File size: 87,578 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
{
    "paper_id": "O04-3003",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:00:48.431400Z"
    },
    "title": "Latent Semantic Language Modeling and Smoothing",
    "authors": [
        {
            "first": "Jen-Tzung",
            "middle": [],
            "last": "Chien",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Cheng Kung University",
                "location": {
                    "settlement": "Tainan",
                    "country": "Taiwan, ROC"
                }
            },
            "email": "jtchien@mail.ncku.edu.tw"
        },
        {
            "first": "Meng-Sung",
            "middle": [],
            "last": "Wu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Cheng Kung University",
                "location": {
                    "settlement": "Tainan",
                    "country": "Taiwan, ROC"
                }
            },
            "email": ""
        },
        {
            "first": "Hua-Jui",
            "middle": [],
            "last": "Peng",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Cheng Kung University",
                "location": {
                    "settlement": "Tainan",
                    "country": "Taiwan, ROC"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Language modeling plays a critical role for automatic speech recognition. Typically, the n-gram language models suffer from the lack of a good representation of historical words and an inability to estimate unseen parameters due to insufficient training data. In this study, we explore the application of latent semantic information (LSI) to language modeling and parameter smoothing. Our approach adopts latent semantic analysis to transform all words and documents into a common semantic space. The word-to-word, word-to-document and document-to-document relations are, accordingly, exploited for language modeling and smoothing. For language modeling, we present a new representation of historical words based on retrieval of the most relevant document. We also develop a novel parameter smoothing method, where the language models of seen and unseen words are estimated by interpolating the k nearest seen words in the training corpus. The interpolation coefficients are determined according to the closeness of words in the semantic space. As shown by experiments, the proposed modeling and smoothing methods can significantly reduce the perplexity of language models with moderate computational cost.",
    "pdf_parse": {
        "paper_id": "O04-3003",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Language modeling plays a critical role for automatic speech recognition. Typically, the n-gram language models suffer from the lack of a good representation of historical words and an inability to estimate unseen parameters due to insufficient training data. In this study, we explore the application of latent semantic information (LSI) to language modeling and parameter smoothing. Our approach adopts latent semantic analysis to transform all words and documents into a common semantic space. The word-to-word, word-to-document and document-to-document relations are, accordingly, exploited for language modeling and smoothing. For language modeling, we present a new representation of historical words based on retrieval of the most relevant document. We also develop a novel parameter smoothing method, where the language models of seen and unseen words are estimated by interpolating the k nearest seen words in the training corpus. The interpolation coefficients are determined according to the closeness of words in the semantic space. As shown by experiments, the proposed modeling and smoothing methods can significantly reduce the perplexity of language models with moderate computational cost.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Language models have been successfully developed for speech recognition, optical character recognition, machine translation, information retrieval, etc. Many studies in the field of speech recognition have focused on this topic [Jelinek 1990 , Jelinek 1991 . As shown in Figure 1 , a speech recognition system is composed of syllable-level and word-level matching processes, in which the acoustic model \u03bb and language model \u03c4 are applied, respectively. In theory, the speech recognition procedure combines the acoustic model and language model according to the Bayes rule. Let O denote the acoustic data, and let words. The speech recognition task aims to find the most likely word string \u0174 by maximizing the a posteriori probability given the observed acoustic data O:",
                "cite_spans": [
                    {
                        "start": 228,
                        "end": 241,
                        "text": "[Jelinek 1990",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 242,
                        "end": 256,
                        "text": ", Jelinek 1991",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 271,
                        "end": 279,
                        "text": "Figure 1",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": ")()(maxarg)(maxar\u011d WPWOPOWPW WW \u03c4\u03bb == ,",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "where )( WP \u03c4 is the a priori probability of the occurring word string W, and )( WOP \u03bb is the probability of observing data O given the word string W. The parameters \u03c4 and \u03bb are the language model and speech hidden Markov models (HMM's), respectively. Hereafter, we will neglect the notation \u03c4 in )( WP \u03c4 . The language model )Pr(W aims to measure the probability of word occurrence. This model is employed to predict the word occurrence given the history words. In an n-gram model, we assume that the probability of a word depends only on the preceding n-1 words. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "This probability estimation is called the maximum likelihood estimation (MLE) could not be estimated. We may apply parameter smoothing to find the unseen trigram model. In the literature, several smoothing methods have been proposed to deal with the data sparseness problem [Katz 1987 , Kawabata and Tamoto 1996 , Lau et al. 1993 , Zhai and Lafferty 2001 . Also, maximum a posteriori adaptation of the language model has been presented to resolve the problem of domain mismatch between training and test corpora [Bellegarda 2000a , Federico 1996 , Masataki et al. 1997 . Besides the problems of data sparseness and domain mismatch, the n-gram model is inferior in terms of characterizing long-distance word relationships. For example, the trigram model is unable to characterize word dependence beyond the span of three successive words. In [Lau et al. 1993, Zhou and Lua 1999 ], the trigram model was improved by extracting word relationships from the document history. This approach was exploited to search the trigger pair, In this paper, a new language modeling and smoothing method is proposed based on the framework of latent semantic analysis (LSA). The traditional n-gram model is weak in terms of characterizing the information in historical words. This weakness is compensated for herein by using the LSA framework, where word-to-word, word-to-document and document-to-document similarities are found in the semantic space. With the use of LSA, all the words are mapped to a common semantic space, which is constructed via the singular value decomposition (SVD) of a word-by-document matrix. Bellegarda [1998 Bellegarda [ , 2000a Bellegarda [ , 2000b applied the LSA framework to the n-gram model such that the resulting word error rate and perplexity were substantially reduced.",
                "cite_spans": [
                    {
                        "start": 72,
                        "end": 77,
                        "text": "(MLE)",
                        "ref_id": null
                    },
                    {
                        "start": 274,
                        "end": 284,
                        "text": "[Katz 1987",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 285,
                        "end": 311,
                        "text": ", Kawabata and Tamoto 1996",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 312,
                        "end": 329,
                        "text": ", Lau et al. 1993",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 330,
                        "end": 354,
                        "text": ", Zhai and Lafferty 2001",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 512,
                        "end": 529,
                        "text": "[Bellegarda 2000a",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 530,
                        "end": 545,
                        "text": ", Federico 1996",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 546,
                        "end": 568,
                        "text": ", Masataki et al. 1997",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 841,
                        "end": 867,
                        "text": "[Lau et al. 1993, Zhou and",
                        "ref_id": null
                    },
                    {
                        "start": 868,
                        "end": 876,
                        "text": "Lua 1999",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1602,
                        "end": 1618,
                        "text": "Bellegarda [1998",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 1619,
                        "end": 1639,
                        "text": "Bellegarda [ , 2000a",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1640,
                        "end": 1660,
                        "text": "Bellegarda [ , 2000b",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": ".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The LSA representation of the history suffers from a drawback in that the representation of the history carries insufficient information at the beginning of a text document. To overcome this problem, we propose a relevance retrieval framework to represent the history. For language model smoothing, we estimate unseen language models by using the seen models corresponding to the k nearest neighbor words. Because this smoothing method extracts synonym and semantic information, it can be also referred to as \"semantic smoothing.\" In the following section, we briefly introduce the framework of LSA. Section 3 addresses the proposed language modeling and smoothing approaches. The LSA framework is applied to relevance feedback language modeling and k nearest neighbor language smoothing. Section 4 describes the experimental setup and reports the results for the perplexity and computational cost. Finally, we draw conclusions in Section 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "In the literature [Berry et al. 1995 , Deerwester et al. 1990 , Ricardo and Berthier 2000 , latent semantic analysis (LSA) has been widely applied to vector space based information retrieval. During the past few years, LSA has also been applied to language model adaptation [Bellegarda 1998 , Bellegarda 2000a , Novak and Mammone 2001 . Latent semantic analysis is a dimension reduction technique that projects the query and document into a common semantic space [Deerwester et al. 1990 , Ding 1999 . This projection reduces the document vector from a high dimensional space to a low dimensional space, which is referred as the latent semantic space.",
                "cite_spans": [
                    {
                        "start": 18,
                        "end": 36,
                        "text": "[Berry et al. 1995",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 37,
                        "end": 61,
                        "text": ", Deerwester et al. 1990",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 62,
                        "end": 89,
                        "text": ", Ricardo and Berthier 2000",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 274,
                        "end": 290,
                        "text": "[Bellegarda 1998",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 291,
                        "end": 309,
                        "text": ", Bellegarda 2000a",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 310,
                        "end": 334,
                        "text": ", Novak and Mammone 2001",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 463,
                        "end": 486,
                        "text": "[Deerwester et al. 1990",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 487,
                        "end": 498,
                        "text": ", Ding 1999",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent semantic analysis",
                "sec_num": "2."
            },
            {
                "text": "The goal is to represent similar documents as close points in the latent semantic space, based on an appropriate metric. This metric can capture the significant associations between words and documents. Given an M \u00d7 N matrix A, with M terms and N documents, NM \u2265 and rank (A) =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent semantic analysis",
                "sec_num": "2."
            },
            {
                "text": "The weighted count ji a , of matrix A is the number of occurrences of each word i w in a",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "document j d , calculated as follows: j ji iji n c a , , )1( \u03b5 \u2212= .",
                        "eq_num": "(4)"
                    }
                ],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "Here, ji c , is the number of terms i w occurring in document j d , j n is the total number of words in j d , and i \u03b5 is the normalized",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "entropy of i w in the collection of data consisting of N documents, i.e., i ji N j i ji i t c t c N , 1 , log log 1 \u2211 = \u2212=\u03b5 ,",
                        "eq_num": "(5)"
                    }
                ],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "\u2211 = j jii ct .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "is the total number of times i w occurs in the collection of data. A value of i \u03b5 that is close to one occurs in case of Ntc iji = , . This means that the word i w is distributed across many documents throughout the corpus. A value of i \u03b5 that is close to zero, i.e., the case in which iji tc = , , indicates that the word i w is present in only a few documents.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "Hence, in (4), i \u03b5 \u2212 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "represents a global indexing weight for the word i w , and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "jji nc , indicates that the word i w occurs in frequently in document j d .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "Latent semantic analysis is a conceptual-indexing method, which uses singular value decomposition (SVD) [Berry et al. 1995, Golub and Van Loan 1989 ] to find the latent semantic structure of word to document association. SVD decomposes the matrix A into three sub-matrices:",
                "cite_spans": [
                    {
                        "start": 104,
                        "end": 133,
                        "text": "[Berry et al. 1995, Golub and",
                        "ref_id": null
                    },
                    {
                        "start": 134,
                        "end": 147,
                        "text": "Van Loan 1989",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "T VUA \u03a3= ,",
                        "eq_num": "(6)"
                    }
                ],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "where U and V are orthogonal matrices,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "R TT IVVUU ==",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": ", and \u03a3 is a diagonal matrix. As shown in Figure 2 , the first R columns of U and V, and the first R diagonal elements of \u03a3 can be used to approach A with R = )rank(A by means of",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 42,
                        "end": 50,
                        "text": "Figure 2",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "T RRRR VUA \u03a3= , where R",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "A is a representative matrix A. The result of SVD is a set of vectors representing the location of each term and document in the reduced R-dimensional LSA space [Berry 1992] . For a given training corpus, T AA characterizes all the co-occurrences between words, and A A T characterizes all the co-occurrences between documents. That is, a similar pattern of occurring words ji ww and can be inferred from the ),( ji cell of T AA , and a similar pattern of words contained in documents ji dd and can be inferred from the ),( ji cell of A A T [Bellegarda 1998 , Bellegarda 1997 , Bellegarda 2000a , Chen and Goodman 1999 . This LSA approach performs well when a major portion of the meaningful semantic structure [Deerwester et al. 1990 ] is captured. ww , which characterizes the linguistic regularity in a span of n words. When the window size n is limited, the n-gram is weak in terms of capturing long distance dependencies. Long distance correlation between words is commonly found in language and is caused by closeness in meaning; e.g., the words \"stock\" and \"fund\" are both likely to occur in financial news. To deal with long distance modeling, the LSA approach can be applied to extract large span semantic knowledge. Our motivation lies in the fact that there exists some latent structure in the occurrence patterns of words across documents. Hence, the n-gram language model can be improved by employing LSA to perform large span prediction of word occurrence. ",
                "cite_spans": [
                    {
                        "start": 161,
                        "end": 173,
                        "text": "[Berry 1992]",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 541,
                        "end": 557,
                        "text": "[Bellegarda 1998",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 558,
                        "end": 575,
                        "text": ", Bellegarda 1997",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 576,
                        "end": 594,
                        "text": ", Bellegarda 2000a",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 595,
                        "end": 618,
                        "text": ", Chen and Goodman 1999",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 711,
                        "end": 734,
                        "text": "[Deerwester et al. 1990",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "A R U R \u03a3 T R V 1 w M w 1 d N d 1 u M u 1 v N v word vectors words documents document vectors 0 0 ( M x N ) ( R x R ) M x R ( R x N ) \u2245 \u00d7 \u00d7",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "where the conditioning on S reflects the fact that the probability depends on the particular vector space arising from the SVD representation, and where )Pr( [Bellegarda 1998 , Bellegarda 2000a , Bellegarda 2000b . The representation",
                "cite_spans": [
                    {
                        "start": 158,
                        "end": 174,
                        "text": "[Bellegarda 1998",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 175,
                        "end": 193,
                        "text": ", Bellegarda 2000a",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 194,
                        "end": 212,
                        "text": ", Bellegarda 2000b",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "1 \u2212 q v",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "for the pseudodocument vector",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 \u2212 q d in the space S is given by 1 11 \u2212 \u2212\u2212 \u03a3= Udv T qq .",
                        "eq_num": "(8)"
                    }
                ],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "By referring to (4), we can obtain the pseudodocument vector q d recursively in the LSA space via [Bellegarda 2000a , Bellegarda 2000b ",
                "cite_spans": [
                    {
                        "start": 98,
                        "end": 115,
                        "text": "[Bellegarda 2000a",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 116,
                        "end": 134,
                        "text": ", Bellegarda 2000b",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "] T q q q q q q nn n ]00 1 00[ 1 1 LL \u03b5 \u2212 + \u2212 = \u2212 dd .",
                        "eq_num": "(9)"
                    }
                ],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "To clarify (8) and (9), we provide their derivations in the Appendix.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "However, at the beginning of a text document, it is difficult to capture long distance word dependencies for calculating )Pr( ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "1 \u2212 q d . The LSA probability )Pr( 1 \u2212 qq w d is replaced by ) Pr( 1 \u2212 qq w d",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": ". Accordingly, the pseudodocument",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 \u2212 q d is estimated by Ni qiq i ,,1 ),Pr(maxar\u011d 11 L == \u2212\u2212 ddd d .",
                        "eq_num": "(10)"
                    }
                ],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "Here,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "1 \u2212 q d",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "is obtained recursively from (9). The probability )Pr( i.e., by using the vectors \u03a3",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "i v and \u03a3 \u22121 q v in \u03a3\u03a3 \u03a3 =\u03a3\u03a3= \u2212 \u2212 \u2212\u2212 1 1 2 11 ),cos()Pr( qi T qi qiqi vv vv vvdd . (11)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "When q is increased, the most likely document vector",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "1 \u2212 q d",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "moves around in the LSA space. Assuming that",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "1 \u2212 q d",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "is semantically homogeneous, we can expect the resulting trajectory to eventually settle down in the vicinity of the document cluster corresponding to the closest semantic content.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "In this study, the LSA language model is exploited by integrating the effects of histories ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": ")( 1 )( 1 )( 1 )( 1 )( 1 )( 1 )( 1 )( 1 )( 1 )( 1 )",
                        "eq_num": "("
                    }
                ],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "\u03a3 \u2212q v",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": ", respectively. The LSA probability is calculated as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "2 1 2 1 2 1 2 1 1 1 11\u02c6 \u02c6)\u02c6, cos()\u02c6Pr( \u03a3\u03a3 \u03a3 =\u03a3\u03a3= \u2212 \u2212 \u2212\u2212 qq T qq qqqq w vu vu vud .",
                        "eq_num": "(13)"
                    }
                ],
                "section": "R.",
                "sec_num": null
            },
            {
                "text": "In the real world, a training corpus is not sufficient to estimate the n-gram model for all word",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "occurrences },,,{ 11 qqnq www \u2212+\u2212 L .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "To overcome the problem of insufficient data, the parameter smoothing method can be used to estimate the joint probabilities of unseen word occurrences and, simultaneously, smooth those of seen word occurrences in the training corpus. It is common to interpolate the n-gram and (n-1)-gram for the purpose of language model smoothing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "Jelinek-Mercer smoothing [Jelinek and Mercer 1980] is represented as follows:",
                "cite_spans": [
                    {
                        "start": 25,
                        "end": 50,
                        "text": "[Jelinek and Mercer 1980]",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": ")(Pr)1()Pr()(Pr 1 2 1 1 1 1 \u2212 +\u2212 \u2212 +\u2212 \u2212 +\u2212 \u2212+= q nqqq q nqqq q nqq wwwwww JMJM \u03bb\u03bb .",
                        "eq_num": "(14)"
                    }
                ],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "The smoothed n-gram model )( ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "{ } 0)(: 1 1 >= \u2212 +\u2212 q q nq qq wwcwN .",
                        "eq_num": "(15)"
                    }
                ],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "The well-known Witten-Bell smoothing approach [Written and Bell 1991] incorporates the interpolation coefficient",
                "cite_spans": [
                    {
                        "start": 46,
                        "end": 69,
                        "text": "[Written and Bell 1991]",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2211 +\u2212 + =\u2212 q w q nq q q q wcN N )( 1 1 \u03bb ,",
                        "eq_num": "(16)"
                    }
                ],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "into 14 ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "In this paper, we will present a novel smoothing method in which the language models of seen and unseen word occurrences are estimated by interpolating the LSA language model of a word occurrence and of the k nearest word occurrences. Let us consider the words \"car,\" \"automobile,\" \"driver,\" and \"elephant\". \"Car\" and \"automobile\" are synonyms. \"Driver\" is related and \"elephant\" is unrelated to \"car\" and \"automobile.\" If the words \"car\" and \"automobile\" do not appear in the given documents, we may collect many documents containing related words, e.g., the motor, vehicle, engine, etc. The statistics of these nearest seen words can be used to estimate the language model of the unseen words. When the bigram model is used, the smoothed model )r(P~1 ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "The interpolation is performed as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2211 = \u2212\u2212 \u2212+= k j q jq q jqqqqqq wwwwww 1 11 )\u02c6Pr()1()Pr()r(P~\u03b2\u03b1\u03b1 ,",
                        "eq_num": "(19)"
                    }
                ],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "where the weighting coefficients }1 ,{ kj ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "respectively. As seen in (20), the weighting coefficient ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSA Parameter Smoothing",
                "sec_num": "3.2"
            },
            {
                "text": "We evaluated the performance of the proposed language model through experiments. Two databases were employed. The first database was the CKIP balanced corpus of Modern Chinese (http://godel.iis.sinica.edu.tw), which was collected by Academia Sinica in Taiwan, ROC.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4."
            },
            {
                "text": "Totally, this database has twenty-five million Chinese characters and a vocabulary size of 80,000 words. In addition, we collected 9,372 news documents during 2001 and 2002 from the news websites of CNA (http://www.cna.com.tw), ChinaTimes (http://news.chinatimes. com) and UDNnews ( http://www.udnnews.com.tw). We randomly sampled 9,148 documents for training and the remaining 224 documents for testing. The news documents were divided into eight categories, including technology, society, international, leisure, politics, finance, entertainment, and sports news. The numbers of training and testing documents in the eight news categories are listed in Table 1 . We chose the most frequent 32,941 words to construct our dictionary. Using the LSA procedure, we built a 32,941*9,148 word by document matrix A using training data. The SVD algorithm was applied with different numbers of singular values. In this study, we used MATLAB for the SVD operation and compared the performance of LSA language modeling, with the number of singular values R set at 25, 50, 75, and 100.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 655,
                        "end": 662,
                        "text": "Table 1",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4."
            },
            {
                "text": "The measure of perplexity was adopted to evaluate the different language models. The computational costs were reported for comparison. Here, the computation time was measured in minutes by testing 224 documents using a personal computer with a Pentium IV-1.6GHz",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4."
            },
            {
                "text": "processor and 256 MB RAM. The bigram model was employed in the experiments. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4."
            },
            {
                "text": "Given testing documents with l words, the perplexity is calculated as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "E Perplexity~2 = .",
                        "eq_num": "(25)"
                    }
                ],
                "section": "Experiments",
                "sec_num": "4."
            },
            {
                "text": "In general, the entropy E~ is the average difficulty or uncertainty of each word using the language model. The lower measured the perplexity, the better the speech recognition accuracy that can be achieved.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4."
            },
            {
                "text": "In the experiments, we evaluated different language modeling and smoothing methods in terms of perplexity and computation time. First of all, we investigated the effect of the SVD dimension in the proposed LSA bigram model. No parameter smoothing was performed. In Figures 3 and 4 , we compare the perplexity and computation time for different SVD dimensions.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 265,
                        "end": 280,
                        "text": "Figures 3 and 4",
                        "ref_id": "FIGREF12"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation of Different Language Modeling and Smoothing Methods",
                "sec_num": "4.2"
            },
            {
                "text": "Here, the computation time was a measure of the SVD operation of a 32,941*9,148 word by document matrix A . We found that an SVD dimension of 25 was appropriate for constructing the semantic space. In the subsequent evaluation, the SVD dimension was fixed at 25 for the proposed LSA bigram and LSA smoothing. Next, we examined the effect of the parameter k in the proposed LSA smoothing method. LSA smoothing of seen and unseen bigrams was performed by combining the bigrams corresponding to the k nearest words. In Figure 5 , we show the results for perplexity versus the k nearest neighbor words when LSA smoothing was applied to the standard bigram and proposed LSA bigram. The values 5 = k , 10, 30 and 50 were examined. When proposed LSA modeling and smoothing was used, the lowest perplexity The proposed LSA smoothing combines the bigrams corresponding to the k nearest seen words in the training corpus. We can see that the baseline bigram model has a perplexity of 158.3. The perplexity was reduced to 128.7 and 124.4 by applying Bellegarda's LSA bigram and proposed LSA bigram, respectively. However, when Witten-Bell smoothing was incorporated, the perplexity is greatly reduced from 158.3 without smoothing to 122.6 with smoothing. When the proposed LSA bigram with Witten-Bell smoothing were used, the perplexity could be improved to 108.7. This indicates the importance of adopting a smoothing algorithm in the language model. Furthermore, when the proposed LSA smoothing was used, the perplexity was reduced to 102, which is better than the perplexity of 122.6 obtained using Witten-Bell smoothing. This is because the Witten-Bell smoothing method estimates the n-gram model by using the (n-1)-gram, while the proposed LSA smoothing approach always adopts nearest n-gram models without using the (n-1)-gram. Among the different combinations, the lowest perplexity of 81 was achieved by applying the proposed LSA bigram with LSA smoothing. Compared to baseline system, the perplexity could be improved by up to 48.8%. The computation times of the different methods were also compared. The results show that the computation overhead of using a smoothing algorithm is slight. The computation load of the LSA bigram is much higher than that of the standard bigram. This result indicates that the smoothing algorithm can lead to greater improvement in perplexity with a lower computation cost than can be achieved by modifying the language model. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 516,
                        "end": 524,
                        "text": "Figure 5",
                        "ref_id": "FIGREF13"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation of Different Language Modeling and Smoothing Methods",
                "sec_num": "4.2"
            },
            {
                "text": "Statistical n-gram modeling is limited in terms of its ability to represent the historical words and estimate the unseen parameters of an inadequate training corpus. In this paper, we have presented new language modeling and smoothing methods that are based on the framework of latent semantic analysis. The concept of relevance retrieval has been adopted in order to exploit a new language modeling approach, where the most likely pseudodocument is retrieved to represent the historical words. The language model is estimated according to the closeness of the current word vector and the historical pseudodocument vector in the common LSA space.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "To overcome the problem of insufficient training data, we perform LSA smoothing, where the bigram of the current word is computed by interpolating with the bigrams corresponding to the k nearest words. The weighting coefficients of the k nearest words are proportional to the",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            }
        ],
        "back_matter": [
            {
                "text": "The authors thank the anonymous reviewers for providing valuable comments, which considerably improved the quality of this paper.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgment",
                "sec_num": null
            },
            {
                "text": "Perplexity is an important parameter used to evaluate the performance of language models. Consider an information source containing of word sequence, l www ,,, 21 K , each of which is chosen from a vocabulary V . The entropy of a source emitting the wordsIf the source is ergodic, the entropy in (22) is equivalent to ),,,Pr(log 1 limSince the n-gram language model is used, E can be estimated as follows:closeness to the current word in the LSA space. From the results of experiments in which Chinese news documents were evaluated, we found that the language modeling performance could be greatly improved by applying the proposed LSA parameter modeling and smoothing algorithms. The proposed methods outperformed Bellegarda's LSA bigram and Witten-Bell smoothing. Compared to the baseline bigram model, the perplexity was reduced by up to 48.8%.Also, the perplexity improvement and computation efficiency that could be achieved through parameter smoothing were better than that which could be achieved through parameter modeling. This approach can be easily extended to the trigram model and other languages. In the future, we will explore theoretical rules for determining the SVD dimension for LSA. We will also investigate the effect of the amount of training data on the LSA framework. We are currently applying the proposed language model to information retrieval and large vocabulary continuous speech recognition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Perplexity",
                "sec_num": "4.1"
            },
            {
                "text": "In 8 . Because U is orthogonal and \u03a3 is diagonal, the representationAlso, from (4), we can derive the recursive formula for By extending this formula using vector representation, we obtain (9) by where the \"1\" appears at coordinate i in the above vector.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Derivations of Equations (8) and (9)",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A Multi-span Language Modeling Framework for Large Vocabulary Speech Recognition",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Bellegarda",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "IEEE Transactions on Speech and Audio Processing",
                "volume": "6",
                "issue": "5",
                "pages": "456--467",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bellegarda, J. R., \"A Multi-span Language Modeling Framework for Large Vocabulary Speech Recognition,\" IEEE Transactions on Speech and Audio Processing, 6(5) 1998, pp. 456-467.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A statistical language modeling approach integrating local and global constraints",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Bellegarda",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proc. IEEE Workshop on Automatic Speech Recognition and Understanding",
                "volume": "",
                "issue": "",
                "pages": "262--269",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bellegarda, J. R., \"A statistical language modeling approach integrating local and global constraints,\" Proc. IEEE Workshop on Automatic Speech Recognition and Understanding, 1997, pp. 262-269.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Exploiting latent semantic information in statistical language modeling",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Bellegarda",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceeding of IEEE",
                "volume": "88",
                "issue": "8",
                "pages": "1279--1296",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bellegarda, J. R., \"Exploiting latent semantic information in statistical language modeling, \" Proceeding of IEEE, 88(8) 2000a, pp. 1279-1296.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Large vocabulary speech recognition with multi-span statistical language models",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Bellegarda",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "IEEE Transactions on Speech and Audio Processing",
                "volume": "8",
                "issue": "1",
                "pages": "76--84",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bellegarda, J. R., \"Large vocabulary speech recognition with multi-span statistical language models,\" IEEE Transactions on Speech and Audio Processing, 8(1) 2000b, pp. 76-84.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Using Linear algebra for Intelligent Information Retrieval",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "W"
                        ],
                        "last": "Berry",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "T"
                        ],
                        "last": "Dumais",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [
                            "W"
                        ],
                        "last": "O'brien",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Society for Industrial and Applied Mathematics (SIAM): Review",
                "volume": "37",
                "issue": "4",
                "pages": "573--595",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Berry, M. W., S. T. Dumais and G. W. O'Brien, \"Using Linear algebra for Intelligent Information Retrieval,\" Society for Industrial and Applied Mathematics (SIAM): Review, 37(4) 1995, pp. 573-595.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Large scale singular value computations",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "W"
                        ],
                        "last": "Berry",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "International Journal of Supercomputer Applications",
                "volume": "6",
                "issue": "",
                "pages": "13--49",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Berry, M. W., \"Large scale singular value computations,\" International Journal of Supercomputer Applications, vol. 6, 1992, pp. 13-49.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "An Empirical Study of Smoothing Techniques for Language Modeling",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Goodman",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Computer Speech and Language",
                "volume": "13",
                "issue": "4",
                "pages": "359--394",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chen, S. and J. Goodman, \"An Empirical Study of Smoothing Techniques for Language Modeling,\" Computer Speech and Language, 13(4) 1999, pp. 359-394.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Indexing by Latent Semantic Analysis",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Deerwester",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "T"
                        ],
                        "last": "Dumais",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [
                            "K"
                        ],
                        "last": "Landauer",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [
                            "W"
                        ],
                        "last": "Furnas",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Harshman",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Journal of the American Society for Information Science",
                "volume": "41",
                "issue": "6",
                "pages": "391--407",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Deerwester, S., S. T. Dumais, T. K. Landauer, G. W. Furnas and R. Harshman, \"Indexing by Latent Semantic Analysis,\" Journal of the American Society for Information Science, 41(6) 1990, pp. 391-407.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A similarity-based probability model for latent semantic indexing",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "H Q"
                        ],
                        "last": "Ding",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proc. 22 nd Annual International ACM SIGIR Conference",
                "volume": "",
                "issue": "",
                "pages": "58--65",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ding, C. H. Q., \"A similarity-based probability model for latent semantic indexing,\" Proc. 22 nd Annual International ACM SIGIR Conference, 1999, pp. 58-65.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Bayesian estimation methods for n-gram language model adaptation",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proc. of the International Conference on Spoken Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "240--243",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Federico, M., \"Bayesian estimation methods for n-gram language model adaptation,\" Proc. of the International Conference on Spoken Language Processing, vol. 1, 1996, pp. 240-243.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Self-Organized Language Modeling for Speech Recognition",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Jelinek",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Readings in Speech Recognition",
                "volume": "",
                "issue": "",
                "pages": "450--506",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jelinek, F., \"Self-Organized Language Modeling for Speech Recognition,\" Readings in Speech Recognition, Morgan-Kaufmann Publishers, 1990, pp. 450-506.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Up From Trigrams",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Jelinek",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "Proc. European Conference on Speech communication and Technology",
                "volume": "3",
                "issue": "",
                "pages": "1037--1040",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jelinek, F., \"Up From Trigrams,\" Proc. European Conference on Speech communication and Technology, vol. 3, 1991, pp. 1037-1040.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Interpolated estimation of Markov source parameters from sparse data",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Jelinek",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mercer",
                        "suffix": ""
                    }
                ],
                "year": 1980,
                "venue": "Pattern Recognition in Practice",
                "volume": "",
                "issue": "",
                "pages": "381--397",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jelinek, F. and R. Mercer, \"Interpolated estimation of Markov source parameters from sparse data,\" Pattern Recognition in Practice, 1980, pp. 381-397.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "M"
                        ],
                        "last": "Katz",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "IEEE Transactions on Acoustics, Speech, and Signal Processing",
                "volume": "35",
                "issue": "3",
                "pages": "400--401",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Katz, S.M., \"Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer,\" IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(3) 1987, pp. 400-401.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Back-off Method for N-gram Smoothing based on Binomial Posteriori Distribution",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Kawabata",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Tamoto",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proc. IEEE International Conference on Acoustics, Speech and Signal Processing",
                "volume": "1",
                "issue": "",
                "pages": "192--195",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kawabata, T. and M. Tamoto, \"Back-off Method for N-gram Smoothing based on Binomial Posteriori Distribution,\" Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, 1996, pp.192-195.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Trigger-based language models: A maximum entropy approach",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Lau",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Rosenfeld",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Proc. IEEE International Conference on Acoustics, Speech and Signal Processing",
                "volume": "2",
                "issue": "",
                "pages": "45--48",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lau, R., R. Rosenfeld and S. Roukos, \"Trigger-based language models: A maximum entropy approach,\" Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, 1993, pp. 45-48.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Task adaptation using MAP estimation in n-gram language modeling",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Masataki",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Sagisaka",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Hisaki",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Kawahara",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proc. IEEE International Conference on Acoustics, Speech and Signal Processing",
                "volume": "2",
                "issue": "",
                "pages": "783--786",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Masataki, H., Y. Sagisaka, K. Hisaki and T. Kawahara, \"Task adaptation using MAP estimation in n-gram language modeling,\" Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, 1997, pp.783-786.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Use of non-negative matrix factorization for language model adaptation in a lecture transcription task",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Novak",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mammone",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing",
                "volume": "1",
                "issue": "",
                "pages": "541--544",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Novak, M. and R. Mammone, \"Use of non-negative matrix factorization for language model adaptation in a lecture transcription task,\" Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, 2001, pp. 541-544.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Modern information retrieval",
                "authors": [
                    {
                        "first": "B.-Y",
                        "middle": [],
                        "last": "Ricardo",
                        "suffix": ""
                    },
                    {
                        "first": "R. -N",
                        "middle": [],
                        "last": "Berthier",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ricardo, B.-Y. and R. -N. Berthier, Modern information retrieval, Addison-Wesley, 2000.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression",
                "authors": [
                    {
                        "first": "I",
                        "middle": [
                            "H"
                        ],
                        "last": "Written",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [
                            "C"
                        ],
                        "last": "Bell",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "IEEE Transaction on Information Theory",
                "volume": "37",
                "issue": "4",
                "pages": "1085--1094",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Written, I. H. and T. C. Bell, \"The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression,\" IEEE Transaction on Information Theory, 37(4) 1991, pp. 1085-1094.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "A study of smoothing methods for language models applied to ad hoc information retrieval",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Zhai",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proc. 24th Annual International ACM SIGIR Conference",
                "volume": "",
                "issue": "",
                "pages": "334--342",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhai, C. and J. Lafferty, \"A study of smoothing methods for language models applied to ad hoc information retrieval,\" Proc. 24th Annual International ACM SIGIR Conference, 2001, pp. 334-342.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Interpolation of n-gram and mutual-information based trigger pair language models for Mandarin speech recognition",
                "authors": [
                    {
                        "first": "G",
                        "middle": [
                            "D"
                        ],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "T"
                        ],
                        "last": "Lua",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Computer Speech and Language",
                "volume": "13",
                "issue": "2",
                "pages": "125--141",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhou, G. D. and K. T. Lua, \"Interpolation of n-gram and mutual-information based trigger pair language models for Mandarin speech recognition,\" Computer Speech and Language, 13(2) 1999, pp.125-141.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "uris": null,
                "num": null,
                "text": "The N-gram model )Pr(W is written as ),...,,Pr(),...,Pr()Pr( .",
                "type_str": "figure"
            },
            "FIGREF2": {
                "uris": null,
                "num": null,
                "text": "document history significantly affects the probability of occurring B w .The trigger pairs provide long distance information because the triggering and triggered words might be separated by several words. However, trigger pair selection neglects the possibility of word triggers, which might contain useful semantic information. The LSA method was developed to resolve this problem. A schematic diagram of a speech recognition system.",
                "type_str": "figure"
            },
            "FIGREF3": {
                "uris": null,
                "num": null,
                "text": "A diagram of the truncated SVD. 3. New language modeling and smoothing techniques 3.1 LSA Parameter Modeling N-gram language models are useful for modeling the local dependencies of word occurrences but not for capturing global word dependencies. The modeling process leads to the estimation of the",
                "type_str": "figure"
            },
            "FIGREF9": {
                "uris": null,
                "num": null,
                "text": "the current word q w , the higher is the weighting coefficient that q j \u03b2 produces. Also, it is reasonable to adopt the interpolation coefficient q \u03b1 in(21), which is proportional to the closeness between q w and1 \u2212 q win the semantic space. The smoothing method proposed in (19) should be performed when the current word q w is trained using LSA. Different from the Jelinek-Mercer and Witten-Bell smoothing methods that adopt the maximum likelihood language model, the proposed smoothing technique is combined with the LSA framework, and the probabilities )",
                "type_str": "figure"
            },
            "FIGREF10": {
                "uris": null,
                "num": null,
                "text": "The perplexity of the standard bigram with LSA smoothing was calculated as 102. We then fixed 5 = k in the subsequent comparison experiment.",
                "type_str": "figure"
            },
            "FIGREF11": {
                "uris": null,
                "num": null,
                "text": "Figure 3. Comparison of perplexity results for different SVD dimensions.",
                "type_str": "figure"
            },
            "FIGREF12": {
                "uris": null,
                "num": null,
                "text": "Comparison of computation times for different SVD dimensions.",
                "type_str": "figure"
            },
            "FIGREF13": {
                "uris": null,
                "num": null,
                "text": "Perplexity versus the k nearest neighbor words when LSA smoothing was applied to the standard bigram and proposed LSA bigram.Furthermore, different language modeling and smoothing methods were compared, and the results are shown inTable 2. Besides the standard bigram, we implemented Bellegarda 's LSA bigram[Bellegarda 1998] and the proposed LSA bigram to evaluate the effect of language modeling. The main difference is that proposed LSA bigram aims to retrieve the most likely relevance document vector in order to represent the historical words. In addition, the language models with and without parameter smoothing were examined. The algorithms of Witten-Bell smoothing and the proposed LSA smoothing were also used for the purpose of comparison. The Witten-Bell smoothed bigram is estimated by interpolating with the corresponding unigram.",
                "type_str": "figure"
            },
            "TABREF7": {
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td/><td colspan=\"8\">Technology Social International Leisure Politics Financial Entertain Sports</td></tr><tr><td>Training data</td><td>289</td><td>2,658</td><td>330</td><td>1,106</td><td>1,299</td><td>2,605</td><td>430</td><td>431</td></tr><tr><td>Testing data</td><td>30</td><td>24</td><td>23</td><td>24</td><td>24</td><td>49</td><td>23</td><td>27</td></tr></table>",
                "text": "",
                "html": null
            },
            "TABREF8": {
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td colspan=\"2\">Language Model Modeling Method Smoothing Method</td><td>Perplexity</td><td>Reduction Rate (%)</td><td>Computation Time (minutes)</td></tr><tr><td>Bigram</td><td>N/A</td><td>158.3</td><td>N/A</td><td>48.3</td></tr><tr><td>Bigram</td><td>Witten-Bell Smoothing</td><td>122.6</td><td>22.6</td><td>51.3</td></tr><tr><td>Bellegarda's LSA Bigram</td><td>N/A</td><td>128.7</td><td>18.7</td><td>176.7</td></tr><tr><td>Proposed LSA Bigram</td><td>N/A</td><td>124.4</td><td>21.4</td><td>161.2</td></tr><tr><td>Proposed LSA Bigram</td><td>Witten-Bell Smoothing</td><td>108.7</td><td>31.3</td><td>163.3</td></tr><tr><td>Bigram</td><td>LSA Smoothing</td><td>102</td><td>35.6</td><td>52.2</td></tr><tr><td>Proposed LSA Bigram</td><td>LSA Smoothing</td><td>81</td><td>48.8</td><td>163.4</td></tr></table>",
                "text": "",
                "html": null
            }
        }
    }
}