File size: 59,852 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
{
    "paper_id": "O04-1011",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:00:18.917109Z"
    },
    "title": "Pronominal and Sortal Anaphora Resolution for Biomedical Literature",
    "authors": [
        {
            "first": "Yu-Hsiang",
            "middle": [],
            "last": "Lin",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Chiao Tung University Hsinchu",
                "location": {
                    "country": "Taiwan"
                }
            },
            "email": ""
        },
        {
            "first": "Tyne",
            "middle": [],
            "last": "Liang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Chiao Tung University Hsinchu",
                "location": {
                    "country": "Taiwan"
                }
            },
            "email": "tliang@cis.nctu.edu.tw"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Anaphora resolution is one of essential tasks in message understanding. In this paper resolution for pronominal and sortal anaphora, which are common in biomedical texts, is addressed. The resolution was achieved by employing UMLS ontology and SA/AO (subject-action/action-object) patterns mined from biomedical corpus. On the other hand, sortal anaphora for unknown words was tackled by using the headword collected from UMLS and the patterns mined from PubMed. The final set of antecedents finding was decided with a salience grading mechanism, which was tuned by a genetic algorithm at its best-input feature selection. Compared to previous approach on the same MEDLINE abstracts, the presented resolution was promising for its 92% F-Score in pronominal anaphora and 78% F-Score in sortal anaphora.",
    "pdf_parse": {
        "paper_id": "O04-1011",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Anaphora resolution is one of essential tasks in message understanding. In this paper resolution for pronominal and sortal anaphora, which are common in biomedical texts, is addressed. The resolution was achieved by employing UMLS ontology and SA/AO (subject-action/action-object) patterns mined from biomedical corpus. On the other hand, sortal anaphora for unknown words was tackled by using the headword collected from UMLS and the patterns mined from PubMed. The final set of antecedents finding was decided with a salience grading mechanism, which was tuned by a genetic algorithm at its best-input feature selection. Compared to previous approach on the same MEDLINE abstracts, the presented resolution was promising for its 92% F-Score in pronominal anaphora and 78% F-Score in sortal anaphora.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Anaphora resolution is one of essential tasks in message understanding as well as knowledge discovering. For example recognizing biomedical relations among biomedical entities from research literature like MEDLINE database requires anaphora resolution for those mentioned entities from texts. There are different types of anaphora to be solved like pronominal, sortal (definite), zero, event, and coreference anaphora. In biomedical literature, pronominal anaphora and sortal anaphora are the two common anaphora phenomena. Pronominal anaphora is that mentioned entity is substituted by the pronoun. Sortal (definite) anaphora occurs in the situation that a noun phrase is referred by its general concept entity. Definite noun phrases are noun phrases stating with demonstrative articles, such as those, this, both, each and these or starting with a definite article.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Generally identifying antecedents of an anaphor can be handled by using syntactic, semantic or pragmatic clues. In past literature, syntax-oriented approaches for general texts can be found in [Hobbs, 76 ; Lappin and Leass 94; Kennedy and Boguraev 96] in which syntactic representations like grammatical role of noun phrases were used.",
                "cite_spans": [
                    {
                        "start": 193,
                        "end": 200,
                        "text": "[Hobbs,",
                        "ref_id": null
                    },
                    {
                        "start": 201,
                        "end": 203,
                        "text": "76",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "On the other hand more information other than syntactic information like co-occurring patterns obtained from the corpus was employed during antecedent finding in [Dagan and Itai, 90] . Information with limited knowledge and linguistic resources for resolving pronouns were found in [Baldwin, 97] . In [Denber, 98, Mitkov, 02] , more knowledge from the outer resource like WordNet was employed in solving anaphora. Similarly WordNet together with additional heuristic rules were applied for resolving pronominal anaphora in [Liang and Wu, 04] which animacy information is obtained by analyzing the hierarchical relation of nouns and verbs in the surrounding context learned from WordNet.",
                "cite_spans": [
                    {
                        "start": 162,
                        "end": 178,
                        "text": "[Dagan and Itai,",
                        "ref_id": null
                    },
                    {
                        "start": 179,
                        "end": 182,
                        "text": "90]",
                        "ref_id": null
                    },
                    {
                        "start": 282,
                        "end": 291,
                        "text": "[Baldwin,",
                        "ref_id": null
                    },
                    {
                        "start": 292,
                        "end": 295,
                        "text": "97]",
                        "ref_id": null
                    },
                    {
                        "start": 301,
                        "end": 309,
                        "text": "[Denber,",
                        "ref_id": null
                    },
                    {
                        "start": 310,
                        "end": 313,
                        "text": "98,",
                        "ref_id": null
                    },
                    {
                        "start": 314,
                        "end": 321,
                        "text": "Mitkov,",
                        "ref_id": null
                    },
                    {
                        "start": 322,
                        "end": 325,
                        "text": "02]",
                        "ref_id": null
                    },
                    {
                        "start": 523,
                        "end": 537,
                        "text": "[Liang and Wu,",
                        "ref_id": null
                    },
                    {
                        "start": 538,
                        "end": 541,
                        "text": "04]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In biomedical literature, it was found that sortal anaphors are prevalent in the texts like MEDLINE abstracts [Casta\u00f1o et al., 02] . To deal this type of anaphora, Casta\u00f1o et al.",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 126,
                        "text": "[Casta\u00f1o et al.,",
                        "ref_id": null
                    },
                    {
                        "start": 127,
                        "end": 130,
                        "text": "02]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "[02] used UMLS (Unified Medical Language System) as ontology to tag semantic type for each noun phrase and used some significant verbs in biomedical domain to extract most frequent semantic types associated to agent (subject) and patient (object) role of SA/AO-patterns. The result showed SA/AO-pattern could gain increase in both precision (76% to 80%) and recall (67% to 71%). In [Hahn et al., 02] , a center list mechanism was presented to relate each noun to those nouns appearing in a previous sentence anaphora. Gaizauskas et al. [03] presented a predefined domain rules for ensuring co-referent between two bio-entities so that implicit relations between two entities could be recognized.",
                "cite_spans": [
                    {
                        "start": 382,
                        "end": 395,
                        "text": "[Hahn et al.,",
                        "ref_id": null
                    },
                    {
                        "start": 396,
                        "end": 399,
                        "text": "02]",
                        "ref_id": null
                    },
                    {
                        "start": 518,
                        "end": 535,
                        "text": "Gaizauskas et al.",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, the anaphora resolution for biomedical literature is achieved by employing UMLS ontology and syntactic information. The proposed system identifies both intra-sentential and inter-sentential antecedents of anaphors. In addition, anaphora resolution for unknown words has concerned in this paper by using headword mining and patterns mined from PubMed search results. Determining semantic coercion type of pronominal anaphor is done by SA/AO patterns, which were pre-collected from GENIA 3.02p corpus, a MEDLINE corpus annotated by Ohta et al. [02] . The final set of antecedents finding is decided with a salience grading mechanism, which is tuned by a genetic algorithm at its best-input feature selection. Compared to previous approach on the same MEDLINE abstracts, the presented resolution is promising for its 92% F-Score in pronominal anaphora and 78% F-Score in sortal anaphora. ",
                "cite_spans": [
                    {
                        "start": 545,
                        "end": 561,
                        "text": "Ohta et al. [02]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper we used co-occurring SA/AO patterns obtained from GENIA corpus for pronominal anaphora resolution. Then we tag subjects and objects with UMLS-semantic type tags. Each SA/AO pattern is scored by the scoring function (Eq. 1). The antecedent candidates are concerned if their scores are greater than a given threshold. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SA/AO Patterns Collection",
                "sec_num": "2.1"
            },
            {
                "text": "For unknown words, we need to predict their semantic types of the word. In [Pustejovsky et al., 02] , they use the righthand head rule (the head of a morphologically complex word to be the righthand member of that word) to extract headwords to be subtype of the semantic type in UMLS. Table 1 is an example for headword 'receptor' which changes other noun phrase which were tagged with different semantic into 'Amino Acid, Peptide, or Protein'. 'Adhesion' is tagged with 'Acquired Abnormality, Disease or Syndrome' but 'adhesion receptor' becomes the tag of 'Amino Acid, Peptide, or Protein' by addition of 'receptor'. We collected all UMLS concepts and their corresponding synonyms, and then selected headwords for each semantic type (super-concept). For example, concept 'interleukin-2' has synonyms 'Costimulator', 'Co-Simulator', 'IL 2', and 'interleukine 2'. We collected 'interleukin', 'costimulator', 'simulator', 'IL', and 'interleukine' as headwords for 'interleukin-2'. Then, we found semantic types of 'interlukin-2' is 'Amino Acid, Peptide, or Protein' and 'Immunologic Factor'. We assigned synonym headwords of 'interleukin-2' into both semantic types. Eq. 2 was designed to score each headword for each semantic type. The scoring function smoothes the semantic type size.",
                "cite_spans": [
                    {
                        "start": 75,
                        "end": 95,
                        "text": "[Pustejovsky et al.,",
                        "ref_id": null
                    },
                    {
                        "start": 96,
                        "end": 99,
                        "text": "02]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 285,
                        "end": 292,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Headword Collection",
                "sec_num": "2.2"
            },
            {
                "text": ") 2 ( 1 , i j i j i tw c Max w w \u00d7 = w i,j :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Headword scoring function:",
                "sec_num": null
            },
            {
                "text": "score of word i in semantic type j w i : count of word i in semantic type j Max c j :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Headword scoring function:",
                "sec_num": null
            },
            {
                "text": "Max count of word k in semantic type j tw i : count of semantic types that word i occurs in",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Headword scoring function:",
                "sec_num": null
            },
            {
                "text": "After input untagged documents, we go through POS tagging and NP Chunking these preprocessing will give us more information about the documents.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessor",
                "sec_num": "2.3"
            },
            {
                "text": "Grammatical function is defined as creating a systematic link between the syntactic relation of arguments and their encoding in lexical structure. For anaphora resolution, grammatical function is an important feature of salience grading. We extended rules from Siddharthan [03], from following rules 1~4 to rules 1~6. Rule 5 and rule 6 were presented for dealing those anaphors that have plural antecedents. We use syntactic agreement with first antecedent to find other antecedents. Without rules 5 and 6, 'anti-CD4 mAb' in Example 1 will not be found when resolving 'they''s antecedents.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Grammatical Function Extraction",
                "sec_num": "2.4"
            },
            {
                "text": "\"Whereas different anti-CD4 mAb or HIV-1 gp120 could all trigger activation of the ..., they differed\u2026\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Example 1:",
                "sec_num": null
            },
            {
                "text": "Anaphor and antecedent recognition are the two main parts of the anaphora resolution system. Anaphor recognition is to recognize the target anaphora by filtering strategies. Antecedent recognition is to determine appropriate antecedents with respect to the target anaphor.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Anaphora Resolution",
                "sec_num": "3"
            },
            {
                "text": "Noun phrases or prepositional phrases with 'it', 'its', 'itself', 'they', 'them', 'themselves' and 'their' are considered as pronominal anaphor. 'it', 'its', and 'itself' are considered as anaphor which has singular number of antecedent, others are considered as anaphor which has plural number of antecedents. Relative pronouns 'which' and 'that' are also pronominal anaphors but these anaphors can use a simple rule, point to the nearest noun phrase or prepositional phrase, to find its antecedent or point to the relative clause behind when paired with a pleonastic-it.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Anaphora Recognition",
                "sec_num": "3.1"
            },
            {
                "text": "Noun phrases or prepositional phrases with 'either', 'this', 'both', 'these', 'the', and 'each' are considered as candidates of sortal anaphors. Noun phrases or prepositional phrases with 'this' or 'the+ singular noun' are considered as anaphors which have singular antecedent. Anaphor with plural number of antecedents are shown in Table 2 . \"Furthermore, the same experimental model makes it possible to image lymphoid progenitors in fetal and adult hematopoietic tissues.\"",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 333,
                        "end": 340,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Anaphora Recognition",
                "sec_num": "3.1"
            },
            {
                "text": "Sortal anaphora recognition was done by filtering those sortal anaphor, which have no referent antecedent or which have antecedents but not in the defined biomedical semantic types. Following two rules are used to filter out those un-target anaphors. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sortal Anaphora Recognition",
                "sec_num": "3.1.2"
            },
            {
                "text": "Number is the quantity that distinguishes between singular (one entity) and plural (numerous entities). It makes the process of deciding candidates easier since they must be consistent in number. All noun phrases and pronouns are annotated with number (singular or plural). For a specified pronoun, we can discard those noun phrases whose numbers differ from the pronoun. With singular antecedent anaphor, plural noun phrases are not considered as possible candidates.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Number Agreement Checking",
                "sec_num": "3.2"
            },
            {
                "text": "Salience grade for each candidate antecedent is assigned according to Table 3 . Each candidate antecedent is assigned with zero at initial state.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 70,
                        "end": 77,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Salience Grading",
                "sec_num": "3.3"
            },
            {
                "text": "Recency is a feature about distance between an anaphor and candidate antecedents. The closer between an anaphor and a candidate antecedent, the more chance the anaphor points to this candidate antecedent. For grammatical role agreement, if we use same entity in the second sentence and in the same role, it is easy for readers to identify which antecedent that the anaphor points to, so an author might use anaphor instead of full name of the entity. In addition to role agreement, subjects and objects are important role in sentence, which may be mentioned many times and writer might use an anaphor to replace a previously mentioned items. Singular anaphors may only point to one antecedent, while plural anaphors usually points to plural antecedents. For the feature of semantic type agreement, when we mention entity the second time, it is common for us to use its hypernym concept. Therefore such feature will receive high weights at salience grading. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Salience Grading",
                "sec_num": "3.3"
            },
            {
                "text": "For pronominal anaphora, we collected coercion semantic type between verb and headword by GENIA SA/AO patterns, and we generalized subjects and objects by using UMLS semantic types. For a pronoun, we tagged the pronoun with coercion semantic types on the basis of SA/AO pattern.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Antecedent and Anaphor Semantic Type Agreement",
                "sec_num": "3.3.1"
            },
            {
                "text": "Sortal anaphoras are dealt by checking semantic agreement between anaphor and antecedent. So, all noun phrases and prepositional phrases will be tagged in advance by following steps.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Antecedent and Anaphor Semantic Type Agreement",
                "sec_num": "3.3.1"
            },
            {
                "text": "(1) UMLS type check (2) The Antecedent contains the headword in the anaphor's semantic type.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Antecedent and Anaphor Semantic Type Agreement",
                "sec_num": "3.3.1"
            },
            {
                "text": "(3) If there is no headword found in antecedent then check {anaphor, antecedent} pair by using PubMed For {anaphor, antecedent} pair {The nmd mouse mutation, of a second site suppressor allele}, we created query1 :<anaphor: \"The nmd mouse mutation\", antecedent: \"of a second site suppressor allele\"> and query2: <antecedent: \"of a second site suppressor allele\">. Queries are used to query from PubMed website and Eq. 3 was used to score the antecedent for semantic type agreement. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Antecedent and Anaphor Semantic Type Agreement",
                "sec_num": "3.3.1"
            },
            {
                "text": "The use of the LCS exploits the fact that the anaphor and its antecedents are morphological variants of each other (e.g., the anaphor \"the grafts\" and the antecedent \"xenografts\") [Casta\u00f1o, 02] . We score each anaphor and candidate antecedent as follows:",
                "cite_spans": [
                    {
                        "start": 180,
                        "end": 189,
                        "text": "[Casta\u00f1o,",
                        "ref_id": null
                    },
                    {
                        "start": 190,
                        "end": 193,
                        "text": "02]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Longest Common Subsequence (LCS)",
                "sec_num": "3.3.2"
            },
            {
                "text": "If total match between a anaphor and its candidate antecedents then salience score = salience score + 3 Else if partial match between a anaphor and its candidate antecedents then salience score = salience score + 2 Else if one antecedent match its anaphor hyponym by WordNet 2.0 then salience score = salience score + 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Longest Common Subsequence (LCS)",
                "sec_num": "3.3.2"
            },
            {
                "text": "We search noun phrases or prepositional phrases in range of two sentences preceding the anaphor. We count salience grader scores for each noun phrase. Antecedents are selected by using best fit or nearest fit strategy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Antecedent Selection",
                "sec_num": "3.3.3"
            },
            {
                "text": "(1) Best Fit: select antecedents with the highest salience score that is greater than threshold (2) Nearest Fit: Select the nearest antecedents whose salience value is greater than a given threshold, and find candidate antecedents from the anaphor to the two sentences ahead",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Antecedent Selection",
                "sec_num": "3.3.3"
            },
            {
                "text": "We have identified the number of antecedents for its corresponding anaphor. If an anaphor is identified to have plural antecedents, we will use following steps to choose antecedents.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Antecedent Selection",
                "sec_num": "3.3.3"
            },
            {
                "text": "(1) If the number of antecedents is identified, set the highest number of noun phrases or prepositional phrases to the anaphor. (2) If the number of antecedents is unknown, find those noun phrases and prepositional phrases that are greater than a given threshold and they have the same patterns as the top-score noun phrase or prepositional phrase.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Antecedent Selection",
                "sec_num": "3.3.3"
            },
            {
                "text": "Feature selection for salience grading was implemented with a genetic algorithm which can get the best features by choosing best parents to produce offspring leave local maximum by mutation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Selection",
                "sec_num": "3.3.4"
            },
            {
                "text": "In the initial state, we chose features (10 chromosomes), and chose crossover feature to produce offspring randomly. We calculated mutations for each feature in each chromosome, and found about two features to be mutated in each generation. Max F-Score was used to evaluate each chromosome and top 10 chromosomes were chosen for next generation. The algorithm terminated if two contiguous generations did not increase the F-score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Selection",
                "sec_num": "3.3.4"
            },
            {
                "text": "The test corpus, Medstract, was adopted from (http://www.medstract.org/), containing 32 MEDLINE abstracts and 83 anaphora pairs (26 pronominal and 57 sortal pairs). For pronominal anaphora, we tagged another 103 MEDLINE abstracts (103-MEDEDLINSs) corpus which contains 177 pronominal anaphora pairs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Analysis",
                "sec_num": "3.4"
            },
            {
                "text": "From the experimental results in Table 4 , best fit strategy performed better than the nearest first strategy. In addition, the features selected by the genetic algorithm indicated that syntactic features affect pronominal anaphora, and semantic features will impacts on both sortal and pronominal anaphora. The impact of each feature was also concerned and verified with the same corpus. Syntactic features (F1~F4) play insignificant roles in sortal resolution but they are useful for pronominal anaphora resolution. Sortal anaphora resolution are sensitive to semantic features (F5~F7), semantic type agreement plays an important role in sortal anaphora resolution. In addition to UMLS, headwords and PubMed search results were used to determine semantic type agreement between anaphor and antecedents. Table 5 shows F3 increases F-score in pronominal anaphora but drop F-score in sortal anaphora. Medstract and 103-MEDLINEs results show semantic type match is important in both sortal and pronominal anaphora. Table 6 shows F-score when removing headword and PubMed query result. Headword features show improvement in F-score because the semantic type of new words become precisely. PubMed query results improved little in F-score may because we only use co-occurrence information was concerned. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 33,
                        "end": 40,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 805,
                        "end": 812,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 1013,
                        "end": 1020,
                        "text": "Table 6",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments and Analysis",
                "sec_num": "3.4"
            },
            {
                "text": "In this paper, pronominal and sortal anaphora which are common phenomenal in biomedical texts are discussed. The pronominal anaphora processing was achieved by syntactic and semantic features, while sortal anaphora was tackled by semantic features. For new biomedical entities to UMLS, we solve the entities semantic agreement by using headword mining and patterns mine from PubMed query results. Experiment results showed the proposed strategies indeed enhance the resolution in terms of higher F-Score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "4"
            }
        ],
        "back_matter": [
            {
                "text": "This research is partially supported by MediaTek Research Center, National Chiao Tung University, Taiwan.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgement",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "CogNIAC: high precision coreference with limited knowledge and linguistic resources",
                "authors": [
                    {
                        "first": "Breck",
                        "middle": [],
                        "last": "Baldwin",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proceedings of the ACL'97/EACL'97 workshop on Operational factors in practical, robust anaphora resolution",
                "volume": "",
                "issue": "",
                "pages": "38--45",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Breck Baldwin, \"CogNIAC: high precision coreference with limited knowledge and linguistic resources,\" In Proceedings of the ACL'97/EACL'97 workshop on Operational factors in practical, robust anaphora resolution, 1997, pp. 38-45.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Anaphora Resoution in Biomedical Literature",
                "authors": [
                    {
                        "first": "Jos\u00e9",
                        "middle": [],
                        "last": "Casta\u00f1o",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Hames",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "In International Symposium on Reference Resolution",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jos\u00e9 Casta\u00f1o, Jason Zhang, Hames Pustejovsky, \"Anaphora Resoution in Biomedical Literature,\" In International Symposium on Reference Resolution, 2002",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Automatic processing of large corpora for the resolution of anaphora references",
                "authors": [
                    {
                        "first": "Ido",
                        "middle": [],
                        "last": "Dagan",
                        "suffix": ""
                    },
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Itai",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Proceedings of the 13th International Conference on Computational Linguistics (COLING'90)",
                "volume": "III",
                "issue": "",
                "pages": "1--3",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ido Dagan and Alon Itai, \"Automatic processing of large corpora for the resolution of anaphora references,\" In Proceedings of the 13th International Conference on Computational Linguistics (COLING'90), Vol. III, 1-3, 1990.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Automatic resolution of anaphora in English",
                "authors": [
                    {
                        "first": "Michel",
                        "middle": [],
                        "last": "Denber",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michel Denber, \"Automatic resolution of anaphora in English,\" Technical report, Eastman Kodak Co. , 1998.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Creating Knowledge Repositories from Biomedical Reports:The MEDSYNDIKATE Text Mining System",
                "authors": [
                    {
                        "first": "Udo",
                        "middle": [],
                        "last": "Hahn",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Romacker",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Pacific Symposium on Biocomputing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Udo Hahn and Martin Romacker, \"Creating Knowledge Repositories from Biomedical Reports:The MEDSYNDIKATE Text Mining System, \"In Pacific Symposium on Biocomputing, 2002",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Pronoun resolution",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hobbs",
                        "suffix": ""
                    }
                ],
                "year": 1976,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Hobbs, \"Pronoun resolution,\" Research Report 76-1, Department of Computer Science, City College, City University of New York, August 1976",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Protein Structures and Information Extraction from Biological Texts: The PASTA System",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Gaizauskas",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Demetriou",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "J"
                        ],
                        "last": "Artymiuk",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Willett",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "In Bioinformatics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Gaizauskas, G. Demetriou, P.J. Artymiuk and P. Willett, \"Protein Structures and Information Extraction from Biological Texts: The PASTA System,\" In Bioinformatics 2003",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Anaphora for everyone: Pronominal anaphora resolution without a parser",
                "authors": [
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Kennedy",
                        "suffix": ""
                    },
                    {
                        "first": "Branimir",
                        "middle": [],
                        "last": "Boguraev",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceedings of the 16 th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "113--118",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christopher Kennedy and Branimir Boguraev, \"Anaphora for everyone: Pronominal anaphora resolution without a parser,\" In Proceedings of the 16 th International Conference on Computational Linguistics, 1996, pp.113-118.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "An Algorithm for Pronominal Anaphora Resolution",
                "authors": [
                    {
                        "first": "Shalom",
                        "middle": [],
                        "last": "Lappin",
                        "suffix": ""
                    },
                    {
                        "first": "Herbert",
                        "middle": [],
                        "last": "Leass",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Computational Linguistics",
                "volume": "20",
                "issue": "4",
                "pages": "535--561",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shalom Lappin and Herbert Leass, \"An Algorithm for Pronominal Anaphora Resolution,\" Computational Linguistics, Volume 20, Part 4, 1994, pp. 535-561.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Automatic Pronominal Anaphora Resolution in English Texts",
                "authors": [
                    {
                        "first": "Tyne",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Dian-Song",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Computational Linguistics and Chinese Language Processing",
                "volume": "9",
                "issue": "",
                "pages": "21--40",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tyne Liang and Dian-Song Wu, \"Automatic Pronominal Anaphora Resolution in English Texts,\" In Computational Linguistics and Chinese Language Processing Vol.9, No.1, 2004, pp. 21-40",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Robust pronoun resolution with limited knowledge",
                "authors": [
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Mitkov",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Proceedings of the 18th International Conference on Computational Linguistics (COLING'98)/ACL'98 Conference",
                "volume": "",
                "issue": "",
                "pages": "869--875",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruslan Mitkov, \"Robust pronoun resolution with limited knowledge, \" In Proceedings of the 18th International Conference on Computational Linguistics (COLING'98)/ACL'98 Conference Montreal, Canada. 1998, pp. 869-875.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Anaphora Resolution: The State of the Art",
                "authors": [
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Mitkov",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Working paper (Based on the COLING'98/ACL'98 tutorial on anaphora resolution)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruslan Mitkov, \"Anaphora Resolution: The State of the Art,\" Working paper (Based on the COLING'98/ACL'98 tutorial on anaphora resolution), 1999.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Evaluation tool for rule-based anaphora resolution methods",
                "authors": [
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Mitkov",
                        "suffix": ""
                    },
                    {
                        "first": "Catalina",
                        "middle": [],
                        "last": "Barbu",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proeedings of ACL'01",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruslan Mitkov and Catalina Barbu, \"Evaluation tool for rule-based anaphora resolution methods,\" In Proeedings of ACL'01, Toulouse, 2001.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "A new fully automatic version of Mitkov's knowledge-poor pronoun resolution method",
                "authors": [
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Mitkov",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Evans",
                        "suffix": ""
                    },
                    {
                        "first": "Constantin",
                        "middle": [],
                        "last": "Orasan",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Proceedings of CICLing-2000",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruslan Mitkov, Richard Evans and Constantin Orasan, \"A new fully automatic version of Mitkov's knowledge-poor pronoun resolution method,\" In Proceedings of CICLing-2000, Mexico City, Mexico.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "GENIA corpus: A Semantically Annotated Corpus in Molecular Biology Domain",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Ohta",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Tateisi",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "Z"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Tsujii",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "the Proceedings of the ninth International Conference on Intelligent Systems for Molecular Biology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Ohta, Y. Tateisi, J.D. Kim, S.Z. Lee and J. Tsujii. \"GENIA corpus: A Semantically Annotated Corpus in Molecular Biology Domain.\" In the Proceedings of the ninth International Conference on Intelligent Systems for Molecular Biology (ISMB 2001) poster session. pp. 68. 2001.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Rerendering Semantic Ontologies: Automatic Extensions to UMLS through Corpus Analytics",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Rumshisky",
                        "suffix": ""
                    },
                    {
                        "first": "Jos\u00e9",
                        "middle": [],
                        "last": "Casta\u00f1o",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "LREC 2002 Workshop on Ontologies and Lexical Knowledge Bases",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James Pustejovsky, Anna Rumshisky, Jos\u00e9 Casta\u00f1o, \" Rerendering Semantic Ontologies: Automatic Extensions to UMLS through Corpus Analytics,\" LREC 2002 Workshop on Ontologies and Lexical Knowledge Bases, 2002.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Robust Relational Parsing over Biomedical Literature: Extracting Inhibit Relations",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    },
                    {
                        "first": "Jos\u00e9",
                        "middle": [],
                        "last": "Casta\u00f1o",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Cochran",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Kotecki",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Pacific Symposium on Biocomputing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Pustejovsky, Jos\u00e9 Casta\u00f1o, J. Zhang, B. Cochran, M. Kotecki, \" Robust Relational Parsing over Biomedical Literature: Extracting Inhibit Relations.,\" In Pacific Symposium on Biocomputing, 2002",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "type_str": "figure",
                "text": "Architecture overview.",
                "uris": null
            },
            "FIGREF1": {
                "num": null,
                "type_str": "figure",
                "text": "is the presented overview architecture which contains background processing, including SA/AO patterns and headword collection, indicated with dotted lines and foreground processing, including preprocessor, grammatical pattern extractor anaphor recognizer, and antecedent finder, indicated with solid lines.",
                "uris": null
            },
            "FIGREF2": {
                "num": null,
                "type_str": "figure",
                "text": "Filter out those noun phrases or prepositional phrases if they are not tagged with the following UMLS classes. Amino Acid, Protein, Peptide, Embryonic Structure, Cell Biomedical Active Substance, Organism, Functional Chemical, Bacterium, Molecular Sequence, Chemical, Nucleoside, Cell Component, Enzyme, Gene or Genome, Structural Chemical Nucleotide Sequence, Substance, Organic Chemical, Pharmacologic Substance, Organism Attribute, Nucleic Acid, Nucleotide. Rule 2: Filter out proper nouns with capitals and numerical features.",
                "uris": null
            },
            "TABREF1": {
                "html": null,
                "num": null,
                "content": "<table><tr><td>Noun Phrase</td><td>Semantic Type</td></tr><tr><td>Adhesion</td><td>Acquired Abnormality, Disease or Syndrome</td></tr><tr><td>adhesion receptor</td><td>Amino Acid, Peptide, or Protein</td></tr><tr><td>Contraction</td><td>Pathologic Function</td></tr><tr><td>Contraction receptor</td><td>Amino Acid, Peptide, or Protein</td></tr><tr><td>Estrogen</td><td>Steroid, Pharmacologic Substance, Hormone</td></tr><tr><td>estrogen receptor</td><td>Amino Acid, Peptide, or Protein</td></tr><tr><td>Dopamine</td><td>Organic Chemical\u2026</td></tr><tr><td>dopamine receptor</td><td>Amino Acid, Peptide, or Protein</td></tr></table>",
                "type_str": "table",
                "text": "Example with righthand rule."
            },
            "TABREF3": {
                "html": null,
                "num": null,
                "content": "<table><tr><td>Anaphor</td><td>Antecedents #</td></tr><tr><td>Either</td><td>2</td></tr><tr><td>Both</td><td>2</td></tr><tr><td>Each</td><td>Many</td></tr><tr><td>They, Their, Them, Themselves</td><td>Many</td></tr><tr><td>The +No.+ noun</td><td>No.</td></tr><tr><td>Those +No.+ noun</td><td>No.</td></tr><tr><td>these +No.+ noun</td><td>No.</td></tr></table>",
                "type_str": "table",
                "text": "Number of Antecedents It is shown that antibody 19 reacts with this polypeptide either bound to the ribosome or free in solution.\" Rule 2: It be Adj [for NP] to VP Example 3: \"However, it is possible for antidepressants to exert their effects on the fetus at other times during pregnancy as well as to infants during lactation.\""
            },
            "TABREF4": {
                "html": null,
                "num": null,
                "content": "<table><tr><td>Features</td><td>Score</td></tr><tr><td>Recency</td><td>0-2</td></tr><tr><td>Subject and Object Preference</td><td>1</td></tr><tr><td>Grammatical Role Agreement</td><td>1</td></tr><tr><td>Number Agreement</td><td>1</td></tr><tr><td>Longest Common Subsequence</td><td>0-3</td></tr><tr><td>Semantic Type Agreement</td><td>-1 if not or +2</td></tr><tr><td>Biomedical Antecedent</td><td>-2 if not or +2</td></tr></table>",
                "type_str": "table",
                "text": "Salience grading for candidate antecedents."
            },
            "TABREF6": {
                "html": null,
                "num": null,
                "content": "<table><tr><td/><td>Best Fit</td><td/><td colspan=\"2\">Nearest Fit</td><td colspan=\"2\">[Castano et al., 2002]</td></tr><tr><td/><td>Sortal</td><td>Pronominal</td><td>Sortal</td><td>Pronominal</td><td>Sortal</td><td>Pronominal</td></tr><tr><td>Total</td><td/><td/><td/><td/><td/></tr><tr><td>Features</td><td>64.08%</td><td>88.46%</td><td colspan=\"2\">50.49% 73.47%</td><td/></tr><tr><td>Genetic</td><td>F5~F7</td><td>All-{F5}</td><td>F5~F7</td><td>All-{F2,F5}</td><td colspan=\"2\">F4~F6 F4, F6, F7</td></tr><tr><td>Features</td><td>78.26%</td><td>92.31%</td><td colspan=\"2\">61.18% 79.17%</td><td colspan=\"2\">74.4% 75.23%</td></tr><tr><td colspan=\"7\">F1: Recency, F2: Subject and Object preference, F3: Grammatical role Agreement, F4: Number Agreement,</td></tr><tr><td colspan=\"7\">F5: Longest common subsequence, F6: Semantic type Agreement, F7: Biomedical Antecedent</td></tr></table>",
                "type_str": "table",
                "text": "System result with best-first and nearest-first algorithm for Medstract."
            },
            "TABREF7": {
                "html": null,
                "num": null,
                "content": "<table><tr><td/><td>Medstract</td><td>103-MEDLINEs</td></tr><tr><td>Sortal</td><td>Pronominal</td><td>Pronominal</td></tr></table>",
                "type_str": "table",
                "text": "Impact of each feature in pronominal and sortal."
            },
            "TABREF8": {
                "html": null,
                "num": null,
                "content": "<table><tr><td/><td>With Headword</td><td>Without Headword</td></tr><tr><td>With PubMed</td><td>78%</td><td>59%</td></tr><tr><td>Without PubMed</td><td>76%</td><td>58%</td></tr></table>",
                "type_str": "table",
                "text": "Impact of headword and PubMed."
            }
        }
    }
}