File size: 106,090 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
{
    "paper_id": "N15-1006",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T14:34:38.466002Z"
    },
    "title": "An Incremental Algorithm for Transition-based CCG Parsing",
    "authors": [
        {
            "first": "Bharat",
            "middle": [
                "Ram"
            ],
            "last": "Ambati",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Edinburgh",
                "location": {}
            },
            "email": "bharat.ambati@ed.ac.uk"
        },
        {
            "first": "Tejaswini",
            "middle": [],
            "last": "Deoskar",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Edinburgh",
                "location": {}
            },
            "email": "tdeoskar@inf.ed.ac.uk"
        },
        {
            "first": "Mark",
            "middle": [],
            "last": "Johnson",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Macquarie University",
                "location": {}
            },
            "email": "mark.johnson@mq.edu.au"
        },
        {
            "first": "Mark",
            "middle": [],
            "last": "Steedman",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Edinburgh",
                "location": {}
            },
            "email": "steedman@inf.ed.ac.uk"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Incremental parsers have potential advantages for applications like language modeling for machine translation and speech recognition. We describe a new algorithm for incremental transition-based Combinatory Categorial Grammar parsing. As English CCGbank derivations are mostly right branching and non-incremental, we design our algorithm based on the dependencies resolved rather than the derivation. We introduce two new actions in the shift-reduce paradigm based on the idea of 'revealing' (Pareschi and Steedman, 1987) the required information during parsing. On the standard CCGbank test data, our algorithm achieved improvements of 0.88% in labeled and 2.0% in unlabeled F-score over a greedy non-incremental shift-reduce parser.",
    "pdf_parse": {
        "paper_id": "N15-1006",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Incremental parsers have potential advantages for applications like language modeling for machine translation and speech recognition. We describe a new algorithm for incremental transition-based Combinatory Categorial Grammar parsing. As English CCGbank derivations are mostly right branching and non-incremental, we design our algorithm based on the dependencies resolved rather than the derivation. We introduce two new actions in the shift-reduce paradigm based on the idea of 'revealing' (Pareschi and Steedman, 1987) the required information during parsing. On the standard CCGbank test data, our algorithm achieved improvements of 0.88% in labeled and 2.0% in unlabeled F-score over a greedy non-incremental shift-reduce parser.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Combinatory Categorial Grammar (CCG) (Steedman, 2000) is an efficiently parseable, yet linguistically expressive grammar formalism.",
                "cite_spans": [
                    {
                        "start": 37,
                        "end": 53,
                        "text": "(Steedman, 2000)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In addition to predicate-argument structure, CCG elegantly captures the unbounded dependencies found in grammatical constructions like relativization, coordination etc. Availability of the English CCGbank (Hockenmaier and Steedman, 2007) has enabled the creation of several robust and accurate wide-coverage CCG parsers Clark and Curran, 2007; Zhang and Clark, 2011) . While the majority of CCG parsers use chart-based approaches Clark and Curran, 2007) , there has been some work on developing shift-reduce parsers for CCG (Zhang and Clark, 2011; Xu et al., 2014) . Most of these parsers model normal-form CCG derivations (Eisner, 1996) , which are mostly right-branching trees : hence are not incremental in nature. The dependency models of Clark and Curran (2007) and Xu et al. (2014) model dependencies rather than derivations, but do not guarantee incremental analyses.",
                "cite_spans": [
                    {
                        "start": 205,
                        "end": 237,
                        "text": "(Hockenmaier and Steedman, 2007)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 320,
                        "end": 343,
                        "text": "Clark and Curran, 2007;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 344,
                        "end": 366,
                        "text": "Zhang and Clark, 2011)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 430,
                        "end": 453,
                        "text": "Clark and Curran, 2007)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 524,
                        "end": 547,
                        "text": "(Zhang and Clark, 2011;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 548,
                        "end": 564,
                        "text": "Xu et al., 2014)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 623,
                        "end": 637,
                        "text": "(Eisner, 1996)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 743,
                        "end": 766,
                        "text": "Clark and Curran (2007)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 771,
                        "end": 787,
                        "text": "Xu et al. (2014)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Besides being cognitively plausible (Marslen-Wilson, 1973) , incremental parsing is more useful than non-incremental parsing for some applications. For example, an incremental analysis is required for integrating syntactic and semantic information into language modeling for statistical machine translation (SMT) and automatic speech recognition (ASR) (Roark, 2001 ; Wang and Harper, 2003) . This paper develops a new incremental shiftreduce algorithm for parsing CCG by building a dependency graph in addition to the CCG derivation as a representation. The dependencies in the graph are extracted from the CCG derivation. A node can have multiple parents, and hence we construct a dependency graph rather than a tree. Two new actions are introduced in the shift-reduce paradigm for \"revealing\" (Pareschi and Steedman, 1987) unbuilt structure during parsing. We build the dependency graph in parallel to the incremental CCG derivation and use this graph for revealing, via these two new actions. On the standard CCGbank test data, our algorithm achieves improvements of 0.88% in labeled F-score and 2.0% in unlabeled F-score over a greedy non-incremental shift-reduce algorithm. As our algorithm does not model derivations, but rather models transitions, we do not need a treebank John likes mangoes from India madly of incremental CCG derivations and can train on the dependencies in the existing treebank. Our approach can therefore be adapted to other languages with dependency treebanks, since CCG lexical categories can be easily extracted from dependency treebanks (Cakici, 2005; Ambati et al., 2013) . The rest of the paper is arranged as follows. Section 2 gives a brief introduction to related work in the areas of CCG parsing and incremental parsing. In section 3, we describe our incremental shift-reduce parsing algorithm. Details about the experiments, evaluation metrices and analysis of the results are in section 4. We conclude with possible future directions in section 5.",
                "cite_spans": [
                    {
                        "start": 36,
                        "end": 58,
                        "text": "(Marslen-Wilson, 1973)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 352,
                        "end": 364,
                        "text": "(Roark, 2001",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 367,
                        "end": 389,
                        "text": "Wang and Harper, 2003)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 795,
                        "end": 824,
                        "text": "(Pareschi and Steedman, 1987)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1571,
                        "end": 1585,
                        "text": "(Cakici, 2005;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1586,
                        "end": 1606,
                        "text": "Ambati et al., 2013)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this section, we first give a brief introduction to various available CCG parsers. Then we describe approaches towards incremental and greedy parsing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "There has been a significant amount of work on developing chart-based parsers for CCG. Both generative and discriminative (Clark et al., 2002; Clark and Curran, 2007; Auli and Lopez, 2011; Lewis and Steedman, 2014) models have been developed. As these parsers employ a bottom-up chart-parsing strategy and use normal-form CCGbank derivations which are rightbranching, they are not incremental in nature. In an SVO (Subject-Verb-Object) language, these parsers first attach the object to the verb and then the subject.",
                "cite_spans": [
                    {
                        "start": 122,
                        "end": 142,
                        "text": "(Clark et al., 2002;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 143,
                        "end": 166,
                        "text": "Clark and Curran, 2007;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 167,
                        "end": 188,
                        "text": "Auli and Lopez, 2011;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 189,
                        "end": 214,
                        "text": "Lewis and Steedman, 2014)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CCG Parsers",
                "sec_num": "2.1"
            },
            {
                "text": "Two major works in shift-reduce CCG parsing with accuracies competitive with the widely used Clark and Curran (2007) parser (C&C) are Zhang and Clark (2011) and Xu et al. (2014) . Zhang and Clark (2011) used a global linear model trained discriminatively with the averaged perceptron (Collins, 2002) and beam search for their shiftreduce CCG parser. Xu et al. (2014) developed a dependency model for shift-reduce CCG parsing using a dynamic oracle technique. Unlike the chart parsers, both these parsers can produce fragmentary analyses when a complete spanning analysis is not found. Both these shift-reduce parsers are more incremental than standard chart based parsers. But, as they employ an arc-standard (Yamada and Matsumoto, 2003) shift-reduce strategy on CCGbank, given an SVO language, these parsers are not guaranteed to attach the subject before the object.",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 116,
                        "text": "Clark and Curran (2007)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 134,
                        "end": 156,
                        "text": "Zhang and Clark (2011)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 161,
                        "end": 177,
                        "text": "Xu et al. (2014)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 180,
                        "end": 202,
                        "text": "Zhang and Clark (2011)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 284,
                        "end": 299,
                        "text": "(Collins, 2002)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 350,
                        "end": 366,
                        "text": "Xu et al. (2014)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 709,
                        "end": 737,
                        "text": "(Yamada and Matsumoto, 2003)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CCG Parsers",
                "sec_num": "2.1"
            },
            {
                "text": "A strictly incremental parser is one which computes the relationship between words as soon as they are encountered in the input. Shift-reduce CCG parsers rely either on CCGbank derivations (Zhang and Clark, 2011) which are non-incremental, or on dependencies (Xu et al., 2014) which could be incremental in simple cases, but do not guarantee incrementality. Hassan et al. (2009) developed a semi-incremental CCG parser by transforming the English CCGbank into left branching derivation trees. The strictly incremental version performed with very low accuracy but a semi-incremental version gave a balance between incrementality and accuracy. There is also some work on incremental parsing using grammar formalisms other than CCG like phrase structure grammar (Collins and Roark, 2004) and tree substitution grammar (Sangati and Keller, 2013) .",
                "cite_spans": [
                    {
                        "start": 189,
                        "end": 212,
                        "text": "(Zhang and Clark, 2011)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 259,
                        "end": 276,
                        "text": "(Xu et al., 2014)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 358,
                        "end": 378,
                        "text": "Hassan et al. (2009)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 759,
                        "end": 784,
                        "text": "(Collins and Roark, 2004)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 815,
                        "end": 841,
                        "text": "(Sangati and Keller, 2013)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Incremental Parsers",
                "sec_num": "2.2"
            },
            {
                "text": "There has been a significant amount of work on greedy shift-reduce dependency parsing. The Malt parser (Nivre et al., 2007) is one of the earliest parsers based on this paradigm. Goldberg and Nivre (2012) improved learning for greedy parsers by using dynamic oracles rather than a single static transition sequence as the oracle. In all the standard shift-reduce parsers, when two trees combine, only the top node (root) of each tree participates in the action. Sartorio et al. (2013) introduced a technique where in addition to the root node, nodes on the right and left periphery respectively are also available for attachment in the parsing process. A non-monotonic parsing strategy was introduced by Honnibal et al. (2013) , where an action taken during the parsing process is revised based on future context. Figure 2 : NonInc -Sequence of actions with parser configuration and the corresponding dependency graph.",
                "cite_spans": [
                    {
                        "start": 103,
                        "end": 123,
                        "text": "(Nivre et al., 2007)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 179,
                        "end": 204,
                        "text": "Goldberg and Nivre (2012)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 462,
                        "end": 484,
                        "text": "Sartorio et al. (2013)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 704,
                        "end": 726,
                        "text": "Honnibal et al. (2013)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 814,
                        "end": 822,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Greedy Parsers",
                "sec_num": "2.3"
            },
            {
                "text": "Though the performance of these greedy parsers is less accurate than related parsers using a beam (Zhang and Nivre, 2011) , greedy parsers are interesting as they are very fast and are practically useful in large-scale applications such as parsing the web and online machine translation or speech recognition. In this work, we develop a new greedy transition-based algorithm for incremental CCG parsing, which is more incremental than Zhang and Clark (2011) and Xu et al. (2014) and more accurate than Hassan et al. (2009) . Our algorithm is not strictly incremental as we only produce derivations which are compatible with the Strict Competence Hypothesis (Steedman, 2000) ",
                "cite_spans": [
                    {
                        "start": 98,
                        "end": 121,
                        "text": "(Zhang and Nivre, 2011)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 435,
                        "end": 457,
                        "text": "Zhang and Clark (2011)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 462,
                        "end": 478,
                        "text": "Xu et al. (2014)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 502,
                        "end": 522,
                        "text": "Hassan et al. (2009)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 657,
                        "end": 673,
                        "text": "(Steedman, 2000)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Greedy Parsers",
                "sec_num": "2.3"
            },
            {
                "text": "(details in \u00a73.2.3).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Greedy Parsers",
                "sec_num": "2.3"
            },
            {
                "text": "We first describe the Zhang and Clark (2011) style shift-reduce algorithm for CCG parsing. Then we explain our incremental algorithm based on the \"revealing\" technique for shift-reduce CCG parsing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Algorithms",
                "sec_num": "3"
            },
            {
                "text": "This is our baseline algorithm and is similar to Zhang and Clark (2011)'s algorithm (henceforth NonInc). It consists of an input buffer and a stack and has four major parsing actions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Non Incremental Algorithm (NonInc)",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Shift -X (S) : Pushes a word from the input buffer to the stack and assigns a CCG category X. This action performs category disambiguation as well, as X can be any of the categories assigned by a supertagger. \u2022 Reduce Left -X (RL) : Pops the top two nodes from the stack, combines them into a new node and pushes it back onto the stack with a category X. This corresponds to binary rules in the CCGbank (e.g. CCG combinators like function application, composition etc., and punctuation rules). In this action the right node is the head and hence the left node is reduced.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Non Incremental Algorithm (NonInc)",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Reduce Right -X (RR) : This action is similar to the RL (Reduce Left -X) action, except that in this action the right node is reduced since the left node is the head.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Non Incremental Algorithm (NonInc)",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Unary -X (U) : Pops the top node from the stack, converts it into a new node with category X and pushes it back on the stack. The head remains the same in this action. This action corresponds to unary rules in the CCGbank (unary type-changing and type-raising rules). Figure 1 shows a normal-form CCG derivation for an example sentence 'John likes mangoes from India madly'. Figure 2 shows the sequence of steps using the NonInc algorithm for parsing the sentence. For simplicity and space reasons, unary productions leading to NP are not described. From step 1 through step 5, the first five words in the sentence (John, likes, mangoes, from, India) are shifted with corresponding categories using shift actions (S). In step 6, (NP\\NP)/NP:from and NP:India are combined using the Reduce-Right (RR) action to form NP\\NP:from which is combined with NP:mangoes in step 7 to form NP:mangoes.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 270,
                        "end": 278,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 377,
                        "end": 385,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Non Incremental Algorithm (NonInc)",
                "sec_num": "3.1"
            },
            {
                "text": "Step 8 combines (S\\NP)/NP:likes with NP:mangoes to form S\\NP:likes using RR action. Then the next word 'madly' is shifted in step 9, which is then combined with S\\NP:likes in step 10. In step 11, NP:John and S\\NP:likes are combined using Reduce-Left (RL) action leading to S:likes. The parsing process terminates at this step as there are no more tokens in the input buffer and as there is only a single node left in the stack.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Non Incremental Algorithm (NonInc)",
                "sec_num": "3.1"
            },
            {
                "text": "(1) We use indexed CCG categories (Clark et al., 2002) and obtain the CCG dependencies after every action to build the dependency graph in parallel to the CCG derivation. This is similar to Xu et al. (2014) but differs from Zhang and Clark (2011) , who extract the dependencies at the end after obtaining a derivation for the entire sentence. Figure  2 also shows the dependency graph generated and the arc labels give the step ID after which the dependency is generated.",
                "cite_spans": [
                    {
                        "start": 34,
                        "end": 54,
                        "text": "(Clark et al., 2002)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 190,
                        "end": 206,
                        "text": "Xu et al. (2014)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 224,
                        "end": 246,
                        "text": "Zhang and Clark (2011)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 343,
                        "end": 352,
                        "text": "Figure  2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Non Incremental Algorithm (NonInc)",
                "sec_num": "3.1"
            },
            {
                "text": "S [ NP John (2) S [ NP John (S\\NP)/NP likes (3) RL [ S/NP likes (4) S [ S/NP likes NPmangoes (5) RR [ S likes (6) S [ S likes (NP\\NP)/NP f rom (7) S [ S likes (NP\\NP)/NP f rom NP India (8) RR [ S likes NP\\NP f rom (9) RRev [ S likes (10) S [ S likes (S\\NP)\\(S\\NP) madly (11) LRev [ S likes",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Non Incremental Algorithm (NonInc)",
                "sec_num": "3.1"
            },
            {
                "text": "(RevInc)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Revealing based Incremental Algorithm",
                "sec_num": "3.2"
            },
            {
                "text": "The NonInc algorithm described above is not incremental because it relies purely on the mostly rightbranching CCG derivation. In our example sentence, the verb (likes) combines with the subject (John) only at the end (step ID = 11) after all the remaining words in the sentence are processed, making the parse non-incremental. In this section we describe a new incremental algorithm based on a 'revealing' technique (Pareschi and Steedman, 1987) which tries to build the most incremental derivation.",
                "cite_spans": [
                    {
                        "start": 416,
                        "end": 445,
                        "text": "(Pareschi and Steedman, 1987)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Revealing based Incremental Algorithm",
                "sec_num": "3.2"
            },
            {
                "text": "Pareschi and Steedman (1987)'s original version of revealing was defined in terms of (implicitly higher-order) unification. It was based on the following observation. If we think of categories as terms in a logic programming language, then while we usually think of CCG combinatory rules like the following as applying with the two categories on the left X/Y and Y as inputs, say instantiated as S /NP and NP , to define the category X on the right as S, in fact instantiating any two of those categories defines the third.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Revealing",
                "sec_num": "3.2.1"
            },
            {
                "text": "X/Y Y =\u21d2 X",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Revealing",
                "sec_num": "3.2.1"
            },
            {
                "text": "For example, if we define X and X/Y as S and S /NP , we clearly define Y as NP . They proposed to use unification-based revealing to recover unbuilt constituents in from the result of overlygreedy incremental parsing. A related secondorder matching-based mechanism was used by (Kwiatkowski et al., 2010) to decompose logical forms for semantic parser induction.",
                "cite_spans": [
                    {
                        "start": 277,
                        "end": 303,
                        "text": "(Kwiatkowski et al., 2010)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Revealing",
                "sec_num": "3.2.1"
            },
            {
                "text": "The present incremental parser uses a related revealing technique confined to the right periphery. Using CCG combinators and rules like type-raising followed by forward composition, we combine nodes in the stack if there is a dependency between them. However, this can create problems for the newly shifted node as its dependent might already have been reduced. For instance, if the object 'mangoes' is reduced after it is shifted to the stack, then it won't be available for the preposition phrase (PP) 'from India' (of course, this goes for more complex NPs as well). We have to extract 'mangoes', which is hidden in the derivation, so as to make the correct attachment to the PP. This is where revealing comes into play. Mangoes is 'revealed' so that it is available to attach to the PP following it, although it has already been reduced. To handle this, in addition to the four actions of the NonInc algorithm, we introduce two new actions: Left Reveal (LRev) and Right Reveal (RRev). For this, after every action, in addition to updating the stack we also keep track of the dependencies resolved and update the dependency graph accordingly 1 . In other words, we build the dependency graph for the sentence in parallel to the CCG derivation. As these dependencies are extracted from the CCG derivation, a node can have multiple parents and hence we construct a dependency graph rather than a tree.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Revealing",
                "sec_num": "3.2.1"
            },
            {
                "text": "S likes NP\\NP f rom R > S/NP likes NPmangoes < NP > S (a) RRev S likes (S\\NP)\\(S\\NP) madly R < NP John S\\NP likes < S\\NP < S (b) LRev",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Revealing",
                "sec_num": "3.2.1"
            },
            {
                "text": "\u2022 Left Reveal (LRev) : Pop the top two nodes in the stack (left, right). Identify the left node's child with a subject dependency. Abstract over this child node and split the category of left node into two categories. Combine the nodes using CCG combinators accordingly. VP modifiers like VP coordination require this action.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Revealing",
                "sec_num": "3.2.1"
            },
            {
                "text": "\u2022 Right Reveal (RRev) : Pop the top two nodes in the stack (left, right) . Check the right periphery of the left node in the dependency graph, extract all the nodes with compatible CCG categories and identify all the possible nodes that the right node can combine with. Abstract over this node (e.g. object), split the category into two categories accordingly and combine the nodes using CCG combinators. Constructions like NP coordination, and PP attachment require this action. Figure 3 shows the sequence of steps for the example sentence described above. In steps 1 and 2, the first two words in the sentence: 'John' and 'likes', are shifted from the input buffer to the stack. In addition to standard CCG combinators of application and composition, we also use type-raising followed by forward composition 2 . In step 3, the category of the left node 'John', NP, is type-raised to S/(S\\NP) which is then combined with the category of right node 'likes', (S\\NP)/NP, using forward composition operator to yield the category S/NP. This step also updates the dependency graph with an edge between 'John' and 'likes', where 'likes' is the parent and 'John' is the child. The next word 'mangoes' is shifted in step 4 and combined with S/NP:likes in step 5 using RR action yielding S:likes. After this step, the dependency graph will have 'likes' as the root, with 'John' and 'mangoes' as its children. In this way, as our algorithm tries to be more incremental, both subject and object arguments are resolved as soon as the corresponding tokens are shifted to the stack.",
                "cite_spans": [
                    {
                        "start": 59,
                        "end": 72,
                        "text": "(left, right)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 480,
                        "end": 488,
                        "text": "Figure 3",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Revealing",
                "sec_num": "3.2.1"
            },
            {
                "text": "In steps 6 and 7, the next two words 'from' and 'India' are shifted to the stack.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Worked Example",
                "sec_num": "3.2.2"
            },
            {
                "text": "Step 8 combines (NP\\NP)/NP:from and NP:India using RR action to form NP\\NP:from. Now, we apply the RRev action in step 9 to correctly attach 'from' to 'mangoes'. In RRev we first check the right periphery and identify a possible node to be attached, 'mangoes', which is the object argument of the verb 'likes'. We abstract over this object and split the category in the following manner: If X is the category of the left node and Y\\Y is the category of the right node, then X is split into X/Y and Y with corresponding heads. The head of the left node will be the head of X/Y, and the dependency graph helps in identifying the correct head for Y. Now, Y and Y\\Y can be combined using the backward application rule to form Y, which can be combined with X/Y to form X back. In our example sentence, S:likes is split into S/NP:likes and NP:mangoes. NP:mangoes is combined with NP\\NP:from to form NP:mangoes, which in return combines with S/NP:likes and forms back S:likes. Figure 4 (a) sketches this process. This action also updates the dependency graph with a dependency between 'mangoes' and 'from'. The next word 'madly' is shifted in step 10, after which the stack has two nodes S:likes and (S\\NP)\\(S\\NP):madly. We apply the LRev action to combine these two nodes. We abstract over the subject of the left node, 'likes', and split the category. Here, S:likes is split into NP:John and S\\NP:likes. S\\NP:likes is combined with (S\\NP)\\(S\\NP):madly to form S\\NP:likes, which in return combines with NP:John and forms back S:likes. The dependency graph is updated with a dependency between 'likes' and 'madly'. Note that the final output is a standard CCG tree. Figure 4 (b) shows this LRev action.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 970,
                        "end": 978,
                        "text": "Figure 4",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 1659,
                        "end": 1667,
                        "text": "Figure 4",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Worked Example",
                "sec_num": "3.2.2"
            },
            {
                "text": "Our incremental algorithm uses a combination of the CCG derivation and a dependency graph that helps to 'reveal' unbuilt structure in the CCG derivation by identifying heads of the revealed categories. For example in Figure-4a , in RRev action, S:likes is split into S/NP:likes and NP:mangoes. The splitting of categories is deterministic but the right periphery of the dependency graph helps in identifying the head, which is 'mangoes'. The theoretical idea of 'revealing' is from Pareschi and Steedman (1987) , but they used only a toy grammar without a model or empirical results. Checking the right periphery is similar to Sartorio et al. (2013) and abstracting over the left or right argument is similar to Dalrymple et al. (1991) . Currently, we abstract only over arguments. Adding a new action to abstract over the verb as well will make our algorithm handle ellipses in the sentences like 'John likes mangoes and Mary too' similar to Dalrymple et al. (1991) but we leave that for future work.",
                "cite_spans": [
                    {
                        "start": 482,
                        "end": 510,
                        "text": "Pareschi and Steedman (1987)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 627,
                        "end": 649,
                        "text": "Sartorio et al. (2013)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 712,
                        "end": 735,
                        "text": "Dalrymple et al. (1991)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 943,
                        "end": 966,
                        "text": "Dalrymple et al. (1991)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 217,
                        "end": 226,
                        "text": "Figure-4a",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "3.2.3"
            },
            {
                "text": "Our system is monotonic in the sense that the set of dependency relationships grows monotonically during the parsing process. Our algorithm gives derivations almost as incremental as Hassan et al. (2009) but without changing the lexical categories and without backtracking. The only change we made to the CCGbank is making the main verb the head of the auxiliary rather than the reverse as in CCGbank derivations. In the right derivational trees of CCGbank, the main verb is the head for its right side arguments and the auxiliary verb is the head for the left side arguments in the derivation. Not changing the head rule would make our algorithm use the costly reveal actions significantly more, which we avoid by changing the head direction. 3% of the total dependencies are affected by this modification.",
                "cite_spans": [
                    {
                        "start": 183,
                        "end": 203,
                        "text": "Hassan et al. (2009)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "3.2.3"
            },
            {
                "text": "Though our algorithm can be completely incremental, we currently compromise incrementality in the following cases: (a) no dependency between the nodes in the stack (b) unary type-changing and non-standard binary rules (c) adjuncts like VP modifiers and coordinate constructions like VP, sentential coordination.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "3.2.3"
            },
            {
                "text": "We find empirically that extending incrementality to cover these cases actually reduces parsing performance significantly. It also violates the Strict Competence Hypothesis (SCH) (Steedman, 2000) , which argues on evolutionary and developmental grounds that the parser can only build constituents that are typable by the competence grammar. We explored the adjunct case of attaching only the preposition first rather than creating a complete prepositional phrase and then attaching it to correct parent. In our example sentence, this would be the case of attaching the preposition 'from' to its parent using RRev and then combining the NP 'India' accordingly as opposed to creating the preposition phrase 'from India' first and then using RRev action to attach it to the correct parent. Though the former is more incremental, it is inconsistent with the SCH. The latter analysis is consistent with strict competence and also gave better parsing performance while compromising incrementality only slightly. The empirical impact of these differing degrees of incrementality on extrinsic evaluation of our algorithm in terms of language modeling for SMT or ASR is left for future work.",
                "cite_spans": [
                    {
                        "start": 179,
                        "end": 195,
                        "text": "(Steedman, 2000)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "3.2.3"
            },
            {
                "text": "Using our incremental algorithm, we converted the CCGbank derivations into a sequence of shiftreduce actions. We could convert around 98% of the derivations, which is the coverage of our algorithm, recovering around 99% dependencies. Problematic cases are mainly the ones which involve nonstandard binary rules, and punctuations with lexical CCG categories other than 'conj', used as a conjunction, or ',' which is treated as a punctuation mark.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "3.2.3"
            },
            {
                "text": "We re-implemented Zhang and Clark (2011)'s model for our experiments. We used their global linear model trained with the averaged perceptron (Collins, 2002) . We applied the early-update strategy of Collins and Roark (2004) while training. In this strategy, when we don't use a beam, decoding is stopped when the predicted action is different from the gold action and weights are updated accordingly. We use the feature set of Zhang and Clark (2011) (Z&C) for the NonInc algorithm. This feature set comprises of features over the top four nodes in the stack and the next four words in the input buffer. Complete details of the feature set can be found in their paper. For our own model, RevInc, in addition to these features used for NonInc, we also provide features based on the right periphery of top node in the stack. For nodes in the right periphery, we provide uni-gram and bi-gram features based on the node's CCG category. For example, if S0 is the node on the top of the stack, B1 is the bottom most node in the right periphery, and c represent the node's CCG category, then B1c, and B1cS0c are the uni-gram and bi-gram features respectively.",
                "cite_spans": [
                    {
                        "start": 141,
                        "end": 156,
                        "text": "(Collins, 2002)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 199,
                        "end": 223,
                        "text": "Collins and Roark (2004)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "4"
            },
            {
                "text": "Unlike Z&C, we do not use a beam for our experiments, although we use a beam of 16 for comparison of our results with their parser. The latter gives competitive results with the state-of-theart CCG parsers. Z&C and Xu et al. (2014) , use C&C's generate script and unification mechanism respectively to extract dependencies for evaluation. C&C's grammar doesn't cover all the lexical categories and binary rules in the CCGbank. To avoid this, we adapted Hockenmaier's scripts used for extracting dependencies from the CCGbank derivations. These are the two major divergences in our re-implementation from Z&C.",
                "cite_spans": [
                    {
                        "start": 215,
                        "end": 231,
                        "text": "Xu et al. (2014)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "4"
            },
            {
                "text": "We use standard CCGbank training (sections 02 \u2212 21), development (section 00) and testing (section 23) splits for our experiments. All sentences in the training set are used to train NonInc. But for RevInc, we used 98% of the training set (the coverage of our algorithm). We use automatic POS-tags and lexical CCG categories assigned using the C&C POS tagger and supertagger respectively for development and test data. For training data, these tags are assigned using ten-way jackknifing. Also, for lexical CCG categories, we use a multitagger which assigns k-best supertags to a word rather than 1-best supertagging (Clark and Curran, 2004) . The number of supertags assigned to a word depends on a \u03b2 parameter. Unlike Z&C, the default value of \u03b2 gave us better results rather than decreasing the value. Not using a beam could be the reason for this.",
                "cite_spans": [
                    {
                        "start": 617,
                        "end": 641,
                        "text": "(Clark and Curran, 2004)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data and Settings",
                "sec_num": "4.1"
            },
            {
                "text": "Following Z&C and Xu et al. (2014) , during training, we also provide the gold CCG lexical category to the list of CCG lexical categories for a word if it is not assigned by the supertagger.",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 34,
                        "text": "Z&C and Xu et al. (2014)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data and Settings",
                "sec_num": "4.1"
            },
            {
                "text": "Before evaluating the performance of our algorithm, we introduce two measures of incrementality: connectedness and waiting time. In a shift-reduce parser, a derivation is fully connected when all the nodes in the stack are connected leading to only one node in the stack at any point of time. We measure the average number of nodes in the stack before shifting a new token from input buffer to the stack, which we call as connectedness. For a fully connected incremental parser like Hassan et al. (2009) , connectedness would be one. As our RevInc algorithm is not fully connected, this number will be greater than one. For example, in a noun phrase 'the big book', when 'the' and 'big' are in the stack, as there is no dependency between these two words, our algorithm doesn't combine these two nodes resulting in having two nodes in the stack 3 . Second column in Table 1 gives this number for both NonInc and RevInc algorithms. Though our algorithm is not fully connected, connectedness of our algorithm is significantly lower than the NonInc algorithm as our algorithm is more incremental. We define waiting time as the number of nodes that need to be shifted to the stack before a dependency between any two nodes in the stack is resolved. In our example sentence, there is a dependency between 'John' and 'likes'. For NonInc, this dependency is resolved only after all the four remaining words in the sentence are shifted. In other words, it has to wait for four more words before this dependency is resolved and hence the waiting time is four. Whereas, in our RevInc algorithm, this dependency is resolved immediately, without waiting for more words to be shifted, and hence the waiting time is zero. The third column in Table  1 gives the waiting time for both the algorithms. Since we compromised incrementality in cases like coordination, waiting time for our RevInc algorithm is not zero but it is significantly lower than the NonInc algorithm and hence more incremental. This property is likely to be crucial for future applications in ASR and SMT language modeling.",
                "cite_spans": [
                    {
                        "start": 483,
                        "end": 503,
                        "text": "Hassan et al. (2009)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 866,
                        "end": 873,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 1728,
                        "end": 1736,
                        "text": "Table  1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Connectedness and Waiting Time",
                "sec_num": "4.2"
            },
            {
                "text": "We trained the perceptron for both NonInc and RevInc algorithms using the CCGbank training data for 30 iterations, and the models which gave best results on development data are directly used for test data. Table 2 gives the unlabeled precision (UP), recall (UR), F-score (UF) and labeled precision (LP), recall (LR), F-score (LF) results of both NonInc and RevInc approaches on the development data. Last column in the table gives the category accuracy. We used the modified CCGbank for all experiments, including NonInc, for consistent comparisons. For NonInc, the modification decreased unlabeled F-score by 0.45%, without a major difference in labeled F-score. Our incremental algorithm gives 1.39% and 0.47% improvements over the NonInc algorithm in unlabeled and labeled F-scores respectively. For both unlabeled and labeled scores, precision of RevInc is slightly lower than NonInc but the recall of RevInc is much higher than NonInc resulting in a better F-score for RevInc. As NonInc is not incremental and as it uses more context to the right while making a decision, it makes more precise actions. But, on the other hand, if a node is reduced, it is not available for future actions. This is not a problem for our RevInc algorithm which is the reason for higher recall. For example, in the example sentence, 'John likes mangoes from India madly', if the object 'mangoes' is reduced after it got shifted to the stack, then in case of NonInc, the preposition phrase 'from India' can never be attached to 'mangoes'. But, RevInc makes the correct attachment using RRev action. Category accuracy of NonInc is better than RevInc, since NonInc can use more context before taking a complex action and is less prone to error propagation compared to RevInc.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 207,
                        "end": 214,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "4.3"
            },
            {
                "text": "To compare these results in the perspective of Z&C's parser we also trained our NonInc parser with a beam size of 16 similar to Z&C. The second last row in Table 2 (NonInc (beam=16)) shows these results and the last row presents the results from their paper. Results with our implementation of Z&C are 0.65% lower than the published results, possibly due to the modification made in the head rule, and other minor differences like the supertagger beta value. Unlabeled and labeled F-scores of our RevInc parser are lower than these numbers. But, given that our RevInc parser doesn't use any beam, these margins are reasonable.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 156,
                        "end": 163,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "4.3"
            },
            {
                "text": "We also analyzed the label-wise scores of both NonInc and RevInc. In general, NonInc is better in precision and RevInc is better in recall. In the case of verbal arguments ((S\\NP)/NP) and verbal modifiers ((S\\NP)\\(S\\NP)), the F-score of RevInc is better than that of NonInc. But NonInc performed better than RevInc in the case of preposition phrase (PP) attachments ((NP\\NP)/NP, ((S\\NP)\\(S\\NP))/NP). More context is required for better PP attachment which is provided by the fact that NonInc has a context of several unreduced types for the model to work with, whereas RevInc has fewer. Whereas actions like LRev are required to correctly attach the verbal modifiers ('madly') if the subject argument ('John') of the verb ('likes') is reduced early. Table 3 gives the results of these CCG lexical categories. Table 4 : Performance on the test data. *: These results are from their paper.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 750,
                        "end": 757,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 809,
                        "end": 816,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "4.3"
            },
            {
                "text": "We also analyzed the performance of the greedy (beam=1) NonInc and RevInc parsers in terms of parsing speed (excluding pos tagger and supertagger time). NonInc and RevInc parse 110 and 125 sentences/second respectively. Despite the complexity of the revealing actions, RevInc is faster than the NonInc. Significant amount of parsing time is spent on the feature extraction step. Features from top four nodes in the stack and their children are extracted for both the algorithms. Since the average connectedness of RevInc and NonInc are 4.62 and 2.15 respectively, on average, all four nodes in the stack are processed for NonInc and only two nodes are processed for RevInc. Because of this there is significant reduction in the feature extraction step for RevInc compared to NonInc. Also, the complex LRev and RRev actions only constituted 5% of the total actions in the parsing process. Table 4 presents the results of our approaches on test data. Our incremental algorithm, RevInc, gives 2.0% and 0.88% improvements over NonInc in unlabeled and labeled F-scores respectively on the test data. Results of RevInc without a beam are reasonably close to the results of Z&C which uses a beam of 16. We compare our results with Incre-mental+Lookahead model of Hassan et al. (2009) . They reported 86.31% unlabeled F-score on test data which is 2.69% lower. Note that these Fscores are not directly comparable since Hassan et al. (2009) use simplified lexicalized CCG categories. Our evaluation is based on CCG dependencies which are different from dependencies in the dependency grammar. Hence, we can't directly compare our results with dependency parsers like Zhang and Nivre (2011) and Honnibal et al. (2013) .",
                "cite_spans": [
                    {
                        "start": 1256,
                        "end": 1276,
                        "text": "Hassan et al. (2009)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 1411,
                        "end": 1431,
                        "text": "Hassan et al. (2009)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 1658,
                        "end": 1680,
                        "text": "Zhang and Nivre (2011)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 1685,
                        "end": 1707,
                        "text": "Honnibal et al. (2013)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 888,
                        "end": 895,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "4.3"
            },
            {
                "text": "We have designed and implemented a new incremental shift-reduce algorithm based on a version of revealing for parsing CCG (Pareschi and Steedman, 1987) . On the standard CCGbank test data, our algorithm achieved improvements of 0.88% and 2.0% in labeled and unlabeled F-scores respectively over the baseline non-incremental shift-reduce algorithm. We achieved this without changing any CCG lexical categories and only changing a single head rule of making the main verb rather than the auxiliary verb the head. Our algorithm models transitions rather than incremental derivations, and hence we don't need an incremental CCGbank. Our approach can therefore be adapted to languages with dependency treebanks, since CCG lexical categories can be easily extracted from dependency treebanks (Cakici, 2005; Ambati et al., 2013) . We also designed new measures of incrementality and showed that our algorithm is more incremental than the standard shift-reduce CCG parsing algorithm.",
                "cite_spans": [
                    {
                        "start": 122,
                        "end": 151,
                        "text": "(Pareschi and Steedman, 1987)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 786,
                        "end": 800,
                        "text": "(Cakici, 2005;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 801,
                        "end": 821,
                        "text": "Ambati et al., 2013)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Plan",
                "sec_num": "5"
            },
            {
                "text": "We expect to improve our current model in a number of ways. Providing information about lexical category probabilities (Auli and Lopez, 2011) assigned by the supertagger can be useful during parsing. We would like to explore the limited use of a beam to handle lexical ambiguity by only keeping analyses derived from distinct lexical categories in the beam. Following Xu et al. (2014) , we also plan to explore a dynamic oracle strategy. Ultimately, we intend to evaluate the impact of our incremental parser extrinsically in terms of language modeling for SMT or ASR.",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 141,
                        "text": "(Auli and Lopez, 2011)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 368,
                        "end": 384,
                        "text": "Xu et al. (2014)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Plan",
                "sec_num": "5"
            },
            {
                "text": "Xu et al. (2014) also obtain CCG dependencies after every action. But they don't have a dependency graph which is updated based on the CCG derivation and used in the CCG parsing (in our case for LRev and RRev actions).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Type-raising followed by forward composition is treated as a single step. Without this, after type-raising, the parser has to check all possible actions before applying forward composition, making it slower.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "This is a case where the dependencies are not true to the CCG grammar, and make our algorithm less incremental than SCH would allow.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We thank Mike Lewis, Greg Coppola, Francesco Sartorio and Siva Reddy for helpful discussions. We also thank the three anonymous reviewers for their useful suggestions. This work was supported by ERC Advanced Fellowship 249520 GRAMPLUS, EU IST Cognitive Systems IP Xperience and ARC Discovery grant DP 110102506.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Using CCG categories to improve Hindi dependency parsing",
                "authors": [],
                "year": 2013,
                "venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "604--609",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bharat Ram Ambati, Tejaswini Deoskar, and Mark Steed- man. 2013. Using CCG categories to improve Hindi dependency parsing. In Proceedings of the 51st An- nual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 604-609, Sofia, Bulgaria.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A Comparison of Loopy Belief Propagation and Dual Decomposition for Integrated CCG Supertagging and Parsing",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Auli",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Lopez",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "470--480",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Auli and Adam Lopez. 2011. A Comparison of Loopy Belief Propagation and Dual Decomposition for Integrated CCG Supertagging and Parsing. In Pro- ceedings of the 49th Annual Meeting of the Associa- tion for Computational Linguistics: Human Language Technologies, pages 470-480, Portland, Oregon, USA, June.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Automatic induction of a CCG grammar for Turkish",
                "authors": [
                    {
                        "first": "Ruken",
                        "middle": [],
                        "last": "Cakici",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the ACL Student Research Workshop",
                "volume": "",
                "issue": "",
                "pages": "73--78",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruken Cakici. 2005. Automatic induction of a CCG grammar for Turkish. In Proceedings of the ACL Stu- dent Research Workshop, pages 73-78, Ann Arbor, Michigan.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "The importance of supertagging for wide-coverage CCG parsing",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "R"
                        ],
                        "last": "Curran",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of COLING-04",
                "volume": "",
                "issue": "",
                "pages": "282--288",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen Clark and James R. Curran. 2004. The impor- tance of supertagging for wide-coverage CCG parsing. In Proceedings of COLING-04, pages 282-288.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Widecoverage efficient statistical parsing with CCG and log-linear models",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "R"
                        ],
                        "last": "Curran",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen Clark and James R. Curran. 2007. Wide- coverage efficient statistical parsing with CCG and log-linear models. Computational Linguistics, 33.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Building Deep Dependency Structures using a Wide-Coverage CCG Parser",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "327--334",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen Clark, Julia Hockenmaier, and Mark Steedman. 2002. Building Deep Dependency Structures using a Wide-Coverage CCG Parser. In ACL, pages 327-334.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Incremental Parsing with the Perceptron Algorithm",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Roark",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL'04), Main Volume",
                "volume": "",
                "issue": "",
                "pages": "111--118",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Collins and Brian Roark. 2004. Incremental Parsing with the Perceptron Algorithm. In Proceed- ings of the 42nd Meeting of the Association for Com- putational Linguistics (ACL'04), Main Volume, pages 111-118, Barcelona, Spain, July.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the conference on Empirical methods in natural language processing, EMNLP '02",
                "volume": "",
                "issue": "",
                "pages": "1--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Collins. 2002. Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms. In Proceedings of the con- ference on Empirical methods in natural language pro- cessing, EMNLP '02, pages 1-8.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Ellipsis and higher-order unification",
                "authors": [
                    {
                        "first": "Mary",
                        "middle": [],
                        "last": "Dalrymple",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Stuart",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando Cn",
                        "middle": [],
                        "last": "Shieber",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "Linguistics and philosophy",
                "volume": "14",
                "issue": "4",
                "pages": "399--452",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mary Dalrymple, Stuart M Shieber, and Fernando CN Pereira. 1991. Ellipsis and higher-order unification. Linguistics and philosophy, 14(4):399-452.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Efficient Normal-Form Parsing for Combinatory Categorial Grammar",
                "authors": [
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Eisner",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "79--86",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jason Eisner. 1996. Efficient Normal-Form Parsing for Combinatory Categorial Grammar. In Proceedings of the 34th Annual Meeting of the Association for Com- putational Linguistics, pages 79-86, Santa Cruz, Cali- fornia, USA, June.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "A Dynamic Oracle for Arc-Eager Dependency Parsing",
                "authors": [
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of COLING 2012",
                "volume": "",
                "issue": "",
                "pages": "959--976",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoav Goldberg and Joakim Nivre. 2012. A Dynamic Oracle for Arc-Eager Dependency Parsing. In Pro- ceedings of COLING 2012, pages 959-976, Mumbai, India, December.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Lexicalized Semi-Incremental Dependency Parsing",
                "authors": [
                    {
                        "first": "Hany",
                        "middle": [],
                        "last": "Hassan",
                        "suffix": ""
                    },
                    {
                        "first": "Khalil",
                        "middle": [],
                        "last": "Sima'an",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the Recent Advances in NLP (RANLP'09)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hany Hassan, Khalil Sima'an, and Andy Way. 2009. Lexicalized Semi-Incremental Dependency Parsing. In Proceedings of the Recent Advances in NLP (RANLP'09), Borovets, Bulgaria.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Generative models for statistical parsing with Combinatory Categorial Grammar",
                "authors": [
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL '02",
                "volume": "",
                "issue": "",
                "pages": "335--342",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Julia Hockenmaier and Mark Steedman. 2002. Gener- ative models for statistical parsing with Combinatory Categorial Grammar. In Proceedings of the 40th An- nual Meeting on Association for Computational Lin- guistics, ACL '02, pages 335-342, Philadelphia, Penn- sylvania.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank",
                "authors": [
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Computational Linguistics",
                "volume": "33",
                "issue": "3",
                "pages": "355--396",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Julia Hockenmaier and Mark Steedman. 2007. CCG- bank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank. Com- putational Linguistics, 33(3):355-396.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A Non-Monotonic Arc-Eager Transition System for Dependency Parsing",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Honnibal",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "163--172",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew Honnibal, Yoav Goldberg, and Mark John- son. 2013. A Non-Monotonic Arc-Eager Transition System for Dependency Parsing. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning, pages 163-172, Sofia, Bulgaria, August.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Inducing probabilistic CCG grammars from logical form with higher-order unification",
                "authors": [
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Kwiatkowski",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Sharon",
                        "middle": [],
                        "last": "Goldwater",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1223--1233",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa- ter, and Mark Steedman. 2010. Inducing probabilistic CCG grammars from logical form with higher-order unification. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1223-1233, Cambridge, MA, October.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "A* CCG Parsing with a Supertag-factored Model",
                "authors": [
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mike Lewis and Mark Steedman. 2014. A* CCG Pars- ing with a Supertag-factored Model. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, October.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Linguistic structure and speech shadowing at very short latencies",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Marslen-Wilson",
                        "suffix": ""
                    }
                ],
                "year": 1973,
                "venue": "Nature",
                "volume": "244",
                "issue": "",
                "pages": "522--533",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W. Marslen-Wilson. 1973. Linguistic structure and speech shadowing at very short latencies. Nature., 244:522-533.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Maltparser: A languageindependent system for data-driven dependency parsing",
                "authors": [
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Johan",
                        "middle": [],
                        "last": "Hall",
                        "suffix": ""
                    },
                    {
                        "first": "Jens",
                        "middle": [],
                        "last": "Nilsson",
                        "suffix": ""
                    },
                    {
                        "first": "Atanas",
                        "middle": [],
                        "last": "Chanev",
                        "suffix": ""
                    },
                    {
                        "first": "G\u00fclsen",
                        "middle": [],
                        "last": "Eryigit",
                        "suffix": ""
                    },
                    {
                        "first": "Sandra",
                        "middle": [],
                        "last": "K\u00fcbler",
                        "suffix": ""
                    },
                    {
                        "first": "Svetoslav",
                        "middle": [],
                        "last": "Marinov",
                        "suffix": ""
                    },
                    {
                        "first": "Erwin",
                        "middle": [],
                        "last": "Marsi",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Natural Language Engineering",
                "volume": "13",
                "issue": "2",
                "pages": "95--135",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, G\u00fclsen Eryigit, Sandra K\u00fcbler, Svetoslav Marinov, and Erwin Marsi. 2007. Maltparser: A language- independent system for data-driven dependency pars- ing. Natural Language Engineering, 13(2):95-135.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "A lazy way to chart-parse with categorial grammars",
                "authors": [
                    {
                        "first": "Remo",
                        "middle": [],
                        "last": "Pareschi",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "81--88",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Remo Pareschi and Mark Steedman. 1987. A lazy way to chart-parse with categorial grammars. In Proceed- ings of the 25th Annual Meeting of the Association for Computational Linguistics, pages 81-88, Stanford, California, USA, July.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Probabilistic top-down parsing and language modeling",
                "authors": [
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Roark",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Computational Linguistics",
                "volume": "27",
                "issue": "",
                "pages": "249--276",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brian Roark. 2001. Probabilistic top-down parsing and language modeling. Computational Linguistics, 27:249-276.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Incremental Tree Substitution Grammar for Parsing and Sentence Prediction",
                "authors": [
                    {
                        "first": "Federico",
                        "middle": [],
                        "last": "Sangati",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Keller",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Transactions of the Association for Computational Linguistics (TACL)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Federico Sangati and Frank Keller. 2013. Incremen- tal Tree Substitution Grammar for Parsing and Sen- tence Prediction. In Transactions of the Association for Computational Linguistics (TACL).",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A Transition-Based Dependency Parser Using a Dynamic Parsing Strategy",
                "authors": [
                    {
                        "first": "Francesco",
                        "middle": [],
                        "last": "Sartorio",
                        "suffix": ""
                    },
                    {
                        "first": "Giorgio",
                        "middle": [],
                        "last": "Satta",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 51st",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Francesco Sartorio, Giorgio Satta, and Joakim Nivre. 2013. A Transition-Based Dependency Parser Using a Dynamic Parsing Strategy. In Proceedings of the 51st",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Annual Meeting of the Association for Computational Linguistics",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "1",
                "issue": "",
                "pages": "135--144",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 135-144, Sofia, Bulgaria, August.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "The Syntactic Process",
                "authors": [
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mark Steedman. 2000. The Syntactic Process. MIT Press, Cambridge, MA, USA.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Language modeling using a statistical dependency grammar parser",
                "authors": [
                    {
                        "first": "Wen",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Mary",
                        "middle": [],
                        "last": "Harper",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the International Workshop on Automatic Speech Recognition and Understanding, US Virgin Islands",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wen Wang and Mary Harper. 2003. Language modeling using a statistical dependency grammar parser. In Pro- ceedings of the International Workshop on Automatic Speech Recognition and Understanding, US Virgin Is- lands.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Shift-Reduce CCG Parsing with a Dependency Model",
                "authors": [
                    {
                        "first": "Wenduan",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "218--227",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wenduan Xu, Stephen Clark, and Yue Zhang. 2014. Shift-Reduce CCG Parsing with a Dependency Model. In Proceedings of the 52nd Annual Meeting of the As- sociation for Computational Linguistics (Volume 1: Long Papers), pages 218-227, Baltimore, Maryland, June.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Statistical Dependency Analysis with Support Vector Machines",
                "authors": [
                    {
                        "first": "Hiroyasu",
                        "middle": [],
                        "last": "Yamada",
                        "suffix": ""
                    },
                    {
                        "first": "Yuji",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of IWPT",
                "volume": "",
                "issue": "",
                "pages": "195--206",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical Dependency Analysis with Support Vector Machines. In In Proceedings of IWPT, pages 195-206.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Shift-Reduce CCG Parsing",
                "authors": [
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "683--692",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yue Zhang and Stephen Clark. 2011. Shift-Reduce CCG Parsing. In Proceedings of the 49th Annual Meet- ing of the Association for Computational Linguistics: Human Language Technologies, pages 683-692, Port- land, Oregon, USA, June.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Transition-based Dependency Parsing with Rich Non-local Features",
                "authors": [
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "188--193",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yue Zhang and Joakim Nivre. 2011. Transition-based Dependency Parsing with Rich Non-local Features. In Proceedings of the 49th Annual Meeting of the Asso- ciation for Computational Linguistics: Human Lan- guage Technologies, pages 188-193, Portland, Ore- gon, USA.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "uris": null,
                "text": "Normal form CCG derivation.",
                "type_str": "figure"
            },
            "FIGREF1": {
                "num": null,
                "uris": null,
                "text": "RevInc -Sequence of actions with parser configuration and the corresponding dependency graph.",
                "type_str": "figure"
            },
            "FIGREF2": {
                "num": null,
                "uris": null,
                "text": "RRev and LRev actions.",
                "type_str": "figure"
            },
            "TABREF2": {
                "text": "Connectedness and waiting time.",
                "content": "<table/>",
                "type_str": "table",
                "html": null,
                "num": null
            },
            "TABREF3": {
                "text": "Performance on the development data. *: These results are from the Z&C paper.",
                "content": "<table><tr><td/><td>UP</td><td>UR</td><td>UF</td><td>LP</td><td>LR</td><td>LF</td><td>Cat Acc.</td></tr><tr><td>NonInc (beam=1)</td><td colspan=\"6\">92.57 82.60 87.30 85.12 75.96 80.28</td><td>91.10</td></tr><tr><td>RevInc (beam=1)</td><td colspan=\"6\">91.62 85.94 88.69 83.42 78.25 80.75</td><td>90.87</td></tr><tr><td colspan=\"7\">NonInc (beam=16) 92.71 89.66 91.16 85.78 82.96 84.35</td><td>92.51</td></tr><tr><td>Z&amp;C (beam=16)*</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">87.15 82.95 85.00</td><td>92.77</td></tr><tr><td>Table 2:</td><td/><td/><td/><td/><td/><td/></tr></table>",
                "type_str": "table",
                "html": null,
                "num": null
            },
            "TABREF5": {
                "text": "Label-wise F-score of RevInc and NonInc parsers (both with beam=1). Argument slots in the relation are in bold. 92.45 82.16 87.00 85.59 76.06 80.55 91.39 RevInc (beam=1) 91.83 86.35 89.00 84.02 79.00 81.43 91.17 NonInc (beam=16) 92.68 89.57 91.10 86.20 83.32 84.74",
                "content": "<table><tr><td/><td>UP</td><td>UR</td><td>UF</td><td>LP</td><td>LR</td><td>LF</td><td>Cat Acc.</td></tr><tr><td>NonInc (beam=1)</td><td/><td/><td/><td/><td/><td/><td/></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>92.70</td></tr><tr><td>Z&amp;C (beam=16)*</td><td>-</td><td>-</td><td>-</td><td colspan=\"3\">87.43 83.61 85.48</td><td>93.12</td></tr><tr><td>Hassan et al. 09*</td><td>-</td><td>-</td><td>86.31</td><td>-</td><td>-</td><td>-</td><td>-</td></tr></table>",
                "type_str": "table",
                "html": null,
                "num": null
            }
        }
    }
}