File size: 46,088 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
{
    "paper_id": "O03-3002",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:01:55.417866Z"
    },
    "title": "Interleaving Text and Punctuations for Bilingual Sub-sentential Alignment",
    "authors": [
        {
            "first": "Wen-Chi",
            "middle": [],
            "last": "Hsie",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Tsing Hua University",
                "location": {
                    "addrLine": "101, Kuangfu Road",
                    "postCode": "300",
                    "settlement": "Hsinchu",
                    "country": "Taiwan, ROC"
                }
            },
            "email": ""
        },
        {
            "first": "Kevin",
            "middle": [],
            "last": "Yeh",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Tsing Hua University",
                "location": {
                    "addrLine": "101, Kuangfu Road",
                    "postCode": "300",
                    "settlement": "Hsinchu",
                    "country": "Taiwan, ROC"
                }
            },
            "email": ""
        },
        {
            "first": "Jason",
            "middle": [
                "S"
            ],
            "last": "Chang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Tsing Hua University",
                "location": {
                    "addrLine": "101, Kuangfu Road",
                    "postCode": "300",
                    "settlement": "Hsinchu",
                    "country": "Taiwan, ROC"
                }
            },
            "email": "jschang@cs.nthu.edu.tw"
        },
        {
            "first": "Thomas",
            "middle": [
                "C"
            ],
            "last": "Chuang",
            "suffix": "",
            "affiliation": {},
            "email": "tomchuang@cc.vit.edu.tw"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We present a new approach to aligning bilingual English and Chinese text at sub-sentential level by interleaving alphabetic texts and punctuations matches. With sub-sentential alignment, we expect to improve the effectiveness of alignment at word, chunk and phrase levels and provide finer grained and more reusable translation memory.",
    "pdf_parse": {
        "paper_id": "O03-3002",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We present a new approach to aligning bilingual English and Chinese text at sub-sentential level by interleaving alphabetic texts and punctuations matches. With sub-sentential alignment, we expect to improve the effectiveness of alignment at word, chunk and phrase levels and provide finer grained and more reusable translation memory.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Recently, there are renewed interests in using bilingual corpus for building systems for statistical machine translation (Brown et al. 1988 (Brown et al. , 1991 , including data-driven machine translation (Richardson et al. 2002) , computer-assisted revision of translation (Jutras 2000) and cross-language information retrieval (Kwok 2001 ). It is therefore useful for the bilingual corpus to be aligned at the sentence level and even subsentence level with very high precision (Moore 2002; Chuang, You and Chang 2002, Kueng and Su 2002) . Especially, for further analyses such as phrase alignment, word alignment (Ker and Chang 1997; Melamed 2000) and translation memory, high-precision alignment at sub-sentential levels would be very useful. Alignment at sub-sentential level has the potential of improving the effectiveness of alignment at word and phrase levels and providing finer grained and more reusable translation memory.",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 139,
                        "text": "(Brown et al. 1988",
                        "ref_id": null
                    },
                    {
                        "start": 140,
                        "end": 160,
                        "text": "(Brown et al. , 1991",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 205,
                        "end": 229,
                        "text": "(Richardson et al. 2002)",
                        "ref_id": null
                    },
                    {
                        "start": 274,
                        "end": 287,
                        "text": "(Jutras 2000)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 329,
                        "end": 339,
                        "text": "(Kwok 2001",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 479,
                        "end": 491,
                        "text": "(Moore 2002;",
                        "ref_id": null
                    },
                    {
                        "start": 492,
                        "end": 507,
                        "text": "Chuang, You and",
                        "ref_id": null
                    },
                    {
                        "start": 508,
                        "end": 529,
                        "text": "Chang 2002, Kueng and",
                        "ref_id": null
                    },
                    {
                        "start": 530,
                        "end": 538,
                        "text": "Su 2002)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 615,
                        "end": 635,
                        "text": "(Ker and Chang 1997;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 636,
                        "end": 649,
                        "text": "Melamed 2000)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Much work has been reported in the literature of computational linguistics on how to align sentences, while very little is touched on alignment just below the sentence level. The most effective approach for sentence alignment is the length-based approach proposed by Brown et al. (1991) and by Gale and Church (1991) . Both methods use normal distribution to model the ratio of lengths between the counterpart sentences measured in number of words or characters. Length-based approach for aligning parallel corpora has commonly been used and produces surprisingly good results for the language pair of French and English at success rates well over 96%. However, it does not perform as well for alignment of text in two distant languages such as Chinese and English. Yeh (2003) proposed a punctuation-based approach for sentence alignment which produces even high accuracy rates than the length based approach. It was pointed out that the ways different languages use punctuations are more or less similar and the correspondence of punctuations across different languages can be obtained using a small set of training data. By soft matching punctuations of the two languages in ordered comparison, the probabilities of mutual translation for a pair of bilingual sentences can be estimated more effectively than lengths. This is not surprising since the average sentence contains many punctuations which carry more information than lengths. Yeh also examined the results of punctuationbased sentence alignment and observed:",
                "cite_spans": [
                    {
                        "start": 267,
                        "end": 286,
                        "text": "Brown et al. (1991)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 294,
                        "end": 316,
                        "text": "Gale and Church (1991)",
                        "ref_id": null
                    },
                    {
                        "start": 745,
                        "end": 776,
                        "text": "Chinese and English. Yeh (2003)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "\"Although word alignment links do cross one and other a lot, they general seem not to cross the links between punctuations. It appears that we can obtain sub-sentential alignment at clause and phrase levels from the alignment of punctuation.\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "This observation indicates that in bilingual corpus pieces of text delimited by punctuations behave much the same way as sentences with non-crossing alignment links. Therefore, it is reasonable to align pieces of text ending with a couple of punctuations, much the same way as sentence alignment. Building on their work, we develop a new approach to sub-sentential alignment by interleaving the matches of alphabetic texts and punctuations. In the following, we first give an example for bilingual sub-sentential alignment in Section 2. Then we introduce our probability model in Section 3. Next, we describe experimental setup and results in Section 4. We conclude in Section 5 with discussion and future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Consider a pair of counterpart paragraphs in the official records of Hong Kong Legislative Council:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Example",
                "sec_num": "2."
            },
            {
                "text": "\"My goal is simply this -to safeguard Hong Kong's way of life. This way of life not only produces impressive material and cultural benefits; it also incorporates values that we all cherish. Our prosperity and stability underpin our way of life. But, equally, Hong Kong's way of life is the foundation on which we must build our future stability and prosperity.\" \u6211\u7684\u76ee\u6a19\u5f88\u7c21\u55ae\uff0c\u5c31\u662f\u8981\u4fdd\u969c\u9999\u6e2f\u7684\u751f\u6d3b\u65b9\u5f0f\u3002\u9019\u500b\u751f\u6d3b\u65b9\u5f0f\uff0c\uf967\u55ae\u5728\u7269\u8cea\u548c\u6587\u5316\u65b9\u9762\u70ba\u6211\u5011\u5e36\uf92d\uf9ba \u91cd\u5927\u7684\uf9dd\u76ca\uff0c\u800c\u4e14\uf901\u878d\u5408\uf9ba\u5927\u5bb6\u90fd\u73cd\u60dc\u7684\u50f9\u503c\u89c0\u3002\u9999\u6e2f\u7684\u5b89\u5b9a\u7e41\u69ae\u662f\u6211\u5011\u751f\u6d3b\u65b9\u5f0f\u7684\u652f\u67f1\u3002\u540c\u6a23\u5730\uff0c \u6211\u5011\u672a\uf92d\u7684\u5b89\u5b9a\u7e41\u69ae\uff0c\u4ea6\u5fc5\u9808\u4ee5\u9999\u6e2f\u7684\u751f\u6d3b\u65b9\u5f0f\u70ba\u57fa\u790e\u3002(Source: Oct. 7, 1992, Governor Christopher Francis Patten's address to the HK LEGCO) By sub-sentential alignment, we mean identifying the shortest possible pair of counterpart texts ending with punctuations. From the example above, the following is the intended results of sub-sentential alignment:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Example",
                "sec_num": "2."
            },
            {
                "text": "to safeguard Hong Kong's way of life. \u5c31\u662f\u8981\u4fdd\u969c\u9999\u6e2f\u7684\u751f\u6d3b\u65b9\u5f0f\u3002 This way of life not only produces impressive material and cultural benefits; \u9019\u500b\u751f\u6d3b\u65b9\u5f0f\uff0c\uf967\u55ae\u5728\u7269\u8cea\u548c\u6587\u5316\u65b9\u9762\u70ba\u6211\u5011\u5e36\uf92d\uf9ba\u91cd\u5927\u7684\uf9dd\u76ca\uff0c it also incorporates values that we all cherish. \u800c\u4e14\uf901\u878d\u5408\uf9ba\u5927\u5bb6\u90fd\u73cd\u60dc\u7684\u50f9\u503c\u89c0\u3002 Notice that longer pairs such as the following translation equivalent pair of sentences My goal is simply this -to safeguard Hong Kong's way of life. \u6211\u7684\u76ee\u6a19\u5f88\u7c21\u55ae\uff0c\u5c31\u662f\u8981\u4fdd\u969c\u9999\u6e2f\u7684\u751f\u6d3b\u65b9\u5f0f\u3002 does not fit the bill, since a finer grained subdivision into two 1-1 matches, (My goal is simply this -, \u6211\u7684 \u76ee\u6a19\u5f88\u7c21\u55ae\uff0c) and (to safeguard Hong Kong's way of life., \u5c31\u662f\u8981\u4fdd\u969c\u9999\u6e2f\u7684\u751f\u6d3b\u65b9\u5f0f\u3002) also preserve translation equivalence. Not unlike the situation in sentence alignment, there are many to one, one to many, and many to many matches. For instance, it is not possible to find a 1-1 match for \"This way of life not only produces impressive material and cultural benefits;\" since it only corresponds to \"\u9019\u500b\u751f\u6d3b \u65b9\u5f0f\uff0c\" in part. Therefore, we have to combine the subsequent clause \"\uf967\u55ae\u5728\u7269\u8cea\u548c\u6587\u5316\u65b9\u9762\u70ba\u6211\u5011 \u5e36\uf92d\uf9ba\u91cd\u5927\u7684\uf9dd\u76ca\uff0c\" for a 1-2 match.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Example",
                "sec_num": "2."
            },
            {
                "text": "In this section we describe our probability model. To do so, we will first introduce some necessary notation. Let E be an English fragment e 1 , e 2 ,\u2026,e m and C be a Chinese paragraph c 1 , c 2 ,\u2026,c n , which e i and c j is a text-fragment as described in Section 2. We define a link l(e i , c j ) for e i and c j that are translation ( or part of a translation ) of one another. We define null link l(e i , c 0 ) for e i which does not correspond to a translation. The null link l(e 0 , c j ) is defined similarly. An alignment A for two paragraphs E and C is a set of links such that every text-fragment in E and C participates in at least one link, and a text-block linked to e 0 or c 0 participates in no other links.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "We define the alignment problem as finding the alignment A that maximizes P(A|E, C). An alignment A consists of t links {l 1 , l 2 ,\u2026, l t }, where each l k = (e ik , c jk ) for some i k and j k .We will refer to consecutive",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "subsets of A as } ,..., , { 1 j i i j i l l l l + =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": ", Given this notation, P(A|E, C) can be decomposed as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "\u220f = \u2212 = = t k k k t l C E l P F E l P F E A P 1 1 1 1 ) , , | ( ) , | ( ) , | (",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "For each condition probability, given any pair e i and c j , the link probabilities can be determined directly from combining the probability of length-based model with punctuation-based model. From the paper of Gale and Church in 1993 for length-based model, we know the match probability is Prob( \u03b4 | match ) Prob(match) and Prob( \u03b4 | match ) can be estimated by",
                "cite_spans": [
                    {
                        "start": 212,
                        "end": 235,
                        "text": "Gale and Church in 1993",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "Prob( \u03b4 | match ) = 2 ( 1 -Prob( |\u03b4| ) )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "Where Prob( |\u03b4| ) is the probability that random variable, z, with a standardized ( mean zero, variance one) normal distribution, has magnitude at least as large as |\u03b4|. That is,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "Where \u222b \u221e \u2212 \u2212 = \u03b4 \u03c0 \u03b4 dz e z 2 / 2 2 1 ) Prob(",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "We compute \u03b4 directly from the length of two portions of text, l 1 and l 2 , and the two parameters, c and s 2 . (Where c is the expected number of characters in L 2 per character in L 1 , and s 2 is the variance of the number of characters in L 2 per character in L 1 .) That is,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "2 1 1 2 / ) ( s l c l l \u00d7 \u2212 = \u03b4",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": ". Then, Prob( |\u03b4| ) is computed by integrating a standard normal distribution ( with mean zero and variance 1).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "Then, from Yeh (2003), for punctuation-based model, we know:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "P pun (e i , c j ) = |) | |, (| ) , ( j i j i pc pe P pc pe P for some l k = (e i , c j )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "where e i and c i is \u03bb, one, or two punctuations, e i , c j = English and Chinese text-block pe i = the ending English punctuations of e i , i = 1, m pc j = the ending Chinese punctuations c j , j = 1, n, P(pc i , pe i ) = probability of pc i translates into pe i , Thus, for each link l k given E, C and l, we can compute the probability as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "P( l k |E, C, l k-1 ) = P( \u03b4 | match )P(match) * P pun (e i , c j ) , So \u220f = = t k k k k l P m P P F E A P 1 pun ) ( ) ( ) ( ) , | ( \u03b4",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Model",
                "sec_num": "3."
            },
            {
                "text": "In order to assess the performance of our sub-sentential alignment model, we run the system on two test cases:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "4."
            },
            {
                "text": "1. Official record of proceedings of Hong Kong Legislative Council at Oct. 7, 1992, 2 . Harry Potter Book I Chapter one.",
                "cite_spans": [
                    {
                        "start": 70,
                        "end": 85,
                        "text": "Oct. 7, 1992, 2",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "4."
            },
            {
                "text": "For probability of punctuation, we use a small set of hand aligned data which led to the following model parameters:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "4."
            },
            {
                "text": "1. Punctuation translation probability (Table 1) , 2. Sentence match type probability (Table 2) . Preliminary results shown in Table 3 indicate precision rates of 85% and 93% for the two test cases.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 39,
                        "end": 48,
                        "text": "(Table 1)",
                        "ref_id": null
                    },
                    {
                        "start": 86,
                        "end": 95,
                        "text": "(Table 2)",
                        "ref_id": null
                    },
                    {
                        "start": 127,
                        "end": 134,
                        "text": "Table 3",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "4."
            },
            {
                "text": "We propose a model interleaving length-based text alignment and punctuation alignment to carry out subsentential alignment. The method seems to work reasonably well with an average precision rate around 90% in the evaluation of a preliminary implementation. There is still a lot of room for improvement. We are currently working on identification of more punctuations useful for sub-sentential alignment, proper segmentation of text ending with punctuations, and better model for lengths of sub-sentential fragment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion and future work",
                "sec_num": "5."
            },
            {
                "text": "We are also looking into the issues of best weighting scheme of length and punctuation information. Finally, the cases where there is inverion of translated fragments are difficult to handle with length information alone. We are also preparing to work with additional lexical information to solve this kind of problem in the future.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion and future work",
                "sec_num": "5."
            }
        ],
        "back_matter": [
            {
                "text": "We acknowledge the support for this study through grants from Ministry of Education, Taiwan (MOE EX-91-E-FA06-4-4). Thanks are also due to Jim Chang for preparing the training data and evaluating the experimental results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            },
            {
                "text": " Table A . all incorrect alignments of this experiment. Shaded parts indicate imprecision in alignment results. We calculated the precision rates by dividing the number of unshaded sentences (counting both English and Chinese sentences) by total number of sentences proposed. Since we did not exclude aligned pair using a threshold, the recall rate should be the same as the precision rate.Sub-sentence alignment based on length and punctuation English text Chinese Text Now is the time to show how we mean to prepare for Hong Kong's future under that far-sighted concept, \u73fe\u5728\u4e5f\u662f\u6642\u5019\u8868\u660e\u6211\u5011\u6253\u7b97\u600e\u6a23\u6309\u7167\u300c\u4e00\u570b\uf978\u5236\u300d \u9019\u500b\u6975\u5177\u9060\ufa0a\u7684\u69cb\u601d\uff0c \"one country, two systems\". \u70ba\u9999\u6e2f\u7684\u672a\uf92d\u4f5c\u597d\u6e96\u5099\u3002 -we shall maintain an economy which continues to thrive and prosper, \u2500 \u6211\u5011\uf965\u53ef\uf9a8\u7d93\u6fdf\u6301\u7e8c\u7e41\u69ae\u84ec\u52c3\uff0c\u5275\u9020\u6240\u9700\u8ca1 \u5bcc\uff0c generating the wealth required to provide the standards of public service that people rightly demand; \u4f7f\u63d0\u4f9b\u7684\u516c\u5171\u670d\u52d9\uff0c\u80fd\u9054\u5230\u5e02\u6c11\u8981\u6c42\u7684\u5408\uf9e4\u6c34\u5e73\uff1b Our prescription for prosperity is straightforward. \u6211\u5011\u7de0\u9020\u7e41\u69ae\u7684\u914d\u65b9\u6e05\u695a\u7c21\u55ae\u3002\u6211\u5011\u76f8\u4fe1\uff0cWe believe that businessmen not politicians or officials make the best commercial decisions.\u6700\u4f73\u7684\u5546\u696d\u6c7a\u5b9a\u662f\u7531\u5546\u4eba\uff0c\u800c\uf967\u662f\u7531\u653f\u6cbb\u5bb6\u6216\u653f\u5e9c \u5b98\u54e1\u4f5c\u51fa\u7684\u3002 We believe that government spending must follow not outpace economic growth.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1,
                        "end": 8,
                        "text": "Table A",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Appendix",
                "sec_num": null
            },
            {
                "text": "We believe in competition within a sound, \u800c\uf967\u61c9\u8d85\u903e\u7d93\u6fdf\u589e\u9577\u3002\u6211\u5011\uf901\u76f8\u4fe1\uff0c fair framework of regulation and law. \u61c9\u5728\u5065\u5168\u800c\u516c\u5e73\u7684\u6cd5\u898f\u4e0b\u9032\ufa08\u7af6\u722d\u3002 I am inviting distinguished members of the business community to join it.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u6211\u5011\u76f8\u4fe1\uff0c\u653f\u5e9c\u958b\u652f\u5fc5\u9808\u8ddf\u96a8\u7d93\u6fdf\u589e\u9577\uff0c",
                "sec_num": null
            },
            {
                "text": "Their mandate will be to advise me on: \u5c31\u4e0b\u958b\u4e8b\u9805\u5411\u6211\u63d0\u4f9b\u610f\ufa0a\uff1a",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u4e26\u6703\u9080\u8acb\u5546\u754c\u5091\u51fa\u4eba\u58eb\u52a0\u5165\u3002\u4ed6\u7684\u8077\u8cac\u662f\uff0c",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Word Association Norms, Mutual Information, and Lexicography",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Church",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Hank",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Computational Linguistics",
                "volume": "16",
                "issue": "1",
                "pages": "22--29",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Church, K and P. Hank, \"Word Association Norms, Mutual Information, and Lexicography,\" Computational Lin- guistics, 16:1, 1990, pp. 22-29.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "First International Conference on Language Resources & Evaluation: Proceedings",
                "authors": [
                    {
                        "first": "Chinese",
                        "middle": [],
                        "last": "Sproat",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Word Segmentation",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "417--420",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sproat, Chinese Word Segmentation, First International Conference on Language Resources & Evaluation: Pro- ceedings, 1998, pp. 417-420.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A statistical method for finding word boundaries in Chinese text",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Sproat",
                        "suffix": ""
                    },
                    {
                        "first": "Chilin",
                        "middle": [],
                        "last": "Shih",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Computer Processing of Chinese & Oriental Languages",
                "volume": "4",
                "issue": "4",
                "pages": "336--351",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Sproat, Chilin Shih, 1990, A statistical method for finding word boundaries in Chinese text. Computer Processing of Chinese & Oriental Languages, 4(4): 336-351.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A stochastic finite-state word-segmentation algorithm for chinese",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Sproat",
                        "suffix": ""
                    },
                    {
                        "first": "Chilin",
                        "middle": [],
                        "last": "Shih",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Gale",
                        "suffix": ""
                    },
                    {
                        "first": "Nancy",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Computational Linguistics",
                "volume": "22",
                "issue": "3",
                "pages": "377--404",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Sproat, Chilin Shih, William Gale, and Nancy Chang. 1996. A stochastic finite-state word-segmentation algo- rithm for chinese. Computational Linguistics, 22(3): 377-404.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Aligning sentences in parallel corpora",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "F"
                        ],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Lai",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "L"
                        ],
                        "last": "Mercer",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "29th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "169--176",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brown, P. F., J. C. Lai and R. L. Mercer (1991), 'Aligning sentences in parallel corpora', in 29th Annual Meeting of the Associa- tion for Computational Linguistics, Berkeley, CA, USA. pp. 169-176.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Aligning Sentences in Bilingual Corpora Using Lexical Information",
                "authors": [
                    {
                        "first": "Stanley",
                        "middle": [
                            "F"
                        ],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Lecture Notes in Artificial Intelligence",
                "volume": "2499",
                "issue": "",
                "pages": "21--30",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chen, Stanley F. (1993), Aligning Sentences in Bilingual Corpora Using Lexical Information. In Proceedings Chuang, T., G.N. You, J.S. Chang (2002) Adaptive Bilingual Sentence Alignment, Lecture Notes in Artificial Intelligence 2499, 21-30.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A program for aligning sentences in bilingual corpus",
                "authors": [
                    {
                        "first": "William",
                        "middle": [
                            "A"
                        ],
                        "last": "Gale",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Kenneth",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Church",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "",
                "pages": "75--102",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gale, William A. & Kenneth W. Church (1993), A program for aligning sentences in bilingual corpus. In Computational Linguistics, vol. 19, pp. 75-102.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "An Automatic Reviser: The TransCheck System",
                "authors": [
                    {
                        "first": "J-M",
                        "middle": [],
                        "last": "Jutras",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. of Applied Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "127--134",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jutras, J-M 2000. An Automatic Reviser: The TransCheck System, In Proc. of Applied Natural Language Processing, 127-134.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A class-based approach to word alignment",
                "authors": [
                    {
                        "first": "Sue",
                        "middle": [
                            "J"
                        ],
                        "last": "Ker",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Jason",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Computational Linguistics",
                "volume": "23",
                "issue": "",
                "pages": "313--344",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ker, Sue J. & Jason S. Chang (1997), A class-based approach to word alignment. In Computational Linguistics, 23:2, pp. 313-344.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A Robust Cross-Domain Bilingual Sentence Alignment Model",
                "authors": [
                    {
                        "first": "T",
                        "middle": [
                            "L"
                        ],
                        "last": "Kueng",
                        "suffix": ""
                    },
                    {
                        "first": "Keh-Yih",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 19th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kueng, T.L. and Keh-Yih Su, 2002. A Robust Cross-Domain Bilingual Sentence Alignment Model, In Proceedings of the 19th International Conference on Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "NTCIR-2 Chinese, Cross-Language Retrieval Experiments Using PIRCS",
                "authors": [
                    {
                        "first": "K",
                        "middle": [
                            "L"
                        ],
                        "last": "Kwok",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of the Second NTCIR Workshop Meeting",
                "volume": "",
                "issue": "",
                "pages": "14--20",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kwok, KL. 2001. NTCIR-2 Chinese, Cross-Language Retrieval Experiments Using PIRCS. In Proceedings of the Second NTCIR Workshop Meeting, pp. (5) 14-20, National Institute of Informatics, Japan.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "A portable algorithm for mapping bitext correspondence",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Melamed",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dan",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "The 35th Conference of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Melamed, I. Dan (1997), A portable algorithm for mapping bitext correspondence. In The 35th Conference of the Association for Computational Linguistics (ACL 1997), Madrid, Spain.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Sentence and word alignment between Chinese and English",
                "authors": [
                    {
                        "first": "Scott",
                        "middle": [],
                        "last": "Piao",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Songlin",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Piao, Scott Songlin 2000 Sentence and word alignment between Chinese and English. Ph.D. thesis, Lancaster University.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "num": null,
                "content": "<table><tr><td>English</td><td>Chinese</td><td>Match</td><td/><td/><td>Match Type</td><td>Probability</td></tr><tr><td>Pun.</td><td>Pun.</td><td colspan=\"3\">Type Counts Probability</td><td>1-0</td><td>0.000197</td></tr><tr><td>,</td><td>\uff0c</td><td>1-1</td><td>541</td><td>0.809874</td><td>0-1</td><td>0.000197</td></tr><tr><td>,</td><td>\u3001</td><td>1-1</td><td>56</td><td>0.083832</td><td>1-1</td><td>0.6513</td></tr><tr><td>,</td><td>\u3002</td><td>1-1</td><td>41</td><td>0.061377</td><td>2-2</td><td>0.0066</td></tr><tr><td>,</td><td>\u300c</td><td>1-1</td><td>10</td><td>0.01497</td><td>1-2</td><td>0.0526</td></tr><tr><td>,</td><td>\uff1a</td><td>1-1</td><td>5</td><td>0.007485</td><td>2-1</td><td>0.1776</td></tr><tr><td>,</td><td>\uff1b</td><td>1-1</td><td>4</td><td>0.005988</td><td>Other</td><td>0.0066</td></tr></table>",
                "text": "Punctuation Translation probability Match probability of clauses",
                "html": null,
                "type_str": "table"
            },
            "TABREF1": {
                "num": null,
                "content": "<table><tr><td>Test cases</td><td># of para-graphs</td><td colspan=\"2\"># of matches # of correct matches</td><td>Precision (%)</td></tr><tr><td>Official record of proceedings</td><td/><td/><td/><td/></tr><tr><td>of Hong Kong Legislative</td><td>10</td><td>188</td><td>174</td><td>93</td></tr><tr><td>Council</td><td/><td/><td/><td/></tr><tr><td>Harry Potter Book I Chapter 1</td><td>110</td><td>634</td><td>540</td><td>85</td></tr></table>",
                "text": "Performance evaluation for the two test cases",
                "html": null,
                "type_str": "table"
            }
        }
    }
}