File size: 102,804 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T14:06:35.070198Z"
},
"title": "Distill, Adapt, Distill: Training Small, In-Domain Models for Neural Machine Translation",
"authors": [
{
"first": "Mitchell",
"middle": [
"A"
],
"last": "Gordon",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Johns Hopkins University",
"location": {}
},
"email": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Duh",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Johns Hopkins University",
"location": {}
},
"email": "kevinduh@cs.jhu.edu"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "We explore best practices for training small, memory efficient machine translation models with sequence-level knowledge distillation in the domain adaptation setting. While both domain adaptation and knowledge distillation are widely-used, their interaction remains little understood. Our large-scale empirical results in machine translation (on three language pairs with three domains each) suggest distilling twice for best performance: once using general-domain data and again using indomain data with an adapted teacher. The code for these experiments can be found here. 1",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "We explore best practices for training small, memory efficient machine translation models with sequence-level knowledge distillation in the domain adaptation setting. While both domain adaptation and knowledge distillation are widely-used, their interaction remains little understood. Our large-scale empirical results in machine translation (on three language pairs with three domains each) suggest distilling twice for best performance: once using general-domain data and again using indomain data with an adapted teacher. The code for these experiments can be found here. 1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Machine translation systems rely on large amounts of data to deduce the rules underlying translation from one language to another. This presents challenges in some important niche domains, such as patent and medical literature translation, due to the high cost of hiring experts to generate suitable training data. A cost-effective alternative is domain adaptation, which leverages large amounts of parallel documents from less difficult and more readily-available domains, such as movie subtitles and news articles.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Domain adaptation works well in practice. However, these large datasets, which we call general domain datasets, introduce some scalability problems. Large datasets require large models; neural machine translation systems can take days or weeks to train. Some models require gigabytes of disk space, making deployment to edge computing devices challenging. They can also require excessive compute during inference, making them slow and costly to scale up in production environments (Gordon, 2019) .",
"cite_spans": [
{
"start": 481,
"end": 495,
"text": "(Gordon, 2019)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "To alleviate these issues, knowledge distillation (aka Teacher-Student) (Hinton et al., 2015) is used to compress models into a manageable form. But although knowledge distillation is the most commonly used form of model compression in practice, it is also one of the least understood.",
"cite_spans": [
{
"start": 72,
"end": 93,
"text": "(Hinton et al., 2015)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this work, we perform a large-scale empirical analysis to attempt to discover best practices when using knowledge distillation in combination with domain adaptation. Out of several common-sense configurations, we find that two stages of knowledge distillation give the best performance: one using general-domain data and another using in-domain data with an adapted teacher. We perform experiments on multiple language pairs (Russian-English, German-English, Chinese-English), domains (patents, subtitles, news, TED talks), and student sizes.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Domain Adaptation helps overcome a lack of quality training data in niche domains by leveraging large amounts of data in a more accessible general-domain. Domain adaptation is usually accomplished by continued training (Luong and Manning, 2015; Zoph et al., 2016) , which involves two steps: 1. A model is randomly initialized and trained until convergence on the general-domain data.",
"cite_spans": [
{
"start": 219,
"end": 244,
"text": "(Luong and Manning, 2015;",
"ref_id": "BIBREF15"
},
{
"start": 245,
"end": 263,
"text": "Zoph et al., 2016)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background",
"sec_num": "2"
},
{
"text": "Step 1 and trained until convergence on the in-domain dataset.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A new model is initialized with the parameters resulting from",
"sec_num": "2."
},
{
"text": "We can consider domain adaptation as extracting a useful inductive-bias from the general-domain dataset, which is encoded and passed along to the in-domain model as a favorable weight initialization. While there are other methods of extracting inductive bias from general-domain datasets (including mixed fine-tuning (Chu et al., 2017) and Configuration 1 is the model which is trained on in-domain data with random initializations and without the assistance of a teacher. cost weighting (Chen et al., 2017) ), continued training is most common and the focus of this paper.",
"cite_spans": [
{
"start": 317,
"end": 335,
"text": "(Chu et al., 2017)",
"ref_id": "BIBREF2"
},
{
"start": 488,
"end": 507,
"text": "(Chen et al., 2017)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "A new model is initialized with the parameters resulting from",
"sec_num": "2."
},
{
"text": "Knowledge Distillation is a method for improving the performance of under-parameterized \"Student\" models by exploiting the probability distribution of a more computationally complex \"Teacher\" network. Kim and Rush (2016) presented an extension of knowledge distillation to machine translation in two flavors: word-level and sequence-level knowledge distillation. Sequence-level knowledge distillation, which is more general, involves three steps: 1. A large Teacher network is randomly initialized and trained until convergence on the data.",
"cite_spans": [
{
"start": 201,
"end": 220,
"text": "Kim and Rush (2016)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "A new model is initialized with the parameters resulting from",
"sec_num": "2."
},
{
"text": "2. The source-side of the training data is decoded using the Teacher to produce \"distilled\" target data.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A new model is initialized with the parameters resulting from",
"sec_num": "2."
},
{
"text": "3. A smaller Student model is randomly initialized and trained until convergence on the distilled source-target pairs (discarding the original target sequences in the data).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A new model is initialized with the parameters resulting from",
"sec_num": "2."
},
{
"text": "The goal of knowledge distillation is to train the student model to mimic the teacher's probability distribution over translations. Since the teacher and the student are trained on the same dataset, they should be capable of learning the same distribution in theory. In practice, however, pre-processing the training data with the teacher improves student test performance. 2 Explanations for this phenomenon 2 Interestingly, this can be true even when the student has include dark knowledge (Furlanello et al., 2018) , mode reduction (Zhou et al., 2019) , and regularization (Gordon and Duh, 2019; Dong et al., 2019) , but no definitive evidence has been given.",
"cite_spans": [
{
"start": 492,
"end": 517,
"text": "(Furlanello et al., 2018)",
"ref_id": "BIBREF7"
},
{
"start": 535,
"end": 554,
"text": "(Zhou et al., 2019)",
"ref_id": "BIBREF32"
},
{
"start": 576,
"end": 598,
"text": "(Gordon and Duh, 2019;",
"ref_id": "BIBREF9"
},
{
"start": 599,
"end": 617,
"text": "Dong et al., 2019)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "A new model is initialized with the parameters resulting from",
"sec_num": "2."
},
{
"text": "Sequence-level knowledge distillation is widely used in both industry (Xia et al., 2019) and research and is the second focus of this paper. 3",
"cite_spans": [
{
"start": 70,
"end": 88,
"text": "(Xia et al., 2019)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "A new model is initialized with the parameters resulting from",
"sec_num": "2."
},
{
"text": "How domain adaptation and knowledge distillation would interact when applied in combination was not previously clear. Specifically, our research questions are:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Distilling and Adapting",
"sec_num": "3"
},
{
"text": "\u2022 Is a distilled model easier or harder to adapt to new domains?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Distilling and Adapting",
"sec_num": "3"
},
{
"text": "\u2022 Should knowledge distillation be used on indomain data? If so, how should the teacher be trained?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Distilling and Adapting",
"sec_num": "3"
},
{
"text": "To answer these questions, we performed experiments on 9 possible configurations which are assigned configuration numbers in Figure 1 . For ease of reference, we will primarily refer to small, in-domain models by their configuration number and encourage readers to consult Figure 1 . Each configuration has two attributes of interest.",
"cite_spans": [],
"ref_spans": [
{
"start": 125,
"end": 133,
"text": "Figure 1",
"ref_id": "FIGREF0"
},
{
"start": 273,
"end": 281,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Distilling and Adapting",
"sec_num": "3"
},
{
"text": "the same computational resources as the teacher (Furlanello et al., 2018) Distilling In-Domain Data How is in-domain data pre-processed using knowledge distillation? Some models are trained with no pre-processing (configurations 1, 4, and 7), while others use a teacher to pre-process the in-domain training data. This teacher might be a baseline trained on indomain data only (configurations 2, 5, and 8) or it can be trained on general-domain data and then adapted to in-domain via continued training (configurations 3, 6, and 9).",
"cite_spans": [
{
"start": 48,
"end": 73,
"text": "(Furlanello et al., 2018)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Distilling and Adapting",
"sec_num": "3"
},
{
"text": "Initialization How are models initialized? A model might be randomly initialized (configurations 1, 2, and 3), or it might be adapted from a model trained on general-domain data. This general-domain model might be a baseline trained directly on the general-domain data (configurations 4, 5, and 6) or it might be a student model trained on the output of a general-domain teacher (configurations 7, 8, 9).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Distilling and Adapting",
"sec_num": "3"
},
{
"text": "General-Domain Data We train models in multiple settings: 3 language pairs (German-English, Russian-English, and Chinese-English) each with 1 general-domain dataset and 2 different in-domain datasets. The general-domain datasets for each language are a concatenation of data from Open-Subtitles2018 (Tiedemann, 2016; Lison and Tiedemann, 2016 ) (which contains translated movie subtitles) and the WMT 2017 datasets (Ondrej et al., 2017) (which includes a variety of sources, including news commentary, parliamentary proceedings, and web-crawled data).",
"cite_spans": [
{
"start": 299,
"end": 316,
"text": "(Tiedemann, 2016;",
"ref_id": "BIBREF25"
},
{
"start": 317,
"end": 342,
"text": "Lison and Tiedemann, 2016",
"ref_id": "BIBREF13"
},
{
"start": 415,
"end": 436,
"text": "(Ondrej et al., 2017)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data",
"sec_num": "4.1"
},
{
"text": "In-Domain Data We use the World International Property Organization (WIPO) COPPA-V2 dataset (Junczys-Dowmunt et al., 2018) and the TED Talks dataset (Duh, 2019a) as our two in-domain datasets. The WIPO data contains parallel sentences from international patent abstracts, while the TED Talks dataset consists of translated transcripts of public speeches.",
"cite_spans": [
{
"start": 149,
"end": 161,
"text": "(Duh, 2019a)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data",
"sec_num": "4.1"
},
{
"text": "The size of each training dataset is presented in Table 1 . General-domain datasets contain tens of millions of sentences, while indomain datasets contain much less. German-English WIPO has an exceptional amount of training data (4.5 times more than the next biggest indomain dataset) and helps qualify how our results might change when more in-domain data is available.",
"cite_spans": [],
"ref_spans": [
{
"start": 50,
"end": 57,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Data Statistics",
"sec_num": null
},
{
"text": "Pre-processing All datasets are tokenized using the Moses 4 tokenizer. A BPE vocabulary (Sennrich et al., 2016) of 30,000 tokens is constructed for each language using the training set of the general-domain data. This BPE vocabulary is then applied to both in-domain and general-domain datasets. This mimics the typical scenario of a single, general-domain model being trained and then adapted to new domains as they are encountered.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Statistics",
"sec_num": null
},
{
"text": "Note that re-training BPE on in-domain data to produce a different vocabulary would force us to re-build the model, making adaptation impossible.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Statistics",
"sec_num": null
},
{
"text": "Evaluation The general-domain development set for each language contains newstest2016 concatenated with the last 2500 lines of OpenSubti-tles2018. We reserve 3000 lines of WIPO to use as the in-domain development set. TED talks development sets are provided by the authors and contain around 2000 lines each. Evaluations of each model are performed by decoding the appropriate development set with a beam-search size of 10 and comparing to the reference using multi-bleu.perl from the Moses toolkit. The tokenization used during multi-bleu.perl evaluation is the same as the one provided in (Duh, 2019a) .",
"cite_spans": [
{
"start": 591,
"end": 603,
"text": "(Duh, 2019a)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data Statistics",
"sec_num": null
},
{
"text": "A list of architecture sizes is provided in Table 2 . Teachers are trained using the Large hyperparameter settings, while we experiment with Medium, Small, and Tiny students for each configuration and language/domain setting. All models are Transformers (Vaswani et al., 2017) . We use the same hyper-parameters (which are based on a template from (Duh, 2019b) 5 ) for every model, except those that affect the size of the model (Table 2) model does not improve for 10 checkpoints (earlystopping), whichever comes first.",
"cite_spans": [
{
"start": 255,
"end": 277,
"text": "(Vaswani et al., 2017)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 44,
"end": 52,
"text": "Table 2",
"ref_id": "TABREF3"
},
{
"start": 430,
"end": 439,
"text": "(Table 2)",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Architectures and Training",
"sec_num": "4.2"
},
{
"text": "Continued Training Work by (Gordon and Duh, 2019) suggests that students may benefit from training on some combination of the distilled and undistilled reference dataset. We experimented with this by continuing to train each in-domain student model on the original, un-distilled dataset, using similar stopping criterion to the first round of training. This improved some models by up to 1 BLEU. Because of this, we recommend that any distilled model continue training on the original dataset as long as development accuracy improves. When continued training improves performance of a student, we show that score instead of the score without continued training.",
"cite_spans": [
{
"start": 27,
"end": 49,
"text": "(Gordon and Duh, 2019)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Architectures and Training",
"sec_num": "4.2"
},
{
"text": "In this section, we compare training in-domain models with no teacher (config 1), a teacher trained on in-domain data only (config 2), and a teacher adapted from the general domain (config 3). The performance of the two teachers in each languagepair and domain is listed in Table 3 . It shows that adaptation greatly improves the performance of every in-domain teacher except German-English WIPO. 6 Table 4 shows the results of using these teachers to distill the in-domain data before training student models in various settings. We see that in almost every case, using an adapted teacher gives the best or close to the best results. This is somewhat expected since models with better development scores tend to make better teachers ( Table 3 : BLEU development score of in-domain teachers when either randomly initialized or initialized from the weights of a large model trained on general-domain data. Adaptation drastically improves performance on every language pair and domain, except de-en WIPO. et al., 2018). Although knowledge distillation is typically seen as \"simplifying\" data for students, in this case we suspect that the adapted teacher's knowledge about the general-domain is making its way to students via the distilled in-domain data.",
"cite_spans": [
{
"start": 734,
"end": 735,
"text": "(",
"ref_id": null
}
],
"ref_spans": [
{
"start": 274,
"end": 281,
"text": "Table 3",
"ref_id": null
},
{
"start": 399,
"end": 406,
"text": "Table 4",
"ref_id": null
},
{
"start": 736,
"end": 743,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Adapt Teachers",
"sec_num": "5.1"
},
{
"text": "We also train small models directly on the generaldomain data and adapt them to in-domain data. The possible configurations are random initialization (config 1), initializing from a baseline model trained on general-domain data (config 4), or initializing from a student model distilled from a generaldomain teacher (config 7). Table 5 shows the performance of the models trained on the generaldomain datasets, and Table 6 shows their performance after being fine-tuned on in-domain data.",
"cite_spans": [],
"ref_spans": [
{
"start": 328,
"end": 335,
"text": "Table 5",
"ref_id": "TABREF7"
},
{
"start": 415,
"end": 422,
"text": "Table 6",
"ref_id": null
}
],
"eq_spans": [],
"section": "Adapt the Best Student",
"sec_num": "5.2"
},
{
"text": "Training small models directly on the generaldomain data and then fine-tuning on in-domain data gives much more substantial gains (5-10 BLEU) than providing indirect access to the generaldomain data through an adapted teacher (config 3). We believe this is because a large amount of data is required to fully reveal the teacher's probability distribution over translations (Fang et al., 2019) . While an adapted teacher might contain much information from the general-domain, it is unable to express that knowledge to students just by translating the smaller in-domain dataset. To get the full benefit of general-domain data, the small models must be directly pre-trained on general-domain data. 7 Indirect access to the general-domain data through a general-domain teacher is insufficient.",
"cite_spans": [
{
"start": 373,
"end": 392,
"text": "(Fang et al., 2019)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Adapt the Best Student",
"sec_num": "5.2"
},
{
"text": "We also observe that Medium-sized models are not small enough to benefit from knowledge distillation in the general-domain, and so their generaldomain scores do not improve with distillation. Table 4 : BLEU development scores for in-domain students with no teacher (config 1), an in-domain only teacher (config 2), or an adapted teacher continued from the general-domain (config 3). In almost every case, using an adapted teacher gives the best or close to the best results.",
"cite_spans": [],
"ref_spans": [
{
"start": 192,
"end": 199,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Adapt the Best Student",
"sec_num": "5.2"
},
{
"text": "These distilled Medium-sized models (config 7) also tend to do slightly worse than their baseline counter-parts (config 4) on in-domain data. Indeed, Figure 2 shows that in-domain performance is roughly linearly related to general-domain performance regardless of whether distillation is applied before adaptation. This implies that distillation does not interfere with the adaptability of a model, so the model with the best general-domain performance should be adapted, regardless of whether distillation was applied. Adapting a distilled model can improve performance slightly over adapting the baseline model without distillation.",
"cite_spans": [],
"ref_spans": [
{
"start": 150,
"end": 158,
"text": "Figure 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Adapt the Best Student",
"sec_num": "5.2"
},
{
"text": "Finally, we test whether these two ways of improving small, in-domain models are orthogonal. We might hypothesize that training small models directly on general-domain data eliminates the need to adapt teachers or use an in-domain teacher at all. To test this, we also train adapted student models using a baseline teacher (config 8) and an adapted teacher (config 9). Table 6 : In-domain models that are initialized randomly (config 1), initialized from a baseline trained on general-domain data directly (config 4), or initialized from a general-domain student trained using a generaldomain teacher (config 7). Figure 2 : The BLEU of general-domain models vs. their corresponding in-domain scores when adapted to a different domain. We see that in-domain performance is roughly linearly related to general-domain performance regardless of whether distillation is applied before adaptation. Table 7 : In-domain models which are initialized from a general-domain student and trained on in-domain data which is pre-processed either with no teacher (config 7), an in-domain only teacher (config 8), or an adapted teacher continued from general-domain data (config 9).",
"cite_spans": [],
"ref_spans": [
{
"start": 369,
"end": 376,
"text": "Table 6",
"ref_id": null
},
{
"start": 613,
"end": 621,
"text": "Figure 2",
"ref_id": null
},
{
"start": 892,
"end": 899,
"text": "Table 7",
"ref_id": "TABREF6"
}
],
"eq_spans": [],
"section": "Distill, Adapt, Distill",
"sec_num": "5.3"
},
{
"text": "ing in-domain data with an adapted teacher can further boost performance of an already distilled model, while using a teacher trained only on in-domain data can sometimes hurt performance. These results lead us to a general recipe for training small, in-domain models using knowledge distillation and domain adaptation in combination:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Distill, Adapt, Distill",
"sec_num": "5.3"
},
{
"text": "1. Distill general-domain data to improve general-domain student performance.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Distill, Adapt, Distill",
"sec_num": "5.3"
},
{
"text": "2. Adapt the best model from Step 1 to indomain data.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Distill, Adapt, Distill",
"sec_num": "5.3"
},
{
"text": "(2-10 BLEU better than no adaptation)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Distill, Adapt, Distill",
"sec_num": "5.3"
},
{
"text": "3. Adapt the teacher and distill again in-domain. (0-2 BLEU better than no or non-adapted teacher)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Distill, Adapt, Distill",
"sec_num": "5.3"
},
{
"text": "Following this procedure will result in either configuration 6 or 9 as described in Figure 1 . And indeed, configuration 9 performs the best or near best (within 0.1 BLEU) in almost every case, as shown in Table 9 . For those Medium sized models which were not improved by distillation in the general-domain, configuration 6 performs the best.",
"cite_spans": [],
"ref_spans": [
{
"start": 84,
"end": 92,
"text": "Figure 1",
"ref_id": "FIGREF0"
},
{
"start": 206,
"end": 213,
"text": "Table 9",
"ref_id": null
}
],
"eq_spans": [],
"section": "Distill, Adapt, Distill",
"sec_num": "5.3"
},
{
"text": "Models trained on German-English WIPO are an exception, with adaptation from the generaldomain not improving performance. This is in line Table 8 : Development scores for models initialized from a model trained on general-domain data. The indomain data is pre-processed with a teacher adapted from the general-domain (config 6).",
"cite_spans": [],
"ref_spans": [
{
"start": 138,
"end": 145,
"text": "Table 8",
"ref_id": null
}
],
"eq_spans": [],
"section": "Distill, Adapt, Distill",
"sec_num": "5.3"
},
{
"text": "Domain Size de-en ru-en zh-en med 4/6 6 4/6/7/9 ted small 6/9 9 9 tiny 9 9 9 med 2 4/6/9 6 wipo small 3 4/6 9 tiny 8 7/9 9 Table 9 : Best configurations for each setting. Scores within 0.1 BLEU of the best are also listed. Configuration 9 generally performs best, while configuration 6 is best for those medium-sized models which were not improved by distillation in the general-domain.",
"cite_spans": [],
"ref_spans": [
{
"start": 123,
"end": 130,
"text": "Table 9",
"ref_id": null
}
],
"eq_spans": [],
"section": "Distill, Adapt, Distill",
"sec_num": "5.3"
},
{
"text": "with the results from Table 3 which shows adaptation does not improve teachers, either. We suspect this is because the German-English WIPO dataset is the biggest out of any in-domain dataset, making adaptation unnecessary. Future work might also benefit from a quantification of domain similarity between datasets (Britz et al., 2017) , which would guide the use of domain adaptation in cases like these.",
"cite_spans": [
{
"start": 314,
"end": 334,
"text": "(Britz et al., 2017)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [
{
"start": 22,
"end": 29,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Distill, Adapt, Distill",
"sec_num": "5.3"
},
{
"text": "The models trained in this work collectively required 10 months of single-GPU compute time. Table 10 breaks this down by model size and dataset. While distilling twice might give the best performance, it also increases the amount of computation time required. Rather than training a single indomain model, configuration 9 requires training a general-domain teacher, a general-domain student, and then adapting both. This can increase compute required to train models by 2-4x.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training Times",
"sec_num": "5.4"
},
{
"text": "A huge portion of computation was also spent on decoding the general-domain data using a teacher model for sequence-level knowledge distillation, which could take up to 24 days of GPU time (using a beam size of 10 and a batch size of 10). This Model Gen-Domain In-Domain Adapting Large 2-4 days 2-4 days 7-48 hrs Med 2-4 days 2-4 days 1-48 hrs Small 1-2 days 1-2 days 2-14 hrs Tiny 1 days 1-24 hrs 2-24 hrs Distill 10-24 days 1-2 days Table 10 : Estimates of the computation time required for training randomly initialized models on just generaldomain data or just in-domain data. We also show the time required for adapting general-domain models and distilling data using teachers.",
"cite_spans": [],
"ref_spans": [
{
"start": 271,
"end": 464,
"text": "Adapting Large 2-4 days 2-4 days 7-48 hrs Med 2-4 days 2-4 days 1-48 hrs Small 1-2 days 1-2 days 2-14 hrs Tiny 1 days 1-24 hrs 2-24 hrs Distill 10-24 days 1-2 days Table 10",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Training Times",
"sec_num": "5.4"
},
{
"text": "can be arbitrarily sped up using multiple GPUs in parallel, but future work might explore how to distill teachers in a less expensive way.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training Times",
"sec_num": "5.4"
},
{
"text": "Our work is one the few that focuses specifically on training small, under-parameterized in-domain models. There is, however, similar work which is not directly comparable but uses knowledge distillation to adapt to new domains.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "6"
},
{
"text": "Knowledge Adaptation uses knowledge distillation to transfer knowledge from multiple, labeled source domains to un-labeled target domains. This is in contrast to our setting, which has labels for both general-domain and in-domain data. Ruder et al. (2017) introduced this idea as \"Knowledge Adaptation,\" using multi-layer perceptrons to provide sentiment analysis labels for unlabeled indomain data. Similar work includes Iterative Dual Domain Adaptation (Zeng et al., 2019) and Domain Transformation Networks . These ideas are not limited to machine translation; recent work by Meng et al. (2020) trains in-domain speech recognition systems with knowledge distillation, while Orbes-Arteaga et al. (2019) does similar work on segmentation of magnetic resonance imaging scans.",
"cite_spans": [
{
"start": 236,
"end": 255,
"text": "Ruder et al. (2017)",
"ref_id": "BIBREF19"
},
{
"start": 455,
"end": 474,
"text": "(Zeng et al., 2019)",
"ref_id": "BIBREF30"
},
{
"start": 579,
"end": 597,
"text": "Meng et al. (2020)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "6"
},
{
"text": "Compressing Pre-trained Language Models Domain adaptation via continued training in NMT is closely related to the idea of pre-training a language model and fine-tuning to different tasks, which might come from different data distributions than the pre-training data. Because language models tend to be extremely cumbersome to train and evaluate, more focus is given to the compression aspect of knowledge distillation. Sanh et al. (2019) , Sun et al. (2019) , and independently showed that knowledge distillation could be used to compress pre-trained models without affecting downstream tasks. Tang et al. (2019) showed that task-specific information could be distilled from a large Transformer into a much smaller Bi-directional RNN. These methods might reasonably be extended to domain adaptation for NMT.",
"cite_spans": [
{
"start": 419,
"end": 437,
"text": "Sanh et al. (2019)",
"ref_id": "BIBREF20"
},
{
"start": 440,
"end": 457,
"text": "Sun et al. (2019)",
"ref_id": "BIBREF23"
},
{
"start": 594,
"end": 612,
"text": "Tang et al. (2019)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "6"
},
{
"text": "In this work, we conducted a large-scale empirical investigation to determine best practices when using sequence-level knowledge distillation and domain adaptation in combination. We found that adapting models from the general-domain makes them better teachers and that distilling using general-domain data does not impact a model's adaptability. This leads us to recommend distilling twice for best results: once in the general-domain to possibly improve student performance, and again using an adapted in-domain teacher. The results are robust among multiple language pairs, student sizes, in-domain settings.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "https://git.io/Jf2t8",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Sequence-level knowledge distillation is also commonly used to train non-autoregressive machine translation models(Zhou et al., 2019).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "statmt.org/moses 5 https://git.io/JvL85",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "German WIPO is also the largest in-domain dataset we test, which might make adaptation unnecessary. Another explanation might be that the German-English general-domain is not similar enough to the patent domain in this case to improve performance.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "A reasonable alternative to this might include data-freeKD (Yin et al., 2019), which explores the teacher's probability distribution without any dependence on data.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Effective domain mixing for neural machine translation",
"authors": [
{
"first": "Denny",
"middle": [],
"last": "Britz",
"suffix": ""
},
{
"first": "Quoc",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Reid",
"middle": [],
"last": "Pryzant",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the Second Conference on Machine Translation",
"volume": "",
"issue": "",
"pages": "118--126",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Denny Britz, Quoc Le, and Reid Pryzant. 2017. Ef- fective domain mixing for neural machine transla- tion. In Proceedings of the Second Conference on Machine Translation, pages 118-126.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Cost weighting for neural machine translation domain adaptation",
"authors": [
{
"first": "Boxing",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Colin",
"middle": [],
"last": "Cherry",
"suffix": ""
},
{
"first": "George",
"middle": [],
"last": "Foster",
"suffix": ""
},
{
"first": "Samuel",
"middle": [],
"last": "Larkin",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the First Workshop on Neural Machine Translation",
"volume": "",
"issue": "",
"pages": "40--46",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Boxing Chen, Colin Cherry, George Foster, and Samuel Larkin. 2017. Cost weighting for neural ma- chine translation domain adaptation. In Proceedings of the First Workshop on Neural Machine Transla- tion, pages 40-46, Stroudsburg, PA, USA. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "An empirical comparison of domain adaptation methods for neural machine translation",
"authors": [
{
"first": "Chenhui",
"middle": [],
"last": "Chu",
"suffix": ""
},
{
"first": "Raj",
"middle": [],
"last": "Dabre",
"suffix": ""
},
{
"first": "Sadao",
"middle": [],
"last": "Kurohashi",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "385--391",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017. An empirical comparison of domain adaptation methods for neural machine translation. In Proceed- ings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Pa- pers), pages 385-391, Stroudsburg, PA, USA. Asso- ciation for Computational Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Distillation \u2248 early stopping? harvesting dark knowledge utilizing anisotropic information retrieval for overparameterized neural network",
"authors": [
{
"first": "Bin",
"middle": [],
"last": "Dong",
"suffix": ""
},
{
"first": "Jikai",
"middle": [],
"last": "Hou",
"suffix": ""
},
{
"first": "Yiping",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Zhihua",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bin Dong, Jikai Hou, Yiping Lu, and Zhihua Zhang. 2019. Distillation \u2248 early stopping? harvesting dark knowledge utilizing anisotropic information re- trieval for overparameterized neural network.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "The multitarget TED talks task (MTTT)",
"authors": [
{
"first": "Kevin",
"middle": [],
"last": "Duh",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kevin Duh. 2019a. The multitarget TED talks task (MTTT).",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Data-Free adversarial distillation",
"authors": [
{
"first": "Gongfan",
"middle": [],
"last": "Fang",
"suffix": ""
},
{
"first": "Jie",
"middle": [],
"last": "Song",
"suffix": ""
},
{
"first": "Chengchao",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Xinchao",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Da",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Mingli",
"middle": [],
"last": "Song",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang, Da Chen, and Mingli Song. 2019. Data-Free adversarial distillation.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Born again neural networks",
"authors": [
{
"first": "Tommaso",
"middle": [],
"last": "Furlanello",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Zachary",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Lipton",
"suffix": ""
},
{
"first": "Laurent",
"middle": [],
"last": "Tschannen",
"suffix": ""
},
{
"first": "Anima",
"middle": [],
"last": "Itti",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Anandkumar",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tommaso Furlanello, Zachary C Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar. 2018. Born again neural networks.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "All the ways you can compress bert",
"authors": [
{
"first": "Mitchell",
"middle": [
"A"
],
"last": "Gordon",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mitchell A. Gordon. 2019. All the ways you can com- press bert.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Explaining Sequence-Level knowledge distillation as Data-Augmentation for neural machine translation",
"authors": [
{
"first": "A",
"middle": [],
"last": "Mitchell",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Gordon",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Duh",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mitchell A Gordon and Kevin Duh. 2019. Explain- ing Sequence-Level knowledge distillation as Data- Augmentation for neural machine translation.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Distilling the knowledge in a neural network",
"authors": [
{
"first": "Geoffrey",
"middle": [],
"last": "Hinton",
"suffix": ""
},
{
"first": "Oriol",
"middle": [],
"last": "Vinyals",
"suffix": ""
},
{
"first": "Jeff",
"middle": [],
"last": "Dean",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "COPPA v2. 0: Corpus of parallel patent applications building large parallel corpora with GNU make",
"authors": [
{
"first": "Marcin",
"middle": [],
"last": "Junczys-Dowmunt",
"suffix": ""
},
{
"first": "Bruno",
"middle": [],
"last": "Pouliquen",
"suffix": ""
},
{
"first": "Christophe",
"middle": [],
"last": "Mazenc",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marcin Junczys-Dowmunt, Bruno Pouliquen, and Christophe Mazenc. 2018. COPPA v2. 0: Corpus of parallel patent applications building large parallel corpora with GNU make.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Sequence-Level knowledge distillation",
"authors": [
{
"first": "Yoon",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "Alexander M",
"middle": [],
"last": "Rush",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yoon Kim and Alexander M Rush. 2016. Sequence- Level knowledge distillation.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Opensub-titles2016: Extracting large parallel corpora from movie and tv subtitles",
"authors": [
{
"first": "Pierre",
"middle": [],
"last": "Lison",
"suffix": ""
},
{
"first": "J\u00f6rg",
"middle": [],
"last": "Tiedemann",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Pierre Lison and J\u00f6rg Tiedemann. 2016. Opensub- titles2016: Extracting large parallel corpora from movie and tv subtitles.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Attentive student meets Multi-Task teacher: Improved knowledge distillation for pretrained models",
"authors": [
{
"first": "Linqing",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Huan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Jimmy",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Caiming",
"middle": [],
"last": "Xiong",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Linqing Liu, Huan Wang, Jimmy Lin, Richard Socher, and Caiming Xiong. 2019. Attentive student meets Multi-Task teacher: Improved knowledge distilla- tion for pretrained models.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Stanford neural machine translation systems for spoken language domains",
"authors": [
{
"first": "Minh-Thang",
"middle": [],
"last": "Luong",
"suffix": ""
},
{
"first": "Christopher D",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the International Workshop on Spoken Language Translation",
"volume": "",
"issue": "",
"pages": "76--79",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Minh-Thang Luong and Christopher D Manning. 2015. Stanford neural machine translation systems for spo- ken language domains. In Proceedings of the In- ternational Workshop on Spoken Language Transla- tion, pages 76-79.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Domain adaptation via Teacher-Student learning for End-to-End speech recognition",
"authors": [
{
"first": "Zhong",
"middle": [],
"last": "Meng",
"suffix": ""
},
{
"first": "Jinyu",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Yashesh",
"middle": [],
"last": "Gaur",
"suffix": ""
},
{
"first": "Yifan",
"middle": [],
"last": "Gong",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhong Meng, Jinyu Li, Yashesh Gaur, and Yifan Gong. 2020. Domain adaptation via Teacher-Student learn- ing for End-to-End speech recognition.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Findings of the 2017 conference on machine translation (wmt17)",
"authors": [
{
"first": "Bojar",
"middle": [],
"last": "Ondrej",
"suffix": ""
},
{
"first": "Rajen",
"middle": [],
"last": "Chatterjee",
"suffix": ""
},
{
"first": "Federmann",
"middle": [],
"last": "Christian",
"suffix": ""
},
{
"first": "Graham",
"middle": [],
"last": "Yvette",
"suffix": ""
},
{
"first": "Haddow",
"middle": [],
"last": "Barry",
"suffix": ""
},
{
"first": "Huck",
"middle": [],
"last": "Matthias",
"suffix": ""
},
{
"first": "Koehn",
"middle": [],
"last": "Philipp",
"suffix": ""
},
{
"first": "Logacheva",
"middle": [],
"last": "Liu Qun",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Varvara",
"suffix": ""
}
],
"year": 2017,
"venue": "Second Conference onMachine Translation",
"volume": "",
"issue": "",
"pages": "169--214",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bojar Ondrej, Rajen Chatterjee, Federmann Christian, Graham Yvette, Haddow Barry, Huck Matthias, Koehn Philipp, Liu Qun, Logacheva Varvara, Monz Christof, and Others. 2017. Findings of the 2017 conference on machine translation (wmt17). In Sec- ond Conference onMachine Translation, pages 169- 214.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Knowledge distillation for semi-supervised domain adaptation",
"authors": [
{
"first": "Mauricio",
"middle": [],
"last": "Orbes-Arteaga",
"suffix": ""
},
{
"first": "Jorge",
"middle": [],
"last": "Cardoso",
"suffix": ""
},
{
"first": "Lauge",
"middle": [],
"last": "S\u00f8rensen",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Igel",
"suffix": ""
},
{
"first": "Sebastien",
"middle": [],
"last": "Ourselin",
"suffix": ""
},
{
"first": "Marc",
"middle": [],
"last": "Modat",
"suffix": ""
},
{
"first": "Mads",
"middle": [],
"last": "Nielsen",
"suffix": ""
},
{
"first": "Akshay",
"middle": [],
"last": "Pai",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mauricio Orbes-Arteaga, Jorge Cardoso, Lauge S\u00f8rensen, Christian Igel, Sebastien Ourselin, Marc Modat, Mads Nielsen, and Akshay Pai. 2019. Knowledge distillation for semi-supervised domain adaptation.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Knowledge adaptation: Teaching to adapt",
"authors": [
{
"first": "Sebastian",
"middle": [],
"last": "Ruder",
"suffix": ""
},
{
"first": "Parsa",
"middle": [],
"last": "Ghaffari",
"suffix": ""
},
{
"first": "John G",
"middle": [],
"last": "Breslin",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sebastian Ruder, Parsa Ghaffari, and John G Breslin. 2017. Knowledge adaptation: Teaching to adapt.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter",
"authors": [
{
"first": "Victor",
"middle": [],
"last": "Sanh",
"suffix": ""
},
{
"first": "Lysandre",
"middle": [],
"last": "Debut",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Chaumond",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Wolf",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Neural machine translation of rare words with subword units",
"authors": [
{
"first": "Rico",
"middle": [],
"last": "Sennrich",
"suffix": ""
},
{
"first": "Barry",
"middle": [],
"last": "Haddow",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Birch",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "1715--1725",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational Lin- guistics (Volume 1: Long Papers), pages 1715-1725,",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Association for Computational Linguistics",
"authors": [
{
"first": "P",
"middle": [
"A"
],
"last": "Stroudsburg",
"suffix": ""
},
{
"first": "Usa",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stroudsburg, PA, USA. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Patient knowledge distillation for BERT model compression",
"authors": [
{
"first": "Siqi",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "Zhe",
"middle": [],
"last": "Gan",
"suffix": ""
},
{
"first": "Jingjing",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "4314--4323",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. Patient knowledge distillation for BERT model com- pression. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natu- ral Language Processing (EMNLP-IJCNLP), pages 4314-4323, Stroudsburg, PA, USA. Association for Computational Linguistics.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Distilling Task-Specific knowledge from BERT into simple neural networks",
"authors": [
{
"first": "Raphael",
"middle": [],
"last": "Tang",
"suffix": ""
},
{
"first": "Yao",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Linqing",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Lili",
"middle": [],
"last": "Mou",
"suffix": ""
},
{
"first": "Olga",
"middle": [],
"last": "Vechtomova",
"suffix": ""
},
{
"first": "Jimmy",
"middle": [],
"last": "Lin",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. 2019. Distilling Task- Specific knowledge from BERT into simple neural networks.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Finding alternative translations in a large corpus of movie subtitle",
"authors": [
{
"first": "J\u00f6rg",
"middle": [],
"last": "Tiedemann",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)",
"volume": "",
"issue": "",
"pages": "3518--3522",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J\u00f6rg Tiedemann. 2016. Finding alternative translations in a large corpus of movie subtitle. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 3518- 3522.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Go from the general to the particular: Multi-Domain translation with domain transformation networks",
"authors": [
{
"first": "Yong",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Longyue",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Shuming",
"middle": [],
"last": "Shi",
"suffix": ""
},
{
"first": "O K",
"middle": [],
"last": "Victor",
"suffix": ""
},
{
"first": "Zhaopeng",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Tu",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yong Wang, Longyue Wang, Shuming Shi, Victor O K Li, and Zhaopeng Tu. 2019. Go from the general to the particular: Multi-Domain translation with do- main transformation networks.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Microsoft research asia's systems for WMT19",
"authors": [
{
"first": "Yingce",
"middle": [],
"last": "Xia",
"suffix": ""
},
{
"first": "Xu",
"middle": [],
"last": "Tan",
"suffix": ""
},
{
"first": "Fei",
"middle": [],
"last": "Tian",
"suffix": ""
},
{
"first": "Fei",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Weicong",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Fan",
"suffix": ""
},
{
"first": "Linyuan",
"middle": [],
"last": "Gong",
"suffix": ""
},
{
"first": "Yichong",
"middle": [],
"last": "Leng",
"suffix": ""
},
{
"first": "Renqian",
"middle": [],
"last": "Luo",
"suffix": ""
},
{
"first": "Yiren",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Others",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Fourth Conference on Machine Translation",
"volume": "2",
"issue": "",
"pages": "424--433",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yingce Xia, Xu Tan, Fei Tian, Fei Gao, Weicong Chen, Yang Fan, Linyuan Gong, Yichong Leng, Renqian Luo, Yiren Wang, and Others. 2019. Microsoft re- search asia's systems for WMT19. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 424- 433.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Dreaming to distill: Data-free knowledge transfer via DeepInversion",
"authors": [
{
"first": "Pavlo",
"middle": [],
"last": "Hongxu Yin",
"suffix": ""
},
{
"first": "Zhizhong",
"middle": [],
"last": "Molchanov",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Jose",
"suffix": ""
},
{
"first": "Arun",
"middle": [],
"last": "Alvarez",
"suffix": ""
},
{
"first": "Derek",
"middle": [],
"last": "Mallya",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hoiem",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Niraj",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Jha",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hongxu Yin, Pavlo Molchanov, Zhizhong Li, Jose M Alvarez, Arun Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz. 2019. Dreaming to distill: Data-free knowledge transfer via DeepInversion.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Iterative dual domain adaptation for neural machine translation",
"authors": [
{
"first": "Jiali",
"middle": [],
"last": "Zeng",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Jinsong",
"middle": [],
"last": "Su",
"suffix": ""
},
{
"first": "Yubin",
"middle": [],
"last": "Ge",
"suffix": ""
},
{
"first": "Yaojie",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Yongjing",
"middle": [],
"last": "Yin",
"suffix": ""
},
{
"first": "Jiebo",
"middle": [],
"last": "Luo",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jiali Zeng, Yang Liu, Jinsong Su, Yubin Ge, Yaojie Lu, Yongjing Yin, and Jiebo Luo. 2019. Iterative dual domain adaptation for neural machine translation.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Analyzing knowledge distillation in neural machine translation",
"authors": [
{
"first": "Dakun",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Josep",
"middle": [],
"last": "Crego",
"suffix": ""
},
{
"first": "Jean",
"middle": [],
"last": "Senellart",
"suffix": ""
}
],
"year": 2005,
"venue": "2018 International Workshop on Spoken Language Translation, IWSLT 2005",
"volume": "",
"issue": "",
"pages": "68--75",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dakun Zhang, Josep Crego, and Jean Senellart. 2018. Analyzing knowledge distillation in neural machine translation. In 2018 International Workshop on Spo- ken Language Translation, IWSLT 2005, Pittsburgh, PA, USA, October 24-25, 2005, pages 68-75.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Understanding knowledge distillation in nonautoregressive machine translation",
"authors": [
{
"first": "Chunting",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Jiatao",
"middle": [],
"last": "Gu",
"suffix": ""
},
{
"first": "Graham",
"middle": [],
"last": "Neubig",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chunting Zhou, Jiatao Gu, and Graham Neubig. 2019. Understanding knowledge distillation in non- autoregressive machine translation.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Transfer learning for Low-Resource neural machine translation",
"authors": [
{
"first": "Barret",
"middle": [],
"last": "Zoph",
"suffix": ""
},
{
"first": "Deniz",
"middle": [],
"last": "Yuret",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [],
"last": "May",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Knight",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1568--1575",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. 2016. Transfer learning for Low-Resource neural machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1568-1575, Strouds- burg, PA, USA. Association for Computational Lin- guistics.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"uris": null,
"num": null,
"type_str": "figure",
"text": "There are 9 possible configurations for training small, in-domain models with knowledge distillation and domain adaptation. Models trained on general-domain data are shown on the left, and in-domain models are shown on the right. Solid arrows represent domain adaptation via continued training. Dashed arrows represent improved optimization via sequence-level knowledge distillation."
},
"TABREF1": {
"type_str": "table",
"text": "The number of training sentences in each dataset.",
"content": "<table/>",
"html": null,
"num": null
},
"TABREF2": {
"type_str": "table",
"text": ". Models are trained either for 300,000 updates, 100 epochs, or until the",
"content": "<table><tr><td>Size</td><td colspan=\"3\">Layers FF Size Hidden Size</td></tr><tr><td>Large</td><td>12</td><td>2048</td><td>512</td></tr><tr><td>Medium</td><td>6</td><td>2048</td><td>512</td></tr><tr><td>Small</td><td>6</td><td>1024</td><td>256</td></tr><tr><td>Tiny</td><td>2</td><td>1024</td><td>256</td></tr><tr><td/><td/><td/><td>113</td></tr></table>",
"html": null,
"num": null
},
"TABREF3": {
"type_str": "table",
"text": "Hyper-parameters of various model sizes used in this work. For example, the Large Transformer model architecture uses 6 encoder and 6 decoder layers, a feed-forward hidden dimension of 2048 at each layer, and a word-embedding / hidden dimension of 512.",
"content": "<table/>",
"html": null,
"num": null
},
"TABREF4": {
"type_str": "table",
"text": "19.38 14.79 GD Lrg 37.64 26.57 20.45 wipo Lrg Rand 48.31 21.36 31.02 GD Lrg 48.56 37.08 36.80",
"content": "<table><tr><td colspan=\"2\">Domain Size Init</td><td>de-en ru-en zh-en</td></tr><tr><td>ted</td><td>Lrg Rand</td><td>29.25</td></tr><tr><td>Zhang</td><td/><td/></tr></table>",
"html": null,
"num": null
},
"TABREF6": {
"type_str": "table",
"text": "",
"content": "<table><tr><td>shows that distilling a second time us-</td></tr></table>",
"html": null,
"num": null
},
"TABREF7": {
"type_str": "table",
"text": "General-domain models, teachers and students.",
"content": "<table><tr><td colspan=\"4\">While knowledge distillation improves small and tiny</td></tr><tr><td colspan=\"4\">models, it appears medium-sized models are not under-</td></tr><tr><td colspan=\"4\">parameterized enough for knowledge distillation to im-</td></tr><tr><td colspan=\"2\">prove performance.</td><td/><td/></tr><tr><td colspan=\"2\">Domain Size</td><td colspan=\"2\">Cfg # de-en ru-en zh-en</td></tr><tr><td/><td/><td>1</td><td>27.73 19.34 15.17</td></tr><tr><td>ted</td><td>med</td><td>4</td><td>36.94 25.82 20.13</td></tr><tr><td/><td/><td>7</td><td>35.93 25.43 20.18</td></tr><tr><td/><td/><td>1</td><td>27.89 18.42 14.87</td></tr><tr><td/><td>small</td><td>4</td><td>34.78 24.10 18.84</td></tr><tr><td/><td/><td>7</td><td>35.33 24.30 19.32</td></tr><tr><td/><td/><td>1</td><td>25.78 17.48 13.03</td></tr><tr><td/><td>tiny</td><td>4</td><td>31.52 21.30 16.51</td></tr><tr><td/><td/><td>7</td><td>32.30 21.65 17.06</td></tr><tr><td/><td/><td>1</td><td>48.89 24.45 30.13</td></tr><tr><td>wipo</td><td>med</td><td>4</td><td>48.58 35.98 35.33</td></tr><tr><td/><td/><td>7</td><td>48.53 35.55 35.27</td></tr><tr><td/><td/><td>1</td><td>47.94 21.91 30.66</td></tr><tr><td/><td>small</td><td>4</td><td>48.13 35.30 34.90</td></tr><tr><td/><td/><td>7</td><td>48.31 35.18 34.52</td></tr><tr><td/><td/><td>1</td><td>44.15 21.39 27.67</td></tr><tr><td/><td>tiny</td><td>4</td><td>46.06 31.13 28.45</td></tr><tr><td/><td/><td>7</td><td>46.54 31.74 29.07</td></tr></table>",
"html": null,
"num": null
}
}
}
} |