File size: 85,847 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
{
    "paper_id": "O06-1015",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:07:03.779079Z"
    },
    "title": "Personalized Optimal Search in Local Query Expansion",
    "authors": [
        {
            "first": "Shan-Mu",
            "middle": [],
            "last": "Lin",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Yunlin University of Technology and Science",
                "location": {
                    "settlement": "Douliou",
                    "country": "Taiwan"
                }
            },
            "email": ""
        },
        {
            "first": "Chuen-Min",
            "middle": [],
            "last": "Huang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Yunlin University of Technology and Science",
                "location": {
                    "settlement": "Douliou",
                    "country": "Taiwan"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Query Expansion was designed to overcome the barren query words issued by user and has been applied in many commercial products. This treatment tries to expand query words to identify users' real requirement based on semantic computation. It may be critical to deal with the problem of information overloading and diminish the using threshold, however the modern retrieval systems usually lack user modeling and are not adaptive to individual users, resulting in inherently non-optimal retrieval performance. In this study, we propose the LLSF method based on each individual search history to automatically generate specific personalized profile matrix. By which to generate context-based expanded query words. Considering the accuracy of retrieving performance, we process query words re-weighting algorithm to achieve this goal. Finally, the documents list is ranked by the way of stressed density distribution modeling. And the experimental result shows that our framework corresponds to personalization and the performance is very promising.",
    "pdf_parse": {
        "paper_id": "O06-1015",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Query Expansion was designed to overcome the barren query words issued by user and has been applied in many commercial products. This treatment tries to expand query words to identify users' real requirement based on semantic computation. It may be critical to deal with the problem of information overloading and diminish the using threshold, however the modern retrieval systems usually lack user modeling and are not adaptive to individual users, resulting in inherently non-optimal retrieval performance. In this study, we propose the LLSF method based on each individual search history to automatically generate specific personalized profile matrix. By which to generate context-based expanded query words. Considering the accuracy of retrieving performance, we process query words re-weighting algorithm to achieve this goal. Finally, the documents list is ranked by the way of stressed density distribution modeling. And the experimental result shows that our framework corresponds to personalization and the performance is very promising.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The widespread usage of search engines has grown for many years, The searching technique can be used to apply in various aspects, either in World Wide Web or in particular Information Retrieval (IR)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Research Background and Motivation",
                "sec_num": "1.1"
            },
            {
                "text": "In this article, we try to provide users more selective query keywords which are related to original query not only for the suggestion but also to help users realizing the real requirement in searching behaviors when users submit too brief query to find out more wanted documents. In addition, we also decide to deliver the decision making authority to users of which documents seem to be more preferred by them for achieving user center approach. Otherwise, in order to provide each user with more personal searching environment and contents, we endeavor to propose several approaches to adapt search results according to each user's information need.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Research Objective",
                "sec_num": "1.2"
            },
            {
                "text": "To solve the problem of low retrieval performance caused by inappropriate query terms, automatic query expansion techniques have been studied for the past 30 years. In a recent study (Jansen et al., 2000 ,March 1), the number of query terms used by most end users was no more than 2 when searching with a Web search engine, which is even less than that of searching online databases. The same study also pointed out that only 5% of queries were accompanied by any relevance feedback feature.",
                "cite_spans": [
                    {
                        "start": 183,
                        "end": 203,
                        "text": "(Jansen et al., 2000",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work 2.1 Review of Refining Short Query",
                "sec_num": "2."
            },
            {
                "text": "Query expansion techniques fall into two categories according to the way of implementation. One is to add new terms to an original query before searching, and the other is to formulate a new query on the basis of some retrieved documents of the previous search (Qiu, 1995) . While the former is usually called a global or corpus-specific query expansion, the latter is called a local or query-specific query expansion. Global query expansion rely on thesauri that is a manually-built resource, as though WordNet-based (Mandala et al., 1999) provides the relation types include coordination, synonyms, hyponyms and etc for expanding the feature of original query terms.",
                "cite_spans": [
                    {
                        "start": 261,
                        "end": 272,
                        "text": "(Qiu, 1995)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 518,
                        "end": 540,
                        "text": "(Mandala et al., 1999)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Categories of Query Expansion",
                "sec_num": "2.2"
            },
            {
                "text": "Local query expansion, which corresponds to feedback retrieval, can acquire relevance information by either user feedback (Robertson & Sparck Jones, 1976; Rocchio, 1971) or system feedback. Query expansion using user feedback based on relevance judgment made by users, brought a significant improvement in retrieval performance (Harman, 1992 June; G. Salton & Buckley, 1990 ).",
                "cite_spans": [
                    {
                        "start": 122,
                        "end": 154,
                        "text": "(Robertson & Sparck Jones, 1976;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 155,
                        "end": 169,
                        "text": "Rocchio, 1971)",
                        "ref_id": null
                    },
                    {
                        "start": 328,
                        "end": 341,
                        "text": "(Harman, 1992",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 351,
                        "end": 373,
                        "text": "Salton & Buckley, 1990",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Categories of Query Expansion",
                "sec_num": "2.2"
            },
            {
                "text": "Another two theories about local query expansion is Local co-occurrence method (HE et al., 2002; ZHANG et al., 2002) and Latent Semantic Indexing (LSi_based) (Deerwester et al., 1990) ",
                "cite_spans": [
                    {
                        "start": 79,
                        "end": 96,
                        "text": "(HE et al., 2002;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 97,
                        "end": 116,
                        "text": "ZHANG et al., 2002)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 158,
                        "end": 183,
                        "text": "(Deerwester et al., 1990)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Categories of Query Expansion",
                "sec_num": "2.2"
            },
            {
                "text": "There are several way to gather the user's information for constructing unique data each end user belongs to. One of these approach is to have users describe their general interests. For example, Google Personal asks users to build a profile of themselves by selecting categories of interests. Google's PageRank algorithm can be described as personal web search techniques augmenting traditional text matching with a global notion of \"importance\" based on the linkage structure of the web. This global notion of importance can be specialized to create personalized views of importance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Personal Data Construction",
                "sec_num": "2.3"
            },
            {
                "text": "User profile data provide information about the users of a Web site. A user profile contains demographic information (such as name, age, country, marital status, education, interests, etc.) for each user of a Web site, as well as information about the users' interests and preferences. Such information is acquired through registration forms or questionnaires, or can be inferred by analyzing Web usage logs (Eirinaki & Vazirgiannis, 2003, February) . Personal profiles can also be combined with the method mentioned above in the context of the Web search to create a personalized version of PageRank for setting the query-independent priors on Web pages. (Teevan et al., 2005) . (Liu et al., 2002 ) used a similar technique for mapping user's queries to categories based on the user's search history.",
                "cite_spans": [
                    {
                        "start": 408,
                        "end": 449,
                        "text": "(Eirinaki & Vazirgiannis, 2003, February)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 656,
                        "end": 677,
                        "text": "(Teevan et al., 2005)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 680,
                        "end": 697,
                        "text": "(Liu et al., 2002",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Personal Data Construction",
                "sec_num": "2.3"
            },
            {
                "text": "Generally in interactive situation, system collects user's intention through designed interactive interface.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Interactive IR system",
                "sec_num": "3."
            },
            {
                "text": "In principle, every action of the user can potentially provide new evidence to help the system to better infer the user's information need. Thus in order to respond optimally, the system should use all the evidence collected so far about the user. After collection of the user information, how to effectively select and analyze these data is critical to this kind of system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Interactive IR system",
                "sec_num": "3."
            },
            {
                "text": "To retrieve more user demanded results, we carry out Linear Least Squares Fit (LLSF) algorithm to generate personal profile by matrix combination in which the personal searching result will be formed in document-term (DT) matrix, and Singular Value Decomposition (SVD) is used to reduce the dimensions of the original DT matrix. Moreover combining of document-cluster matrix and decomposed DT is to produce the final user profile M matrix. This process is also called Latent Semantic Indexing, which could extract the context-based terms out for expanding personalized query terms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Interactive IR system",
                "sec_num": "3."
            },
            {
                "text": "Simultaneously, as far as possible to promote the retrieval accuracy, relevance feedback of probabilistic model is suitable to be involved in. And in the traditional Retrieval method likes TF*IDF weighting schema, existing problem of mis-weighting could be caused the poor retrieval result. To overcome this defect, we adopt smoothing function of TF*IDF which could be diminished the inadequate weighting result. Finally we try to optimize the result representation, the ranking algorithm is also seen to be critical. For improving the Term Frequency (TF) ranking model, ranking function considering density distribution is brought into our framework.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Interactive IR system",
                "sec_num": "3."
            },
            {
                "text": "After word recognition, each document is represented as a bag of words, but it does not mean that every word is a meaningful unit. For subsequently retrieval purpose, we need to set every recognized term a appropriate weight.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Retrieval Method",
                "sec_num": "3.1"
            },
            {
                "text": "Furthermore, when users try to issue single or shorter query for searching, we use traditional keyword matching method to catch documents indicated by the user as relevant and conduct query expansion from these first time extraction documents in which we expect to get a list of longer query words, then we carry out traditional vector space model (VSM) to extract more query-relevant documents for generating more user demanded queries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Retrieval Method",
                "sec_num": "3.1"
            },
            {
                "text": "Because of the classical term weight model, TF*IDF scheme, usually has mis-weighting problem.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Retrieval Method",
                "sec_num": "3.1"
            },
            {
                "text": "For example, a single document that contains the word \"ERP\" which only appears one time should not be deemed as relevant to a query containing \"ERP\" as a longer article that contains 20 occurrences of the word \"ERP\". On the other hand, we ought not to assume that the longer document is 20 times more relevant. For this reason we prefer a smoothed version of TF and IDF(Croft & Harper, 1979) as listed below:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Retrieval Method",
                "sec_num": "3.1"
            },
            {
                "text": "A common term frequency (TF) expression is then modified:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Retrieval Method",
                "sec_num": "3.1"
            },
            {
                "text": "( 1) f K TF f KL ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Retrieval Method",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "+ = +",
                        "eq_num": "("
                    }
                ],
                "section": "Retrieval Method",
                "sec_num": "3.1"
            },
            {
                "text": "where N = the size of the collection, t n = the number of documents containing a given term, t.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Retrieval Method",
                "sec_num": "3.1"
            },
            {
                "text": "As noted above, a Boolean search generally returns sets of documents that are unordered, or ordered by certain criteria unrelated to relevance, such as time or date.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ranking Result",
                "sec_num": "3.2"
            },
            {
                "text": "Most Web search engines are based on a different technology that ranks search results based upon the frequency distribution, term frequency, of query terms in the document collection. To cite an instance, if a document contains many occurrences of a query term \"ERP\", this suggests that the document might be highly relevant to a query like \"There are many software providers have ERP solutions, and the follow name lists which is one of the ERP providers?\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ranking Result",
                "sec_num": "3.2"
            },
            {
                "text": "For this reason, we consider several criteria to consider document ranking score, then we expect document which is more relevant to user's demand will be rank in higher place through sorting specific ranking score. The viewpoint of our criteria separated into four factors between single keyword and individual document. There respectively are similarity, density, term frequency and title appearance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ranking Result",
                "sec_num": "3.2"
            },
            {
                "text": "We retrieve documents in VSM-model by comparing similarity information sim(k,d) among a keyword k and a document d, then defining a positive threshold value for judging which one passing this value is seen to be relevant. So the single item gets a higher similarity value that we have confidence which one is more relevant to issued query keyword.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Similarity",
                "sec_num": "3.2.1"
            },
            {
                "text": "By contrast, conventional ranking technology gives score to documents merely considered term frequency and regardless of the density distribution of specific keyword in subject document. But if terms stated to be highly concentrated, it maybe mean that some topic is intensely described somewhere. So we carry out Maximum Entropy Function used to examine the density distribution of query keyword k, instead of just term frequency in considering document score. The original equation as formula (3) below, the value of E(K) becomes higher when p(k) in a average value that means probability distribution of k is more steady; E(K) has a lower value when p(k) is extremely in high and low value.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy Density Function",
                "sec_num": "3.2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "( ) ( ) log ( ) k K E K p k p k \u2208 = \u2212 \u2211",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Maximum Entropy Density Function",
                "sec_num": "3.2.2"
            },
            {
                "text": "So the entropy equation is revised to formula (4) (K. F. Jea & P. Y. Hsu, 2000), for ensuring the state between E(K) and p(k) is positive in synchronous up and down.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy Density Function",
                "sec_num": "3.2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "( ) ( ) log[1 ( )] k K E K p k p k \u2208 = \u2212 \u2212 \u2211",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Maximum Entropy Density Function",
                "sec_num": "3.2.2"
            },
            {
                "text": "In physics, the meaning of density is that the degree of object distribution in the unit space.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy Density Function",
                "sec_num": "3.2.2"
            },
            {
                "text": "Accordingly considering the keyword density distribution in unit length of document will be more closed to reality and achieve the normalization.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy Density Function",
                "sec_num": "3.2.2"
            },
            {
                "text": "After normalization adjustment, entropy equation is represented as follows formula 5:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy Density Function",
                "sec_num": "3.2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 ( ) log[1 ( )] ( ) n i i s i i p k p k E K S = \u2212 = \u2212 \u2211",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Maximum Entropy Density Function",
                "sec_num": "3.2.2"
            },
            {
                "text": "where Pi(x) = the occurrence probability of term k in sentence i, Si = the length of sentence i, n = number of sentences in a document. By this treatment, we can differentiate when document with same term frequency of query keyword, and then rank them by density distribution consideration.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Maximum Entropy Density Function",
                "sec_num": "3.2.2"
            },
            {
                "text": "Although term frequency (tf) is basis to rank the documents, high occurrence of keywords in a document indicates that the weight of this document is remarkable significance. Therefore, we also adopt concept of term frequency to ensure our ranking model. But basic tf weighting method emerges the problem of mis-weighting, likes mentioned before, so we transfer raw ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Term Frequency",
                "sec_num": "3.2.3"
            },
            {
                "text": "When author composes particular topic, title often brings out overall theme or subject within article content. People surf on a search engine or even read news article, using title to decide whether to enter a website or further read an article they are interested is always an obviously evidence that these titles engage their concern. In the other words, if the numbers of query keywords k in a document's title t have a higher frequency ( , )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Title Appearance",
                "sec_num": "3.2.4"
            },
            {
                "text": "i j f k t means that this article is considered to be more relevant by the user.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Title Appearance",
                "sec_num": "3.2.4"
            },
            {
                "text": "We formulate an equation of this concept as * ( , )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Title Appearance",
                "sec_num": "3.2.4"
            },
            {
                "text": "T i j W f k t ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Title Appearance",
                "sec_num": "3.2.4"
            },
            {
                "text": "where T W is a constant we can adjust to determine the weighted stress of this factor.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Title Appearance",
                "sec_num": "3.2.4"
            },
            {
                "text": "To sum up these ranking factors, we merge these variables into single equation as formula (6) : ",
                "cite_spans": [
                    {
                        "start": 90,
                        "end": 93,
                        "text": "(6)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rscore Ranking",
                "sec_num": "3.2.5"
            },
            {
                "text": "( , ) ( , )*[ ( , ) ( ) ] i j score i j i j s j tf k d R F k t sim k d E K Maxtf = + + 1, ( , ) 0 ( , ) * ( , ), ( , ) 1,... i j i j T i j i j f k t F k t W f k t f k t n \uf8f1 = \uf8f4 = \uf8f2 \u2265 \uf8f4 \uf8f3 (6) where ( , ) , i j T f k t N W N \u2208 \u2208 , T W =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rscore Ranking",
                "sec_num": "3.2.5"
            },
            {
                "text": "In a probabilistic framework, selecting terms and computing relevance weights are treated as two different problems. This model is used to compute more accurate weight estimates. Consider the term incidence contingency table in Table 1 . ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 228,
                        "end": 235,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Probabilistic Models of Query Expansion",
                "sec_num": "3.3.1"
            },
            {
                "text": "-r (N-n)-(R-r) N-n Total R N-R N",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probabilistic Models of Query Expansion",
                "sec_num": "3.3.1"
            },
            {
                "text": "where N = the number of documents in the collection, R = the number of relevant documents for this query, n = the number of documents having term t, r = the number of relevant documents containing the term t. The term weight from the equation which we mentioned above, would then be modified to take account of the relevance information as follows: ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probabilistic Models of Query Expansion",
                "sec_num": "3.3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "' ,",
                        "eq_num": "( 1)"
                    }
                ],
                "section": "Probabilistic Models of Query Expansion",
                "sec_num": "3.3.1"
            },
            {
                "text": "We utilize this re-expressed formula to re-weight the term within the vector space model when the user explicitly checks the retrieved document seen to be relevant or non-relevant. Subsequently, here address how terms are selected for expanding activity. In table 2 , we can obviously observe the post weighted scores are risen when choosing a list of documents relevant to the topic of \"ERP\", \"PeopleSoft\", \"SAP\" and \"Oracle\" and non-relevant to \"J.D.Edwards\", \"\u9f0e\u65b0\", \"\u8edf\u9ad4\u90e8\" and \"Siebel\". This model discussed by Robertson(1990) considers the distribution of scores for relevant and non-relevant documents. The model leads to an \"offer weight\", the larger the offer weight, the better the candidate, which is used to rank candidate terms. This two model proposed by Robertson tightly integrates query expansion using relevance feedback and probabilistic retrieval.",
                "cite_spans": [
                    {
                        "start": 512,
                        "end": 527,
                        "text": "Robertson(1990)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probabilistic Models of Query Expansion",
                "sec_num": "3.3.1"
            },
            {
                "text": "At the beginning of the second stage expansion, we prefer to take user profile that not only has benefit to provide extra information about personal search intention, but also greatly reduce the falsehood of retrieved result. Furthermore, we adopt algorithm with respect to noise reducing, the Linear Least Squares Fit (LLSF) method proposed by (Liu et al., 2002) , to construct matrix as personal user profile.",
                "cite_spans": [
                    {
                        "start": 345,
                        "end": 363,
                        "text": "(Liu et al., 2002)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LLSF Models of Query Expansion",
                "sec_num": "3.3.2"
            },
            {
                "text": "In order to have one of the matrixes, we first need to introduce our cluster method with respect to Single-Pass Clustering and 2-way K-Nearest-Neighbors (KNN) of Topic Detection and Tracking (TDT). By picking up the maximum relevance score which specific cluster belongs to, we can estimate this one is suitable to chosen for incoming item.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LLSF Models of Query Expansion",
                "sec_num": "3.3.2"
            },
            {
                "text": "With regard to the meaning of SVD, we discuss it as follows. If there is a high dimension data, it can be applied SVD for dimension diminishing. In the linear algebra, SVD has a special characteristic to transform a high dimensional data to lower one. This method is often called matrix decomposition. By this way, high dimension matrix could be reduce to lower one then even achieve rule and noise reduction via selection singular value in diagonal matrix. The potential power of SVD is which can attempt to estimate the hidden structure and discover the most important associative patterns between words and concepts. Figure 2 . demonstrates the process of the SVD: ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 620,
                        "end": 628,
                        "text": "Figure 2",
                        "ref_id": "FIGREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Singular Value Decomposition",
                "sec_num": "1."
            },
            {
                "text": "In re-composition process there is a critical point has to be taken notice. The diagonal matrix, we have to select precise rank k for diminishing the noises effectively. And how many rank k we should decide?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rank selection",
                "sec_num": "2."
            },
            {
                "text": "One of these methods is to observe the singular value when they felled down from violent to smooth, and the previous of the margin value is the best choice. e.g. As the dotted line in the diagram below, there is a margin value k=9 for rank adoption. \u2211 is the inverse of k \u2211 . Figure 6 . illustrates the process of learning profile M: We use matrices to represent the user's search histories, clusters of documents and user profiles as following Table 3 . We have learned a matrix M (p*n) from DT and DC, which is represented as the user personal profile. In this example, \"Cluster 314\" and \"Cluster 184\" are cluster field; \".Net\", \"Exchange Server 2003\" and \"Outlook\"\u2026etc are term field.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 276,
                        "end": 284,
                        "text": "Figure 6",
                        "ref_id": "FIGREF10"
                    },
                    {
                        "start": 445,
                        "end": 452,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Rank selection",
                "sec_num": "2."
            },
            {
                "text": "Following the upper step, we have constructed personal profile in cluster-term matrix format from search's history and latest relevant documents. Terms in the same cluster means that the relation among them are strongly recognized as Table 5 ., it can be used for expansion purpose when the one of the query keyword is appeared in this term list. This activity is described in Figure 5 . ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 234,
                        "end": 241,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 377,
                        "end": 385,
                        "text": "Figure 5",
                        "ref_id": "FIGREF9"
                    }
                ],
                "eq_spans": [],
                "section": "From Profile to Expansion",
                "sec_num": "3.3.2.4"
            },
            {
                "text": "To experiment with the personalized environment, we create the PNQES search engine. This personalized agent could provide the user a query expansion function which is separated into two stages. Above all, system will automatically catch and parse the query terms when the user has submitted completely. After parsing, search component with VSM-based search going to weight each words in the query according to vector space model (VSM) strategy for retrieving all possible documents related to the original query. For finding potential search's intention, system will ask the user to respond some feedback, called \"Relevance Feedback\", with judgment whether documents set is relevant or not while showing the retrieved result on the screen. In the meanwhile, when a user summits this response, Query",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PNQES: A Personalized Search Engine 4.1 Design",
                "sec_num": "4."
            },
            {
                "text": "Modification component adopted probabilistic model is able to give all terms in all relevant items with \"Offer Weight\" and then output some candidate terms in first stage expansion. In the parallel step, LLSF component combines personal search's history and pre-clustered corpus applied TDT algorithm to construct matrix called personal user profile in second stage query expansion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PNQES: A Personalized Search Engine 4.1 Design",
                "sec_num": "4."
            },
            {
                "text": "Lastly, query issued by the user will be expanded to a number of proper personal keywords via this two stage expansion processes. Figure 6 . is illustrated PNQES system architecture.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 130,
                        "end": 138,
                        "text": "Figure 6",
                        "ref_id": "FIGREF10"
                    }
                ],
                "eq_spans": [],
                "section": "PNQES: A Personalized Search Engine 4.1 Design",
                "sec_num": "4."
            },
            {
                "text": "The experiment target where we focus on is enterprise technology reports because most terms contained in are consisted of proper noun in which the experimental result can seem to be more accuracy. Moreover we try to collect data from Website, Taiwan.CNET.com, which contains various documents associated with specific software techniques and hardware information and the reported date from January 4, 1999 to April 31, 2006.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Data Sets",
                "sec_num": "4.2"
            },
            {
                "text": "This corpus has been separated to two main classes, Enterprise Application and News, and the 9 sub-topic. The volumes distribution of these topics is shown in Table 6 . ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 159,
                        "end": 166,
                        "text": "Table 6",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Data Sets",
                "sec_num": "4.2"
            },
            {
                "text": "Word segmentation is crucial for the research of information retrieval, especially for Chinese documents. The reason is that there is no word boundary in sentences, which increases the difficulty of this work. In this research, we extract Words with respect to verbs and nouns in \"Eighty Thousand dictionary\" that is published by Institute of Information Science Academia Sinica, then merge them into another dictionary possessing names of location, Institute and company and gathered by our laboratory.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word Recognition",
                "sec_num": "4.3"
            },
            {
                "text": "Moreover, we extract terms from a document by principle that treats the long-term has a higher priority than others, when this step is over, next we apply the newest version of word segmentation system developed by Chinese Knowledge Processing Group (CKIP) to pick up the rest terms that Words database can not capture for ascending the precision of recognition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word Recognition",
                "sec_num": "4.3"
            },
            {
                "text": "Because of our experimental corpus is focused on IT related articles, testers have be expected to hold the professional IT knowledge of how to realize which article topic is their demand one. For this reason, we plan to ask 10 users who both are the graduate students and major in the department related to \"Computer Science\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Subject",
                "sec_num": "5.1.1"
            },
            {
                "text": "The evaluation step symbols are described as : ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Variable",
                "sec_num": "5.1.2"
            },
            {
                "text": "And then we design an evaluation procedure with regard to retrieval and ranking precision. The brief evaluation process has listed in table 7. To actually simulate the real condition, we request tester to input single query to initial the system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Procedure",
                "sec_num": "5.1.3"
            },
            {
                "text": "Firstly, system will retrieve the keyword related articles by \"Boolean AND search\" method, and all articles which contain this keyword will be retrieved and ranked in TF ranking approach.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Procedure",
                "sec_num": "5.1.3"
            },
            {
                "text": "While possibly related items have been retrieved, the testers will be asked to indicate several articles which they think to be relevant and are explicitly stored into personal log, furthermore the submitted query will be expand from analyzing these relevant items by probabilities model. The testers at will select a number of recommended keywords with scattering issues and then add them to original query list for the following search. The expanded query list will conduct VSM search for retrieval task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Query Expansion:",
                "sec_num": "2."
            },
            {
                "text": "In ranking test, we ask tester to interact with our system for 3 time as step 2 for successful training the query list to robustness, so that the after training list is for doing the baseline task. Further, testers who evaluate the TF ranking and Rscore ranking also based on this baseline with the evaluation formulation of ranking function \"Average R-precision\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training and Ranking:",
                "sec_num": "3."
            },
            {
                "text": "The following retrieval tasks we increase one variable \"QTR\" to our evaluation activity with the ranking function Rscore measure. This step has two objectives, one is to evaluate the usability of variable QTR and the other is to as far as possible make increasing of interaction between tester and system for establishing personal search's history completely.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methods Integration and Profile Recording:",
                "sec_num": "4."
            },
            {
                "text": "When tester searching behavior has been fully caught, we ask testers to evaluate the results expanded by LLSF model based on baseline to contrast the variation of two models that baseline means rarely using the probabilities model and the latter means a hybrid expanding activity with two expanding model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Two Expansion Methods Comparison:",
                "sec_num": "5."
            },
            {
                "text": "First, the evaluation functions we referred is TREC_EVAL method developed by Buckley(1991). We have altered to fit condition of our experiment. Table 8 . is the example of one of our scored cards. The rest cards we have appended to appendix A. In the experiment, we have recorded retrieved result set and relevant items from evaluation process E_01 to E_05. After recorded, we turn the data to scored card format and draw the bar chart for observing if each effect variable has been added respectively, the result precision will be changed significantly. The evaluation method we have adopted the precision for result retrieval and average R-precision for result ranking. We also have compared whether or not the Rscore Function is significantly better than Term Frequency (TF) ranking method.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 144,
                        "end": 151,
                        "text": "Table 8",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Retrieval and Ranking Statistics",
                "sec_num": "5.1.4"
            },
            {
                "text": "First of all, we examine the baseline and of combining the QTR as E_01 and E_02 to observe the variation of precision. The variation of each variable appended is demonstrated in Figure 19 . We can see E_02 significantly outperform the baseline. It is clearly demonstrates that it is worthwhile to combine the QTR to yield higher retrieval precision. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 178,
                        "end": 187,
                        "text": "Figure 19",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Result of Each Retrieval Methods:",
                "sec_num": "1."
            },
            {
                "text": "Then add UP to evaluate the personalized search as E_05. Another observation from Figure 8 . is that using the UP to revise the expanding terms, this approach gives extraordinary precision value than rarely using classic probabilities model alone. This tends to imply that the personal profile is worthwhile to perform personalized search. Figure 8 . Results of adding the UP analysis",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 82,
                        "end": 90,
                        "text": "Figure 8",
                        "ref_id": null
                    },
                    {
                        "start": 340,
                        "end": 348,
                        "text": "Figure 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Result of Two Expansion Models:",
                "sec_num": null
            },
            {
                "text": "Distribution of Average R-Precision value presented in Figure 9 ., applying Rscore Function obviously performs a higher average precision than original TF ranking measure. So we firmly trust that consideration of several factor mentioned in section 3.2 when undertakes ranking task will induce the performance improvement. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 55,
                        "end": 63,
                        "text": "Figure 9",
                        "ref_id": "FIGREF12"
                    }
                ],
                "eq_spans": [],
                "section": "Result of Two Ranking Methods:",
                "sec_num": "3."
            },
            {
                "text": "In this paper, we propose a mechanism which can be intelligent to learn the user's search behavior and provide specific search results for each differentiated end-users. To achieve this purpose, adopting 2 stages query expansion and hybrid density distribution ranking function is our efforts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6."
            },
            {
                "text": "Query Expansion activity in first stage we have applied probabilities model which takes that the expanding and weight re-calculating as different parts, both are based on the relevant documents of user's feedback. While in stage 2 expansion, system initiatively combine the personal profile and latest relevant items indicated by the user and transform with respect to LLSF metrics merging procedure to extract out more suggested terms of user-driven's. As the list of documents have been retrieved completely, so as to show the most relevant items for the user, ranking method we have considered several influence factor to give the appearance priority to each items.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6."
            },
            {
                "text": "Furthermore we utilize evaluation criteria to prove our PNQES is of feasible and effective. And the result performance has proved this proposed system framework not only could be applied in local database, but also could be well-performed in web-based searching for personalization enhancement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6."
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Indexing by intent semantic analysis",
                "authors": [
                    {
                        "first": "Fumas",
                        "middle": [],
                        "last": "Deerwester",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Landauer",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Harshman",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Deerwester, Fumas, Landauer, & Harshman. (1990). Indexing by intent semantic analysis. Paper presented at the JASIS.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Web mining for web personalization",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Eirinaki",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Vazirgiannis",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "ACM Transactions on Internet Technology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eirinaki, M., & Vazirgiannis, M. (2003, February). Web mining for web personalization. Paper presented at the ACM Transactions on Internet Technology (TOIT).",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Relevance feedback revisited. Paper presented at the Proceedings of the 15th annual international ACM SIGIR conference on Research and development in information retrieval",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Harman",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Harman, D. (1992 June). Relevance feedback revisited. Paper presented at the Proceedings of the 15th annual international ACM SIGIR conference on Research and development in information retrieval, New York.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Query expansion based on the context in chinese information retrieval",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "J.-F",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Joumal of Chinese Infomation Processing",
                "volume": "16",
                "issue": "",
                "pages": "32--37",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "HE, H.-z., HE, P.-l., GAO, J.-f., & HUANG, C.-n. (2002). Query expansion based on the context in chinese information retrieval. Joumal of Chinese Infomation Processing, 16(6), 32-37.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Real life, real users, and real needs: A study and analysis of user queries on the web",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "J"
                        ],
                        "last": "Jansen",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Spink",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Saracevic",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Information Processing & Management",
                "volume": "36",
                "issue": "2",
                "pages": "207--227",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jansen, B. J., Spink, A., & Saracevic, T. (2000,March 1). Real life, real users, and real needs: A study and analysis of user queries on the web. Information Processing & Management, 36(2), 207-227.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Personalized web search by mapping user queries to categories",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Meng",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of CIKM",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liu, F., Yu, C., & Meng, W. (2002, November 4--9). Personalized web search by mapping user queries to categories. Paper presented at the In Proceedings of CIKM, McLean, Virginia, USA.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Combining mutiple evidence from different types of thesaurus for query expansion",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mandala",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Tokuanga",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Tanaka",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mandala, R., Tokuanga, T., & Tanaka, H. (1999). Combining mutiple evidence from different types of thesaurus for query expansion. Paper presented at the SIGIR.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Automatic query expansion based on a similarity thesaurus",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Qiu",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Qiu, Y. (1995). Automatic query expansion based on a similarity thesaurus. ETH Zurich.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Relevance weighting of search terms",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "E"
                        ],
                        "last": "Robertson",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    }
                ],
                "year": 1976,
                "venue": "Journal of the American Society for Information Sciences",
                "volume": "27",
                "issue": "3",
                "pages": "129--146",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robertson, S. E., & Sparck Jones, K. (1976). Relevance weighting of search terms. Journal of the American Society for Information Sciences, 27(3), 129 -146.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Relevance feedback information retrieval",
                "authors": [],
                "year": 1971,
                "venue": "The smart retrieval system-experiments in automatic document processing",
                "volume": "",
                "issue": "",
                "pages": "313--323",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rocchio. (1971). Relevance feedback information retrieval. In The smart retrieval system-experiments in automatic document processing (pp. 313 -323). Kansas: Prentice-Hall.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Improving retrieval performance by relevance feedback",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Salton",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Buckley",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "",
                "volume": "41",
                "issue": "",
                "pages": "288--297",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Salton, G., & Buckley, C. (1990). Improving retrieval performance by relevance feedback. 41(4), 288 -297.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Contextsensitive information retrieval usingimplicit feedback",
                "authors": [
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Zhai",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shen, X., Tan, B., & Zhai, C. (2005, Augest 15-19). Contextsensitive information retrieval usingimplicit feedback. Paper presented at the SIGIR, Salvador,Brazil.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Personalizing search via automated analysis of interests and activities",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Teevan",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "T"
                        ],
                        "last": "Dumais",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Horvitz",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Teevan, J., Dumais, S. T., & Horvitz, E. (2005, August 15-19). Personalizing search via automated analysis of interests and activities. Paper presented at the SIGIR, Salvador, Brazil.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Expansion-based technologies in finding relevant and new information",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "ZHANG, M., SONG, R., LIN, C., MA, S., JIANG, Z., LIU, Y., et al. (2002). Expansion-based technologies in finding relevant and new information. Paper presented at the TERC.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "1) where L = the normalized length of document D. If the document is of average length, then L = 1.0. K = a constant, usually set between 1.0 and 2.0. f = specific term occurs in single document. The TF component is designed to increase in value quite modestly as f arises. For instance, if f ,K and L are 1, then TF = 1.0. If f were 9, then TF = 1.8. We can properly avoid the mis-weighting problem of conventional TF through this kind of effort. Smoothing inverse document frequency (IDF) prevents division by zero in the case where a term does not occur in the document collection at all."
            },
            "FIGREF1": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "weighting stress for occurrence of keyword in a title, ( , ) i j f k t = occurrence of keyword k in a title t, ( , ) i j sim k d = similarity value between keywords k and a document d, ( ) s E K = sum of each keyword's entropy value in a document d, ( , ) i j tf k d = the frequency of keyword k in a document d, j Maxtf = the maximum frequency of any keyword k in a document d."
            },
            "FIGREF3": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "large number of clustering methods were studied in IR research. This section we adopt the TDT proposed by CMU (Tang et al., 1999). One of the two algorithms is Single-Pass Clustering (SPC) for clustering task and the other is 2-way K-Nearest-Neighbors (KNN) for automatic classification.Figure 1. demonstrates SPC flow chart."
            },
            "FIGREF4": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "Flow chart of Single-Pass Clustering Single-pass clustering follow the process as listed below and apply cosine as similarity calculation function: (1) Above all, taking out the first item in document collection as the first cluster. (2) Then take out the second item, calculating the similarity between item and clusters have been created. (3) If there is no similarity passes the threshold, instantaneously letting the incoming item be a new single cluster. (4) If the similarity passes the threshold we just set before, therefore categorize incoming item into appropriate candidate cluster. (5) If step 4 is selected, rescoring the centroid vector space of this cluster. (6) Iterating step 2 to 6, until dealing with entire incoming items."
            },
            "FIGREF5": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "way KNN in TDT is used to classify the incoming item into proper classification by computing the relevance score. Which refers to compare objective cluster and else cluster that both take numbers of k Nearest-Neighbors. Objective clusters with respect to documents in this clusters which are prepared for comparison; else cluster means documents in the clusters which different from objective clusters in the candidate clusters. Formula (9) explains the calculation of relevance score."
            },
            "FIGREF6": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "Singular Value Decomposition (SVD)"
            },
            "FIGREF7": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "Singular Value Variation Diagram"
            },
            "FIGREF8": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "Process of learning profile M"
            },
            "FIGREF9": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "Concept of Profile Expansion"
            },
            "FIGREF10": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "NQES ArchitectureNext step, ranking component has considered of several factors which influence the ranking result with similarity, dense distribution, term frequency and title occurrence. Simultaneously this ranked result would be stored in personal log file for later analyzed."
            },
            "FIGREF11": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "Precision of different combining methods to 10 users 2."
            },
            "FIGREF12": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "Average R-Precision with two ranking method"
            },
            "TABREF1": {
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td/><td>Relevant</td><td>Non-relevant</td><td>Total</td></tr><tr><td>Containing the term</td><td>r</td><td>n-r</td><td>n</td></tr><tr><td>Not containing the term</td><td>R</td><td/><td/></tr></table>",
                "text": "Term Incidence Contingency Table (Jackson & Moulinier, 2002)"
            },
            "TABREF3": {
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td/><td>ERP</td><td>PeopleSoft</td><td>SAP</td><td>Oracle</td><td>J.D.Edwards</td><td>\u9f0e\u65b0</td><td>\u8edf\u9ad4\u90e8</td><td>Siebel</td></tr><tr><td>Initial Weight</td><td>2.718</td><td>3.365</td><td>2.792</td><td>2.681</td><td>5.953</td><td>5.302</td><td>4.117</td><td>4.013</td></tr><tr><td>Re-weight</td><td>3.714</td><td>5.329</td><td>4.752</td><td>3.253</td><td>5.986</td><td>4.192</td><td>3.390</td><td>3.886</td></tr></table>",
                "text": "Comparison of Re-weight activity"
            },
            "TABREF4": {
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>3.3.2.3</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td colspan=\"12\">Given the m-by-n document-term matrix DT and the m-by-p document-cluster matrix DC, the Linear</td></tr><tr><td colspan=\"12\">Least Squares Fit method computes a p-by-n cluster-term matrix M. In this step, techniques solving the</td></tr><tr><td colspan=\"12\">problem is to employ the concept of Latent Semantic Index (LSI) in which Singular Value</td></tr><tr><td colspan=\"12\">Decomposition (SVD) is the mathematical measure to decompose the input matrix. By this measure,</td></tr><tr><td colspan=\"2\">DT is decomposed into the product of three matrixes * * T k k k U V \u2211</td><td colspan=\"10\">, where k U and k V are orthogonal</td></tr><tr><td>matrices and</td><td colspan=\"11\">k \u2211 is a diagonal matrix. After such decomposition, we can straightforward to</td></tr><tr><td colspan=\"3\">recompose and combine DC matrix for computing particular matrix M,</td><td>* M DC U T =</td><td>k</td><td>*</td><td>\u2211</td><td>k</td><td>+</td><td>* V</td><td>k</td><td>T</td><td>,</td></tr><tr><td>+</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>where k</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr></table>",
                "text": "Constructing the User Profile in Matrix FeatureThe learning equation mentioned above is concerned with concept of Latent Semantic Analysis(LSA)    or Latent Semantic Indexing (LSI)(Deerwester et al., 1990). LSI is a theory for extracting and representing the relationship of words in a large corpus of text by using the co-occurrence of words and a mathematics technique, Singular Value Decomposition (SVD). In addition, there has another statement declared is LSI which could overcome crucial defect happened in searching process. This method projects documents and words to a predefined space, finding out the latent relationship between terms and documents. Even can retrieve the relevant documents when the situation that searching keywords is not appeared."
            },
            "TABREF5": {
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>Term</td><td>.Net</td><td>Exchange</td><td>Outlook</td><td>Palm</td><td>PocketPC</td><td>Palm OS</td></tr><tr><td>Doc</td><td/><td>Server 2003</td><td/><td/><td/><td/></tr><tr><td>D1</td><td>5.0222</td><td>7.1262</td><td>3.3484</td><td>0</td><td>0</td><td>0</td></tr><tr><td>D2</td><td>0</td><td>11.7001</td><td>8.4147</td><td>0</td><td>0</td><td>0</td></tr><tr><td>D3</td><td>4.3711</td><td>10.4553</td><td>6.8124</td><td>0</td><td>0</td><td/></tr><tr><td>D4</td><td>0</td><td>0</td><td>0</td><td>1.6325</td><td>0</td><td>0</td></tr><tr><td>D5</td><td>0</td><td>0</td><td>0</td><td>4.3454</td><td>6.5116</td><td>3.3619</td></tr><tr><td>D6</td><td>0</td><td>0</td><td>0</td><td>4.4678</td><td>5.6560</td><td>2.4723</td></tr><tr><td colspan=\"7\">Matrix DT (m*n) is a document-term matrix, m is the number of documents considered relevant by the</td></tr><tr><td colspan=\"7\">user in a user's search history and n is the number of distinct terms occurring in these documents,</td></tr></table>",
                "text": "Document-Term matrix (DT)"
            },
            "TABREF6": {
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td/><td/><td>Cluster</td><td>Cluster 1037</td><td>Cluster 4194</td><td/><td/></tr><tr><td/><td/><td>Doc</td><td/><td/><td/><td/></tr><tr><td/><td/><td>D1</td><td>1</td><td>0</td><td/><td/></tr><tr><td/><td/><td>D2</td><td>1</td><td>0</td><td/><td/></tr><tr><td/><td/><td>D3</td><td>0</td><td>1</td><td/><td/></tr><tr><td/><td/><td>D4</td><td>0</td><td>1</td><td/><td/></tr><tr><td/><td/><td>D5</td><td>1</td><td>0</td><td/><td/></tr><tr><td/><td/><td>D6</td><td>0</td><td>1</td><td/><td/></tr><tr><td colspan=\"7\">Matrix DC (m*qthe query/document. Moreover, if there is an edge between the y-th cluster and the x-th</td></tr><tr><td colspan=\"5\">query/document, then the entry DC(x,y) = 1; otherwise it is 0.</td><td/><td/></tr><tr><td/><td/><td colspan=\"4\">Table 5. Cluster-Term matrix M expresses a user profile</td><td/></tr><tr><td>Term</td><td>.Net</td><td>Exchange</td><td>Outlook</td><td>Palm</td><td>PocketPC</td><td>Palm OS</td></tr><tr><td>Cluster</td><td/><td>Server 2003</td><td/><td/><td/><td/></tr><tr><td>Cluster 314</td><td>1.3097</td><td>3.2141</td><td>2.0575</td><td>0</td><td>0</td><td>0</td></tr><tr><td>Cluster 184</td><td>0</td><td>0</td><td>0</td><td>1.3215</td><td>1.5242</td><td>0.7774</td></tr></table>",
                "text": "Document-Cluster matrix (DC) ) is the document-cluster matrix, which is established from the relationships between the clusters and the documents. For each row in matrix DT, there is a corresponding row in the matrix DC. The columns of DC are the set of related clusters. If a row in DT represents a query/document, then the corresponding row in the matrix DC represents the set of clusters related to"
            },
            "TABREF7": {
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>Sub-Topic</td><td>Category</td><td>Numbers of Article</td></tr><tr><td>IT techniques</td><td>EA</td><td>1000</td></tr><tr><td>Special Topic Report</td><td>EA</td><td>250</td></tr><tr><td>Case Study</td><td>EA</td><td>550</td></tr><tr><td>Special Column</td><td>EA</td><td>1137</td></tr><tr><td>Research Report</td><td>EA</td><td>1511</td></tr><tr><td>Enterprise Software</td><td>News</td><td>6660</td></tr><tr><td>Enterprise Hardware</td><td>News</td><td>4991</td></tr><tr><td>Network/Communication</td><td>News</td><td>2796</td></tr><tr><td>3C Product</td><td>News</td><td>3694</td></tr><tr><td>Total Volumes</td><td/><td>22988</td></tr><tr><td colspan=\"3\">p.s: EA: Enterprise Application</td></tr></table>",
                "text": "Volumes of Corpus"
            },
            "TABREF9": {
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td colspan=\"2\">Event Number</td><td>Evaluation Event</td></tr><tr><td>E_01</td><td/><td>Precision in baseline event</td></tr><tr><td>E_02</td><td/><td>Precision in baseline + QTR event</td></tr><tr><td>E_03</td><td/><td>Average R-precision in TF ranking model</td></tr><tr><td>E_04</td><td/><td>Average R-precision in Rscore ranking model</td></tr><tr><td>E_05</td><td/><td>Precision LLSF model based on baseline</td></tr><tr><td colspan=\"3\">5.1.3.1 Description of Evaluation Processes</td></tr><tr><td>1.</td><td>System Initiation:</td></tr></table>",
                "text": "Brief Evaluation Process"
            },
            "TABREF10": {
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td colspan=\"2\">User 1</td><td/></tr><tr><td colspan=\"2\">Queryid (Num) 1</td><td/></tr><tr><td colspan=\"3\">Precision for all relevant documents</td></tr><tr><td>E_01</td><td/><td>0.8333</td></tr><tr><td>E_02</td><td/><td>0.9286</td></tr><tr><td>E_03</td><td/><td>0.8846</td></tr><tr><td/><td colspan=\"2\">EVAL Scored Card B</td></tr><tr><td colspan=\"2\">User 1</td><td/></tr><tr><td colspan=\"2\">Queryid (Num) 1</td><td/></tr><tr><td colspan=\"3\">Total number of documents over all queries</td></tr><tr><td colspan=\"2\">Retrieved:</td><td>23</td></tr><tr><td colspan=\"2\">Rel_ret:</td><td>20</td></tr><tr><td colspan=\"2\">Precision: (in TF ranking)</td><td/></tr><tr><td>At</td><td>5 docs:</td><td>0.8000</td></tr><tr><td colspan=\"2\">At 10 docs:</td><td>0.8000</td></tr><tr><td colspan=\"2\">At 15 docs:</td><td>0.7333</td></tr><tr><td colspan=\"2\">At 20 docs:</td><td>0.7500</td></tr><tr><td colspan=\"2\">At 30 docs:</td><td>0.6667</td></tr><tr><td colspan=\"2\">Average R-Precision:</td><td>0.7500</td></tr><tr><td colspan=\"2\">Precision: (in Rscore ranking)</td><td/></tr><tr><td>At</td><td>5 docs:</td><td>1.0000</td></tr><tr><td colspan=\"2\">At 10 docs:</td><td>1.0000</td></tr><tr><td colspan=\"2\">At 15 docs:</td><td>0.9333</td></tr><tr><td colspan=\"2\">At 20 docs:</td><td>0.9000</td></tr><tr><td colspan=\"2\">At 30 docs:</td><td>0.6667</td></tr><tr><td colspan=\"2\">Average R-Precision:</td><td>0.9000</td></tr><tr><td/><td colspan=\"2\">p.s: Rel_ret: Retrieved Relevant document</td></tr></table>",
                "text": "EVAL Scored Card A"
            }
        }
    }
}