File size: 135,084 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
{
    "paper_id": "N15-1046",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T14:32:51.695780Z"
    },
    "title": "Using Summarization to Discover Argument Facets in Online Idealogical Dialog",
    "authors": [
        {
            "first": "Amita",
            "middle": [],
            "last": "Misra",
            "suffix": "",
            "affiliation": {
                "laboratory": "Dialogue Systems Lab",
                "institution": "UC Santa Cruz Natural Language",
                "location": {
                    "addrLine": "1156 N. High. SOE-3 Santa Cruz",
                    "postCode": "95064",
                    "region": "California",
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Pranav",
            "middle": [],
            "last": "Anand",
            "suffix": "",
            "affiliation": {
                "laboratory": "Dialogue Systems Lab",
                "institution": "UC Santa Cruz Natural Language",
                "location": {
                    "addrLine": "1156 N. High. SOE-3 Santa Cruz",
                    "postCode": "95064",
                    "region": "California",
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Jean",
            "middle": [
                "Fox"
            ],
            "last": "Tree",
            "suffix": "",
            "affiliation": {
                "laboratory": "Dialogue Systems Lab",
                "institution": "UC Santa Cruz Natural Language",
                "location": {
                    "addrLine": "1156 N. High. SOE-3 Santa Cruz",
                    "postCode": "95064",
                    "region": "California",
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Marilyn",
            "middle": [],
            "last": "Walker",
            "suffix": "",
            "affiliation": {
                "laboratory": "Dialogue Systems Lab",
                "institution": "UC Santa Cruz Natural Language",
                "location": {
                    "addrLine": "1156 N. High. SOE-3 Santa Cruz",
                    "postCode": "95064",
                    "region": "California",
                    "country": "USA"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "More and more of the information available on the web is dialogic, and a significant portion of it takes place in online forum conversations about current social and political topics. We aim to develop tools to summarize what these conversations are about. What are the CENTRAL PROPOSITIONS associated with different stances on an issue; what are the abstract objects under discussion that are central to a speaker's argument? How can we recognize that two CENTRAL PROPOSITIONS realize the same FACET of the argument? We hypothesize that the CENTRAL PROPOSITIONS are exactly those arguments that people find most salient, and use human summarization as a probe for discovering them. We describe our corpus of human summaries of opinionated dialogs, then show how we can identify similar repeated arguments, and group them into FACETS across many discussions of a topic. We define a new task, ARGUMENT FACET SIMILARITY (AFS), and show that we can predict AFS with a .54 correlation score, versus an ngram system baseline of .39 and a semantic textual similarity system baseline of .45.",
    "pdf_parse": {
        "paper_id": "N15-1046",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "More and more of the information available on the web is dialogic, and a significant portion of it takes place in online forum conversations about current social and political topics. We aim to develop tools to summarize what these conversations are about. What are the CENTRAL PROPOSITIONS associated with different stances on an issue; what are the abstract objects under discussion that are central to a speaker's argument? How can we recognize that two CENTRAL PROPOSITIONS realize the same FACET of the argument? We hypothesize that the CENTRAL PROPOSITIONS are exactly those arguments that people find most salient, and use human summarization as a probe for discovering them. We describe our corpus of human summaries of opinionated dialogs, then show how we can identify similar repeated arguments, and group them into FACETS across many discussions of a topic. We define a new task, ARGUMENT FACET SIMILARITY (AFS), and show that we can predict AFS with a .54 correlation score, versus an ngram system baseline of .39 and a semantic textual similarity system baseline of .45.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In the wake of the Penn TreeBank, much progress has been achieved in processing the monologic, informational language characteristic of newswire text. But an increasing share of the text data on the web is unlike newswire in a variety of ways: it is dialogic, opinionated, argumentative. And while some of these dialogs may be a little more than flame wars, a significant portion involve contentful, rea-PostID:Turn S1:1 Agreed She is ignoring my religious freedom and trying to institute her religion into law. The law that will bar my family from legal protections. It won't protect her marriage but will bar me and my people from from being full citizens. She isn't protecting marriage but perserving her heterosexual privledge. S2:1 How on earth is she impeding on you religious freedom? She isn't trying to take away your right to any religious ceremony. With such a wide-open standard of what constitutes religious freedom that you seem to have, any legislation could be construed as imposing on religious freedom. S1:2 Because it is her religious belief that marriage is between a man and a woman. My religious belief is that marriage is between two people that love each other regardless of sex. She is tying to place her religious belif into law over mine. Who gets hurt here? If my religious belief is put into law she can still marry the person of her choice. If her religious belief gets put into law she can still marry the person of her choice but I do not get to. So I and my people are hurt by codifing her religious belief into law. She is trying to keep gay people out of marriage and thus preserve her heterosexual privledge. S2:2 But by that definition, either one could be viewed as impeding on religious freedom, including your view impeding on hers ! We don't define imposing on religious freedom on the basis of having different ideals. It doesn't effect your religion or religious freedom if you don't get benefits under gay marriages. You can argue in other ways, on other basis, but the idea that not giving gays marriage benefits is imposing on religious freedom is an empty \" argument \". soned disputes on important social and political topics, as exemplified by the forum snippets in Figs. 1 and 3. Studying data like this will undoubtedly help us to understand dialogic and informal argumentative language in general. And, indeed, previous work (Abbott et al., 2011; Somasundaran and Wiebe, 2010) has examined the structure of these discussions -e.g., the argumentative discourse relation a post bears to its parent (agreeing or disagreeing), or the stance that a person takes on an issue.",
                "cite_spans": [
                    {
                        "start": 2376,
                        "end": 2397,
                        "text": "(Abbott et al., 2011;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 2398,
                        "end": 2427,
                        "text": "Somasundaran and Wiebe, 2010)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our goal here is to develop techniques to recognize the specific arguments and counterarguments people tend to advance, and group them across discussions into the FACETS on which that issue is ar- gued across the population at large. Recognizing the FACETS of an argument automatically entails at least two subtasks, as schematized in Fig. 2a .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 335,
                        "end": 342,
                        "text": "Fig. 2a",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "PostID:Turn S1:1 Certainly not yours. You should know that I am for no marriage in government. It should be left to a religious institution where it will actually mean something. The states should then go back to doing something that actually makes sense and doesn't reward people like Britney Spears for being white trash. S2:1 That is all well and good, but it is not the religious ceremony and sanction that gays are looking for. They already have that; there are churches that perform same-sex marriages. It is the civil benefits that are at issue. Are you saying you would be in favor of foregoing ALL the legal rights and benefits you are afforded by marriage? For example: *Assumption of Spouse's Pension *Automatic Inheritance *Automatic Housing Lease Transfer *Bereavement Leave.... What do you say? S1:2 yeah I know. I'm saying that there should be a better system. For example, if you had a best friend who you are roommates with... both hetero for the sake of argument... and never wish to get married then could they get some of the benefits you described? First, there must be a system, the CENTRAL PROPOSITION detector, that can extract the most essential arguments in a particular conversation. Example CENTRAL PROPOSITIONS in Figs. 1 and 3 are provided in bold. Second, there must be another system, the ARGUMENT FACET inducer, that relates these conversation-specific arguments to each other in terms of FACETS, e.g. that identifies the two spe-cific central propositions in Figs. 1 and 3 about \"legal protections\" and \"civil benefits\" as the same (abstract) FACET, namely that same-sex marriage is about getting the civil rights benefits of marriage.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We first focus on the question of extracting reliable data for central propositions. See Fig. 2b . We propose that the CENTRAL PROPOSITIONS of a dialog are exactly those arguments that people find most salient, which is naturally reflected by their summarization behavior. We then apply the Pyramid method, by which the CENTRAL PROPO-SITIONS bubble up to the highest tiers of the pyramid, thereby allowing us to identify them. With the central propositions in hand, we proceed to build the argument facet inducer. We introduce a new task of ARGUMENT FACET SIMILARITY (AFS). We discuss how AFS is similar to, but different than SEMANTIC TEXTUAL SIMILARITY (STS) (Agirre et al., 2012; Jurgens et al., 2014; Agirre et al., 2013; Beltagy et al., 2014; Han et al., 2013) .",
                "cite_spans": [
                    {
                        "start": 661,
                        "end": 682,
                        "text": "(Agirre et al., 2012;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 683,
                        "end": 704,
                        "text": "Jurgens et al., 2014;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 705,
                        "end": 725,
                        "text": "Agirre et al., 2013;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 726,
                        "end": 747,
                        "text": "Beltagy et al., 2014;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 748,
                        "end": 765,
                        "text": "Han et al., 2013)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 89,
                        "end": 96,
                        "text": "Fig. 2b",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Sec. 2 provides a more detailed overview and description of our method, and the data that it produces. Sec. 3 describes our experimental setup for the AFS task and then presents our results. We describe a learning approach that achieves correlations of .54 on the AFS task, as compared to a baseline correlation of .45 using off-the-shelf modules that are competitive in STS tasks. We delay a detailed discussion of related work to Sec. 4 when we can compare it to our own approach. Sec. 5 summarizes the paper and discusses future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "2 Experimental Method Fig. 2 summarizes our overall method for producing the summary corpus and then extracting arguments and clustering them into FACETS. Our method consists of the following steps: S1: Dialog Selection. S2: MT summarization of dialogs selected in S1. S3: Pyramid annotation of summaries produced by S2 and selection of top-tier pyramid labels as CENTRAL PROPOSITIONS for individual dialogs. S4: Clustering of CENTRAL PROPOSITIONS from S3. S5: MT ARGUMENT FACET SIMILARITY task, using clusters from S4. S6: Train and test a predictor for ARGUMENT FACET SIMILARITY (Sec. 3).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 22,
                        "end": 28,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We explain these steps in more detail below. S1: Dialog Selection. We use the publicly available Internet Argument Corpus (IAC) (Walker et al., 2012) . We use the links in the meta-data to extract a sequence of turns to build two-party dialog chains like those in Figs. 1 and 3. We extracted 85 dialogs for the topic gay marriage from an original corpus of 1292 discussion threads using these criteria:",
                "cite_spans": [
                    {
                        "start": 128,
                        "end": 149,
                        "text": "(Walker et al., 2012)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Number of turns per contributor: We want dialogs in which substantive issues were discussed, so we extract dialogs with at least 3 turns per conversant that present at least 2 different perspectives on an issue.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Author: Some authors post frequently and would dominate the corpus if we use random selection. To get richer, more diverse dialogs expressing different perspectives, we only select a single dialog between any particular pair of authors from a discussion thread.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Word Count in a post: Some posts are long. To make it practical to collect dialog summaries, we extract dialogs where the number of words per turn is less than 250.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "S2: MT Summarization Task. The summarization task was run on Mechanical Turk. To get good S1 thinks that the government should stay out of marriage and that it should be left to religious institutions. He thinks there needs to be a better system and that single people are the ones that are harmed the most by marriage laws because they are unable to get any of the benefits that married people do even if they want them, or it is important to their situation. S2 says religious ceremonies aren't what gay people want because they already can have them via churches. They want the rights and to keep the government out would be to give up those rights. If single people want those rights they should get married, but he thinks you should be free to marry who you wish. The issue here is whether government or religion should decides the principles of marriage, and who is allowed to get married. Speaker one believes that leaving it up to religions groups does not satisfy what gays are looking for. They are searching for the civil benefits that come with a marriage and would like to be treated equally in that respect. The speaker believes gay should be able to marry a person of their choice and get equal rights.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Speaker two opinions that there should indeed be a better system for marriage benefits and that it is all \"single\" people that get screwed over by marriage's current stature. Speaker two believes that gay people should marry a woman if they want the same rights. quality summaries, workers completed a qualification test involving summarizing a sample dialog. Workers were instructed to summarize according to dialog length: dialogs under 750 words in 125 words, and those above 750 in 175 words. We use 45 dialogs in this study and save the other 40 for future work. We collect 5 summaries for each dialog resulting in a dataset of 225 summaries. S3: Pyramid Annotation. We trained three undergraduates to annotate summaries to produce pyramids. We hypothesize that we can use the Pyramid method to induce the FACETS of a topic across a set of dialogs (Nenkova and Passonneau, 2004) . The annotation of Pyramids seeks to uncover the common elements, or summary content units (SCUs), across several summaries (in our case, 5). Each SCU identifies a set of spans that are semantically equivalent. Each SCU also has a unique annotatorgenerated label that reflects the semantic meaning of the contributions. Because our aim here is to focus on argument propositional content, the annotators were instructed to keep only the main proposition in the SCU as the label, ignoring any attributions or other types of content. See Table 1 . Once annotation is complete, the SCUs are ranked based on their frequency across all of the summaries, as shown by the Tier in Fig. 5 , which includes data from the two summaries in Fig. 4 .",
                "cite_spans": [
                    {
                        "start": 853,
                        "end": 883,
                        "text": "(Nenkova and Passonneau, 2004)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1420,
                        "end": 1427,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 1557,
                        "end": 1563,
                        "text": "Fig. 5",
                        "ref_id": null
                    },
                    {
                        "start": 1612,
                        "end": 1618,
                        "text": "Fig. 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Contributor S1 points to the trend to legalize gay marriage in western countries such as Netherlands, Belgium, and most of Canada Contributor S1 refutes this assertion, citing a number of countries which recognize same-sex marriage. Contributor He states the US is more similar to Anglo nations and in many of those gay marriage is legal. Label A number of countries recognize samesex marriage. S4: SCUs to clusters. The pyramid structure directly reflects the content that the annotators deem most important in the original dialog. We are interested in the content that bubbles to the top across all the dialogs. We take the Tier 3 and above SCUs as our CENTRAL PROPOSITIONS, and extract the labels of those SCUs. This gives a total of 329 SCU labels. In what follows we treat a cluster of CENTRAL PROPOSITIONS as a FACET label, just as a synset concept in WordNet is labeled by its members. The purpose of AFS, then, is to provide a similarity metric on these SCU labels. As described below (and sketched in Fig. 2c ), we used Mechanical Turk to provide similarity scores between pairs of SCU central propositions. Although, in principle, we could have asked about all possible pairs of the 329 CENTRAL PROPOSITIONS, most pairs are likely to be unrelated, and so we used an initial clustering algorithm to help reduce the work and cost.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1010,
                        "end": 1017,
                        "text": "Fig. 2c",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To group similar arguments, we performed clustering across our 329 labels. We performed Agglomerative Clustering using Scikit-learn (Agg Clustering in Fig. 2c ). (Pedregosa et al., 2011) . It recursively merges the pair of clusters that minimally increases a given linkage distance. We used cosine similarity as the distance measure with average linkage criteria. To focus on topic-specific cues, the clustering was performed using only nouns, verbs and adjectives. After generating all pairwise combinations within a cluster, this approach yielded 1131 argument pairs used in the Mechanical Turk AFS task. See Fig. 2c .",
                "cite_spans": [
                    {
                        "start": 162,
                        "end": 186,
                        "text": "(Pedregosa et al., 2011)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 151,
                        "end": 158,
                        "text": "Fig. 2c",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 611,
                        "end": 618,
                        "text": "Fig. 2c",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We would like you to classify each of the following sets of pairs based on your perception of how SIM-ILAR the arguments are, on the following scale, examples follow. (5) Completely equivalent, mean pretty much exactly the same thing, using different words. (4) Mostly equivalent, but some unimportant details differ. One argument may be more specific than another or include a relatively unimportant extra fact.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Instructions",
                "sec_num": null
            },
            {
                "text": "(3) Roughly equivalent, but some important information differs or is missing. This includes cases where the argument is about the same FACET but the authors have different stances on that facet.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Instructions",
                "sec_num": null
            },
            {
                "text": "(2) Not equivalent, but share some details. For example, talking about the same entities but making different arguments (different facets) (1) Not equivalent, but are on same topic (0) On a different topic Facet: A facet is a low level issue that often reoccurs in many arguments in support of the author's stance or in attacking the other author's position. There are many ways to argue for your stance on a topic. For example, in a discussion about the death penalty you may argue in favor of it by claiming that it deters crime. Alternatively, you may argue in favor of the death penalty because it gives victims of the crimes closure. On the other hand you may argue against the death penalty because some innocent people will be wrongfully executed or because it is a cruel and unusual punishment. Each of these specific points is a facet. For two utterances to be about the same facet, it is not necessary that the authors have the same belief toward the facet. For example, one author may believe that the death penalty is a cruel and unusual punishment while the other one attacks that position. However, in order to attack that position they must be discussing the same facet. shows the instructions defining AFS for the MT HIT. Inspired by the scale used for STS, we collected annotations on a 6 point scale. One crucial difference in our formulation was a desire to capture similarity in FACET and argument simultaneously. The use of the value 3 for 'same FACET, contradictory stance' was a well-thought decision in the definition of AFS.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Instructions",
                "sec_num": null
            },
            {
                "text": "Used by summarizer? Tier 1 2 3 4 5",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SCU Label",
                "sec_num": null
            },
            {
                "text": "Gay couples are interested in the rights and benefits associated with marriage. 5 Gay people should be able to marry a person of their choice and get equal rights. 5 Government should not be involved in marriage and marriage should be left to religious institutions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SCU Label",
                "sec_num": null
            },
            {
                "text": "Discussion on the civil benefits of marriage and the rights of marriage. 4 Gay couples are unable to get any benefits that married people do. 4 There should be a better system for marriage benefits. 4 Religious ceremonies are not what gay people want.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "5",
                "sec_num": null
            },
            {
                "text": "3 Single people are the ones that are harmed the most by marriage laws.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "5",
                "sec_num": null
            },
            {
                "text": "3 Gay people should marry the opposite sex if they want the same rights.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "5",
                "sec_num": null
            },
            {
                "text": "2 Gays have religious ceremonies already can have them via churches 1 Relation to the issues by consideration of the case of a life-long bachelor uncle 1 Figure 5 : Pyramid for Dialog-2. SCU labels in Tiers 3-5 are assumed to be the CENTRAL PROPOSITIONS.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 154,
                        "end": 162,
                        "text": "Figure 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "5",
                "sec_num": null
            },
            {
                "text": "Just as two words can only be antonyms if they are in the same semantic field, two arguments can only be contradictory if they are about the same FACET. Thus, we instruct annotators to give a score of 3 to opposing arguments on the same FACET.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "5",
                "sec_num": null
            },
            {
                "text": "The task was put on Mechanical Turk using two separate batches. For the first batch we randomly selected 500 pairs from our pairs dataset of 1131 pairs. However, our subsequent impression was that the clustering had not filtered out enough of the unrelated pairs (score 0-1). For the second batch we selected the top 500 pairs according to the UMBC similarity score (Han et al., 2013) . This gave us a final pair dataset of 1000 pairs. Since AFS is a novel and subjective task, workers took a qualification test. Then each pair was annotated by 5 workers, and one of the authors provided gold standard labels. The HIT allowed 5 AFS judgements per hit, thus the number of pairs annotated by a worker varies from 5 to 1000.",
                "cite_spans": [
                    {
                        "start": 366,
                        "end": 384,
                        "text": "(Han et al., 2013)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "5",
                "sec_num": null
            },
            {
                "text": "To increase reliability, we removed the annotations from those workers who had attempted less than 4 hits (20 pairs) and had the lowest pairwise correlations with our gold standard annotation. Our final AFS score was the average score across all the annotators. The final AFS score correlated at .7 with our gold standard annotation, showing that the AFS similarity task is well-defined, and understandable by minimally trained annotators on MT. Table 4 provides typical examples of argument pairs and their MT AFS score, along with the predicted scores from some of our models. We discuss the AFS values and interesting cases in Sec. 3 below.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 446,
                        "end": 453,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "5",
                "sec_num": null
            },
            {
                "text": "Given the data collected above, we defined a supervised machine learning experiment with AFS as our dependent variable and different collections of features inspired from previous work as our independent variables.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Machine Learning Experiments and Results",
                "sec_num": "3"
            },
            {
                "text": "NGRAM overlap. This is our primary baseline. For each argument, we extracted all the unigrams, bigrams and trigrams, and then counted how many were in overlap across the two arguments. For unigrams we did not include stop words. Stemmed Ngrams were used to get better overlap. UMBC. This is our secondary baseline. This feature is the Semantic Textual Similarity obtained using UMBC Semantic Similarity tool (Han et al., 2013) DISCO Distributionally Similar Category. We used the distributional similarity tool DISCO with the pre-computed English Wikipedia word space (Kolb, 2008) . We extract the top 5 distributionally similar nouns, verbs, and adjectives for each argument. For each argument pair, three vector pairs (over nouns, verbs, and adjectives) are created with this extended vocabulary. Stemming was performed and cosine similarity between these vector pairs was calculated. LIWC Category. This feature set is based on the Linguistics Inquiry Word Count tool (Pennebaker et al., 2001 ). To tune these features, we first used a set of gay marriage posts from websites such as Creat-eDebate and ConvinceMe to extract relevant LIWC categories. We supplemented this data with gay marriage posts from 4forums, but excluded the discussion threads in our dialog corpus. From this data, we extracted the LIWC categories most frequent nouns, verbs and adjectives. For the verbs category, we excluded the verbs present in the NLTK stop word list. We retained only semantically rich categories such as Biological Processes, Causation, Cognitive Processes, Humans, Negative Emotion, Positive Emotion, Religion, Sexual, and Social Processes. The score for this set was the LIWC category overlap count across pairs for each category. ROUGE Scores. ROUGE is a family of metrics to determine the quality of a summary by comparing it to other ideal summaries (Lin, 2004) . It is based on a number of overlapping units such as n-gram, word sequences, and word pairs. This feature includes all of the rouge f-scores available via the package at https://pypi.python.org/pypi/pyrouge/0.1.0.",
                "cite_spans": [
                    {
                        "start": 408,
                        "end": 426,
                        "text": "(Han et al., 2013)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 568,
                        "end": 580,
                        "text": "(Kolb, 2008)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 971,
                        "end": 995,
                        "text": "(Pennebaker et al., 2001",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 1854,
                        "end": 1865,
                        "text": "(Lin, 2004)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.1"
            },
            {
                "text": "Our aim is to predict the similarity among repeated arguments across many discussions in online social and political debate forums, a task we have dubbed ARGUMENT FACET SIMILARITY (AFS). Given the CENTRAL PROPOSITIONS from the CP detector (see Fig. 2a ), we need to train an argument FACET inducer. We define AFS as a regression problem and evaluate support vector regression and linear regression for 10-fold cross validation using the Weka machine learning toolkit (Hall et al., 2005) . Table 2 shows that the results for support vector regression are worse than the linear regression model using our proposed features combined with UMBC, hence we focus hereon on linear regression. Table 3 provides the correlations, MAE, and RMS values for models produced using various sets of features. We considered two baselines, simple Ngram overlap and the off-the-shelf UMBC STS metric (Han et al., 2013) . In general, we found that Ngram overlap (Row 1) performed best alone of our features, but falls short of the UMBC base- We then tested combinations of of features to determine which feature sets are complementary. LIWC + NGRAM is significantly different than NGRAM alone ( p < 0.01), and ROUGE + NGRAM is significantly different than NGRAM alone ( p = 0.03), but DISCO does not add anything ( p = 0.2). This shows that LIWC and ROUGE features complement Ngram features. Other combinations of interest are NGRAM + LIWC (Row 7) which amazingly performs as well as UMBC while UMBC includes sentence alignment, a model of negation, and distributional measures (Han et al., 2013) . This suggests that AFS is clearly a different task that STS. Additionally we also combined our proposed set of features with UMBC. A comparison of Row 15 (our feature set) with Rows 16 and 17 of It is also interesting to examine the differences in model scores for particular argument pairs as shown in Table 4 . The best performing model for each row is in bold in Table 4 . As described in the HIT instructions in Fig. 6 , values of AFS near 0 (Row 1) indicate different topics and no similarity. Values near 1 indicate same topic but different arguments (Rows 2,3). Values of 3 and above indicate same FACET (Rows 7, 8) , and values near 5 are same facet and very similar argument (Rows 12 and 13). Both Arg1 and Arg2 in Row 10 makes the same argument but Arg1 includes additional argumentation. In Row 12, there is very low Ngram overlap, but strong AFS and NLRD performs better than the other models, and LIWC performs well by itself.",
                "cite_spans": [
                    {
                        "start": 467,
                        "end": 486,
                        "text": "(Hall et al., 2005)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 880,
                        "end": 898,
                        "text": "(Han et al., 2013)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1557,
                        "end": 1575,
                        "text": "(Han et al., 2013)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 2189,
                        "end": 2197,
                        "text": "(Rows 7,",
                        "ref_id": null
                    },
                    {
                        "start": 2198,
                        "end": 2200,
                        "text": "8)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 244,
                        "end": 251,
                        "text": "Fig. 2a",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 489,
                        "end": 496,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 685,
                        "end": 692,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 1881,
                        "end": 1888,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 1944,
                        "end": 1951,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 1994,
                        "end": 2000,
                        "text": "Fig. 6",
                        "ref_id": "FIGREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3.2"
            },
            {
                "text": "In Row 1, UMBC performs the best with a predicted score of 0.37 as opposed to an AFS score of 0.00. Other rows where UMBC on its own provides the best performance are highlighted in the table with Arg1 and Arg2 in bold. The top performance of NLRD in Row 5 without UMBC perhaps arises from the semantic information that extermination and holocau are somehow related. NGRAM overlap does the best in Row 13 despite the fact that the phrase No one argues the point that does not participate in the NGRAM overlap.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3.2"
            },
            {
                "text": "Our approach draws on three different strands of related work: (1) argument mining; (2) semantic textual similarity; and (3) dialog summarization, which we discuss and compare with our work below. Argument Mining. The study of the structure of arguments has a long tradition in logic, rhetoric and psychology (Walton et al., 2008; Reed and Rowe, 2004; Walton, 2009; Gilbert, 1997; Jackson and Jacobs, 1980; Madnani et al., 2012) . Much of this work has been on formal (legal or political) argumentation, and the small computational literature that has applied the rhetorical categories of this research has likewise focused on formal, monologic text (Feng and Hirst, 2011; Palau and Moens, 2009; Goudas et al., 2014) . More recent work (Ghosh et al., 2014) has attempted to apply these theories to dialogic text in online forums. Ghosh et al. label spans in conversations with attacking moves (CALL-OUTS) and their corresponding argumentative TAR-GETS in another speaker's utterance, and they attempt to learn these callout-target pairs in a supervised framework. Other work attempts to identify general categories of speech-acts such as disagreements or justifications (Misra and Walker, 2015; Biran and Rambow, 2011) .",
                "cite_spans": [
                    {
                        "start": 309,
                        "end": 330,
                        "text": "(Walton et al., 2008;",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 331,
                        "end": 351,
                        "text": "Reed and Rowe, 2004;",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 352,
                        "end": 365,
                        "text": "Walton, 2009;",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 366,
                        "end": 380,
                        "text": "Gilbert, 1997;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 381,
                        "end": 406,
                        "text": "Jackson and Jacobs, 1980;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 407,
                        "end": 428,
                        "text": "Madnani et al., 2012)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 650,
                        "end": 672,
                        "text": "(Feng and Hirst, 2011;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 673,
                        "end": 695,
                        "text": "Palau and Moens, 2009;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 696,
                        "end": 716,
                        "text": "Goudas et al., 2014)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 736,
                        "end": 756,
                        "text": "(Ghosh et al., 2014)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1170,
                        "end": 1194,
                        "text": "(Misra and Walker, 2015;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 1195,
                        "end": 1218,
                        "text": "Biran and Rambow, 2011)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "4"
            },
            {
                "text": "What unites all of the above approaches is an interest in understanding the detailed rheotrical structure of a particular linguistic interaction (monologic or dialogic). Our present work is focused instead on inducing the recurring FACETS in a particular topic domain via weakly supervised learning over several dialogic interactions. Several different threads of recent research on argument mining have strong parallels with this goal (Conrad et al., 2012; Boltuzic an\u010f Snajder, 2014; Hasan and Ng, 2014) .",
                "cite_spans": [
                    {
                        "start": 436,
                        "end": 457,
                        "text": "(Conrad et al., 2012;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 458,
                        "end": 485,
                        "text": "Boltuzic an\u010f Snajder, 2014;",
                        "ref_id": null
                    },
                    {
                        "start": 486,
                        "end": 505,
                        "text": "Hasan and Ng, 2014)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "4"
            },
            {
                "text": "Conrad & Wiebe construct an argument mining system on monologic weblog and news data about universal healthcare. One component of their system identifies ARGUING SEGMENTS and the second component labels the segments with the relevant stance-specific ARGUMENT TAGS. They show that distributional similarity features help identify arguments that belong to the same tag set (notably, we did not find distributional similarity helpful for AFS.) Boltuzic & Snajder pursue argument mining on comment streams. Instead of hand-generating argument tags like Conrad & Wiebe, they select short sentential summaries of the key arguments for a given topic from a debate website, and then label comments on the same topic from a different website with the most closely matching summary. The same problem on debate posts is tackled as a \"reason classification\" problem (Hasan and Ng, 2014), with a probabilistic framework for argument recognition (reason classification) that operates jointly with the related task of stance classification.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "4"
            },
            {
                "text": "All of these approaches differ from ours in three respects. First, they all assume a finite set of topicspecific labels that are determined in some form by the researchers themselves. In contrast, we seek to uncover popular facets via clustering the central propositions across the dialogs. After our own initial categorical efforts, we feel that the argument \"topics\" have such nuance that they resist clear labels or category membership. Instead, we feel that a scale such as AFS is a better fit, both for the diversity of the data itself and for the idea of inducing FACETS bottom up. Second, these approaches assume the labels are dependent on a particular stance towards an issue, whereas our facets are deliberately designed to unify across stance disagreement. Finally, all other approaches in argument mining work from the source text itself. We instead (to our knowledge, for the first time) work from human summaries of dialogs because it is an open question whether the CENTRAL PROPOSITIONS for a dialog are really identifiable as continuous spans of text in the dialog itself. (Indeed, our corpus will allow us to determine how true that assumption is.) Semantic Textual Similarity. There appears to be similarity between FACET induction and aspect learning in sentiment analysis (Brody and Elhadad, 2010) , but FACETS are propositional abstract objects, while aspects can usually be described as nouns or properties. Facet induction is more similar to work on STS (Mihalcea et al., 2006; Yeh et al., 2009; Agirre et al., 2012; Han et al., 2013; Jurgens et al., 2014) . Calculating similarity is a central aspect of AFS. Our scale and MT task for AFS was inspired by the STS task and definition. In addition, as a baseline we apply an off-the-shelf system that calculates STS (UMBC) and compare it with our own system (Han et al., 2013) . In order to avoid asking for judgements for many unrelated arguments (CEN-TRAL PROPOSITIONS), and to make the AFS task more doable for Turkers, we also use UMBC as a filter on pairs of CENTRAL PROPOSITIONS as part of making our HIT. This biases the distribution of the training set to having a much larger set of more similar pairs, which has been a problem for previous work (Boltuzic and\u0160najder, 2014) , where the vast majority of pairs that were labelled were unrelated. However the AFS task is clearly different than STS, partly because the data is dialogic and partly because it is argumentative. Our results show that we can improve on STS systems for the AFS task. Dialog Summarization. Much previous work on dialog summarization focused on extracting phenomena specific to meetings, such as action items or decisions (Murray et al., 2006; Hsueh and Moore, 2008; Whittaker et al., 2012; Janin et al., 2004; Carletta, 2007) . Other approaches, like our work, use semantic similarity metrics to identify the most central or important utterances of a spoken dialog (Gurevych and Strube, 2004) , but do not attempt to find the FACETS of a set of arguments across multiple dialogs. Another parallel may exist between work on nuclearity in RST and its use in summarization (Marcu, 1999) . However our notion of a CENTRAL PROPOSITION is different than nuclearity in RST, since FACETS are derived from CEN-TRAL PROPOSITIONS that rise to the top of the pyramid across summarizers, and then (via AFS) across many dialogs on a topic, while RST nuclearity is only defined for a span of text by a single speaker.",
                "cite_spans": [
                    {
                        "start": 1292,
                        "end": 1317,
                        "text": "(Brody and Elhadad, 2010)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1477,
                        "end": 1500,
                        "text": "(Mihalcea et al., 2006;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 1501,
                        "end": 1518,
                        "text": "Yeh et al., 2009;",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 1519,
                        "end": 1539,
                        "text": "Agirre et al., 2012;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1540,
                        "end": 1557,
                        "text": "Han et al., 2013;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1558,
                        "end": 1579,
                        "text": "Jurgens et al., 2014)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 1830,
                        "end": 1848,
                        "text": "(Han et al., 2013)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 2227,
                        "end": 2254,
                        "text": "(Boltuzic and\u0160najder, 2014)",
                        "ref_id": null
                    },
                    {
                        "start": 2676,
                        "end": 2697,
                        "text": "(Murray et al., 2006;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 2698,
                        "end": 2720,
                        "text": "Hsueh and Moore, 2008;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 2721,
                        "end": 2744,
                        "text": "Whittaker et al., 2012;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 2745,
                        "end": 2764,
                        "text": "Janin et al., 2004;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 2765,
                        "end": 2780,
                        "text": "Carletta, 2007)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 2920,
                        "end": 2947,
                        "text": "(Gurevych and Strube, 2004)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 3125,
                        "end": 3138,
                        "text": "(Marcu, 1999)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "4"
            },
            {
                "text": "Other work examines how social phenomena affect summarization, such as a study of how the politeness level in computer-generated dialogs impacted summaries (Roman et al., 2006) . Emotion naturally occurs in the IAC, and summarizers' orientation to emotion is intriguing. Emotional information has been observed even in summaries of professional chats discussing technology (Zhou and Hovy, 2005) . However the instructions to our Pyramid annotators were to not include information of this type in the pyramids. We are currently collecting an additional summary corpus using a method that we expect to result in more evaluative and emotional assessments in summaries.",
                "cite_spans": [
                    {
                        "start": 156,
                        "end": 176,
                        "text": "(Roman et al., 2006)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 373,
                        "end": 394,
                        "text": "(Zhou and Hovy, 2005)",
                        "ref_id": "BIBREF42"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "4"
            },
            {
                "text": "This paper presents a method and results for extracting FACETS of a topic, across multiple informal arguments on the same topic. We first use human summarization of dialogs as a probe to determine the CENTRAL PROPOSITIONS of each dialog. Then we use clustering in combination with measures of SEMANTIC SIMILARITY to group the CEN-TRAL PROPOSITIONS into the important FACETS of an argument across many different dialogs. Importantly, we do not attempt to enumerate the possible FACETS for an argument in advance, believing that bottom-up discovery of FACETS is a better fit to the problem.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "This paper contributes to the current state of knowledge in three ways: (1) we collected summaries of spontaneously-produced written dialog of high social and political importance (available from http://nlds.soe.ucsc.edu/summarycorpus).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "(2) we proposed a novel application of the pyramid summarization scheme to the task of FACET induction; and (3) we introduce a new task of ARGUMENT FACET SIMILARITY (AFS) aimed at identifying FACETS across opinionated dialogs and show that we can identify AFS with a correlation of .54 as opposed to a baseline of .46 provided by a system designed for a similar task. We suspect that the summarize-and-collate approach used here could be promisingly applied to produce annotations on a range of subjective, holistic properties of dialog.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "In future work, we aim to expand on this work in several ways. First, we hope to expand summaries, similarity judgments, and systems to several topics beyond gay marriage. We believe, for example, that the features and the system we have trained for AFS will apply to other domains without retraining, since none of the features are topic specific, but we have not shown that. In addition, we aim to develop additional features and improve on the results reported here. For example, we believe that it is possible that other off-the-shelf systems, such as for example one for sentence specificity (Louis and Nenkova, 2011; Louis and Nenkova, 2012) , might possibly help with aspects of this task. In addition, in future, we aim to automatically identify CENTRAL PROPO-SITIONS without the mediation of human summarizers and evaluators. Given the summaries that we have collected for each dialog, we plan to examine the relationship between the contributors to the related pyramid and the original source text, to determine whether indeed there are surface features of the source that would allow us to treat CENTRAL PROPOSITION detection as an extractive task.",
                "cite_spans": [
                    {
                        "start": 597,
                        "end": 622,
                        "text": "(Louis and Nenkova, 2011;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 623,
                        "end": 647,
                        "text": "Louis and Nenkova, 2012)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            }
        ],
        "back_matter": [
            {
                "text": "Acknowledgments This work was funded by NSF GRANT IIS-1302668, Grant NPS-BAA-03, and an IARPA Grant on Persuasion in Dialogue to UCSC by subcontract from the University of Maryland.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "acknowledgement",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "How can you say such things?!?: Recognizing Disagreement in Informal Political Argument",
                "authors": [
                    {
                        "first": "Rob",
                        "middle": [],
                        "last": "Abbott",
                        "suffix": ""
                    },
                    {
                        "first": "Marilyn",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [
                            "E"
                        ],
                        "last": "Fox Tree",
                        "suffix": ""
                    },
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Anand",
                        "suffix": ""
                    },
                    {
                        "first": "Robeson",
                        "middle": [],
                        "last": "Bowmani",
                        "suffix": ""
                    },
                    {
                        "first": "Joseph",
                        "middle": [],
                        "last": "King",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the ACL Workshop on Language and Social Media",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rob Abbott, Marilyn Walker, Jean E. Fox Tree, Pranav Anand, Robeson Bowmani, and Joseph King. 2011. How can you say such things?!?: Recognizing Dis- agreement in Informal Political Argument. In Pro- ceedings of the ACL Workshop on Language and So- cial Media.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Semeval-2012 task 6: A pilot on semantic textual similarity",
                "authors": [
                    {
                        "first": "Eneko",
                        "middle": [],
                        "last": "Agirre",
                        "suffix": ""
                    },
                    {
                        "first": "Mona",
                        "middle": [],
                        "last": "Diab",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Aitor",
                        "middle": [],
                        "last": "Gonzalez-Agirre",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the First Joint Conference on Lexical and Computational Semantics",
                "volume": "1",
                "issue": "",
                "pages": "385--393",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eneko Agirre, Mona Diab, Daniel Cer, and Aitor Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pilot on semantic textual similarity. In Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the main confer- ence and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Eval- uation, pages 385-393. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Sem 2013 shared task: Semantic textual similarity, including a pilot on typed-similarity",
                "authors": [
                    {
                        "first": "Eneko",
                        "middle": [],
                        "last": "Agirre",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Mona",
                        "middle": [],
                        "last": "Diab",
                        "suffix": ""
                    },
                    {
                        "first": "Aitor",
                        "middle": [],
                        "last": "Gonzalez-Agirre",
                        "suffix": ""
                    },
                    {
                        "first": "Weiwei",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "* SEM 2013: The Second Joint Conference on Lexical and Computational Semantics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez- Agirre, and Weiwei Guo. 2013. Sem 2013 shared task: Semantic textual similarity, including a pilot on typed-similarity. In In* SEM 2013: The Second Joint Conference on Lexical and Computational Semantics. Association for Computational Linguistics. Citeseer.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Probabilistic soft logic for semantic textual similarity",
                "authors": [
                    {
                        "first": "Islam",
                        "middle": [],
                        "last": "Beltagy",
                        "suffix": ""
                    },
                    {
                        "first": "Katrin",
                        "middle": [],
                        "last": "Erk",
                        "suffix": ""
                    },
                    {
                        "first": "Raymond",
                        "middle": [],
                        "last": "Mooney",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of Association for Computational Linguistics (ACL-14)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Islam Beltagy, Katrin Erk, and Raymond Mooney. 2014. Probabilistic soft logic for semantic textual similar- ity. Proceedings of Association for Computational Linguistics (ACL-14).",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Identifying justifications in written dialogs",
                "authors": [
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Biran",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Rambow",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "2011 Fifth IEEE International Conference on Semantic Computing (ICSC)",
                "volume": "",
                "issue": "",
                "pages": "162--168",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "O. Biran and O. Rambow. 2011. Identifying justifica- tions in written dialogs. In 2011 Fifth IEEE Inter- national Conference on Semantic Computing (ICSC), pages 162-168. IEEE.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Back up your stance: Recognizing arguments in online discussions",
                "authors": [
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Boltuzic",
                        "suffix": ""
                    },
                    {
                        "first": "Jan\u0161najder",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the First Workshop on Argumentation Mining",
                "volume": "",
                "issue": "",
                "pages": "49--58",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Filip Boltuzic and Jan\u0160najder. 2014. Back up your stance: Recognizing arguments in online discussions. In Proceedings of the First Workshop on Argumenta- tion Mining, pages 49-58.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "An unsupervised aspect-sentiment model for online reviews",
                "authors": [
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Brody",
                        "suffix": ""
                    },
                    {
                        "first": "Noemie",
                        "middle": [],
                        "last": "Elhadad",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "804--812",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Samuel Brody and Noemie Elhadad. 2010. An unsu- pervised aspect-sentiment model for online reviews. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the As- sociation for Computational Linguistics, pages 804- 812. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Unleashing the killer corpus: experiences in creating the multi-everything ami meeting corpus",
                "authors": [
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Carletta",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Language Resources and Evaluation",
                "volume": "41",
                "issue": "2",
                "pages": "181--190",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jean Carletta. 2007. Unleashing the killer corpus: ex- periences in creating the multi-everything ami meet- ing corpus. Language Resources and Evaluation, 41(2):181-190.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Recognizing arguing subjectivity and argument tags",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Conrad",
                        "suffix": ""
                    },
                    {
                        "first": "Janyce",
                        "middle": [],
                        "last": "Wiebe",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Workshop on Extra-Propositional Aspects of Meaning in Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "80--88",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexander Conrad, Janyce Wiebe, et al. 2012. Recog- nizing arguing subjectivity and argument tags. In Pro- ceedings of the Workshop on Extra-Propositional As- pects of Meaning in Computational Linguistics, pages 80-88. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Classifying arguments by scheme",
                "authors": [
                    {
                        "first": "Vanessa",
                        "middle": [],
                        "last": "Wei Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Graeme",
                        "middle": [],
                        "last": "Hirst",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "987--996",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vanessa Wei Feng and Graeme Hirst. 2011. Classify- ing arguments by scheme. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pages 987-996. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Analyzing argumentative discourse units in online interactions",
                "authors": [
                    {
                        "first": "Debanjan",
                        "middle": [],
                        "last": "Ghosh",
                        "suffix": ""
                    },
                    {
                        "first": "Smaranda",
                        "middle": [],
                        "last": "Muresan",
                        "suffix": ""
                    },
                    {
                        "first": "Nina",
                        "middle": [],
                        "last": "Wacholder",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Aakhus",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Mitsui",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Debanjan Ghosh, Smaranda Muresan, Nina Wacholder, Mark Aakhus, and Matthew Mitsui. 2014. Analyzing argumentative discourse units in online interactions. ACL 2014, page 39.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Coalescent argumentation",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [
                            "A"
                        ],
                        "last": "Gilbert",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael A. Gilbert. 1997. Coalescent argumentation.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Argument extraction from news, blogs, and social media",
                "authors": [
                    {
                        "first": "Theodosis",
                        "middle": [],
                        "last": "Goudas",
                        "suffix": ""
                    },
                    {
                        "first": "Christos",
                        "middle": [],
                        "last": "Louizos",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Artificial Intelligence: Methods and Applications",
                "volume": "",
                "issue": "",
                "pages": "287--299",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Theodosis Goudas, Christos Louizos, Georgios Petasis, and Vangelis Karkaletsis. 2014. Argument extraction from news, blogs, and social media. In Artificial In- telligence: Methods and Applications, pages 287-299. Springer.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Semantic similarity applied to spoken dialogue summarization",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Strube",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 20th international conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "764--771",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Gurevych and M. Strube. 2004. Semantic similarity applied to spoken dialogue summarization. In Pro- ceedings of the 20th international conference on Com- putational Linguistics, pages 764-771. ACL.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "The weka data mining software: An update",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Hall",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Eibe",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Holms",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Pfahringer",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Reutemann",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Witten",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "SIGKDD Explorations",
                "volume": "",
                "issue": "1",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Hall, F. Eibe, G. Holms, B. Pfahringer, P. Reutemann, and I. Witten. 2005. The weka data mining software: An update. SIGKDD Explorations, 11(1).",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Umbc ebiquitycore: Semantic textual similarity systems",
                "authors": [
                    {
                        "first": "Lushan",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Abhay",
                        "middle": [],
                        "last": "Kashyap",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Finin",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Mayfield",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Weese",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lushan Han, Abhay Kashyap, Tim Finin, James May- field, and Jonathan Weese. 2013. Umbc ebiquity- core: Semantic textual similarity systems. Atlanta, Georgia, USA, page 44.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Why are you taking this stance? identifying and classifying reasons in ideological debates",
                "authors": [
                    {
                        "first": "Saidul",
                        "middle": [],
                        "last": "Kazi",
                        "suffix": ""
                    },
                    {
                        "first": "Vincent",
                        "middle": [],
                        "last": "Hasan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kazi Saidul Hasan and Vincent Ng. 2014. Why are you taking this stance? identifying and classifying reasons in ideological debates. In Proceedings of the Confer- ence on Empirical Methods in Natural Language Pro- cessing.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Automatic decision detection in meeting speech",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "Y"
                        ],
                        "last": "Hsueh",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Moore",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Machine Learning for Multimodal Interaction",
                "volume": "",
                "issue": "",
                "pages": "168--179",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P.Y. Hsueh and J. Moore. 2008. Automatic decision de- tection in meeting speech. Machine Learning for Mul- timodal Interaction, pages 168-179.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Structure of conversational argument: Pragmatic bases for the enthymeme",
                "authors": [
                    {
                        "first": "Sally",
                        "middle": [],
                        "last": "Jackson",
                        "suffix": ""
                    },
                    {
                        "first": "Scott",
                        "middle": [],
                        "last": "Jacobs",
                        "suffix": ""
                    }
                ],
                "year": 1980,
                "venue": "Quarterly Journal of Speech",
                "volume": "66",
                "issue": "3",
                "pages": "251--265",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sally Jackson and Scott Jacobs. 1980. Structure of conversational argument: Pragmatic bases for the en- thymeme. Quarterly Journal of Speech, 66(3):251- 265.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "The icsi meeting project: Resources and research",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Janin",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Ang",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Bhagat",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Dhillon",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Edwards",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Macias-Guarasa",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Morgan",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Peskin",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Shriberg",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Stolcke",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 2004 ICASSP NIST Meeting Recognition Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Janin, J. Ang, S. Bhagat, R. Dhillon, J. Edwards, J. Macias-Guarasa, N. Morgan, B. Peskin, E. Shriberg, A. Stolcke, et al. 2004. The icsi meeting project: Resources and research. In Proceedings of the 2004 ICASSP NIST Meeting Recognition Workshop.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Semeval-2014 task 3: Cross-level semantic similarity",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Jurgens",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Taher Pilehvar",
                        "suffix": ""
                    },
                    {
                        "first": "Roberto",
                        "middle": [],
                        "last": "Navigli",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "SemEval",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Jurgens, Mohammad Taher Pilehvar, and Roberto Navigli. 2014. Semeval-2014 task 3: Cross-level se- mantic similarity. SemEval 2014, page 17.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Disco: A multilingual database of distributionally similar words",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Kolb",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of KONVENS",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Kolb. 2008. Disco: A multilingual database of distributionally similar words. In Proceedings of KONVENS-2008.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Rouge: A package for automatic evaluation of summaries rouge: A package for automatic evaluation of summaries",
                "authors": [
                    {
                        "first": "C.-Y",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the Workshop on Text Summarization Branches Out",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C.-Y. Lin. 2004. Rouge: A package for automatic evaluation of summaries rouge: A package for auto- matic evaluation of summaries. In Proceedings of the Workshop on Text Summarization Branches Out (WAS 2004).",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Automatic identification of general and specific sentences by leveraging discourse annotations",
                "authors": [
                    {
                        "first": "Annie",
                        "middle": [],
                        "last": "Louis",
                        "suffix": ""
                    },
                    {
                        "first": "Ani",
                        "middle": [],
                        "last": "Nenkova",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "IJCNLP",
                "volume": "",
                "issue": "",
                "pages": "605--613",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Annie Louis and Ani Nenkova. 2011. Automatic identi- fication of general and specific sentences by leveraging discourse annotations. In IJCNLP, pages 605-613.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "A corpus of general and specific sentences from news",
                "authors": [
                    {
                        "first": "Annie",
                        "middle": [],
                        "last": "Louis",
                        "suffix": ""
                    },
                    {
                        "first": "Ani",
                        "middle": [],
                        "last": "Nenkova",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "1818--1821",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Annie Louis and Ani Nenkova. 2012. A corpus of gen- eral and specific sentences from news. In LREC, pages 1818-1821.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Identifying high-level organizational elements in argumentative discourse",
                "authors": [
                    {
                        "first": "Nitin",
                        "middle": [],
                        "last": "Madnani",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Heilman",
                        "suffix": ""
                    },
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Tetreault",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Chodorow",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT '12",
                "volume": "",
                "issue": "",
                "pages": "20--28",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nitin Madnani, Michael Heilman, Joel Tetreault, and Martin Chodorow. 2012. Identifying high-level or- ganizational elements in argumentative discourse. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, NAACL HLT '12, pages 20-28, Stroudsburg, PA, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Discourse trees are good indicators of importance in text",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Marcu",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Advances in automatic text summarization",
                "volume": "",
                "issue": "",
                "pages": "123--136",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Marcu. 1999. Discourse trees are good indica- tors of importance in text. Advances in automatic text summarization, pages 123-136.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Corpus-based and knowledge-based measures of text semantic similarity",
                "authors": [
                    {
                        "first": "Rada",
                        "middle": [],
                        "last": "Mihalcea",
                        "suffix": ""
                    },
                    {
                        "first": "Courtney",
                        "middle": [],
                        "last": "Corley",
                        "suffix": ""
                    },
                    {
                        "first": "Carlo",
                        "middle": [],
                        "last": "Strapparava",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "AAAI",
                "volume": "6",
                "issue": "",
                "pages": "775--780",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rada Mihalcea, Courtney Corley, and Carlo Strapparava. 2006. Corpus-based and knowledge-based measures of text semantic similarity. In AAAI, volume 6, pages 775-780.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Topic independent identification of agreement and disagreement in social media dialogue",
                "authors": [
                    {
                        "first": "Amita",
                        "middle": [],
                        "last": "Misra",
                        "suffix": ""
                    },
                    {
                        "first": "Marilyn",
                        "middle": [
                            "A"
                        ],
                        "last": "Walker",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the SIG-DIAL 2013 Conference: The 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amita Misra and Marilyn A Walker. 2015. Topic inde- pendent identification of agreement and disagreement in social media dialogue. In Proceedings of the SIG- DIAL 2013 Conference: The 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Incorporating speaker and discourse features into speech summarization",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Murray",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Renals",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Carletta",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Moore",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "367--374",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Murray, S. Renals, J. Carletta, and J. Moore. 2006. In- corporating speaker and discourse features into speech summarization. In Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the Association of Com- putational Linguistics, pages 367-374. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Evaluating content selection in summarization: The pyramid method",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Nenkova",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Passonneau",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of HLT-NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Nenkova and R. Passonneau. 2004. Evaluating con- tent selection in summarization: The pyramid method. In Proceedings of HLT-NAACL, volume 2004.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Argumentation mining: the detection, classification and structure of a rguments in text",
                "authors": [
                    {
                        "first": "Raquel",
                        "middle": [],
                        "last": "Mochales Palau",
                        "suffix": ""
                    },
                    {
                        "first": "Marie-Francine",
                        "middle": [],
                        "last": "Moens",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 12th international conference on artificial int elligence and law",
                "volume": "",
                "issue": "",
                "pages": "98--107",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Raquel Mochales Palau and Marie-Francine Moens. 2009. Argumentation mining: the detection, classifi- cation and structure of a rguments in text. In Proceed- ings of the 12th international conference on artificial int elligence and law, pages 98-107. ACM.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Scikit-learn: Machine learning in Python",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pedregosa",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Varoquaux",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Gramfort",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Michel",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Thirion",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Grisel",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Blondel",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Prettenhofer",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Weiss",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Dubourg",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Vanderplas",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Passos",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Cournapeau",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Brucher",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Perrot",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Duchesnay",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Journal of Machine Learning Research",
                "volume": "12",
                "issue": "",
                "pages": "2825--2830",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches- nay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825- 2830.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "LIWC: Linguistic Inquiry and Word Count",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "W"
                        ],
                        "last": "Pennebaker",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [
                            "E"
                        ],
                        "last": "Francis",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "J"
                        ],
                        "last": "Booth",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. W. Pennebaker, L. E. Francis, and R. J. Booth, 2001. LIWC: Linguistic Inquiry and Word Count.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Araucaria: Software for argument analysis, diagramming and representation",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Reed",
                        "suffix": ""
                    },
                    {
                        "first": "Glenn",
                        "middle": [],
                        "last": "Rowe",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "International Journal on Artificial Intelligence Tools",
                "volume": "13",
                "issue": "04",
                "pages": "961--979",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chris Reed and Glenn Rowe. 2004. Araucaria: Software for argument analysis, diagramming and representa- tion. International Journal on Artificial Intelligence Tools, 13(04):961-979.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Politeness and bias in dialogue summarization: two exploratory studies",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Roman",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Piwek",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Carvalho",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "B R"
                        ],
                        "last": "Ariadne",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Computing attitude and affect in text: theory and applications",
                "volume": "20",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Roman, P. Piwek, P. Carvalho, and M. B. R. Ariadne. 2006. Politeness and bias in dialogue summarization: two exploratory studies. In J. Shanahan, Y. Qu, and J. Wiebe, editors, Computing attitude and affect in text: theory and applications, volume 20 of The In- formation Retrieval Series. Springer.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Recognizing stances in ideological on-line debates",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Somasundaran",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Wiebe",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text",
                "volume": "",
                "issue": "",
                "pages": "116--124",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Somasundaran and J. Wiebe. 2010. Recognizing stances in ideological on-line debates. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pages 116-124. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "That's your evidence?: Classifying stance in online political debate",
                "authors": [
                    {
                        "first": "Marilyn",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    },
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Anand",
                        "suffix": ""
                    },
                    {
                        "first": "Rob",
                        "middle": [],
                        "last": "Abbott",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [
                            "E"
                        ],
                        "last": "Fox Tree",
                        "suffix": ""
                    },
                    {
                        "first": "Craig",
                        "middle": [],
                        "last": "Martell",
                        "suffix": ""
                    },
                    {
                        "first": "Joseph",
                        "middle": [],
                        "last": "King",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marilyn Walker, Pranav Anand, Rob Abbott, Jean E. Fox Tree, Craig Martell, and Joseph King. 2012. That's your evidence?: Classifying stance in online political debate. Decision Support Sciences.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Argumentation Schemes",
                "authors": [
                    {
                        "first": "Douglas",
                        "middle": [],
                        "last": "Walton",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Reed",
                        "suffix": ""
                    },
                    {
                        "first": "Fabrizio",
                        "middle": [],
                        "last": "Macagno",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Douglas Walton, Chris Reed, and Fabrizio Macagno. 2008. Argumentation Schemes. Cambridge University Press.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Argumentation theory: A very short introduction",
                "authors": [
                    {
                        "first": "Douglas",
                        "middle": [],
                        "last": "Walton",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Argumentation in Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "1--22",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Douglas Walton. 2009. Argumentation theory: A very short introduction. In Guillermo Simari and Iyad Rah- wan, editors, Argumentation in Artificial Intelligence, pages 1-22. Springer US.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Markup as you talk: establishing effective memory cues while still contributing to a meeting",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Whittaker",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Kalnikait\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Ehlen",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work",
                "volume": "",
                "issue": "",
                "pages": "349--358",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Whittaker, V. Kalnikait\u00e9, and P. Ehlen. 2012. Markup as you talk: establishing effective memory cues while still contributing to a meeting. In Proceedings of the ACM 2012 conference on Computer Supported Coop- erative Work, pages 349-358. ACM.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Wikiwalk: random walks on wikipedia for semantic relatedness",
                "authors": [
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Yeh",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Ramage",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "Eneko",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "Aitor",
                        "middle": [],
                        "last": "Agirre",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Soroa",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "41--49",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eric Yeh, Daniel Ramage, Christopher D Manning, Eneko Agirre, and Aitor Soroa. 2009. Wikiwalk: random walks on wikipedia for semantic relatedness. In Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing, pages 41- 49. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Digesting virtual geek culture: The summarization of technical internet relay chats",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "298--305",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. Zhou and E. Hovy. 2005. Digesting virtual geek culture: The summarization of technical internet re- lay chats. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pages 298-305. ACL.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "num": null,
                "text": "Gay Marriage Dialog-1.",
                "type_str": "figure"
            },
            "FIGREF1": {
                "uris": null,
                "num": null,
                "text": "The overall engineering architecture of our approach. (a) Basic engineering approach for extracting CENTRAL PROPOSITIONS and clustering them into argument FACETS across several dialogs; (b) Workflow for 'detecting' central propositions via pyramid evaluation of multiple summaries; (c) Workflow for obtaining gold-standard labels for AFS task.",
                "type_str": "figure"
            },
            "FIGREF2": {
                "uris": null,
                "num": null,
                "text": "Gay Marriage Dialog-2.",
                "type_str": "figure"
            },
            "FIGREF3": {
                "uris": null,
                "num": null,
                "text": "Two of the 5 Summaries for Dialog-2.",
                "type_str": "figure"
            },
            "FIGREF4": {
                "uris": null,
                "num": null,
                "text": "provides 2 of the 5 summaries collected for the dialog inFig. 3.",
                "type_str": "figure"
            },
            "FIGREF5": {
                "uris": null,
                "num": null,
                "text": "Instructions for AFS MT HIT. S5: MT Argument Facet Similarity HIT.Fig. 6",
                "type_str": "figure"
            },
            "TABREF0": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "html": null,
                "text": ""
            },
            "TABREF2": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "Support Vector and Linear Regression."
            },
            "TABREF4": {
                "content": "<table><tr><td>: Results for Different Individual Features</td></tr><tr><td>and Feature Combinations.</td></tr><tr><td>line (Row 2). It is interesting that Ngram alone out-</td></tr><tr><td>performs distributional measures (which Conrad &amp;</td></tr><tr><td>Wiebe found most helpful) as well as Rouge (which</td></tr><tr><td>contains metrics insensitive to linear adjacency).</td></tr><tr><td>Table 3, Row 15, shows that the best correlation</td></tr><tr><td>that is achievable without UMBC is the combination</td></tr><tr><td>of Ngram, LIWC, ROUGE and DISCO (NLRD).</td></tr><tr><td>This combination significantly improves over the</td></tr><tr><td>UMBC baseline of 0.46 to 0.50 (paired t-test, p &lt;</td></tr><tr><td>.05).</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null,
                "text": ""
            },
            "TABREF5": {
                "content": "<table><tr><td colspan=\"2\">Row N</td><td>L</td><td>U</td><td colspan=\"3\">NLRD NLRDU MT</td><td>Arg1</td><td/><td>Arg2</td><td/></tr><tr><td/><td/><td/><td/><td/><td/><td>AFS</td><td/><td/><td/><td/></tr><tr><td>1</td><td>1.38</td><td>1.50</td><td>0.37</td><td>1.31</td><td>0.40</td><td>0.00</td><td colspan=\"2\">everyone has the freedom of</td><td colspan=\"2\">service in the military</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>speech</td><td/><td/><td/></tr><tr><td>2</td><td>2.00</td><td>2.02</td><td>1.55</td><td>2.33</td><td>1.86</td><td>1.14</td><td colspan=\"2\">gay people should be able to</td><td colspan=\"3\">referring to namecalling and vi-</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">marry a person of their choice</td><td colspan=\"3\">olence from the original post</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">and get equal rights</td><td colspan=\"3\">that was opposing gay rights</td></tr><tr><td>3</td><td>2.00</td><td>1.29</td><td>2.52</td><td>1.37</td><td>1.54</td><td>1.33</td><td colspan=\"2\">Constitutional right to be opposed</td><td colspan=\"3\">arguing about marriage benefits</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">to gay marriage as well as gay</td><td colspan=\"3\">between single people and mar-</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>people themselves</td><td/><td>ried</td><td/></tr><tr><td>4</td><td>2.00</td><td>1.70</td><td>2.74</td><td>1.77</td><td>1.98</td><td>1.80</td><td colspan=\"2\">people should not pick and choose</td><td colspan=\"3\">people did not want gay marriage</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">what they want equal rights on.</td><td/><td/></tr><tr><td>5</td><td>1.38</td><td>1.92</td><td>0.88</td><td>1.94</td><td>1.64</td><td>2.50</td><td colspan=\"2\">the Republicans creating another</td><td colspan=\"3\">No republican in leadership</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>Holocaust</td><td/><td colspan=\"3\">would call for the extermination</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td>of gays</td><td/></tr><tr><td>6</td><td>1.69</td><td>2.02</td><td>2.58</td><td>1.89</td><td>2.49</td><td>2.60</td><td colspan=\"2\">homosexuals have all the same</td><td colspan=\"3\">Opposition to equal rights for</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">rights as heterosexuals</td><td>gay couples.</td><td/></tr><tr><td>7</td><td>1.83</td><td>2.40</td><td>1.46</td><td>2.81</td><td>2.51</td><td>3.00</td><td colspan=\"2\">There was prejudice against gays</td><td colspan=\"3\">it is prejudice as opposed to reli-</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">in 1909 just as there is now</td><td colspan=\"3\">gious or moral beliefs which fuel</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">the anti-gay agenda;</td></tr><tr><td>8</td><td>2.00</td><td>1.70</td><td>3.16</td><td>1.73</td><td>2.41</td><td>3.40</td><td>homosexual</td><td>relationships</td><td colspan=\"3\">marriage should be between a</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">should not compare to het-</td><td colspan=\"2\">heterosexual couple</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">erosexual marriages because</td><td/><td/></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">only heterosexuals are legally</td><td/><td/></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>allowed to marry</td><td/><td/><td/></tr><tr><td>9</td><td>2.00</td><td>2.70</td><td>2.09</td><td>2.83</td><td>3.03</td><td>3.50</td><td colspan=\"2\">it is prejudice as opposed to reli-</td><td colspan=\"3\">when people claim religion in do-</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">gious or moral beliefs which fuel</td><td colspan=\"3\">ing prejudice they are actually</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">the anti-gay agenda;</td><td colspan=\"2\">abandoning their morals</td></tr><tr><td>10</td><td>2.94</td><td>2.02</td><td>2.93</td><td>2.18</td><td>2.70</td><td>3.50</td><td colspan=\"2\">gay people should be able to</td><td colspan=\"3\">Gay couples are unable to get</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">marry a person of their choice</td><td colspan=\"3\">any benefits that married peo-</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">and get equal rights.</td><td>ple do.</td><td/></tr><tr><td>11</td><td>2.14</td><td>1.50</td><td>2.91</td><td>2.08</td><td>2.62</td><td>3.60</td><td colspan=\"2\">Paul Cameron is the voice of the</td><td>Conversation</td><td>about</td><td>Paul</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>Republicans</td><td/><td>Cameron</td><td/></tr><tr><td>12</td><td>2.63</td><td>3.63</td><td>2.60</td><td>3.75</td><td>3.57</td><td>4.17</td><td colspan=\"2\">in opening this opportunity for</td><td colspan=\"3\">opponents of homosexual mar-</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">gay marriage, the definition of</td><td colspan=\"3\">riage tend to argue that a change</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">marriage will change</td><td colspan=\"3\">to marriage law would make it too</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td>open ended</td><td/></tr><tr><td>13</td><td>4.23</td><td>2.72</td><td>2.26</td><td>4.82</td><td>4.12</td><td>4.50</td><td colspan=\"2\">AIDs was initially spread in the</td><td colspan=\"3\">No one argues the point that AIDs</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">United States primarily by homo-</td><td colspan=\"3\">was spread in the United States by</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>sexuals.</td><td/><td>homosexuals.</td><td/></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "where we combine our features with UMBC shows that this improves the correlation further, from the UMBC baseline of 0.46 to 0.54 (p < 0.01.)"
            },
            "TABREF6": {
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "Predicted Scores for each model and the Mechanical Turk AFS gold standard for selected argument pairs from the pairs dataset. Best performing model for each pair is shown in bold. The table is sorted by the AFS score (gold standard). The argument pairs shown in bold are cases where UMBC by itself beats our proposed model. KEY: Feature sets model. N = NGRAM, U = UMBC STS tool, L = Linguistic Inquiry and Word Count; R = Rouge, D = DISCO, AFS= Mean of Mechanical Turker AFS scores, our gold standard. For example, NLRD means a combination of NGRAM, LIWC, ROUGE and DISCO."
            }
        }
    }
}