBREF12"
},
{
"start": 365,
"end": 378,
"text": "(Tratz, 2013;",
"ref_id": "BIBREF19"
},
{
"start": 379,
"end": 406,
"text": "Goldberg and Elhadad, 2011)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We evaluate our model on three datasets: SPMRL (Modern Standard Arabic), classical Arabic and CTB5 (Chinese). Our model consistently outperforms state-of-the-art systems designed for these languages. We obtain a 2.1% TedEval gain against the best published results in the 2013 SPMRL shared task (Seddah et al., 2013 ). The joint model results in significant gains against its pipeline counterpart, yielding 2.4% absolute F-score increase in dependency parsing on the same dataset. Our analysis reveals that most of this gain comes from the improved prediction on OOV words.",
"cite_spans": [
{
"start": 295,
"end": 315,
"text": "(Seddah et al., 2013",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Joint Segmentation, POS tagging and Syntactic Parsing It has been widely recognized that joint prediction is an appealing alternative for pipeline architectures (Goldberg and Tsarfaty, 2008; Hatori et al., 2012; Habash and Rambow, 2005; Gahbiche-Braham et al., 2012; Zhang and Clark, 2008; Bohnet and Nivre, 2012) . These approaches have been particularly prominent for languages with difficult preprocessing, such as morphologically rich languages (e.g., Arabic and Hebrew) and languages that require word segmentation (e.g., Chinese). For the former, joint prediction models typically rely on a lattice structure to represent alternative morphological analyses (Goldberg and Tsarfaty, 2008; Tratz, 2013; Cohen and Smith, 2007) . For instance, transitionbased models intertwine operations on the lattice with operations on a dependency tree. Other joint architectures are more decoupled: in Goldberg and Tsarfaty (2008) , a lattice is used to derive the best morphological analysis for each part-of-speech alternative, which is in turn provided to the parsing algorithm. In both cases, tractable inference is achieved by limiting the representation power of the scoring function. Our model also uses a lattice to encode alternative analyses. However, we employ this structure in a different way. The model samples the full path from the lattice, which corresponds to a valid segmentation and POS tagging assignment. Then the model improves the path and the corresponding tree via a hill-climbing strategy. This architecture allows us to incorporate arbitrary features for segmentation, POS tagging and parsing.",
"cite_spans": [
{
"start": 161,
"end": 190,
"text": "(Goldberg and Tsarfaty, 2008;",
"ref_id": "BIBREF9"
},
{
"start": 191,
"end": 211,
"text": "Hatori et al., 2012;",
"ref_id": "BIBREF12"
},
{
"start": 212,
"end": 236,
"text": "Habash and Rambow, 2005;",
"ref_id": null
},
{
"start": 237,
"end": 266,
"text": "Gahbiche-Braham et al., 2012;",
"ref_id": "BIBREF7"
},
{
"start": 267,
"end": 289,
"text": "Zhang and Clark, 2008;",
"ref_id": "BIBREF24"
},
{
"start": 290,
"end": 313,
"text": "Bohnet and Nivre, 2012)",
"ref_id": "BIBREF1"
},
{
"start": 663,
"end": 692,
"text": "(Goldberg and Tsarfaty, 2008;",
"ref_id": "BIBREF9"
},
{
"start": 693,
"end": 705,
"text": "Tratz, 2013;",
"ref_id": "BIBREF19"
},
{
"start": 706,
"end": 728,
"text": "Cohen and Smith, 2007)",
"ref_id": "BIBREF3"
},
{
"start": 892,
"end": 920,
"text": "Goldberg and Tsarfaty (2008)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "In joint prediction models for Chinese, lattice structures are not typically used. Commonly these models are formulated in a transition-based framework at the character level (Zhang and Clark, 2008; Zhang et al., 2014a; Wang and Xue, 2014) . While this formulation can handle a large space of possible word segmentations, it can only capture features that are instantiated based on the stack and queue status. Our approach offers two advantages over prior work:",
"cite_spans": [
{
"start": 175,
"end": 198,
"text": "(Zhang and Clark, 2008;",
"ref_id": "BIBREF24"
},
{
"start": 199,
"end": 219,
"text": "Zhang et al., 2014a;",
"ref_id": "BIBREF26"
},
{
"start": 220,
"end": 239,
"text": "Wang and Xue, 2014)",
"ref_id": "BIBREF22"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "(1) we can incorporate arbitrary features for word segmentation and parsing;",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "(2) we demonstrate that a lattice-based approach commonly used for other languages can be effectively utilized for Chinese.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Randomized Greedy Inference Our prior work has demonstrated that a simple randomized greedy approach delivers near optimal dependency parsing (Zhang et al., 2014b) . Our analysis explains this performance with the particular properties of the search space in dependency parsing. We show how to apply this strategy to a more challenging inference task and demonstrate that a randomized greedy algorithm achieves excellent performance in a significantly larger search space.",
"cite_spans": [
{
"start": 142,
"end": 163,
"text": "(Zhang et al., 2014b)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "In this section, we introduce our model for joint morphological segmentation, tagging and parsing. Our description will first assume that word boundaries are provided (e.g., the case of Arabic). Later, we will describe how this model can be applied to a joint prediction task that involves word segmentation (e.g., Chinese).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Randomized Greedy System for Joint Prediction",
"sec_num": "3"
},
{
"text": "Let x = {x i } |x| i=1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Notation",
"sec_num": "3.1"
},
{
"text": "be a sentence of length |x| that consists of tokens x i . We use s = {s i } |x| i=1 to denote a segmentation of all the tokens in sentence x, and",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Notation",
"sec_num": "3.1"
},
{
"text": "s i = {s i,j } |s i | j=1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Notation",
"sec_num": "3.1"
},
{
"text": "to denote a segmentation of the token x i , where s i,j is the jth morpheme of the token x i . Similarly, we use t, t i and t i,j for the POS",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Notation",
"sec_num": "3.1"
},
{
"text": "w/PRT w/C kAn/V w/C k/P An/N An/C t i,1 2 T i,1 = {C, P RT } t i,2 2 T i,2 = {V } S i T i = T i,1 \u21e5 T i,2 1 s i = w + kAn x i = wkAn s i,1 = w t i,1 t i,1 2 T i,1 = {C, P RT } t i,2 2 T i,2 = {V } S i T i = T i,1 \u21e5 T i,2 1 = {C, PRT} t i,1 2 T i,1 = {C, P RT } t i,2 2 T i,2 = {V } S i T i = T i,1 \u21e5 T i,2 1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Notation",
"sec_num": "3.1"
},
{
"text": "Figure 1: Example lattice structures for the Arabic token \"wkAn\". It has two candidate segmentations: w+kAn or w+k+An. The first segmentation consists of two morphemes. The first morpheme w has two candidate POS.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Notation",
"sec_num": "3.1"
},
{
"text": "tags for each sentence, token and morpheme. We use y to denote a dependency tree over morphemes, and y i,j to denote the head of morpheme s i,j . During training, the algorithm is provided with tuples that specify ground truth values for all the variables D = {(x,\u015d,t,\u0177)}. We also assume access to a morphological analyzer and a POS tagger that provide candidate analyses. Specifically, for each token x i , the algorithm is provided with candidate segmentations S i , and candidate POS tags T i and T i,j . These alternative analyses are captured in the lattice structure (see Figure 1 for an example). Finally, we use Y to denote the set of all valid dependency trees defined over morphemes.",
"cite_spans": [],
"ref_spans": [
{
"start": 578,
"end": 584,
"text": "Figure",
"ref_id": null
}
],
"eq_spans": [],
"section": "Notation",
"sec_num": "3.1"
},
{
"text": "We parameterize the scoring function as",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "score(x, s, t, y) = \u03b8 \u2022 f (x, s, t, y)",
"eq_num": "(1)"
}
],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "where \u03b8 is the parameter vector and f (x, s, t, y) is the feature vector associated with the sentence and all variables. The goal of decoding is to find a set of valid values for (s, t, y) \u2208 S \u00d7 T \u00d7 Y that maximizes the score defined in Eq. 1. Our randomized greedy algorithm finds a high scoring assignment for (s, t, y) via a hill-climbing process with multiple random restarts. (Section 3.3 describes how the parameters \u03b8 are learned.) Figure 2 shows the framework of our randomized greedy algorithm. First, we draw a full path from the lattice structure in two steps: (1) sampling a morphological segmentation s from S; (2) sampling POS tags t for each morpheme. Next, we sample a dependency tree y from the parse space. Based on this random starting point, we iteratively hill-climb t and y in a bottom-up order. 2 In our earlier work (Zhang et al., 2014b) , we showed this strategy guarantees that we can climb to any target tree in a finite number of steps. We repeat the sampling and the hill-climbing processes above until we do not find a better solution for K iterations. We introduce the details of this process below.",
"cite_spans": [
{
"start": 840,
"end": 861,
"text": "(Zhang et al., 2014b)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [
{
"start": 439,
"end": 447,
"text": "Figure 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "SampleSeg and SamplePOS: Given a sentence x, we first draw segmentations s and POS tags t (0) from the first-order distribution using the current learned parameter values. For segmentation, firstorder features only depend on each token x i and its morphemes s i,j . Similarly, for POS, first-order features are defined based on s i,j and t i,j . The sampling process is straightforward due to the fact that the candidate sets |S i | and |T i,j | are both small. We can enumerate and compute the probabilities proportional to the exponential of the first-order scores as follows.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "3 p(s i ) \u221d exp{\u03b8 \u2022 f (x, s i )} p(t i,j ) \u221d exp{\u03b8 \u2022 f (x, s i , t i,j )} (2)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "SampleTree: Given a random sample of the segmentations s and the POS tags t (0) , we draw a random tree y (0) from the first-order distribution using Wilson's algorithm (Wilson, 1996). 4 HillClimbPOS: After sampling the initial values s, t (0) and y (0) , the hill-climbing algorithm improves the solution via locally greedy changes. The hillclimbing algorithm iterates between improving the POS tags and the dependency tree. For POS tagging, it updates each t i,j in a bottom-up order as follows",
"cite_spans": [
{
"start": 169,
"end": 186,
"text": "(Wilson, 1996). 4",
"ref_id": null
},
{
"start": 240,
"end": 243,
"text": "(0)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "t i,j \u2190 arg max t i,j \u2208T i,j score(x, s, t i,j , t \u2212(i,j) , y)",
"eq_num": "(3)"
}
],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "where t \u2212(i,j) are the rest of the POS tags when we update t i,j .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "Input: parameter \u03b8, sentence x Output: segmentations s, POS tags t and dependency tree y",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "1: s \u2190 SampleSeg(x) 2: t (0) \u2190 SampleP os(x, s) 3: y (0) \u2190 SampleT ree(x, s, t (0) ) 4: k = 0 5: repeat 6: t (k+1) \u2190 HillClimbP OS(x, s, t (k) , y (k) )",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "7:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "y (k+1) \u2190 HillClimbT ree(x, s, t (k+1) , y (k) ) 8:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "k \u2190 k + 1 9: until no change in this iteration 10: return (s, t (k) , y (k) ) Figure 2 : The hill-climbing algorithm with random initializations. Details of the sampling and hillclimbing functions in Line 1-3 and 6-7 are provided in Section 3.2.",
"cite_spans": [
{
"start": 64,
"end": 67,
"text": "(k)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 78,
"end": 86,
"text": "Figure 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Decoding",
"sec_num": "3.2"
},
{
"text": "We improve the dependency tree y via a similar hill-climbing process. Specifically, we greedily update the head y i,j of each morpheme in a bottom-up order as follows",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "HillClimbTree:",
"sec_num": null
},
{
"text": "y i,j \u2190 arg max y i,j \u2208Y i,j score(x, s, t, y i,j , y \u2212(i,j) ) (4)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "HillClimbTree:",
"sec_num": null
},
{
"text": "where Y i,j is the set of candidate heads such that changing y i,j to any candidate does not violate the tree constraint.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "HillClimbTree:",
"sec_num": null
},
{
"text": "We learn the parameters \u03b8 in a max-margin framework, using on-line updates. For each update, we need to compute the segmentations, POS tags and the tree that maximize the cost-augmented score:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training",
"sec_num": "3.3"
},
{
"text": "(s,t,\u1ef9) = arg max s\u2208S,t\u2208T ,y\u2208Y {\u03b8\u2022f (x, s, t, y)+Err(s, t, y)} (5)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training",
"sec_num": "3.3"
},
{
"text": "where Err(s, t, y) is the number of errors of (s, t, y) against the ground truth (\u015d,t,\u0177). The parameters are then updated to guide the selection against the violation. This is done via standard passive-aggressive updates (Crammer et al., 2006) .",
"cite_spans": [
{
"start": 221,
"end": 243,
"text": "(Crammer et al., 2006)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Training",
"sec_num": "3.3"
},
{
"text": "In this section we describe how the proposed model can be adapted to languages that do not delineate Figure 3 : Example lattice structures for the Chinese sentence \"\u65b0\u534e\u793e\u5317\u4eac\u4e8c\u6708\u5341\u4e09\u65e5\u7535\" (Xinhua Press at Beijing reports on February 13th). The token \u65b0\u534e\u793e has two candidate segmentations: \u65b0 \u534e\u793e or \u65b0\u534e + \u793e.",
"cite_spans": [],
"ref_spans": [
{
"start": 101,
"end": 109,
"text": "Figure 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Adapting to Chinese Joint Prediction",
"sec_num": "3.4"
},
{
"text": "! Xinhua News Agency ! Xinhua ! society ! February 13th ! February ! 13th ! Beijing ! report",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Adapting to Chinese Joint Prediction",
"sec_num": "3.4"
},
{
"text": "words with spaces, and thus require word segmentation. The main difference lies in the construction of the lattice structure. We employ a state-of-the-art word segmenter to produce candidate word boundaries. We consider boundaries common across all the top-k candidates as true word boundaries. The remaining tokens (i.e., strings between these boundaries) are treated as words to be further segmented and labeled with POS tags. Figure 3 shows an example of the Chinese word lattice structure we construct. Once the lattice is constructed, the joint prediction model is applied as described above.",
"cite_spans": [],
"ref_spans": [
{
"start": 429,
"end": 437,
"text": "Figure 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Adapting to Chinese Joint Prediction",
"sec_num": "3.4"
},
{
"text": "Segmentation Features For both Arabic and Chinese, each segmentation is represented by its score from the preprocessing system, and by the corresponding morphemes (or words in Chinese). Following previous work (Zhang and Clark, 2010) , we also add character-based features for Chinese word segmentation, including the first and the last characters in the word, and the length of the word. Table 1 summarizes the POS tag features employed by the model. First, we use the feature templates proposed in our previous work on Arabic joint parsing and POS correction (Zhang et al., 2014c) . In addition, we incorporate character-based features specifically designed for Chinese. These features are mainly inspired by previous transition-based models on Chinese joint POS tagging and word segmentation (Zhang and Clark, 2010) .",
"cite_spans": [
{
"start": 210,
"end": 233,
"text": "(Zhang and Clark, 2010)",
"ref_id": "BIBREF25"
},
{
"start": 561,
"end": 582,
"text": "(Zhang et al., 2014c)",
"ref_id": "BIBREF28"
},
{
"start": 795,
"end": 818,
"text": "(Zhang and Clark, 2010)",
"ref_id": "BIBREF25"
}
],
"ref_spans": [
{
"start": 389,
"end": 396,
"text": "Table 1",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Features",
"sec_num": "4"
},
{
"text": "The feature templates for dependency parsing are mainly drawn from our previous work (Zhang et al., 2014b) ",
"cite_spans": [
{
"start": 85,
"end": 106,
"text": "(Zhang et al., 2014b)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Dependency Parsing Features",
"sec_num": null
},
{
"text": ". Fig- 1-gram t0, w\u22122 , t0, w\u22121 , t0, w0 , t0, w1 , t0, w2 , t0, w\u22121, w0 , t0, w0, w1 , s(t0) , t0, s(t0) 2-gram t\u22121, t0 , t\u22122, t0 , t\u22121, t0, w\u22121 , t\u22121, t0, w0 3-gram t\u22121, t0, t1 , t\u22122, t0, t1, , t\u22121, t0, t2 , t\u22122, t0, t2 4-gram t\u22122, t\u22121, t0, t+1 , t\u22122, t\u22121, t0, t2 , t\u22122, t0, t1, t2 5-gram t\u22122, t\u22121, t0, t1, t2",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dependency Parsing Features",
"sec_num": null
},
{
"text": "Character t0, pre1(w0) , t0, pre2(w0) , t0, suf1(w0) , t0, suf2(w0) , t0, cn(w0) , t0, len(w0) Figure 4 : First-to third-order dependency parsing features.",
"cite_spans": [],
"ref_spans": [
{
"start": 95,
"end": 103,
"text": "Figure 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Dependency Parsing Features",
"sec_num": null
},
{
"text": "ure 4 shows the first-to third-order feature templates that we use in our model. We also use global features to capture the adjacent conjuncts agreement in a coordination structure, and the valency patterns for each POS category. Note that most dependency features are implicitly cross-task in that they include POS tag and segmentation information. For example, the standard feature involves the POS tags of the words on both ends of the arc. (Seddah et al., 2013) . 5 We follow the official split for training, development and testing set. We use the core set of 12 POS categories provided by Marton et al. (2013) . In the second Arabic dataset, the training set is a dependency conversion of the Arabic Treebank, which primarily includes Modern Standard Arabic (MSA) text. However, we test on a new corpus, which consists of classical Arabic text obtained from the Comprehensive Islamic Library (CIS). 6 A native Arabic speaker with background in computational linguistics annotated the morphological segmentation and POS tags. This corpus is an excellent testbed for a joint model because classical Arabic may use rather different vocabulary from MSA, while their syntactic grammars are very similar to each other. Therefore incorporating syntactic information should be particularly beneficial to morphological segmentation and POS tagging. For Chinese, we use the Chinese Penn Treebank 5.0 (CTB5) and follow the split in previous work (Zhang and Clark, 2010) . Table 2 summarizes the statistics of the datasets. For the SPMRL test set, we follow the common practice which limits the sentence lengths up to 70 (Seddah et al., 2013) . For classical Arabic and Chinese, we evaluate on all the test sentences.",
"cite_spans": [
{
"start": 444,
"end": 465,
"text": "(Seddah et al., 2013)",
"ref_id": "BIBREF18"
},
{
"start": 468,
"end": 469,
"text": "5",
"ref_id": null
},
{
"start": 595,
"end": 615,
"text": "Marton et al. (2013)",
"ref_id": "BIBREF16"
},
{
"start": 1441,
"end": 1464,
"text": "(Zhang and Clark, 2010)",
"ref_id": "BIBREF25"
},
{
"start": 1615,
"end": 1636,
"text": "(Seddah et al., 2013)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [
{
"start": 1467,
"end": 1474,
"text": "Table 2",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Dependency Parsing Features",
"sec_num": null
},
{
"text": "In this section we introduce the methodology for constructing candidate sets for segmentation and 2013, we use the MADA system to generate candidate morphological analyses and POS tags. For each token in the sentence, MADA provides a list of possible morphological analyses and POS tags, each associated with a score. The score of each segmentation or POS tag equals the highest score of the MADA analysis in which it appears. In addition, we associate each segmentation with MADA analyses on gender, number and person. Figure 5 shows an example of MADA output for the token Emlyp and the corresponding lattice structure.",
"cite_spans": [],
"ref_spans": [
{
"start": 520,
"end": 528,
"text": "Figure 5",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Generating Lattice Structures",
"sec_num": "5.2"
},
{
"text": "We construct the lattice for this corpus in a similar fashion to the SPMRL dataset with two main departures. First, we use the Arabic morphological analyzer developed by Darwish et al. (2014) because MADA is primarily trained for MSA and performs poorly on classical Arabic. Second, we implement a CRF-based morpheme-level POS tagger and generate the POS tag candidates for each morpheme based on their marginal probabilities, truncated by a probability threshold.",
"cite_spans": [
{
"start": 170,
"end": 191,
"text": "Darwish et al. (2014)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Classical Arabic",
"sec_num": null
},
{
"text": "We first re-train the Stanford Chinese word segmenter on CTB5 and generate a top-10 list for each sentence. 7 We treat the word boundaries shared across all the 10 candidates as the confident ones, and construct the lattice as described in Section 3.4. Our model then focuses on disambiguating the rest of the word boundaries in the candidates. To generate POS candidates, we apply a CRF-based tagger with Chinese-specific features used in previous work (Hatori et al., 2011) .",
"cite_spans": [
{
"start": 108,
"end": 109,
"text": "7",
"ref_id": null
},
{
"start": 454,
"end": 475,
"text": "(Hatori et al., 2011)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "CTB5",
"sec_num": null
},
{
"text": "Following standard practice in previous work (Hatori et al., 2012; Zhang et al., 2014a) , we use Fscore as the evaluation metric for segmentation, POS tagging and dependency parsing. We report the morpheme-level F-score for Arabic and the wordlevel F-score for Chinese. In addition, we use TedEval (Tsarfaty et al., 2012) to evaluate the joint prediction on the SPMRL dataset, because TedEval score is the only evaluation metric used in the official report. We directly use the evaluation tools provided on the SPMRL official website. 8",
"cite_spans": [
{
"start": 45,
"end": 66,
"text": "(Hatori et al., 2012;",
"ref_id": "BIBREF12"
},
{
"start": 67,
"end": 87,
"text": "Zhang et al., 2014a)",
"ref_id": "BIBREF26"
},
{
"start": 298,
"end": 321,
"text": "(Tsarfaty et al., 2012)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation Measures",
"sec_num": "5.3"
},
{
"text": "State-of-the-Art Systems For the SPMRL dataset, we directly compare with Bj\u00f6rkelund et al. (2013) . This system achieves the best TedEval score in the track of dependency parsing with predicted information and we directly republish the official result. We also compute the F-score of this system on each task using our own evaluation script. 9 For the CTB5 dataset, we directly compare to the arc-eager system by Zhang et al. (2014a) , which slightly outperforms the arc-standard system by Hatori et al. (2012) . Table 4 : Segmentation, POS tagging and unlabeled attachment dependency F-scores (%) and TedEval score (%) on different datasets. The first line denotes the performance by the pipeline variation of our model. The second row shows the results by our joint model. \"Best Published\" includes the best reported results: Bj\u00f6rkelund et al. (2013) for the SPMRL 2013 shared task and Zhang et al. (2014a) for the CTB5 dataset. Note that the POS F-scores are not directly comparable because Bj\u00f6rkelund et al. 2013 Seen OOV (c) CTB5 Figure 6 : Absolute F-score (%) improvement of the joint model over the pipeline counterpart on seen and out-of-vocabulary (OOV) words.",
"cite_spans": [
{
"start": 73,
"end": 97,
"text": "Bj\u00f6rkelund et al. (2013)",
"ref_id": "BIBREF0"
},
{
"start": 413,
"end": 433,
"text": "Zhang et al. (2014a)",
"ref_id": "BIBREF26"
},
{
"start": 490,
"end": 510,
"text": "Hatori et al. (2012)",
"ref_id": "BIBREF12"
},
{
"start": 828,
"end": 852,
"text": "Bj\u00f6rkelund et al. (2013)",
"ref_id": "BIBREF0"
},
{
"start": 888,
"end": 908,
"text": "Zhang et al. (2014a)",
"ref_id": "BIBREF26"
}
],
"ref_spans": [
{
"start": 513,
"end": 520,
"text": "Table 4",
"ref_id": null
},
{
"start": 1035,
"end": 1043,
"text": "Figure 6",
"ref_id": null
}
],
"eq_spans": [],
"section": "Baselines",
"sec_num": "5.4"
},
{
"text": "System Variants We also compare against a pipeline variation of our model. In our pipeline model, we predict segmentations and POS tags by the same system that we use to generate candidates.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Baselines",
"sec_num": "5.4"
},
{
"text": "The subsequent standard parsing model then operates on the predicted segmentations and POS tags.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Baselines",
"sec_num": "5.4"
},
{
"text": "Following our earlier work (Zhang et al., 2014b) , we train a first-order classifier to prune the dependency tree space. 10 Following common practice, we average parameters over all iterations after training with passive-aggressive online learning algorithm (Crammer et al., 2006; Collins, 2002) . We use the same adaptive random restart strategy as in our earlier work (Zhang et al., 2014b) and set K = 300. In addition, we also apply an aggressive early-stop strategy during training for efficiency. If we have found a violation against the ground truth during the first 50 iterations, we immediately stop and update the parameters based on the current violation. The reasoning behind this early-stop strategy is that weaker violations for some training sentences are already sufficient for separable training sets (Huang et al., 2012) .",
"cite_spans": [
{
"start": 27,
"end": 48,
"text": "(Zhang et al., 2014b)",
"ref_id": "BIBREF27"
},
{
"start": 258,
"end": 280,
"text": "(Crammer et al., 2006;",
"ref_id": "BIBREF5"
},
{
"start": 281,
"end": 295,
"text": "Collins, 2002)",
"ref_id": "BIBREF4"
},
{
"start": 370,
"end": 391,
"text": "(Zhang et al., 2014b)",
"ref_id": "BIBREF27"
},
{
"start": 817,
"end": 837,
"text": "(Huang et al., 2012)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Details",
"sec_num": "5.5"
},
{
"text": "Comparison to State-of-the-art Systems Table 4 summarizes the performance of our model and the best published results for the SPMRL and the CTB5 datasets. 11 On both datasets, our system outperforms the baselines. On the SPMRL 2013 shared task, our approach yields a 2.1% TedEval score gain over the top performing system (Bj\u00f6rkelund et al., 2013) . We also improve the segmentation and dependency F-scores by 3.1% and 4.8% respectively. Note that the POS F-scores are not directly comparable because Bj\u00f6rkelund et al. (2013) use a different POS tagset from us. On the CTB5 dataset, we outperform the state-of-the-art with respect to all Figure 8 : The normalized score of the output tree as the function of the number of restarts. We normalize scores of each sentence by the highest score among 3,000 restarts for this sentence. We show the curve up to 1,000 restarts because it reaches convergence after 500 restarts.",
"cite_spans": [
{
"start": 322,
"end": 347,
"text": "(Bj\u00f6rkelund et al., 2013)",
"ref_id": "BIBREF0"
},
{
"start": 501,
"end": 525,
"text": "Bj\u00f6rkelund et al. (2013)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [
{
"start": 39,
"end": 46,
"text": "Table 4",
"ref_id": null
},
{
"start": 638,
"end": 646,
"text": "Figure 8",
"ref_id": null
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "6"
},
{
"text": "tasks: segmentation (0.3%), tagging (0.1%), and dependency parsing (0.3%). 12 As Table 4 shows, our joint prediction model consistently outperforms the corresponding pipeline model in all three tasks. This observation is consistent with findings in previous work (Hatori et al., 2012; Tratz, 2013) . We also observe that gains are higher (2%) on the classical Arabic dataset, which demonstrates that joint prediction is particularly helpful in bridging the gap between MSA and classical Arabic.",
"cite_spans": [
{
"start": 263,
"end": 284,
"text": "(Hatori et al., 2012;",
"ref_id": "BIBREF12"
},
{
"start": 285,
"end": 297,
"text": "Tratz, 2013)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [
{
"start": 78,
"end": 88,
"text": "As Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "6"
},
{
"text": "12 Zhang et al. (2014a) improve the dependency F-score to 82.14% by adding manually annotated intra-word dependency information. Even without such gold word structure annotations, our model still achieves a comparable result. Table 5 : F-score error reductions (%) of the joint model over the pipeline counterpart on seen and OOV words. Figure 6 shows the break of the improvement based on seen and out-of-vocabulary (OOV) words. As expected, across all languages OOV words benefit more from the joint prediction, as they constitute a common source of error propagation in a pipeline model. The extent of improvement depends on the underlying accuracy of the preprocessing for segmentation and POS tagging on OOV words. For instance, we observe a higher gain (7%) on Chinese OOV words which have a 61.5% accuracy when processed by the original stand-along POS tagger. On the SPMRL dataset, the gain on OOV words is lower (3%), while preprocessing accuracy is higher (82%). Their error reductions on OOV words are nevertheless close to each other. Table 5 summarizes the results on F-score error reduction.",
"cite_spans": [
{
"start": 3,
"end": 23,
"text": "Zhang et al. (2014a)",
"ref_id": "BIBREF26"
}
],
"ref_spans": [
{
"start": 226,
"end": 233,
"text": "Table 5",
"ref_id": null
},
{
"start": 337,
"end": 345,
"text": "Figure 6",
"ref_id": null
},
{
"start": 1047,
"end": 1054,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "Impact of the Joint Prediction",
"sec_num": null
},
{
"text": "We also observe that the error reductions of OOV words/morphemes on the Chinese and the Classical Arabic dataset are larger than that of the invocabulary counterparts (e.g. 26% vs. 20% on Chinese word segmentation). However, we have the opposite observation on the segmentation and POS tagging on the SPMRL dataset (28% vs. 48%). This can be explained by analyzing the oracle performance in which we select the best solution from possible candidates. The oracle error reduction of OOV morphemes in the SPMRL dataset is relatively low (44%), compared to the 61% oracle error reduction of OOV morphemes in the Classical Arabic dataset.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Impact of the Joint Prediction",
"sec_num": null
},
{
"text": "In Figure 7 , we plot the performance on the SPMRL dataset as a function of the number k of MADA analyses that we use to construct the candidate sets. For low k, increasing the number of analyses improves performance across all evaluation metrics. However, the performance converges at around k = 15. for the number of local optima versus the score of these local optima obtained from each restart, on the SPMRL dataset. The score captures the difference between a local optimum and the best one among 3,000 restarts.",
"cite_spans": [],
"ref_spans": [
{
"start": 3,
"end": 11,
"text": "Figure 7",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Impact of the Number of Alternative Analyses",
"sec_num": null
},
{
"text": "To assess the quality of the approximation obtained by the randomized greedy inference, we would like to compare it against the optimal solution. Following our earlier work (Zhang et al., 2014b) , we use the highest score among 3,000 restarts for each sentence as a proxy for the optimal solution. Figure 8 shows the normalized score of the retrieved solution as a function of the number of restarts. We observe that most sentences converge quickly. 13 Specifically, more than 97% of the sentences converge within first 300 restarts. Since for the vast majority of cases our system converges fast, we achieve a comparable speed to that of other state-of-the-art joint systems. For example, our model achieves high performance on Chinese at about 0.5 sentences per second. The speed is about the same as that of the transition-based system (Hatori et al., 2012) with beam size 64, the setting that achieved best accuracy in their work. Figure 9 shows the cumulative distribution function (CDF) for the number of local optima versus the score of these local optima obtained from each restart. More specifically, the score captures the difference between a local optimum and the maximal score among 3,000 restarts. We can see that most of the local optima reached by hill-climbing have scores close to the maximum. For instance, about 30% of the local optima are identical to the best solution, namely score max \u2212 score local = 0.",
"cite_spans": [
{
"start": 173,
"end": 194,
"text": "(Zhang et al., 2014b)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [
{
"start": 298,
"end": 306,
"text": "Figure 8",
"ref_id": null
},
{
"start": 935,
"end": 943,
"text": "Figure 9",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "Convergence Properties",
"sec_num": null
},
{
"text": "In this paper, we propose a general randomized greedy algorithm for joint segmentation, POS tagging and dependency parsing. On both Arabic and Chinese, our model achieves improvement on the three tasks over state-of-the-art systems and pipeline variants of our system. In particular, we demonstrate that OOV words benefits more from the power of joint prediction. Finally, our experimental results show that increasing candidate sizes improves performance across all evaluation metrics.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions",
"sec_num": "7"
},
{
"text": "The source code is available at https://github. com/yuanzh/SegParser.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We do not hill-climb segmentation, or else we have to jointly find the optimal t and y, and the resulting computational cost is too high.3 We notice that the distribution becomes significantly sharper after training for several epochs. Therefore, we also smooth the distribution by multiplying the score with a scaling factor.4 We also smooth the distribution in the same way as in segmentation and POS tagging.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "This dataset is originally provided by the LDC(Maamouri et al., 2004), specifically its SPMRL 2013 dependency instance, derived from the Columbia Catib Treebank and extended according to the SPMRL 2013 extension scheme(Seddah et al., 2013).6 This classical Arabic dataset is publicly available at http: //farasa.qcri.org/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We use 10-fold cross validation to avoid overfitting on the training set.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://www.spmrl.org/spmrl2013-sharedtask.html 9 F-score evaluation for Arabic is not straightforward due to the stem changes in the morphological analysis. Therefore, the comparison of F-scores is only approximate.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We set the probability threshold to 0.05 and limit the number of candidate heads up to 20, which gives a 99.5% pruning recall on both the SPMRL and the CTB5 development sets.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We are not aware of any published results on the Classical Arabic Dataset.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "As expected, we also observe that convergence is slower when comparing to standard dependency parsing with a similar randomized greedy algorithm(Zhang et al., 2014b), because joint prediction results in a harder inference problem.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "This research is developed in a collaboration of MIT with the Arabic Language Technologies (ALT) group at Qatar Computing Research Institute (QCRI) within the Interactive sYstems for Answer Search (IYAS) project. The authors acknowledge the support of the U.S. Army Research Office under grant number W911NF-10-1-0533, and of the DARPA BOLT program. We thank Meishan Zhang and Anders Bj\u00f6rkelund for answering questions and sharing the outputs of their systems. We also thank the MIT NLP group and the ACL reviewers for their comments. Any opinions, findings, conclusions, or recommendations expressed in this paper are those of the authors, and do not necessarily reflect the views of the funding organizations.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "(re)ranking meets morphosyntax: State-of-the-art results from the SPMRL 2013 shared task",
"authors": [
{
"first": "Anders",
"middle": [],
"last": "Bj\u00f6rkelund",
"suffix": ""
},
{
"first": "Ozlem",
"middle": [],
"last": "Cetinoglu",
"suffix": ""
},
{
"first": "Rich\u00e1rd",
"middle": [],
"last": "Farkas",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Mueller",
"suffix": ""
},
{
"first": "Wolfgang",
"middle": [],
"last": "Seeker",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages",
"volume": "",
"issue": "",
"pages": "135--145",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Anders Bj\u00f6rkelund, Ozlem Cetinoglu, Rich\u00e1rd Farkas, Thomas Mueller, and Wolfgang Seeker. 2013. (re)ranking meets morphosyntax: State-of-the-art re- sults from the SPMRL 2013 shared task. In Pro- ceedings of the Fourth Workshop on Statistical Pars- ing of Morphologically-Rich Languages, pages 135- 145, Seattle, Washington, USA, October. Association for Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "A transitionbased system for joint part-of-speech tagging and labeled non-projective dependency parsing",
"authors": [
{
"first": "Bernd",
"middle": [],
"last": "Bohnet",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning",
"volume": "",
"issue": "",
"pages": "1455--1465",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bernd Bohnet and Joakim Nivre. 2012. A transition- based system for joint part-of-speech tagging and la- beled non-projective dependency parsing. In Proceed- ings of the 2012 Joint Conference on Empirical Meth- ods in Natural Language Processing and Computa- tional Natural Language Learning, pages 1455-1465. Association for Computational Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Joint morphological and syntactic analysis for richly inflected languages",
"authors": [
{
"first": "Bernd",
"middle": [],
"last": "Bohnet",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Igor",
"middle": [],
"last": "Boguslavsky",
"suffix": ""
},
{
"first": "Rich\u00e1rd",
"middle": [],
"last": "Farkas",
"suffix": ""
},
{
"first": "Filip",
"middle": [],
"last": "Ginter",
"suffix": ""
}
],
"year": 2013,
"venue": "TACL",
"volume": "1",
"issue": "",
"pages": "415--428",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bernd Bohnet, Joakim Nivre, Igor Boguslavsky, Rich\u00e1rd Farkas, Filip Ginter, and Jan Hajic. 2013. Joint mor- phological and syntactic analysis for richly inflected languages. TACL, 1:415-428.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Joint morphological and syntactic disambiguation",
"authors": [
{
"first": "B",
"middle": [],
"last": "Shay",
"suffix": ""
},
{
"first": "Noah A",
"middle": [],
"last": "Cohen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Smith",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shay B Cohen and Noah A Smith. 2007. Joint morpho- logical and syntactic disambiguation. In Proceedings of EMNLP.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
"volume": "10",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Collins. 2002. Discriminative training meth- ods for hidden markov models: Theory and experi- ments with perceptron algorithms. In Proceedings of the Conference on Empirical Methods in Natural Lan- guage Processing -Volume 10, EMNLP '02. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Shai Shalev-Shwartz, and Yoram Singer",
"authors": [
{
"first": "Koby",
"middle": [],
"last": "Crammer",
"suffix": ""
},
{
"first": "Ofer",
"middle": [],
"last": "Dekel",
"suffix": ""
},
{
"first": "Joseph",
"middle": [],
"last": "Keshet",
"suffix": ""
}
],
"year": 2006,
"venue": "The Journal of Machine Learning Research",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev- Shwartz, and Yoram Singer. 2006. Online passive- aggressive algorithms. The Journal of Machine Learn- ing Research.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Using stem-templates to improve arabic pos and gender/number tagging",
"authors": [
{
"first": "Kareem",
"middle": [],
"last": "Darwish",
"suffix": ""
},
{
"first": "Ahmed",
"middle": [],
"last": "Abdelali",
"suffix": ""
},
{
"first": "Hamdy",
"middle": [],
"last": "Mubarak",
"suffix": ""
}
],
"year": 2014,
"venue": "International Conference on Language Resources and Evaluation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kareem Darwish, Ahmed Abdelali, and Hamdy Mubarak. 2014. Using stem-templates to improve arabic pos and gender/number tagging. In Inter- national Conference on Language Resources and Evaluation (LREC-2014).",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Joint segmentation and pos tagging for arabic using a crfbased classifier",
"authors": [
{
"first": "Souhir",
"middle": [],
"last": "Gahbiche-Braham",
"suffix": ""
},
{
"first": "H\u00e9lene",
"middle": [],
"last": "Bonneau-Maynard",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Lavergne",
"suffix": ""
},
{
"first": "Fran\u00e7ois",
"middle": [],
"last": "Yvon",
"suffix": ""
}
],
"year": 2012,
"venue": "LREC",
"volume": "",
"issue": "",
"pages": "2107--2113",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Souhir Gahbiche-Braham, H\u00e9lene Bonneau-Maynard, Thomas Lavergne, and Fran\u00e7ois Yvon. 2012. Joint segmentation and pos tagging for arabic using a crf- based classifier. In LREC, pages 2107-2113.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Joint hebrew segmentation and parsing using a pcfg-la lattice parser",
"authors": [
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Elhadad",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers",
"volume": "2",
"issue": "",
"pages": "704--709",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yoav Goldberg and Michael Elhadad. 2011. Joint he- brew segmentation and parsing using a pcfg-la lattice parser. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Hu- man Language Technologies: short papers-Volume 2, pages 704-709. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Arabic tokenization, part-of-speech tagging and morphological disambiguation in one fell swoop",
"authors": [
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
},
{
"first": "Reut",
"middle": [],
"last": "Tsarfaty",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "573--580",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yoav Goldberg and Reut Tsarfaty. 2008. A single gener- ative model for joint morphological segmentation and syntactic parsing. In ACL, pages 371-379. Citeseer. Nizar Habash and Owen Rambow. 2005. Arabic tok- enization, part-of-speech tagging and morphological disambiguation in one fell swoop. In Proceedings of the 43rd Annual Meeting on Association for Compu- tational Linguistics, pages 573-580. Association for Computational Linguistics.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Catib: The columbia arabic treebank",
"authors": [
{
"first": "Nizar",
"middle": [],
"last": "Habash",
"suffix": ""
},
{
"first": "Ryan",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the ACL-IJCNLP 2009 Conference Short Papers",
"volume": "",
"issue": "",
"pages": "221--224",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nizar Habash and Ryan Roth. 2009. Catib: The columbia arabic treebank. In Proceedings of the ACL- IJCNLP 2009 Conference Short Papers, pages 221- 224, Suntec, Singapore, August. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Incremental joint pos tagging and dependency parsing in chinese",
"authors": [
{
"first": "Nizar",
"middle": [],
"last": "Habash",
"suffix": ""
},
{
"first": "Reem",
"middle": [],
"last": "Faraj",
"suffix": ""
},
{
"first": "Ryan",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of MEDAR International Conference on Arabic Language Resources and Tools",
"volume": "",
"issue": "",
"pages": "1216--1224",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nizar Habash, Reem Faraj, and Ryan Roth. 2009. Syn- tactic Annotation in the Columbia Arabic Treebank. In Proceedings of MEDAR International Conference on Arabic Language Resources and Tools, Cairo, Egypt. Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun'ichi Tsujii. 2011. Incremental joint pos tagging and dependency parsing in chinese. In IJCNLP, pages 1216-1224. Citeseer.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Incremental joint approach to word segmentation, pos tagging, and dependency parsing in chinese",
"authors": [
{
"first": "Jun",
"middle": [],
"last": "Hatori",
"suffix": ""
},
{
"first": "Takuya",
"middle": [],
"last": "Matsuzaki",
"suffix": ""
},
{
"first": "Yusuke",
"middle": [],
"last": "Miyao",
"suffix": ""
},
{
"first": "Jun'ichi",
"middle": [],
"last": "Tsujii",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers",
"volume": "1",
"issue": "",
"pages": "1045--1053",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun'ichi Tsujii. 2012. Incremental joint approach to word segmentation, pos tagging, and dependency pars- ing in chinese. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguis- tics: Long Papers-Volume 1, pages 1045-1053. Asso- ciation for Computational Linguistics.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Structured perceptron with inexact search",
"authors": [
{
"first": "Liang",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Suphan",
"middle": [],
"last": "Fayong",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Guo",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "142--151",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Liang Huang, Suphan Fayong, and Yang Guo. 2012. Structured perceptron with inexact search. In Proceed- ings of the 2012 Conference of the North American Chapter of the Association for Computational Linguis- tics: Human Language Technologies, pages 142-151. Association for Computational Linguistics.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Joint models for chinese pos tagging and dependency parsing",
"authors": [
{
"first": "Zhenghua",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Min",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Wanxiang",
"middle": [],
"last": "Che",
"suffix": ""
},
{
"first": "Ting",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Wenliang",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Haizhou",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1180--1191",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wen- liang Chen, and Haizhou Li. 2011. Joint models for chinese pos tagging and dependency parsing. In Pro- ceedings of the 2011 Conference on Empirical Meth- ods in Natural Language Processing, pages 1180- 1191. Association for Computational Linguistics, July.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "The Penn Arabic Treebank: Building a Large-Scale Annotated Arabic Corpus",
"authors": [
{
"first": "Mohamed",
"middle": [],
"last": "Maamouri",
"suffix": ""
},
{
"first": "Ann",
"middle": [],
"last": "Bies",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Buckwalter",
"suffix": ""
},
{
"first": "Wigdan",
"middle": [],
"last": "Mekki",
"suffix": ""
}
],
"year": 2004,
"venue": "NEMLAR Conference on Arabic Language Resources and Tools",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. 2004. The Penn Arabic Treebank: Building a Large-Scale Annotated Arabic Corpus. In NEMLAR Conference on Arabic Language Resources and Tools.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Spmrl'13 shared task system: The cadim arabic dependency parser",
"authors": [
{
"first": "Yuval",
"middle": [],
"last": "Marton",
"suffix": ""
},
{
"first": "Nizar",
"middle": [],
"last": "Habash",
"suffix": ""
},
{
"first": "Owen",
"middle": [],
"last": "Rambow",
"suffix": ""
},
{
"first": "Sarah",
"middle": [],
"last": "Alkhulani",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages",
"volume": "",
"issue": "",
"pages": "76--80",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yuval Marton, Nizar Habash, Owen Rambow, and Sarah Alkhulani. 2013. Spmrl'13 shared task system: The cadim arabic dependency parser. In Proceed- ings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 76-80.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Joint chinese word segmentation, pos tagging and parsing",
"authors": [
{
"first": "Xian",
"middle": [],
"last": "Qian",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning",
"volume": "",
"issue": "",
"pages": "501--511",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xian Qian and Yang Liu. 2012. Joint chinese word seg- mentation, pos tagging and parsing. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 501-511. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Overview of the SPMRL 2013 shared task: A cross-framework evaluation of parsing morphologically rich languages",
"authors": [
{
"first": "Djam\u00e9",
"middle": [],
"last": "Seddah",
"suffix": ""
},
{
"first": "Reut",
"middle": [],
"last": "Tsarfaty",
"suffix": ""
},
{
"first": "Sandra",
"middle": [],
"last": "K\u00fcbler",
"suffix": ""
},
{
"first": "Marie",
"middle": [],
"last": "Candito",
"suffix": ""
},
{
"first": "Jinho",
"middle": [
"D"
],
"last": "Choi",
"suffix": ""
},
{
"first": "Rich\u00e1rd",
"middle": [],
"last": "Farkas",
"suffix": ""
},
{
"first": "Jennifer",
"middle": [],
"last": "Foster",
"suffix": ""
},
{
"first": "Iakes",
"middle": [],
"last": "Goenaga",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Koldo Gojenola Galletebeitia",
"suffix": ""
},
{
"first": "Spence",
"middle": [],
"last": "Goldberg",
"suffix": ""
},
{
"first": "Nizar",
"middle": [],
"last": "Green",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Habash",
"suffix": ""
},
{
"first": "Wolfgang",
"middle": [],
"last": "Kuhlmann",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Maier",
"suffix": ""
},
{
"first": "Adam",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Ryan",
"middle": [],
"last": "Przepi\u00f3rkowski",
"suffix": ""
},
{
"first": "Wolfgang",
"middle": [],
"last": "Roth",
"suffix": ""
},
{
"first": "Yannick",
"middle": [],
"last": "Seeker",
"suffix": ""
},
{
"first": "Veronika",
"middle": [],
"last": "Versley",
"suffix": ""
},
{
"first": "Marcin",
"middle": [],
"last": "Vincze",
"suffix": ""
},
{
"first": "Alina",
"middle": [],
"last": "Woli\u0144ski",
"suffix": ""
},
{
"first": "Eric",
"middle": [],
"last": "Wr\u00f3blewska",
"suffix": ""
},
{
"first": "Clergerie",
"middle": [],
"last": "Villemonte De La",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages",
"volume": "",
"issue": "",
"pages": "146--182",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Djam\u00e9 Seddah, Reut Tsarfaty, Sandra K\u00fcbler, Marie Can- dito, Jinho D. Choi, Rich\u00e1rd Farkas, Jennifer Fos- ter, Iakes Goenaga, Koldo Gojenola Galletebeitia, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam Przepi\u00f3rkowski, Ryan Roth, Wolfgang Seeker, Yan- nick Versley, Veronika Vincze, Marcin Woli\u0144ski, Alina Wr\u00f3blewska, and Eric Villemonte de la Clergerie. 2013. Overview of the SPMRL 2013 shared task: A cross-framework evaluation of parsing morpholog- ically rich languages. In Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically- Rich Languages, pages 146-182, Seattle, Washington, USA, October. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "A cross-task flexible transition model for arabic tokenization, affix detection, affix labeling, pos tagging, and dependency parsing",
"authors": [
{
"first": "Stephen",
"middle": [],
"last": "Tratz",
"suffix": ""
}
],
"year": 2013,
"venue": "Fourth Workshop on Statistical Parsing of Morphologically Rich Languages",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stephen Tratz. 2013. A cross-task flexible transition model for arabic tokenization, affix detection, affix labeling, pos tagging, and dependency parsing. In Fourth Workshop on Statistical Parsing of Morpholog- ically Rich Languages, page 34. Citeseer.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Joint evaluation of morphological segmentation and syntactic parsing",
"authors": [
{
"first": "Reut",
"middle": [],
"last": "Tsarfaty",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Evelina",
"middle": [],
"last": "Andersson",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 50th",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Reut Tsarfaty, Joakim Nivre, and Evelina Andersson. 2012. Joint evaluation of morphological segmenta- tion and syntactic parsing. In Proceedings of the 50th",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Annual Meeting of the Association for Computational Linguistics",
"authors": [],
"year": null,
"venue": "",
"volume": "2",
"issue": "",
"pages": "6--10",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2, pages 6-10. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Joint pos tagging and transition-based constituent parsing in chinese with non-local features",
"authors": [
{
"first": "Zhiguo",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Nianwen",
"middle": [],
"last": "Xue",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "733--742",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhiguo Wang and Nianwen Xue. 2014. Joint pos tag- ging and transition-based constituent parsing in chi- nese with non-local features. In Proceedings of the 52nd Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), pages 733-742, Baltimore, Maryland, June. Association for Computational Linguistics.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Generating random spanning trees more quickly than the cover time",
"authors": [
{
"first": "David",
"middle": [],
"last": "Wilson",
"suffix": ""
}
],
"year": 1996,
"venue": "Proceedings of the twenty-eighth annual ACM symposium on Theory of computing",
"volume": "",
"issue": "",
"pages": "296--303",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David Wilson. 1996. Generating random spanning trees more quickly than the cover time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 296-303. ACM.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Joint word segmentation and pos tagging using a single perceptron",
"authors": [
{
"first": "Yue",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Stephen",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2008,
"venue": "ACL",
"volume": "",
"issue": "",
"pages": "888--896",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yue Zhang and Stephen Clark. 2008. Joint word seg- mentation and pos tagging using a single perceptron. In ACL, pages 888-896.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "A fast decoder for joint word segmentation and pos-tagging using a single discriminative model",
"authors": [
{
"first": "Yue",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Stephen",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "843--852",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yue Zhang and Stephen Clark. 2010. A fast decoder for joint word segmentation and pos-tagging using a single discriminative model. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 843-852. Association for Computational Linguistics.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Character-level chinese dependency parsing",
"authors": [
{
"first": "Meishan",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Yue",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Wanxiang",
"middle": [],
"last": "Che",
"suffix": ""
},
{
"first": "Ting",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2014,
"venue": "ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting Liu. 2014a. Character-level chinese dependency pars- ing. In ACL.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Greed is good if randomized: New inference for dependency parsing",
"authors": [
{
"first": "Yuan",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Tao",
"middle": [],
"last": "Lei",
"suffix": ""
},
{
"first": "Regina",
"middle": [],
"last": "Barzilay",
"suffix": ""
},
{
"first": "Tommi",
"middle": [],
"last": "Jaakkola",
"suffix": ""
}
],
"year": 2014,
"venue": "EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2014b. Greed is good if randomized: New inference for dependency parsing. In EMNLP.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Steps to excellence: Simple inference with refined scoring of dependency trees",
"authors": [
{
"first": "Yuan",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Tao",
"middle": [],
"last": "Lei",
"suffix": ""
},
{
"first": "Regina",
"middle": [],
"last": "Barzilay",
"suffix": ""
},
{
"first": "Tommi",
"middle": [],
"last": "Jaakkola",
"suffix": ""
},
{
"first": "Amir",
"middle": [],
"last": "Globerson",
"suffix": ""
}
],
"year": 2014,
"venue": "ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola, and Amir Globerson. 2014c. Steps to excellence: Simple inference with refined scoring of dependency trees. In ACL.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"text": "Example MADA analysis for the word Emlyp and the corresponding lattice structure. POS tagging. Table 3 provides statistics on the generated candidate sets. SPMRL 2013 Following Marton et al.",
"uris": null,
"type_str": "figure"
},
"FIGREF2": {
"num": null,
"text": "Performance with different sizes of the candidate sets on the SPMRL dataset. The graph shows the TedEval and F-scores when considering the best k analyses by MADA, and the variation is achieved by changing k.",
"uris": null,
"type_str": "figure"
},
"FIGREF3": {
"num": null,
"text": "Cumulative distribution function(CDF)",
"uris": null,
"type_str": "figure"
},
"TABREF0": {
"type_str": "table",
"content": "<table><tr><td>arc!</td><td colspan=\"4\">consecutive sibling!</td><td colspan=\"3\">grandparent!</td></tr><tr><td>h</td><td>m</td><td>h</td><td>m</td><td>s</td><td>g</td><td>h</td><td>m</td></tr><tr><td/><td>tri-siblings!</td><td/><td/><td colspan=\"3\">grand-sibling!</td><td/></tr><tr><td>h</td><td>m s</td><td>t</td><td/><td>g</td><td>h</td><td>m</td><td>s</td></tr></table>",
"num": null,
"text": "POS tag feature templates. t 0 and w 0 denotes the POS tag and the word at the current position. t \u2212x and t x denote left and right context tags, and similarly for words. s(\u2022) denotes the score of the POS tag produced by the preprocessing tagger.",
"html": null
},
"TABREF2": {
"type_str": "table",
"content": "<table><tr><td>Morphologically Rich Languages (SPMRL) Shared</td></tr><tr><td>Task 2013</td></tr></table>",
"num": null,
"text": "Statistics of datasets.",
"html": null
},
"TABREF3": {
"type_str": "table",
"content": "<table><tr><td>MADA analysis</td><td/><td/></tr><tr><td/><td>Word Emlyp</td><td/></tr><tr><td>Emly/Lattice structure</td><td/><td/></tr><tr><td colspan=\"2\">Emly/NOUN</td><td>p/NSUFF gen:f/num:s/per:na</td></tr><tr><td/><td>Emly/ADJ</td><td/></tr><tr><td>Eml/NOUN</td><td>y/NSUFF</td><td>p/PRON gen:m/num:d/per:na</td></tr></table>",
"num": null,
"text": "NOUN+p/NSUFF, gen:f/num:s/per:na Emly/ADJ+p/NSUFF, gen:f/num:s/per:na Eml/NOUN+y/NSUFF+p/PRON, gen:m/num:d/per:na",
"html": null
},
"TABREF4": {
"type_str": "table",
"content": "<table><tr><td colspan=\"4\">Seg Oracle Avg. SPMRL 99.4 Dataset F1 99.8 1.23</td><td>96.9</td><td>POS 1.71</td></tr><tr><td colspan=\"2\">Classical 92.4</td><td>97.0</td><td>1.16</td><td>82.4</td><td>3.01</td></tr><tr><td>CTB5</td><td>95.3</td><td>99.0</td><td>1.22</td><td>91.4</td><td>2.02</td></tr></table>",
"num": null,
"text": "|S i | F1 Avg. |T i,j |",
"html": null
},
"TABREF5": {
"type_str": "table",
"content": "<table/>",
"num": null,
"text": "Quality of the lattice structures on each dataset. For SPMRL and CTB5, we show the statistics on the development sets. For classical Arabic, we directly show the statistics on the testing set because the development set is not available.",
"html": null
}
}
}
} |