File size: 149,728 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
{
    "paper_id": "N15-1039",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T14:33:08.961665Z"
    },
    "title": "I Can Has Cheezburger? A Nonparanormal Approach to Combining Textual and Visual Information for Predicting and Generating Popular Meme Descriptions",
    "authors": [
        {
            "first": "William",
            "middle": [
                "Yang"
            ],
            "last": "Wang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Carnegie Mellon University Pittsburgh",
                "location": {
                    "postCode": "15213",
                    "region": "PA"
                }
            },
            "email": ""
        },
        {
            "first": "Miaomiao",
            "middle": [],
            "last": "Wen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Carnegie Mellon University Pittsburgh",
                "location": {
                    "postCode": "15213",
                    "region": "PA"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The advent of social media has brought Internet memes, a unique social phenomenon, to the front stage of the Web. Embodied in the form of images with text descriptions, little do we know about the \"language of memes\". In this paper, we statistically study the correlations among popular memes and their wordings, and generate meme descriptions from raw images. To do this, we take a multimodal approach-we propose a robust nonparanormal model to learn the stochastic dependencies among the image, the candidate descriptions, and the popular votes. In experiments, we show that combining text and vision helps identifying popular meme descriptions; that our nonparanormal model is able to learn dense and continuous vision features jointly with sparse and discrete text features in a principled manner, outperforming various competitive baselines; that our system can generate meme descriptions using a simple pipeline.",
    "pdf_parse": {
        "paper_id": "N15-1039",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The advent of social media has brought Internet memes, a unique social phenomenon, to the front stage of the Web. Embodied in the form of images with text descriptions, little do we know about the \"language of memes\". In this paper, we statistically study the correlations among popular memes and their wordings, and generate meme descriptions from raw images. To do this, we take a multimodal approach-we propose a robust nonparanormal model to learn the stochastic dependencies among the image, the candidate descriptions, and the popular votes. In experiments, we show that combining text and vision helps identifying popular meme descriptions; that our nonparanormal model is able to learn dense and continuous vision features jointly with sparse and discrete text features in a principled manner, outperforming various competitive baselines; that our system can generate meme descriptions using a simple pipeline.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In the past few years, Internet memes become a new, contagious social phenomenon: it all starts with an image with a witty, catchy, or sarcastic sentence, and people circulate it from friends to friends, colleagues to colleagues, and families to families. Eventually, some of them go viral on the Internet.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Meme is not only about the funny picture, the Internet culture, or the emotion that passes along, but also about the richness and uniqueness of its language: it is often highly structured with special written style, and forms interesting and subtle connotations that resonate among the readers. For example, the LOL cat memes (e.g., Figure 1 ) often include superimposed text with broken grammars and/or spellings.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 333,
                        "end": 341,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Even though the memes are popular over the Internet, the \"language of memes\" is still not wellunderstood: there are no systematic studies on predicting and generating popular Internet memes from the Natural Language Processing (NLP) and Computer Vision (CV) perspectives.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we take a multimodal approach to predict and generate popular meme descriptions. To do this, we collect a set of original meme images, a list of candidate descriptions, and the corresponding votes. We propose a robust nonparanormal approach (Liu et al., 2009) to model the multimodal stochastic dependencies among images, text, and votes. We then introduce a simple pipeline for generating meme descriptions combining reverse image search and traditional information retrieval approaches. In empirical experiments, we show that our model outperforms strong discriminative baselines by very large margins in the regression/ranking experiments, and that in the generation experiment, the nonparanormal outperforms the second-best supervised baseline by 4.35 BLEU points, and obtains a BLEU score improvement of 4.48 over an unsupervised recurrent neural network language model trained on a large meme corpus that is almost 90 times larger. Our contributions are three-fold:",
                "cite_spans": [
                    {
                        "start": 256,
                        "end": 274,
                        "text": "(Liu et al., 2009)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 We are the first to study the \"language of memes\" combining NLP, CV, and machine learning techniques, and show that combining the visual and textual signals helps identifying popular meme descriptions;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Our approach empowers Internet users to select better wordings and generate new memes automatically;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Our proposed robust nonparanormal model outperforms competitive baselines for predicting and generating popular meme descriptions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In the next section, we outline related work. In Section 3, we introduce the theory of copula, and our nonparanormal approach. In Section 4, we describe the datasets. We show the prediction and generation results in Section 5 and Section 6. Finally, we conclude in Section 7.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Although the language of Internet memes is a relatively new research topic, our work is broadly related to studies on predicting popular social media messages (Hong et al., 2011; Bakshy et al., 2011; Artzi et al., 2012) . Most recently, Tan et al. (2014) study the effect on wordings for Tweets. However, none of the above studies have investigated multimodal approaches that combine text and vision.",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 178,
                        "text": "(Hong et al., 2011;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 179,
                        "end": 199,
                        "text": "Bakshy et al., 2011;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 200,
                        "end": 219,
                        "text": "Artzi et al., 2012)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 237,
                        "end": 254,
                        "text": "Tan et al. (2014)",
                        "ref_id": "BIBREF48"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Recently, there has been growing interests in inter-disciplinary research on generating image descriptions. Gupta el al. (2009) have studied the problem of constructing plots from video understanding. The work by Farhadi et al. (2010) is among the first to generate sentences from images. Kulkarni et al. (2011) use linguistic constraints and a conditional random field model for the task, whereas leverage syntactic information and co-occurrence statistics and use a large text corpus and CV algorithms for detecting visual text. With the surge of interests in deep learning techniques in NLP (Socher et al., 2013; Devlin et al., 2014) and CV Oquab et al., 2013) , there have been several unrefereed manuscripts on parsing images and generating text descriptions lately (Vinyals et al., 2014; Chen and Zitnick, 2014; Donahue et al., 2014; Fang et al., 2014; Karpathy and Fei-Fei, 2014) using neural network models. Although the above studies have shown interesting results, our task is arguably more complex than generating text descriptions: in addition to the visual and textual signals, we have to model the popular votes as a third dimension for learning. For example, we cannot simply train a convolutional neural network image parser on billions of images, and use recurrent neural networks to generate texts such as \"There is a white cat sitting next to a laptop.\" for Figure 1. Additionally, since not all images are suitable as meme images, collecting training images is also more challenging in our task.",
                "cite_spans": [
                    {
                        "start": 108,
                        "end": 127,
                        "text": "Gupta el al. (2009)",
                        "ref_id": null
                    },
                    {
                        "start": 213,
                        "end": 234,
                        "text": "Farhadi et al. (2010)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 289,
                        "end": 311,
                        "text": "Kulkarni et al. (2011)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 594,
                        "end": 615,
                        "text": "(Socher et al., 2013;",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 616,
                        "end": 636,
                        "text": "Devlin et al., 2014)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 644,
                        "end": 663,
                        "text": "Oquab et al., 2013)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 771,
                        "end": 793,
                        "text": "(Vinyals et al., 2014;",
                        "ref_id": "BIBREF51"
                    },
                    {
                        "start": 794,
                        "end": 817,
                        "text": "Chen and Zitnick, 2014;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 818,
                        "end": 839,
                        "text": "Donahue et al., 2014;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 840,
                        "end": 858,
                        "text": "Fang et al., 2014;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 859,
                        "end": 886,
                        "text": "Karpathy and Fei-Fei, 2014)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In contrast to prior work, we take a very different approach: we investigate copula methods (Schweizer and Sklar, 1983; Nelsen, 1999) , in particular, the nonparanormals (Liu et al., 2009) , for joint modeling of raw images, text descriptions, and popular votes. Copula is a statistical framework for analyzing random variables from Statistics , and often used in Economics (Chen and Fan, 2006) . Only until very recently, researchers from the machine learning and information retrieval communities (Ghahramani et al., 2012; Han et al., 2012; Eickhoff et al., 2013) . start to understand the theory and the predictive power of copula models. Wang and Hua (2014) are the first to introduce semiparametric Gaussian copula (a.k.a. nonparanormals) for text prediction. However, their approach may be prone to overfitting. In this work, we generalize Wang and Hua's method to jointly model text and vision features with popular votes, while scaling up the model using effective dropout regularization.",
                "cite_spans": [
                    {
                        "start": 92,
                        "end": 119,
                        "text": "(Schweizer and Sklar, 1983;",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 120,
                        "end": 133,
                        "text": "Nelsen, 1999)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 170,
                        "end": 188,
                        "text": "(Liu et al., 2009)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 374,
                        "end": 394,
                        "text": "(Chen and Fan, 2006)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 499,
                        "end": 524,
                        "text": "(Ghahramani et al., 2012;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 525,
                        "end": 542,
                        "text": "Han et al., 2012;",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 543,
                        "end": 565,
                        "text": "Eickhoff et al., 2013)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 642,
                        "end": 661,
                        "text": "Wang and Hua (2014)",
                        "ref_id": "BIBREF52"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "A key challenge for joint modeling of text and vision is that, because textual features are often relatively sparse and discrete, while visual features are typically dense and continuous, it is difficult to model them jointly in a principled way.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Our Approach",
                "sec_num": "3"
            },
            {
                "text": "To avoid comparing \"apple and oranges\" in the same probabilistic space, we propose the nonparanormal approach, which extends the Gaussian graphical model by transforming its variables by smooth functions. More specifically, for each dimension of textual and visual features, instead of using raw counts or histograms, we first use probability integral transform to generate empirical cumulative density functions (ECDF): now instead of the probability density function (PDF) space, we are working in the ECDF space where the value of each feature is based on the rank, and is strictly restricted between 0 and 1. Then, we use kernel density estimation to smooth out the zeroing features 1 . Finally, now textual and visual features are compatible, and we then build a parametric Gaussian copula model to estimate the pair-wise correlations among the covariate and the dependent variable.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Our Approach",
                "sec_num": "3"
            },
            {
                "text": "In this section, we first explain the visual and textual features used in this study. Then, we introduce the theory of copula, and describe the robust nonparanormal. Finally, we show a simple pipeline for generating meme descriptions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Our Approach",
                "sec_num": "3"
            },
            {
                "text": "Textual Features To model the meme descriptions, we take a broad range of textual features into considerations:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Lexical Features: we extract unigrams and bigrams from meme descriptions as surface-level lexical features.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Part-of-Speech Features: to model shallow syntactic cues, we extract lexicalized part-ofspeech features using the Stanford part-ofspeech tagger (Toutanova et al., 2003) .",
                "cite_spans": [
                    {
                        "start": 146,
                        "end": 170,
                        "text": "(Toutanova et al., 2003)",
                        "ref_id": "BIBREF50"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Dependency Triples: to better understand the deeper syntactic dependencies of keywords in Figure 3 : An example of the standard SIFT keypoints detected on the \"doge\" meme.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 92,
                        "end": 100,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.1"
            },
            {
                "text": "memes, we have also extracted typed dependency triples (e.g., subj(I,are)) using the Malt-Parser (Nivre et al., 2007) .",
                "cite_spans": [
                    {
                        "start": 97,
                        "end": 117,
                        "text": "(Nivre et al., 2007)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Named Entity Features: after browsing the dataset, we notice that certain names are often mentioned in memes (e.g. \"Drake\", \"Kenye West\", and \"Justin Bieber\"), so we utilize the Stanford named entity recognizer (Finkel et al., 2005) to extract lexicalized named entities.",
                "cite_spans": [
                    {
                        "start": 213,
                        "end": 234,
                        "text": "(Finkel et al., 2005)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Frame-Semantics Features: SEMAFOR (Das et al., 2010 ) is a state-of-the-art framesemantics parser that produces FrameNet-style semantic annotation. We use SEMAFOR to extract frame-level semantic features.",
                "cite_spans": [
                    {
                        "start": 36,
                        "end": 53,
                        "text": "(Das et al., 2010",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.1"
            },
            {
                "text": "Visual Features A key insight on viral memes is that the images producing a shared social signal are typically inter-related in style. For example, LOLcats are an early series of memes involving funny cat photos. Similarly, \"Bieber memes\" involve modified pictures of Bieber. Therefore, we hypothesize that, by extracting visual features, it is of crucial importance to capture the entities, objects, and styles as visual words in these inter-related meme images. The popular visual bag-of-words representation (Sivic and Zisserman, 2003 ) is used to describe images:",
                "cite_spans": [
                    {
                        "start": 511,
                        "end": 537,
                        "text": "(Sivic and Zisserman, 2003",
                        "ref_id": "BIBREF45"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.1"
            },
            {
                "text": "1. PHOW Features Extraction: unlike text features, SIFT first detects the Harris keypoints from an image, and then describes each keypoint with a vector. An example of the SIFT frames are shown in Figure 3 . PHOW (Bosch et al., 2007) is a dense and multi-scale variant of the Scale Invariant Feature Transform (SIFT) descriptors. Using PHOW, we obtain about 20K keypoints for each image.",
                "cite_spans": [
                    {
                        "start": 213,
                        "end": 233,
                        "text": "(Bosch et al., 2007)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 197,
                        "end": 205,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.1"
            },
            {
                "text": "2. Elkan K-means Clustering is the clustering method (Elkan, 2003) that we use to obtain the vocabulary for visual words. Comparing to other variants of K-means, this method quickly constructs the codebook from PHOW keypoints. 3. Bag-of-Words Histograms are used to represent each image. We match the PHOW keypoints of each image with the vocabulary that we extract from the previous step, and generate a 1 \u00d7 200 sized visual bag-of-words vector.",
                "cite_spans": [
                    {
                        "start": 53,
                        "end": 66,
                        "text": "(Elkan, 2003)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.1"
            },
            {
                "text": "In the Statistics literature, copula is widely known as a family of distribution function. The idea behind copula theory is that the cumulative distribution function (CDF) of a random vector can be represented in the form of uniform marginal cumulative distribution functions, and a copula that connects these marginal CDFs, which describes the correlations among the input random variables. However, in order to have a valid multivariate distribution function regardless of n-dimensional covariates, not every function can be used as a copula function. The central idea behind copula, therefore, can be summarize by the Sklar's theorem and the corollary. Theorem 1 (Sklar's Theorem (1959) ) Let F be the joint cumulative distribution function of n random variables X 1 , X 2 , ..., X n . Let the corresponding marginal cumulative distribution functions of the random variable be",
                "cite_spans": [
                    {
                        "start": 666,
                        "end": 689,
                        "text": "(Sklar's Theorem (1959)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Theory of Copula",
                "sec_num": "3.2"
            },
            {
                "text": "F 1 (x 1 ), F 2 (x 2 ), ..., F n (x n ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Theory of Copula",
                "sec_num": "3.2"
            },
            {
                "text": "Then, if the marginal functions are continuous, there exists a unique copula C, such that",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Theory of Copula",
                "sec_num": "3.2"
            },
            {
                "text": "F (x 1 , ..., x n ) = C[F 1 (x 1 ), ..., F n (x n )]. (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Theory of Copula",
                "sec_num": "3.2"
            },
            {
                "text": "Furthermore, if the distributions are continuous, the multivariate dependency structure and the marginals might be separated, and the copula can be considered independent of the marginals (Joe, 1997; Parsa and Klugman, 2011) . Therefore, the copula does not have requirements on the marginal distributions, and any arbitrary marginals can be combined and their dependency structure can be modeled using the copula. The inverse of Sklar's Theorem is also true in the following: Corollary 1 If there exists a copula C : (0, 1) n and marginal cumulative distribution functions",
                "cite_spans": [
                    {
                        "start": 188,
                        "end": 199,
                        "text": "(Joe, 1997;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 200,
                        "end": 224,
                        "text": "Parsa and Klugman, 2011)",
                        "ref_id": "BIBREF41"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Theory of Copula",
                "sec_num": "3.2"
            },
            {
                "text": "F 1 (x 1 ), F 2 (x 2 ), ..., F n (x n ), then C[F 1 (x 1 ), ..., F n (x n )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Theory of Copula",
                "sec_num": "3.2"
            },
            {
                "text": "] defines a multivariate cumulative distribution function.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Theory of Copula",
                "sec_num": "3.2"
            },
            {
                "text": "To model multivariate text and vision variables, we choose the nonparanormal (NPN) as the copula function in this study, which can be explained in the following two parts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparanormal",
                "sec_num": "3.3"
            },
            {
                "text": "Assume we have n random variables of vision and text features X 1 , X 2 , ..., X n . The problem is that text features are sparse, so we need to perform nonparametric kernel density estimation to smooth out the distribution of each variable. Let f 1 , f 2 , ..., f n be the unknown density, we are interested in deriving the shape of these functions. Assume we have m samples, the kernel density estimator can be defined as:f",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "h (x) = 1 m m i=1 K h (x \u2212 x i ) (2) = 1 mh m i=1 K x \u2212 x i h (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "Here, K(\u2022) is the kernel function, where in our case, we use the Box kernel 2 K(z):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "K(z) = 1 2 , |z| \u2264 1,",
                        "eq_num": "(4)"
                    }
                ],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "= 0, |z| > 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "Comparing to the Gaussian kernel and other kernels, the Box kernel is simple, and computationally inexpensive. The parameter h is the bandwidth for smoothing 3 . Now, we can derive the empirical cumulative distribution function\u015d",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "F X 1 (f 1 (X 1 )),F X 2 (f 2 (X 2 )), ...,F Xn (f n (X n ))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "of the smoothed covariates, as well as the dependent variable y (which is the reciprocal rank of the popular votes of a meme) and its CDFF y (f (y)). The empirical cumulative distribution functions are defined as:F",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "(\u03bd) = 1 m m i=1 I{x i \u2264 \u03bd} (6)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "where I{\u2022} is the indicator function, and \u03bd indicates the current value that we are evaluating. Note that the above step is also known as probability integral transform (Diebold et al., 1997) , which allows us to convert any given continuous distribution to random variables having a uniform distribution. This is crucial for text: instead of using the raw counts, we are now working with uniform marginal CDFs, which helps coping with the overfitting issue due to noise and data sparsity. We also use the same procedure to transform the vision features into CDF space to be compatible with text features.",
                "cite_spans": [
                    {
                        "start": 169,
                        "end": 191,
                        "text": "(Diebold et al., 1997)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "The Robust Estimation of Copula Now that we have obtained the marginals, and then the joint distribution can be constructed by applying the copula function that models the stochastic dependencies among marginal CDFs:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "F (f 1 (X 1 ), ...,f 1 (X n ),f (y)) = C[F X1 f 1 (X 1 ) , ...,F Xn f n (X n ) ,F y f y (y) ]",
                        "eq_num": "(7)"
                    }
                ],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "In this work, we apply the parametric Gaussian copula to model the correlations among the text features and the label. Assume x i is the smoothed version of random variable X i , and y is the smoothed label, we have:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "F (x 1 , ..., x n , y) = \u03a6 \u03a3 \u03a6 \u22121 [F x1 (x 1 )], ..., , \u03a6 \u22121 [F xn (x n )], \u03a6 \u22121 [F y (y)]",
                        "eq_num": "(8)"
                    }
                ],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "where \u03a6 \u03a3 is the joint cumulative distribution function of a multivariate Gaussian with zero mean and \u03a3 variance. \u03a6 \u22121 is the inverse CDF of a standard Gaussian. In this parametric part of the model, the parameter estimation boils down to the problem of learning the covariance matrix \u03a3 of this Gaussian copula. In this work, we perform standard maximum likelihood estimation (MLE) for the \u03a3 matrix, where we follow the details from prior work (Wang and Hua, 2014) . To avoid overfitting, traditionally, one resorts to classic regularization techniques such as Lasso (Tib-shirani, 1996) . While Lasso is widely used, the nondifferentiable nature of the L 1 norm often make the objective function difficult to optimize. In this work, we propose dropout training as copula regularization. Dropout was proposed by Hinton et al. as a method to prevent feature coadaptation in the deep learning framework, but recently studies (Wager et al., 2013) also show that its behaviour is similar to L 2 regularization, and can be approximated efficiently (Wang and Manning, 2013) in many other machine learning tasks. Another advantage of dropout training is that, unlike Lasso, it does not require all the features for training, and training is \"embarrassingly\" parallelizable.",
                "cite_spans": [
                    {
                        "start": 444,
                        "end": 464,
                        "text": "(Wang and Hua, 2014)",
                        "ref_id": "BIBREF52"
                    },
                    {
                        "start": 567,
                        "end": 586,
                        "text": "(Tib-shirani, 1996)",
                        "ref_id": null
                    },
                    {
                        "start": 1042,
                        "end": 1066,
                        "text": "(Wang and Manning, 2013)",
                        "ref_id": "BIBREF53"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "In Gaussian copula estimation context, we can introduce another dimension : the number of dropout learners, to extend the \u03a3 into a dropout tensor. Essentially, the task becomes the estimation of \u03a3 1 , \u03a3 2 , ..., \u03a3 where the input feature space for each dropout component is randomly corrupted by (1 \u2212 \u03b4) percent of the original dimension. In the inference time, we use geometric mean to average the predictions from each dropout learner, and generate the final prediction. Note that the final \u03a3 matrix has to be symmetric and positive definite, so we apply tiny random Gaussian noise to maintain the property.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Nonparametric Estimation",
                "sec_num": null
            },
            {
                "text": "One important question regarding the proposed nonparanormal model is the corresponding computational complexity. This boils down to the estimation of the\u03a3 matrix : one only needs to calculate the correlation coefficients of n(n \u2212 1)/2 pairs of random variables. Christensen (2005) shows that sorting and balanced binary trees can be used to calculate the correlation coefficients with complexity of O(n log n). Therefore, the computational complexity of MLE for the proposed model is O(n log n).",
                "cite_spans": [
                    {
                        "start": 262,
                        "end": 280,
                        "text": "Christensen (2005)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Computational Complexity",
                "sec_num": null
            },
            {
                "text": "In this prediction task, in order to perform the exact inference of the conditional probability distribution p(F y (y)|F x 1 (x 1 ), ..., F xn (x n )), one needs to solve the mean respons\u00ea E(F y (y)|F x 1 (x 1 ), ..., F x 1 (x 1 )) from a joint distribution of high-dimensional Gaussian copula. Unfortunately, the exact inference can be intractable in the multivariate case, and approximate inference, such as Markov Chain Monte Carlo sampling (Gelfand and Smith, 1990; Pitt et al., 2006) is often used for posterior inference. In this work, we propose an efficient sampling method to derive y given the text features -we sampl\u00ea F y (y) s.t. it maximizes the joint high-dimensional Gaussian copula density:",
                "cite_spans": [
                    {
                        "start": 444,
                        "end": 469,
                        "text": "(Gelfand and Smith, 1990;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 470,
                        "end": 488,
                        "text": "Pitt et al., 2006)",
                        "ref_id": "BIBREF43"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Efficient Approximate Inference",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "arg max Fy(y)\u2208(0,1) 1 \u221a det \u03a3 exp \u2212 1 2 \u2206 T \u2022 \u03a3 \u22121 \u2212 I \u2022 \u2206",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Efficient Approximate Inference",
                "sec_num": null
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Efficient Approximate Inference",
                "sec_num": null
            },
            {
                "text": "\u2206 = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed \u03a6 \u22121 (F x 1 (x 1 )) . . . \u03a6 \u22121 (F xn (x n )) \u03a6 \u22121 (F y (y)) \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Efficient Approximate Inference",
                "sec_num": null
            },
            {
                "text": "This approximate inference scheme using maximum density sampling from the Gaussian copula significantly relaxes the complexity of inference. Finally, to derive\u0177, the last step is to compute the inverse CDF ofF y (y). A detailed description of the inference algorithm can be found in our prior work (Wang and Hua, 2014) .",
                "cite_spans": [
                    {
                        "start": 298,
                        "end": 318,
                        "text": "(Wang and Hua, 2014)",
                        "ref_id": "BIBREF52"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Efficient Approximate Inference",
                "sec_num": null
            },
            {
                "text": "Now after we train a nonparanormal model for ranking meme descriptions, we show the simple meme generation pipeline in Figure 4 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 119,
                        "end": 127,
                        "text": "Figure 4",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "A Simple Meme Generation Pipeline",
                "sec_num": "3.4"
            },
            {
                "text": "Given a test image, we disguise as the Internet Explorer, and query Google's \"Search By Image\" inverse image search service 4 . By comparing the query image with all possible images with their captions in Google's database, a \"Best Guess\" of the keywords in the image is then revealed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Simple Meme Generation Pipeline",
                "sec_num": "3.4"
            },
            {
                "text": "Using the extracted image keywords, we further query a TF-IDF based Lucene 5 meme search engine, which we indexed with a large number of Webcrawled meme descriptions. After we obtain the candidate generations, we then extract all the text and vision features that we described in Section 3.1. Finally, our nonparanormal model ranks all possible candidates, and selects the final generation with the highest posterior.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Simple Meme Generation Pipeline",
                "sec_num": "3.4"
            },
            {
                "text": "We collected meme images and text descriptions 6 from two popular meme websites 7 . In the prediction experiment, we use 3,008 image-description pairs for training, and 526 image-description pairs for testing. In the generation experiment, we use 269,473 meme descriptions to index the meme search engine, and 50 randomly selected images for testing. During training, we convert the raw counts of popular votes into reciprocal ranks (e.g., the most popular text descriptions will all have a reciprocal rank of 1, and n-th popular one will have a score of 1/n).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4"
            },
            {
                "text": "In the first experiment, we compare the proposed NPN with various baselines in a prediction task, since prior literature (Hodosh et al., 2013 ) also suggests using ranking based evaluation for associating images with text descriptions. Throughout the experiment sections, we set = 10, and \u03b4 = 80 as the dropout hyperparameters.",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 141,
                        "text": "(Hodosh et al., 2013",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction Experiments",
                "sec_num": "5"
            },
            {
                "text": "The baselines are standard squared-loss linear regression, linear kernel SVM, and non-linear (Gaussian) kernel SVM. In a recent empirical study (Fern\u00e1ndez-Delgado et al., 2014 ) that evaluates 179 classifiers from 17 families on 121 UCI datasets, the authors find that Gaussian SVM is one of the top performing classifiers. We use the Statistical Toolbox's linear regression implementation in Matlab, and LibSVM (Chang and Lin, 2011) for training and testing the SVM models. The hyperparameter C in linear SVM, and the \u03b3 and C hyperparameters in Gaussian SVM are tuned on the training set using 10-fold cross-validation.",
                "cite_spans": [
                    {
                        "start": 144,
                        "end": 175,
                        "text": "(Fern\u00e1ndez-Delgado et al., 2014",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 412,
                        "end": 433,
                        "text": "(Chang and Lin, 2011)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines:",
                "sec_num": null
            },
            {
                "text": "Spearman's correlation (Hogg and Craig, 1994) and Kendall's tau (Kendall, 1938) have been widely used in many real-valued prediction (regression) problems in NLP (Albrecht and Hwa, 2007; Yogatama et al., 2011) , and here we use them to measure the quality of predicted values\u0177 by comparing to the vector of ground truth y. Kendall's tau is a nonparametric statistical metric that have shown to be inexpensive, robust, and representation independent (Lapata, 2006) . We use paired two-tailed t-test to measure the statistical significance.",
                "cite_spans": [
                    {
                        "start": 23,
                        "end": 45,
                        "text": "(Hogg and Craig, 1994)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 50,
                        "end": 79,
                        "text": "Kendall's tau (Kendall, 1938)",
                        "ref_id": null
                    },
                    {
                        "start": 162,
                        "end": 186,
                        "text": "(Albrecht and Hwa, 2007;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 187,
                        "end": 209,
                        "text": "Yogatama et al., 2011)",
                        "ref_id": "BIBREF54"
                    },
                    {
                        "start": 449,
                        "end": 463,
                        "text": "(Lapata, 2006)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics:",
                "sec_num": null
            },
            {
                "text": "The first two figures in Figure 5 show the learning curve of our system, comparing other baselines. We see that when increasing the amount of training data, our approach clearly dominates all other methods by a large margin. Linear and Gaussian SVMs perform similarly, and have good performances with only 25% of the training data, but the improvements are not large when increasing the amount of training data.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 25,
                        "end": 33,
                        "text": "Figure 5",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison with Various Baselines",
                "sec_num": "5.1"
            },
            {
                "text": "In the last two figures in Figure 5 , we increase the amount of features, and compare various models. We see that the linear regression model overfits with 600 features, and Gaussian SVM outperforms the linear SVM. We see that our NPN model clearly outperforms all baselines by a big gap, and does not overfit.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 27,
                        "end": 35,
                        "text": "Figure 5",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison with Various Baselines",
                "sec_num": "5.1"
            },
            {
                "text": "In Table 1 , we systematically compare the contributions of each feature set. First, we see that bigram features clearly improve the performance on top of unigram features. Second, named entities are crucial for further boosting the performance. Third, adding the shallow part-of-speech features does not benefit all models, but the dependency triples are shown to be useful for all methods. Finally, we see that using semantic features helps increasing the performances for most of the cases, and combining text and vision features in our NPN framework doubles the perfor- mance for associating popular votes, meme images, and text descriptions.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 10,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Combination of Text and Vision",
                "sec_num": "5.2"
            },
            {
                "text": "As we mentioned before, because NPNs model the complex network of random variables, a key issue for training NPN is to prevent the model from overfitting to the training data. So far, none of the prior work have investigated dropout training for regularizing the nonparanormals or even copula in general.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Effects of Dropout Training for Nonparanormals",
                "sec_num": "5.3"
            },
            {
                "text": "To empirical test the effects of dropout training for nonparanormals, in addition to our datasets, we also compare with the unregularized copula from Wang and Hua (2014) on predicting financial risks from earnings calls. Table 2 clearly suggests that dropout training for NPNs significant improves the performances on various datasets. Table 3 shows the top ranked text features that are highly correlated with popular votes. We see that the named entity features are useful: Paul Walker, UPS, Bruce Willis, Pencil Guy, Amy Winehouse are recognized as entities in the meme dataset. Dependency triples, as a less-understood feature set, also perform well in this task. For example, xcomp(tell,mean) captures the dependency relation of the popular meme series \"You mean to tell me...\". Interestingly, the transitional dependency feature dep(when,but) plays an important role in the language of memes. The object of a preposition, such as pobj (vegas,in) and pobj(life,of), also made the list. Bigrams are shown to be important features as usual. For example, \"Yo daw\" is a popular meme based on rapper Xzibit's famous reality car show \"Pimp My Ride\", where the rapper customizes people's car according to personal preferences. This viral meme follows the pattern 8 of \"Yo daw(g), I herd you like X (noun), so I put an X in your Y (noun) so you can W (verb) while you Z (verb).\"",
                "cite_spans": [
                    {
                        "start": 941,
                        "end": 951,
                        "text": "(vegas,in)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 221,
                        "end": 228,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 336,
                        "end": 343,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "The Effects of Dropout Training for Nonparanormals",
                "sec_num": "5.3"
            },
            {
                "text": "The use of pronouns, captured by frame semantics features, is associated with popular memes. We hypothesize that by using pronouns such as \"i\", \"you\", \"we\", and \"they\", the meme recalls personal experiences and emotions, thus connects better with the audience. Finally, we see that the punctuation bigram \"... :\" is an important feature in the language of memes, and Web dialect such as \"y\" (why) also exhibits high correlation with the popular votes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Analysis",
                "sec_num": "5.4"
            },
            {
                "text": "In this section, we investigate the performance of our meme generation system using 50 test meme images. To quantitatively evaluate our system, we compare with both unsupervised and supervised baselines. For the unsupervised baselines, we compare with a compact recurrent neural network language model (RNNLM) (Mikolov, 2012) trained on the 3,008 text descriptions of our meme training set, as well as a full model of RNNLM trained on a large meme corpus of 269K sentences 9 . For the supervised baselines, all models are trained on the 3,008 training image-description pairs with labels. All these models can be viewed as different re-ranking methods for the retrieved candidate descriptions. We use BLEU score (Papineni et al., 2002) as the evaluation metric, since the generation task can be viewed as translating raw images into sentences, and it is Figure 6 : Examples from the meme generation experiment. First row: the chemistry cat meme. Second row: the forever alone meme. Third row: the Batman slaps Robin meme. Left column: human generated topvoted meme descriptions on memegenerator.net at the time of writing. Middle column: generated output from RNNLM. Right column: generated output from NPNs. used in many caption generation studies (Vinyals et al., 2014; Chen and Zitnick, 2014; Donahue et al., 2014; Fang et al., 2014; Karpathy and Fei-Fei, 2014) . The generation result is shown in Table 4 . Note that when combining B-1 to B-4 scores, BLEU includes a brevity penalty as described in the original BLEU paper. We see that our NPN model outperforms the best supervised baseline by 4.35 BLEU points, while also obtaining an advantage of 4.48 BLEU points over the full RNNLM, which is trained on a corpus that is \u223c90 times larger, in an unsupervised fashion. When breaking down the results, we see that our NPN's advantage is on generating longer phrases, typically trigrams and four-grams, comparing to the other models. This is very interesting, because generating high-quality long phrases is difficult, since the memes are often short. We show some generation examples in Figure 6 . We see that on the left column, the reference memes are the ones with top votes by the crowd. The first chemistry cat meme includes puns, the second forever alone meme includes reference to the life simulation video game, while the last Batman meme has interesting conversations. In the second column, we see that the memes generated by the full RNNLM model are short, which corresponds to the quantitative results in Table 4 . In the third column, our NPN meme generator was able to generate longer descriptions. Interestingly, it also creates a pun for the chemistry cat meme. Our generation on the forever alone meme is also accurate. In the Batman example, we show that the NPN model makes a sentence-image-mismatch type of error: although the generated sentence includes the entities Batman and Robin, as well as their slapping activity, it was originally created for the \"overly attached girlfriend\" meme 10 .",
                "cite_spans": [
                    {
                        "start": 310,
                        "end": 325,
                        "text": "(Mikolov, 2012)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 712,
                        "end": 735,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 1249,
                        "end": 1271,
                        "text": "(Vinyals et al., 2014;",
                        "ref_id": "BIBREF51"
                    },
                    {
                        "start": 1272,
                        "end": 1295,
                        "text": "Chen and Zitnick, 2014;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1296,
                        "end": 1317,
                        "text": "Donahue et al., 2014;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 1318,
                        "end": 1336,
                        "text": "Fang et al., 2014;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1337,
                        "end": 1364,
                        "text": "Karpathy and Fei-Fei, 2014)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 854,
                        "end": 862,
                        "text": "Figure 6",
                        "ref_id": null
                    },
                    {
                        "start": 1401,
                        "end": 1408,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 2091,
                        "end": 2099,
                        "text": "Figure 6",
                        "ref_id": null
                    },
                    {
                        "start": 2520,
                        "end": 2527,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Generation Experiments",
                "sec_num": "6"
            },
            {
                "text": "In this paper, we study the language of memes by jointly learning the image, the description, and the popular votes. In particular, we propose a robust nonparanormal approach to transform all vision and text features into the cumulative density function space. By learning the stochastic dependencies, we show that our model significantly outperforms various competitive baselines in the prediction experiments. In addition, we also propose a simple pipeline for generating memes from raw images, drawing the wisdom from reverse image search and traditional information retrieval perspectives. Finally, we show that our model obtains significant BLEU point improvements over an unsupervised RNNLM baseline trained on a larger corpus, as well as other strong supervised baselines.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7"
            },
            {
                "text": "This is necessary for the normal inversion of the ECDFs, which we will describe in Section 3.2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "It is also known as the original Parzen windows(Parzen, 1962).3 In our implementation, we use the default h of the Box kernel in the ksdensity function in Matlab.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.google.com/imghp/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://lucene.apache.org/ 6 http://www.cs.cmu.edu/\u02dcyww/data/meme dataset.zip. 7 memegenerator.net and cheezburger.com",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Note that there are no image features feeding to the unsupervised RNN models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.overlyattachedgirlfriend.com",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Regression for sentence-level mt evaluation with pseudo references",
                "authors": [
                    {
                        "first": "Joshua",
                        "middle": [],
                        "last": "Albrecht",
                        "suffix": ""
                    },
                    {
                        "first": "Rebecca",
                        "middle": [],
                        "last": "Hwa",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joshua Albrecht and Rebecca Hwa. 2007. Regression for sentence-level mt evaluation with pseudo references. In Proceedings of ACL.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Predicting responses to microblog posts",
                "authors": [
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Artzi",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Pantel",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Gamon",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of NAACL-HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoav Artzi, Patrick Pantel, and Michael Gamon. 2012. Predicting responses to microblog posts. In Proceed- ings of NAACL-HLT.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Everyone's an influencer: quantifying influence on twitter",
                "authors": [
                    {
                        "first": "Eytan",
                        "middle": [],
                        "last": "Bakshy",
                        "suffix": ""
                    },
                    {
                        "first": "Jake",
                        "middle": [
                            "M"
                        ],
                        "last": "Hofman",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Winter",
                        "suffix": ""
                    },
                    {
                        "first": "Duncan J",
                        "middle": [],
                        "last": "Mason",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Watts",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of WSDM",
                "volume": "",
                "issue": "",
                "pages": "65--74",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eytan Bakshy, Jake M Hofman, Winter A Mason, and Duncan J Watts. 2011. Everyone's an influencer: quantifying influence on twitter. In Proceedings of WSDM, pages 65-74. ACM.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Image classification using random forests and ferns",
                "authors": [
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Bosch",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Zisserman",
                        "suffix": ""
                    },
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Munoz",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anna Bosch, Andrew Zisserman, and Xavier Munoz. 2007. Image classification using random forests and ferns.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Libsvm: a library for support vector machines",
                "authors": [
                    {
                        "first": "Chih-Chung",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Chih-Jen",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm: a library for support vector machines. ACM TIST.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Estimation of copula-based semiparametric time series models",
                "authors": [
                    {
                        "first": "Xiaohong",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Yanqin",
                        "middle": [],
                        "last": "Fan",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Journal of Econometrics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaohong Chen and Yanqin Fan. 2006. Estimation of copula-based semiparametric time series models. Journal of Econometrics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Learning a recurrent visual representation for image caption generation",
                "authors": [
                    {
                        "first": "Xinlei",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lawrence Zitnick",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1411.5654"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xinlei Chen and C Lawrence Zitnick. 2014. Learning a recurrent visual representation for image caption gen- eration. arXiv preprint arXiv:1411.5654.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Fast algorithms for the calculation of kendalls \u03c4",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Christensen",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Computational Statistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Christensen. 2005. Fast algorithms for the calcu- lation of kendalls \u03c4 . Computational Statistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Probabilistic frame-semantic parsing",
                "authors": [
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Nathan",
                        "middle": [],
                        "last": "Schneider",
                        "suffix": ""
                    },
                    {
                        "first": "Desai",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Noah A",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of NAACL-HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dipanjan Das, Nathan Schneider, Desai Chen, and Noah A Smith. 2010. Probabilistic frame-semantic parsing. In Proceedings of NAACL-HLT.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Fast and robust neural network joint models for statistical machine translation",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Rabih",
                        "middle": [],
                        "last": "Zbib",
                        "suffix": ""
                    },
                    {
                        "first": "Zhongqiang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Lamar",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Schwartz",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Makhoul",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John Makhoul. 2014. Fast and robust neural network joint models for statis- tical machine translation. In Proceedings of ACL.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Evaluating density forecasts",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Francis X Diebold",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Todd",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony S",
                        "middle": [],
                        "last": "Gunther",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Tay",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Francis X Diebold, Todd A Gunther, and Anthony S Tay. 1997. Evaluating density forecasts.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Detecting visual text",
                "authors": [
                    {
                        "first": "Jesse",
                        "middle": [],
                        "last": "Dodge",
                        "suffix": ""
                    },
                    {
                        "first": "Amit",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Xufeng",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Alyssa",
                        "middle": [],
                        "last": "Mensch",
                        "suffix": ""
                    },
                    {
                        "first": "Margaret",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    },
                    {
                        "first": "Karl",
                        "middle": [],
                        "last": "Stratos",
                        "suffix": ""
                    },
                    {
                        "first": "Kota",
                        "middle": [],
                        "last": "Yamaguchi",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Hal",
                        "middle": [],
                        "last": "Daum\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "Iii",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "C"
                        ],
                        "last": "Berg",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the NAACL-HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jesse Dodge, Amit Goyal, Xufeng Han, Alyssa Men- sch, Margaret Mitchell, Karl Stratos, Kota Yamaguchi, Yejin Choi, Hal Daum\u00e9 III, Alexander C Berg, et al. 2012. Detecting visual text. In Proceedings of the NAACL-HLT.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Long-term recurrent convolutional networks for visual recognition and description",
                "authors": [
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Donahue",
                        "suffix": ""
                    },
                    {
                        "first": "Lisa",
                        "middle": [
                            "Anne"
                        ],
                        "last": "Hendricks",
                        "suffix": ""
                    },
                    {
                        "first": "Sergio",
                        "middle": [],
                        "last": "Guadarrama",
                        "suffix": ""
                    },
                    {
                        "first": "Marcus",
                        "middle": [],
                        "last": "Rohrbach",
                        "suffix": ""
                    },
                    {
                        "first": "Subhashini",
                        "middle": [],
                        "last": "Venugopalan",
                        "suffix": ""
                    },
                    {
                        "first": "Kate",
                        "middle": [],
                        "last": "Saenko",
                        "suffix": ""
                    },
                    {
                        "first": "Trevor",
                        "middle": [
                            "Darrell"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1411.4389"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jeff Donahue, Lisa Anne Hendricks, Sergio Guadar- rama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. 2014. Long-term re- current convolutional networks for visual recognition and description. arXiv preprint arXiv:1411.4389.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Copulas for information retrieval",
                "authors": [
                    {
                        "first": "Carsten",
                        "middle": [],
                        "last": "Eickhoff",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Arjen",
                        "suffix": ""
                    },
                    {
                        "first": "Kevyn",
                        "middle": [],
                        "last": "De Vries",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Collins-Thompson",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carsten Eickhoff, Arjen P. de Vries, and Kevyn Collins- Thompson. 2013. Copulas for information retrieval. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Informa- tion Retrieval.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Using the triangle inequality to accelerate k-means",
                "authors": [
                    {
                        "first": "Charles",
                        "middle": [],
                        "last": "Elkan",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "ICML",
                "volume": "3",
                "issue": "",
                "pages": "147--153",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Charles Elkan. 2003. Using the triangle inequality to accelerate k-means. In ICML, volume 3, pages 147- 153.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "From captions to visual concepts and back",
                "authors": [
                    {
                        "first": "Saurabh",
                        "middle": [],
                        "last": "Hao Fang",
                        "suffix": ""
                    },
                    {
                        "first": "Forrest",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Rupesh",
                        "middle": [],
                        "last": "Iandola",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Srivastava",
                        "suffix": ""
                    },
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Doll\u00e1r",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Margaret",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Platt",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1411.4952"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh Sri- vastava, Li Deng, Piotr Doll\u00e1r, Jianfeng Gao, Xi- aodong He, Margaret Mitchell, John Platt, et al. 2014. From captions to visual concepts and back. arXiv preprint arXiv:1411.4952.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Every picture tells a story: Generating sentences from images",
                "authors": [
                    {
                        "first": "Ali",
                        "middle": [],
                        "last": "Farhadi",
                        "suffix": ""
                    },
                    {
                        "first": "Mohsen",
                        "middle": [],
                        "last": "Hejrati",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [
                            "Amin"
                        ],
                        "last": "Sadeghi",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    },
                    {
                        "first": "Cyrus",
                        "middle": [],
                        "last": "Rashtchian",
                        "suffix": ""
                    },
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Forsyth",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Computer Vision-ECCV 2010",
                "volume": "",
                "issue": "",
                "pages": "15--29",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ali Farhadi, Mohsen Hejrati, Mohammad Amin Sadeghi, Peter Young, Cyrus Rashtchian, Julia Hockenmaier, and David Forsyth. 2010. Every picture tells a story: Generating sentences from images. In Com- puter Vision-ECCV 2010, pages 15-29. Springer.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Do we need hundreds of classifiers to solve real world classification problems",
                "authors": [
                    {
                        "first": "Manuel",
                        "middle": [],
                        "last": "Fern\u00e1ndez-Delgado",
                        "suffix": ""
                    },
                    {
                        "first": "Eva",
                        "middle": [],
                        "last": "Cernadas",
                        "suffix": ""
                    },
                    {
                        "first": "Sen\u00e9n",
                        "middle": [],
                        "last": "Barro",
                        "suffix": ""
                    },
                    {
                        "first": "Dinani",
                        "middle": [],
                        "last": "Amorim",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Journal of Machine Learning Research",
                "volume": "15",
                "issue": "",
                "pages": "3133--3181",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Manuel Fern\u00e1ndez-Delgado, Eva Cernadas, Sen\u00e9n Barro, and Dinani Amorim. 2014. Do we need hun- dreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 15:3133-3181.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Incorporating non-local information into information extraction systems by gibbs sampling",
                "authors": [
                    {
                        "first": "Jenny",
                        "middle": [
                            "Rose"
                        ],
                        "last": "Finkel",
                        "suffix": ""
                    },
                    {
                        "first": "Trond",
                        "middle": [],
                        "last": "Grenager",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "363--370",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating non-local information into information extraction systems by gibbs sampling. In Proceedings of the 43rd Annual Meeting on Associ- ation for Computational Linguistics, pages 363-370. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Sampling-based approaches to calculating marginal densities",
                "authors": [
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Gelfand",
                        "suffix": ""
                    },
                    {
                        "first": "Adrian",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Journal of the American statistical association",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alan Gelfand and Adrian Smith. 1990. Sampling-based approaches to calculating marginal densities. Journal of the American statistical association.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Copula-based kernel dependency measures",
                "authors": [
                    {
                        "first": "Zoubin",
                        "middle": [],
                        "last": "Ghahramani",
                        "suffix": ""
                    },
                    {
                        "first": "Barnab\u00e1s",
                        "middle": [],
                        "last": "P\u00f3czos",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Schneider",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 29th International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zoubin Ghahramani, Barnab\u00e1s P\u00f3czos, and Jeff Schnei- der. 2012. Copula-based kernel dependency mea- sures. In Proceedings of the 29th International Con- ference on Machine Learning.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Understanding videos, constructing plots learning a visually grounded storyline model from annotated videos",
                "authors": [
                    {
                        "first": "Abhinav",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Praveen",
                        "middle": [],
                        "last": "Srinivasan",
                        "suffix": ""
                    },
                    {
                        "first": "Jianbo",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "Larry S",
                        "middle": [],
                        "last": "Davis",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Computer Vision and Pattern Recognition",
                "volume": "",
                "issue": "",
                "pages": "2012--2019",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abhinav Gupta, Praveen Srinivasan, Jianbo Shi, and Larry S Davis. 2009. Understanding videos, con- structing plots learning a visually grounded storyline model from annotated videos. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Confer- ence on, pages 2012-2019. IEEE.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Coda: High dimensional copula discriminant analysis",
                "authors": [
                    {
                        "first": "Fang",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Tuo",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Han",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Journal of Machine Learning Research",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fang Han, Tuo Zhao, and Han Liu. 2012. Coda: High dimensional copula discriminant analysis. Journal of Machine Learning Research.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Improving neural networks by preventing coadaptation of feature detectors",
                "authors": [
                    {
                        "first": "Nitish",
                        "middle": [],
                        "last": "Geoffrey E Hinton",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Srivastava",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Krizhevsky",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan R",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1207.0580"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. 2012. Improving neural networks by preventing co- adaptation of feature detectors. arXiv preprint arXiv:1207.0580.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Framing image description as a ranking task: Data, models and evaluation metrics",
                "authors": [
                    {
                        "first": "Micah",
                        "middle": [],
                        "last": "Hodosh",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    },
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "J. Artif. Intell. Res.(JAIR)",
                "volume": "47",
                "issue": "",
                "pages": "853--899",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Micah Hodosh, Peter Young, and Julia Hockenmaier. 2013. Framing image description as a ranking task: Data, models and evaluation metrics. J. Artif. Intell. Res.(JAIR), 47:853-899.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Introduction to mathematical statistics",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Robert",
                        "suffix": ""
                    },
                    {
                        "first": "Allen",
                        "middle": [],
                        "last": "Hogg",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Craig",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert V Hogg and Allen Craig. 1994. Introduction to mathematical statistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Predicting popular messages in twitter",
                "authors": [
                    {
                        "first": "Liangjie",
                        "middle": [],
                        "last": "Hong",
                        "suffix": ""
                    },
                    {
                        "first": "Ovidiu",
                        "middle": [],
                        "last": "Dan",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [
                            "D"
                        ],
                        "last": "Davison",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of WWW",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liangjie Hong, Ovidiu Dan, and Brian D Davison. 2011. Predicting popular messages in twitter. In Proceedings of WWW.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Multivariate models and dependence concepts",
                "authors": [
                    {
                        "first": "Harry",
                        "middle": [],
                        "last": "Joe",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Harry Joe. 1997. Multivariate models and dependence concepts.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Deep visualsemantic alignments for generating image descriptions",
                "authors": [
                    {
                        "first": "Andrej",
                        "middle": [],
                        "last": "Karpathy",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Fei-Fei",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andrej Karpathy and Li Fei-Fei. 2014. Deep visual- semantic alignments for generating image descrip- tions. Stanford University Technical Report.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "A new measure of rank correlation",
                "authors": [
                    {
                        "first": "Maurice",
                        "middle": [],
                        "last": "Kendall",
                        "suffix": ""
                    }
                ],
                "year": 1938,
                "venue": "Biometrika",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maurice Kendall. 1938. A new measure of rank correla- tion. Biometrika.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Imagenet classification with deep convolutional neural networks",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Krizhevsky",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [
                            "E"
                        ],
                        "last": "Hinton",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "1097--1105",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097-1105.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Baby talk: Understanding and generating image descriptions",
                "authors": [
                    {
                        "first": "Girish",
                        "middle": [],
                        "last": "Kulkarni",
                        "suffix": ""
                    },
                    {
                        "first": "Visruth",
                        "middle": [],
                        "last": "Premraj",
                        "suffix": ""
                    },
                    {
                        "first": "Sagnik",
                        "middle": [],
                        "last": "Dhar",
                        "suffix": ""
                    },
                    {
                        "first": "Siming",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "C"
                        ],
                        "last": "Berg",
                        "suffix": ""
                    },
                    {
                        "first": "Tamara",
                        "middle": [
                            "L"
                        ],
                        "last": "Berg",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 24th CVPR",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming Li, Yejin Choi, Alexander C Berg, and Tamara L Berg. 2011. Baby talk: Understanding and generating im- age descriptions. In Proceedings of the 24th CVPR. Citeseer.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Automatic evaluation of information ordering: Kendall's tau. Computational Linguistics",
                "authors": [
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mirella Lapata. 2006. Automatic evaluation of informa- tion ordering: Kendall's tau. Computational Linguis- tics.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "The nonparanormal: Semiparametric estimation of high dimensional undirected graphs",
                "authors": [
                    {
                        "first": "Han",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "Larry",
                        "middle": [],
                        "last": "Wasserman",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "The Journal of Machine Learning Research",
                "volume": "10",
                "issue": "",
                "pages": "2295--2328",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Han Liu, John Lafferty, and Larry Wasserman. 2009. The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. The Journal of Machine Learning Research, 10:2295-2328.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "High-dimensional semiparametric gaussian copula graphical models. The Annals of Statistics",
                "authors": [
                    {
                        "first": "Han",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Fang",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "Larry",
                        "middle": [],
                        "last": "Wasserman",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Han Liu, Fang Han, Ming Yuan, John Lafferty, and Larry Wasserman. 2012. High-dimensional semiparamet- ric gaussian copula graphical models. The Annals of Statistics.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Statistical language models based on neural networks",
                "authors": [
                    {
                        "first": "Tom\u00e1\u0161",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tom\u00e1\u0161 Mikolov. 2012. Statistical language models based on neural networks. Ph.D. thesis, Ph. D. the- sis, Brno University of Technology.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Midge: Generating image descriptions from computer vision detections",
                "authors": [
                    {
                        "first": "Margaret",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    },
                    {
                        "first": "Xufeng",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Jesse",
                        "middle": [],
                        "last": "Dodge",
                        "suffix": ""
                    },
                    {
                        "first": "Alyssa",
                        "middle": [],
                        "last": "Mensch",
                        "suffix": ""
                    },
                    {
                        "first": "Amit",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of EACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Margaret Mitchell, Xufeng Han, Jesse Dodge, Alyssa Mensch, Amit Goyal, Alex Berg, Kota Yamaguchi, Tamara Berg, Karl Stratos, and Hal Daum\u00e9 III. 2012. Midge: Generating image descriptions from computer vision detections. In Proceedings of EACL.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "An introduction to copulas",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Roger B Nelsen",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roger B Nelsen. 1999. An introduction to copulas. Springer Verlag.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Maltparser: A languageindependent system for data-driven dependency parsing",
                "authors": [
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Johan",
                        "middle": [],
                        "last": "Hall",
                        "suffix": ""
                    },
                    {
                        "first": "Jens",
                        "middle": [],
                        "last": "Nilsson",
                        "suffix": ""
                    },
                    {
                        "first": "Atanas",
                        "middle": [],
                        "last": "Chanev",
                        "suffix": ""
                    },
                    {
                        "first": "G\u00fclsen",
                        "middle": [],
                        "last": "Eryigit",
                        "suffix": ""
                    },
                    {
                        "first": "Sandra",
                        "middle": [],
                        "last": "K\u00fcbler",
                        "suffix": ""
                    },
                    {
                        "first": "Svetoslav",
                        "middle": [],
                        "last": "Marinov",
                        "suffix": ""
                    },
                    {
                        "first": "Erwin",
                        "middle": [],
                        "last": "Marsi",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Natural Language Engineering",
                "volume": "13",
                "issue": "02",
                "pages": "95--135",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, G\u00fclsen Eryigit, Sandra K\u00fcbler, Svetoslav Marinov, and Erwin Marsi. 2007. Maltparser: A language- independent system for data-driven dependency pars- ing. Natural Language Engineering, 13(02):95-135.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Learning and transferring mid-level image representations using convolutional neural networks",
                "authors": [
                    {
                        "first": "Maxime",
                        "middle": [],
                        "last": "Oquab",
                        "suffix": ""
                    },
                    {
                        "first": "Leon",
                        "middle": [],
                        "last": "Bottou",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Laptev",
                        "suffix": ""
                    },
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Sivic",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maxime Oquab, Leon Bottou, Ivan Laptev, Josef Sivic, et al. 2013. Learning and transferring mid-level image representations using convolutional neural networks.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic evalua- tion of machine translation. In Proceedings of ACL, pages 311-318. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Copula regression. Variance Advancing and Science of Risk",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Rahul",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Parsa",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Stuart A Klugman",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rahul A Parsa and Stuart A Klugman. 2011. Copula regression. Variance Advancing and Science of Risk.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "On estimation of a probability density function and mode. The annals of mathematical statistics",
                "authors": [
                    {
                        "first": "Emanuel",
                        "middle": [],
                        "last": "Parzen",
                        "suffix": ""
                    }
                ],
                "year": 1962,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emanuel Parzen. 1962. On estimation of a probability density function and mode. The annals of mathemati- cal statistics.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Efficient bayesian inference for gaussian copula regression models",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Pitt",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Chan",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Kohn",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Biometrika",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Pitt, David Chan, and Robert Kohn. 2006. Effi- cient bayesian inference for gaussian copula regression models. Biometrika.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Probabilistic metric spaces",
                "authors": [
                    {
                        "first": "Berthold",
                        "middle": [],
                        "last": "Schweizer",
                        "suffix": ""
                    },
                    {
                        "first": "Abe",
                        "middle": [],
                        "last": "Sklar",
                        "suffix": ""
                    }
                ],
                "year": 1983,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Berthold Schweizer and Abe Sklar. 1983. Probabilistic metric spaces.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Video google: A text retrieval approach to object matching in videos",
                "authors": [
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Sivic",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Zisserman",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of ICCV",
                "volume": "",
                "issue": "",
                "pages": "1470--1477",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Josef Sivic and Andrew Zisserman. 2003. Video google: A text retrieval approach to object matching in videos. In Proceedings of ICCV, pages 1470-1477. IEEE.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "Fonctions de r\u00e9partition\u00e0 n dimensions et leurs marges",
                "authors": [
                    {
                        "first": "Abe",
                        "middle": [],
                        "last": "Sklar",
                        "suffix": ""
                    }
                ],
                "year": 1959,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abe Sklar. 1959. Fonctions de r\u00e9partition\u00e0 n dimen- sions et leurs marges. Universit\u00e9 Paris 8.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "Recursive deep models for semantic compositionality over a sentiment treebank",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Perelygin",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Jean",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chuang",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Andrew",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Potts",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "1631--1642",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of EMNLP, pages 1631-1642. Cite- seer.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "The effect of wording on message propagation: Topic-and author-controlled natural experiments on twitter",
                "authors": [
                    {
                        "first": "Chenhao",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Lillian",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Bo",
                        "middle": [],
                        "last": "Pang",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chenhao Tan, Lillian Lee, and Bo Pang. 2014. The ef- fect of wording on message propagation: Topic-and author-controlled natural experiments on twitter. In Proceedings of ACL.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "Regression shrinkage and selection via the lasso",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Tibshirani",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Journal of the Royal Statistical Society. Series B (Methodological)",
                "volume": "",
                "issue": "",
                "pages": "267--288",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert Tibshirani. 1996. Regression shrinkage and se- lection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pages 267-288.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Feature-rich part-of-speech tagging with a cyclic dependency network",
                "authors": [
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "Yoram",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Singer",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of NAACL-HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In Pro- ceedings of NAACL-HLT.",
                "links": null
            },
            "BIBREF51": {
                "ref_id": "b51",
                "title": "Show and tell: A neural image caption generator",
                "authors": [
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Vinyals",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Toshev",
                        "suffix": ""
                    },
                    {
                        "first": "Samy",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "Dumitru",
                        "middle": [],
                        "last": "Erhan",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "351--359",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1411.4555"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du- mitru Erhan. 2014. Show and tell: A neural image caption generator. arXiv preprint arXiv:1411.4555. Stefan Wager, Sida Wang, and Percy Liang. 2013. Dropout training as adaptive regularization. In Ad- vances in Neural Information Processing Systems, pages 351-359.",
                "links": null
            },
            "BIBREF52": {
                "ref_id": "b52",
                "title": "A semiparametric gaussian copula regression model for predicting financial risks from earnings calls",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "William",
                        "suffix": ""
                    },
                    {
                        "first": "Zhenhao",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hua",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "William Yang Wang and Zhenhao Hua. 2014. A semi- parametric gaussian copula regression model for pre- dicting financial risks from earnings calls. In Proceed- ings of ACL.",
                "links": null
            },
            "BIBREF53": {
                "ref_id": "b53",
                "title": "Fast dropout training",
                "authors": [
                    {
                        "first": "Sida",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of ICML",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sida Wang and Christopher Manning. 2013. Fast dropout training. In Proceedings of ICML.",
                "links": null
            },
            "BIBREF54": {
                "ref_id": "b54",
                "title": "Predicting a scientific community's response to an article",
                "authors": [
                    {
                        "first": "Dani",
                        "middle": [],
                        "last": "Yogatama",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Heilman",
                        "suffix": ""
                    },
                    {
                        "first": "O'",
                        "middle": [],
                        "last": "Brendan",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Connor",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Noah A",
                        "middle": [],
                        "last": "Bryan R Routledge",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dani Yogatama, Michael Heilman, Brendan O'Connor, Chris Dyer, Bryan R Routledge, and Noah A Smith. 2011. Predicting a scientific community's response to an article. In Proceedings of EMNLP.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "type_str": "figure",
                "text": "An example of the LOL cat memes.",
                "num": null
            },
            "FIGREF1": {
                "uris": null,
                "type_str": "figure",
                "text": "Our nonparanormal method extends Gaussian by transforming each dimension with a smooth function, and jointly models the stochastic dependencies among textual and visual features, as well as the popular votes by the crowd.",
                "num": null
            },
            "FIGREF2": {
                "uris": null,
                "type_str": "figure",
                "text": "Our pipeline for generating memes from raw images.",
                "num": null
            },
            "FIGREF3": {
                "uris": null,
                "type_str": "figure",
                "text": "Two figures on the left: varying the amount of training data. L(1): Spearman. L(2): Kendall. Two figures on the right: varying the amount of features. R(1): Spearman. R(2",
                "num": null
            },
            "TABREF1": {
                "num": null,
                "content": "<table/>",
                "type_str": "table",
                "text": "The effects of dropout training for NPNs on meme and other datasets. The best results of each row are highlighted in bold. * indicates p < .001 comparing to the no dropout setting.",
                "html": null
            },
            "TABREF3": {
                "num": null,
                "content": "<table/>",
                "type_str": "table",
                "text": "Top-30 linguistic features that are highly correlated with the popular votes.",
                "html": null
            },
            "TABREF5": {
                "num": null,
                "content": "<table/>",
                "type_str": "table",
                "text": "The BLEU scores for generating memes from images. B-1 to B-4: BLEU unigram to four-grams. The best BLEU results are highlighted in bold. * indicates p < .001 comparing to the second best system.",
                "html": null
            }
        }
    }
}