File size: 72,916 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
{
    "paper_id": "O06-1017",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:07:36.349031Z"
    },
    "title": "",
    "authors": [],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "",
    "pdf_parse": {
        "paper_id": "O06-1017",
        "_pdf_hash": "",
        "abstract": [],
        "body_text": [
            {
                "text": "\u9054\u723e\u6587\u65bc 1872 \uf98e\u767c\u8868\"The Expression of the Emotions in Man and Animals\"\u4e00\u66f8\uff0c\u4ed6\u4ee5 \u9032\u5316\u7684\u89c0\u9ede\u5206\u6790\u52d5\u7269\u548c\u4eba\uf9d0\u5728\u60c5\u7dd2\u8cea\uf97e\u4e0a\u76f8\u4f3c\u8207\u76f8\uf962\u4e4b\u8655\u3002\u4e4b\u5f8c\u4e00\u767e\u591a\uf98e\uf92d\uff0c\u5fc3\uf9e4\u5b78\u3001\u8166 \ufa19\u7d93\u79d1\u5b78\u3001\u8a8d\u77e5\u79d1\u5b78\u7b49\uf9b4\u57df\u7684\u5b78\u8005\u4e5f\u6295\u5165\u4eba\uf9d0\u60c5\u7dd2\u5206\u6790\u7684\u7814\u7a76\uff0c\u4e26\u767c\u5c55\u51fa\u900f\u904e\u8166\u90e8\u5f71\u50cf\u3001 \u5fc3\u8df3\u3001\u8840\u58d3\u7b49\u751f\u7269\u8a0a\u865f\uf92d\u5224\u65b7\u4eba\uf9d0\u60c5\u7dd2\u8b8a\u5316\u7684\u65b9\u6cd5 (Dolan, 2002) ",
                "cite_spans": [
                    {
                        "start": 173,
                        "end": 186,
                        "text": "(Dolan, 2002)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u7dd2\uf941",
                "sec_num": "1."
            },
            {
                "text": ") \u5fae\u7b11 :O \u9a5a\u8a1d 0:) \u5929\u4f7f (:| \u5475\u6b20 :( \u96e3\u904e X-( \u751f\u6c23 :-B \u6234\u773c\u93e1 =P~ \uf9ca\u53e3\u6c34 ;) \u7728\u773c :> \u5f97\u610f =; \u518d\ufa0a :-? \u8003\u616e :D \u958b\u61f7 B-) \u800d\u5e25 I-) \u7761\u8457 \u5077\u7b11 ;;) \u7728\u7728\u773c :-S \u64d4\u5fc3 8-) \u74b0\u9867 =D> \u9f13\u638c :-/ \u7591\u60d1 >:) \u90aa\uf9b9 :-& \uf967\u8212\u670d [-o< \u7948\u79b1 :x \u611b\u610f :(( \u5927\u54ed :-$ \u5b89\u975c :-< \u5606\u6c23 :\"> \u5bb3\u7f9e :)) \u5927\u7b11 [-( \uf967\uf96f\uf9ba >:P \u5478 :p \u5410\u820c\u982d :| \u5446\u4f4f :o) \u5c0f\u4e11 @};- \u82b1 :* \u89aa\u89aa /:) \u76ba\u7709 @-) \ufa19\u667a\uf967\u6e05 :@) \ufa16\u982d \u8868 2\u3001\u8a13\uf996\u8207\u6e2c\u8a66\u8cc7\uf9be\u96c6\u7d71\u8a08",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u7dd2\uf941",
                "sec_num": "1."
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Multi-Modal Emotion Recognition from Speech and Text",
                "authors": [
                    {
                        "first": "Chung-Hsien",
                        "middle": [],
                        "last": "\u652f\u6301\uff0c\u5728\u6b64\u81f4\u8b1d\u3002 \uf96b\u8003\u6587\u737b Ze-Jing Chuang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "International Journal of Computational Linguistics and Chinese Language Processing",
                "volume": "9",
                "issue": "2",
                "pages": "45--62",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "\u672c\u6587\u90e8\u5206\u6210\u679c\u7531\u570b\u79d1\u6703\u8a08\u756b NSC95-2752-E001-001-PAE.\u652f\u6301\uff0c\u5728\u6b64\u81f4\u8b1d\u3002 \uf96b\u8003\u6587\u737b Ze-Jing Chuang and Chung-Hsien Wu, \"Multi-Modal Emotion Recognition from Speech and Text,\" International Journal of Computational Linguistics and Chinese Language Processing, Vol. 9, No. 2, pp. 45-62, 2004.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Support-Vector Network",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Cortes",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Vapnik",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Machine Learning",
                "volume": "20",
                "issue": "",
                "pages": "273--297",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Cortes and V. Vapnik, \"Support-Vector Network,\" Machine Learning, Vol. 20, pp. 273-297, 1995.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Emotion, Cognition, and Behavior",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "J"
                        ],
                        "last": "Dolan",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Science",
                "volume": "298",
                "issue": "8",
                "pages": "1191--1194",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. J. Dolan, \"Emotion, Cognition, and Behavior,\" Science, Vol. 298, No. 8, pp. 1191-1194, 2002.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Working Set Selection Using Second Order Information for Training Support Vector Machines",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rong-En Fan",
                        "suffix": ""
                    },
                    {
                        "first": "Chih-Jen",
                        "middle": [],
                        "last": "Pai-Hsuen Chen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Journal of Machine Learning Research",
                "volume": "6",
                "issue": "",
                "pages": "1889--1918",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rong-En Fan, Pai-Hsuen Chen and Chih-Jen Lin, \"Working Set Selection Using Second Order Information for Training Support Vector Machines,\" Journal of Machine Learning Research, Vol. 6, pp. 1889-1918, 2005.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "SVMs for the Blogosphere: Blog Identification and Splog Detection",
                "authors": [
                    {
                        "first": "Pranam",
                        "middle": [],
                        "last": "Kolari",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Finin",
                        "suffix": ""
                    },
                    {
                        "first": "Anupam",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of AAAI 2006 Symposia on Computational Approaches to Analyzing Weblogs",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pranam Kolari, Tim Finin and Anupam Joshi, \"SVMs for the Blogosphere: Blog Identification and Splog Detection,\" Proceedings of AAAI 2006 Symposia on Computational Approaches to Analyzing Weblogs, 2006.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A Model of Textual Affect Sensing using Real-World Knowledge",
                "authors": [
                    {
                        "first": "Hugo",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Henry",
                        "middle": [],
                        "last": "Lieberman",
                        "suffix": ""
                    },
                    {
                        "first": "Ted",
                        "middle": [],
                        "last": "Selker",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of 2003 International Conference on Intelligent User Interfaces",
                "volume": "",
                "issue": "",
                "pages": "125--132",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hugo Liu, Henry Lieberman and Ted Selker, \"A Model of Textual Affect Sensing using Real-World Knowledge,\" Proceedings of 2003 International Conference on Intelligent User Interfaces, pp. 125-132, 2003.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Experiments with Mood Classification in Blog Posts",
                "authors": [
                    {
                        "first": "Gilad",
                        "middle": [],
                        "last": "Mishne",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of Workshop on Stylistic Analysis of Text for Information Access",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gilad Mishne, \"Experiments with Mood Classification in Blog Posts,\" Proceedings of Workshop on Stylistic Analysis of Text for Information Access, 2005.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Emotion Recognition and Evaluation of Mandarin Speech Using Weighted D-KNN Classification",
                "authors": [
                    {
                        "first": "Tsang-Long",
                        "middle": [],
                        "last": "Pao",
                        "suffix": ""
                    },
                    {
                        "first": "Yu-Te",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Jun-Heng",
                        "middle": [],
                        "last": "Yeh",
                        "suffix": ""
                    },
                    {
                        "first": "Yuan-Hao",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "\u9ad8\u53f0\u831c\u3001\u502a\u73ee\u6676\u3002\"\u83ef\u8a9e\u6587\u7db2\uf937\u8a00\uf941\u8ca0\u5411\u60c5\u7dd2\u7528\u8a5e\u6aa2\u6838\u8edf\u9ad4\u7814\u767c\uff0c\"\u7b2c\u4e09\u5c46\u5168\u7403\u83ef\u6587\u7db2\uf937\u6559 \u80b2\u7814\u8a0e\u6703(ICICE2003)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tsang-Long Pao, Yu-Te Chen, Jun-Heng Yeh and Yuan-Hao Chang, \"Emotion Recognition and Evaluation of Mandarin Speech Using Weighted D-KNN Classification,\" Proceedings of Rocling 2005, pp. 203-212, 2005. \u9ad8\u53f0\u831c\u3001\u502a\u73ee\u6676\u3002\"\u83ef\u8a9e\u6587\u7db2\uf937\u8a00\uf941\u8ca0\u5411\u60c5\u7dd2\u7528\u8a5e\u6aa2\u6838\u8edf\u9ad4\u7814\u767c\uff0c\"\u7b2c\u4e09\u5c46\u5168\u7403\u83ef\u6587\u7db2\uf937\u6559 \u80b2\u7814\u8a0e\u6703(ICICE2003)\uf941\u6587\u96c6\uff0c393-402 \u9801\uff0c2003\u3002",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "text": "\u7ad9\uff0c\u751a\u81f3\u5927\u5ee0\u958b\u59cb\u63d0\u4f9b Blog \u67b6\u8a2d\u670d\u52d9\uff0c\u5438\u5f15\u8a31\u591a Blog \u767b\uf93f(Blog Ping)\u8207\u641c\u5c0b\u670d\u52d9\u7684\u958b\u8a2d\uff0c \u5982 Technorati 3 \u63d0\u4f9b\u641c\u5c0b\u7db2\u9801\u4ecb\u9762\u53ca API\uff0cWegblogs.com 4 \u63d0\u4f9b\u767b\uf93f Blog \u7684\u4ecb\u9762\uff0c\u4e26\u5373\u6642\u56de \u5831\u4e16\u754c\u4e0a\u6700\u65b0\uf901\u65b0\u7684 Blog \u6587\u7ae0\u3002Kolari \u7b49\u4eba(2006)\u7684\u7814\u7a76\u5373\uf9dd\u7528 Technorati \u53ca Wegblogs.com",
                "content": "<table><tr><td colspan=\"12\">\u5b57\u53ca\u8a9e\u97f3\uf978\uf9d0\u7279\u5fb5\u8cc7\u8a0a\u5c0d\u8a9e\u97f3\uf906\u5b50\u6240\u96b1\u542b\u7684\u60c5\u7dd2\u9032\ufa08\u8fa8\uf9fc\uff0c\u7814\u7a76\u7d50\u679c\u986f\u793a\u540c\u6642\u4f7f\u7528\uf978\uf9d0\u7279 \u969b\u7db2\uf937\u6587\u7ae0\u6536\u96c6\u60c5\u7dd2\u7528\u8a5e\uff0c\u4e26\u5c07\u9019\u4e9b\u8a5e\u5f59\u6b78\u7d0d\u5728\u61a4\uf960\u3001\u60b2\u50b7\u7b49\u60c5\u7dd2\u5206\uf9d0\u4e0b\u3002 \uf96b\u7167\u8868 1 \u6211\u5011\u5b9a\u7fa9(s1)\uf906\u7684\u4f7f\u7528\u8005\u60c5\u7dd2\u70ba\u300c\u5927\u54ed\u300d \u3001(s2)\uf906\u7684\u4f7f\u7528\u8005\u60c5\u7dd2\u70ba\u300c\u9a5a\u8a1d\u300d \u3001(s3)\uf906</td></tr><tr><td colspan=\"12\">\u5fb5\uff0c\u6bd4\u55ae\u7368\u4f7f\u7528\u4e00\uf9d0\u7279\u5fb5\u5c0d\u60c5\u7dd2\u8fa8\uf9fc\u6709\uf901\u597d\u7684\u6548\u679c\u3002Pao \u7b49\u4eba (2005)\u4e5f\u4f7f\u7528\u8a9e\u97f3\u7279\u5fb5\u5efa\uf9f7 \u767c\u4f48\u7db2\uf937\u6587\u7ae0\u7684\u4ecb\u9762\u3001\u8868\u9054\u65b9\u5f0f\u3001\u8a9e\u8a00\uff0c\u96a8\u8457\uf901\u591a\u4f7f\u7528\u8005\u7684\uf96b\u8207\u800c\uf967\u65b7\u5730\u64f4\u5145\u3001\u5275\u65b0\uff0c \u7684\u4f7f\u7528\u8005\u60c5\u7dd2\u70ba\u300c\u5927\u7b11\u300d \u3002\u7d93\u7531\u9019\u6a23\u7684\u8a2d\u5b9a\uff0c\u672c\u7814\u7a76\u5373\u4ee5\u96c5\u864e Blog \u670d\u52d9\u4f7f\u7528\u8005\u6240\u767c\u8868\u7684\u6587</td></tr><tr><td colspan=\"12\">\u60c5\u7dd2\u5206\uf9d0\u5668\uff0c\u958b\u767c\u7684\u5de5\u5177\u53ef\u5354\u52a9\u807d\u969c\u4eba\u58eb\u900f\u904e\u8a9e\u97f3\u9032\ufa08\u60c5\u7dd2\u7684\u8868\u9054\u3002 \u85c9\u7531\uf901\u591a\u4f7f\u7528\u8005\u7684\u52a0\u5165\u6240\u5f15\u767c\u7684\u65b0\u5275\u610f\uff0c\u4e5f\u7522\u751f\uf9ba\uf901\u591a\u65b0\u8208\u7684\u6e9d\u901a\u65b9\u5f0f\u3002\u9019\u500b\u7531\u8a31\u591a\u7db2\u969b \u7ae0\u70ba\u6750\uf9be\uff0c\u5206\u6790\u8207 40 \u7a2e\u60c5\u7dd2\u7b26\u865f(\u60c5\u7dd2)\u4e4b\u9593\u7684\u95dc\u4fc2\u3002</td></tr><tr><td colspan=\"12\">\u8fd1\u4ee3\u96fb\u8166\u79d1\u5b78\u754c\u6240\u8208\u8d77\u7684\u4e00\u9805\u91cd\u5927\u767c\u660e-\u7db2\u969b\u7db2\uf937\uff0c\u9664\uf9ba\u63d0\u4f9b\u96fb\u5b50\u8cc7\u8a0a\u5206\u4eab\u7684\u5e73\u53f0 \u7db2\uf937\u4f7f\u7528\u8005\u5f7c\u6b64\u4e92\u52d5\u3001\u6e9d\u901a\u6240\u5f62\u6210\u7684\u865b\u64ec\u7a7a\u9593\uff0c\u6709\u500b\u7279\u6b8a\u7a31\u865f\u70baCyberspace\u3002\u6700\u8fd1 \u63d0\u4f9b\u7684\u670d\u52d9\uff0c\u53d6\u56de\u82f1\u6587\u6587\u7ae0\u52a0\u4ee5\u5206\u6790\u3002\u63d0\u5230\u6700\u53d7\u6b61\u8fce\u7684 Blog \u67b6\u8a2d\u670d\u52d9\uff0c\u5206\u5225\u662f Blogspot 5 \u8207 2.1 \u5be6\u9a57\u8a9e\uf9be\u5eab</td></tr><tr><td colspan=\"12\">\u5916\uff0c\u4e5f\u63d0\u4f9b\u4eba\u5011\uf967\u540c\u65bc\u4ee5\u5f80\u7684\u6e9d\u901a\u4ecb\u9762\u3002\u8ffd\u6eaf\u81ea\u7db2\u969b\u7db2\uf937\u958b\u59cb\u7528\uf92d\u50b3\u905e\u8cc7\u8a0a(\u5982\u96fb\u5b50\u90f5\u4ef6\u3001 Cyberspace\u4e0b\uff0c\u53c8\u8208\u8d77\uf9ba\u4e00\u500b\u5b50\u7a7a\u9593\u53ebBlogosphere\u3002\u6240\u8b02Blogosphere\uff0c\u662f\u6307\u7531\u4e00\u7a2e\u500b\u4eba\u5c0e MSN Spaces 6 \u3002\u5176\u4e2d Blogspot \u6587\u7ae0\u767c\u4f48\u7684\u4ecb\u9762\u50c5\u63d0\u4f9b\u57fa\u672c\u7684\u6587\u5b57\u7de8\u8f2f\uff0c\u800c MSN Spaces \u85c9 \u70ba\uf9ba\u63d0\u4f9b\u672c\u7814\u7a76\u6240\u9700\u7684\u5be6\u9a57\u8a9e\uf9be\uff0c\u6211\u5011\u900f\u904e\u96c5\u864e Blog \u670d\u52d9\u7684\u641c\u5c0b\u5f15\u64ce\uff0c\u53d6\u56de 2006 \uf98e</td></tr><tr><td colspan=\"12\">\u96fb\u5b50\u4f48\u544a\uf91d\u3001\u96fb\u5b50\u804a\u5929)\u7684\uf98e\u4ee3\uff0c\u900f\u904e\u7db2\u969b\u7db2\uf937\u50b3\u905e\u6587\u5b57\uff0c\u53ef\u4ee5\u5728\u5373\u6642\u5373\u5730\u7684\u57fa\u790e\u4e0a\uff0c\u9054 \u5411\u3001\u53ef\u8207\u4f7f\u7528\u8005\u4e92\u52d5\u7684\u5a92\u9ad4\u767c\u4f48\u4ecb\u9762Blog(\u6216\u7a31\u90e8\uf918\u683c)\uff0c\u6240\u5f62\u6210\u7684\u96c6\u5408\u3002\u6211\u5011\u65bc\u524d\u6587\u66fe\u6558 \u7531\u8457\u540d\u7684\u50b3\u8a0a\u8edf\u9ad4 MSN Messenger \u7684\u9644\u52a0\u529f\u80fd\uff0c\u958b\u59cb\u5438\u5f15\u4f7f\u7528\u8005\u7684\u6295\u5165\u3002\u5176\u767c\u8868\u6587\u7ae0\u7684 6 \u6708\u5e95\u81f3 7 \u6708\u521d\u5171 47,570 \u7bc7 Blog \u6587\u7ae0\uff0c\u76f8\u95dc\u7d71\u8a08\u8cc7\u8a0a\u5982\u8868 2 \u6240\u793a\u3002\u5176\u4e2d 2006 \uf98e 6 \u6708\u4efd\u7684</td></tr><tr><td colspan=\"12\">\u6210\u4f7f\u7528\u8005\u4e92\u52d5\u6e9d\u901a\u7684\uf965\uf9dd\u6027\u3002\u7136\u800c\u7576\u901a\u8a0a\u7684\u5c0d\u8c61\u8d8a\uf92d\u8d8a\u7fd2\u6163\u9019\u9805\u65b0\u7684\u901a\u8a0a\u65b9\u5f0f\u5f8c\uff0c\u4e5f\u958b\u59cb \u8ff0\u904e\u4f7f\u7528\u8005\u5728\u9069\u61c9\uf9baCyberspace\u7684\u6e9d\u901a\u65b9\u5f0f\u5f8c\uff0c\u6703\u958b\u59cb\u6709\u60c5\u7dd2\uf9fa\u614b\u50b3\u905e\u7684\u9700\u6c42\u3002\u800cBlog\u5728 \u4ecb\u9762\u56e0\u800c\u5f15\u5165\uf9ba MSN Messenger \u4e2d\u6163\u7528\u7684\u60c5\u7dd2\u7b26\u865f\uff0c\u9019\u4e9b\u7b26\u865f\u53ef\u4ee5\u8b93\u767c\u8868 Blog \u7684\u4f7f\u7528\u8005 \u6587\u7ae0\u5171 9,668 \u7bc7\u70ba\u6e2c\u8a66\u8cc7\uf9be\u96c6\u30017 \u6708\u4efd\u7b2c\u4e00\u5468\u6587\u7ae0\u5171 29,528 \u7bc7\u70ba\u8a13\uf996\u8cc7\uf9be\u96c6\uff0c\uf978\u9805\u8cc7\uf9be\u4f9b</td></tr><tr><td colspan=\"12\">\u7522\u751f\uf9ba\u9700\u50b3\u905e\u5f7c\u6b64\u60c5\u7dd2\uf9fa\u614b\u7684\u9700\u6c42\u3002\u901a\u5e38\u5728\u7db2\u969b\u7db2\uf937\u4e0a\u50b3\u905e\u8a0a\u606f\u6642\uff0c\u6703\u7f3a\u4e4f\u5920\u591a\u7684\u524d\u5f8c\u6587 \u958b\u59cb\u5438\u5f15\u773e\u591a\u4f7f\u7528\u8005\u4e4b\u5f8c\uff0c\u7531\u65bc\u5176\u5275\uf9f7\u601d\u7dad\uf901\u8cbc\u8fd1\u4eba\u5011\u8868\u9054\u500b\u4eba\uf9fa\u614b\u7684\u52d5\u6a5f\uff0c\u4e5f\u5438\u5f15\uf901\u591a \u52a0\u5728\u6587\u7ae0\u7684\u4efb\u4f55\u90e8\u5206\u3002 \u5be6\u9a57\u4e00\u81f3\u5be6\u9a57\u56db\u4f7f\u7528\u30027 \u6708\u4efd\u7b2c\u4e8c\u5468\u7684\u6587\u7ae0\u5171 8,374 \u7bc7\u70ba\u88dc\u5145\u8a13\uf996\u8cc7\uf9be\u96c6\uff0c\u4f9b\u5be6\u9a57\u4e09\u81f3\u5be6</td></tr><tr><td colspan=\"12\">\u8cc7\u8a0a\uf92d\u5224\u65b7\u5c0d\u65b9\u7684\u60c5\u7dd2\uf9fa\u614b\uff0c\u70ba\uf9ba\u907f\u514d\u56e0\u6b64\u9020\u6210\u6e9d\u901a\u6642\u7684\u8aa4\u89e3\uff0c1981\uf98eCMU\u7684Scott \u4f7f\u7528\u8005\u524d\uf92d\u8868\u9054\u81ea\u5df1\u7684\u89c0\uf9a3\u3001\u60f3\u6cd5\u3001\u751a\u81f3\u500b\u4eba\u60c5\u7dd2\u3002 \u53f0\u7063\u5730\u5340\u6700\u5927\u5165\u53e3\u7db2\u7ad9\u70ba\u96c5\u864e\u5947\u6469\uff0c\u6240\u63d0\u4f9b\u7684 Blog \u670d\u52d9 7 \u4e5f\u53ef\u4ee5\u8b93\u4f7f\u7528\u8005\u5728\u767c\u8868\u6587\u7ae0 \u9a57\u56db\u4f7f\u7528\u3002\u8a13\uf996\u8cc7\uf9be\u96c6\u5e36\u6709\u60c5\u7dd2\u7b26\u865f\u7684\u6587\u7ae0\uf969\uf97e\u70ba 4,146 \u7bc7\u3001\u6e2c\u8a66\u8cc7\uf9be\u6709 1,289 \u7bc7\u3001\u88dc\u5145</td></tr><tr><td colspan=\"12\">Fahlmany\u66fe\u7d93\u8a2d\u8a08\u300c:-)\u300d\u548c\u300c:-(\u300d\uf978\u500b\u53ef\u4ee5\u653e\u5728\u6587\u5b57\u4e2d\u7684\u7b26\u865f\uff0c\u4ee5\u8c61\u5fb5\u6027\u7684\u7b11\u81c9\u548c\u54ed\u81c9\uf92d \u4e00\u4e9bBlog\u670d\u52d9\u63d0\u4f9b\u4f7f\u7528\u8005\uf967\u540c\u5c64\u6b21\u7684\u60c5\u7dd2\u6a19\u8a18\u9078\u9805\uff0c\uf9b5\u5982\uff1aXuite 1 \u8b93\u4f7f\u7528\u8005\u9078\u64c7\u500b\u4eba \u7684\u4ecb\u9762\u4e2d\uff0c\u65bc\u6587\u7ae0\u4efb\u610f\u90e8\u5206\u52a0\u5165\u7531\u96c5\u864e\u5373\u6642\u901a\u8edf\u9ad4\u5f15\u5165\u7684\u60c5\u7dd2\u7b26\u865f\u3002\u96c5\u864e Blog \u670d\u52d9\u6240\u63d0 \u8a13\uf996\u8cc7\uf9be\u96c6\u6709 1,241 \u7bc7\uff0c\u6bd4\uf9b5\u5728 13%~15%\u4e4b\u9593\u3002\u5982\u679c\u4ee5\u53bb\u6389 HTML \u6a19\u8a18\u5f8c\u7684 UTF-8 \u7de8\u78bc</td></tr><tr><td colspan=\"12\">\u4ee3\u8868\u9ad8\u8208\u6216\uf967\u6109\u5feb\u7684\u60c5\u7dd2\u3002\u96a8\u8457\uf9d0\u4f3c\u8c61\u5fb5\u60c5\u7dd2\u6216\u8868\u60c5\u7684\u7b26\u865f\uf967\u65b7\u5730\u88ab\u7db2\u969b\u7db2\uf937\u4f7f\u7528\u8005\u5275\u9020 \u7ad9\u53f0\u7684\u5fc3\u60c5\u5206\uf9d0\uff0c\u5982\u300c\u751c\u871c\u4e2d\u300d \u3001 \u300c\u6182\u9b31\u4e2d\u300d\u7b49\u517115\u7a2e\u5206\uf9d0\uff1bLiveJournal 2 \u8b93\u4f7f\u7528\u8005\u4ee5\u6587\u7ae0\u70ba \u4f9b\u7684\u60c5\u7dd2\u7b26\u865f\u5171 40 \u7a2e\uff0c\u5176\u5716\u6a23\u3001\u4ee3\u78bc\u3001\u610f\u6db5\u5982\u8868 1 \u6240\u793a\uff0c\u5305\u62ec\u4e16\u754c\u901a\u7528\u7684\u7b11\u81c9\u300c:)\u300d\u548c\u54ed</td></tr><tr><td colspan=\"12\">\u8207\u4f7f\u7528\uff0c\u751a\u81f3\u5230\uf9ba90\uf98e\u4ee3unicode\u8981\u64f4\u5145\u5168\u7403\u901a\u7528\u6587\u5b57\u78bc\u6642\uff0c\u60c5\u7dd2\u7b26\u865f\u4e5f\u4f54\uf9ba\u4e00\u5e2d\u4e4b\u5730\uff0c\u5982 \u55ae\u4f4d\uff0c\u6a19\u8a18\u767c\u8868\u6587\u7ae0\u7576\u6642\u7684\u5fc3\u60c5\uff0c\u5982sad(\u60b2\u50b7)\u3001mischievous(\u6dd8\u6c23)\u7b49\u5171118\u7a2e\u5206\uf9d0\u3002 \u81c9\u300c:(\u300d\u7b26\u865f\uff0c\u4e5f\u6709\u81ea\u5275\u7684\u5716\u793a\u5982\u300c@};-\u300d\u4ee3\u8868\u4e00\u6735\u6a6b\u653e\u7684\u73ab\u7470\u82b1\u3002\u7531\u65bc\u4f7f\u7528\u8005\u53ef\u81ea\ufa08\u6c7a \u8868 1\u3001\u96c5\u864e\u5947\u6469\u90e8\uf918\u683c\u670d\u52d9\u6240\u63d0\u4f9b\u7684\u60c5\u7dd2\u7b26\u865f\uf99c\u8868</td></tr><tr><td>\u7b26\u865f</td><td>\u6587\u5b57</td><td>\u610f\u6db5</td><td>\u7b26\u865f</td><td>\u6587\u5b57</td><td>\u610f\u6db5</td><td>\u7b26\u865f</td><td>\u6587\u5b57</td><td>\u610f\u6db5</td><td>\u7b26\u865f</td><td>\u6587\u5b57</td><td>\u610f\u6db5</td></tr><tr><td colspan=\"12\">unicode\u96c6\u5408\u4e2d\u4e09\u500b\u5b57\u5143\u300c\u2639\u300d \u3001 \u300c\u263a\u300d \u3001 \u300c\u263b\u300d\u7684\u5341\uf9d1\u9032\u4f4d\u78bc\u5206\u5225\u5b9a\u70ba0x2639\u30010x263a\u30010x263b\u3002 Mishne(2005)\u4f7f\u7528\u7531LiveJournal\u7684\u6587\u672c\u6240\u62bd\u53d6\u7684\u7279\u5fb5\uff0c\u4ee5SVM(Cortes and Vapnik, 2005)\u8a13\uf996 \u5b9a\u8981\uf967\u8981\u5728\u767c\u8868\u7684\u6587\u7ae0\u4e2d\u52a0\u5165\u60c5\u7dd2\u7b26\u865f\uff0c\u56e0\u6b64\u4e26\uf967\u662f\u6bcf\u7bc7\u6587\u7ae0\ufa26\u6703\u542b\u6709\u60c5\u7dd2\u7b26\u865f\u3002 :</td></tr><tr><td colspan=\"12\">\u8fd1\uf98e\uf92d\uff0c\u56e0\u70ba\u5716\u5f62\u4f7f\u7528\u4ecb\u9762\u7684\u6f14\u9032\uff0c\u8b93\uf901\u591a\u8868\u60c5\u6587\u5b57\u5f97\u4ee5\u5716\u793a\u5316\u7684\u65b9\u5f0f\u5448\u73fe\uff0c\u6240\u7522\u751f \u4ee5\u6587\u7ae0\u70ba\u55ae\u4f4d\u7684\u5fc3\u60c5\u5206\uf9d0\u5668\u3002\u6587\u4e2d\u986f\u793a\u5be6\u9a57\u6210\u679c\u4ecd\u6709\u5f88\u5927\u7684\u9032\u6b65\u7a7a\u9593\uff0c\u4e5f\u53cd\u6620\u5fc3\u60c5\u5206\uf9d0\u4ecd \u70ba\uf9ba\u904b\u7528\u542b\u60c5\u7dd2\u8a5e\u5f59\u7684\u6587\u7ae0\uf92d\u5354\u52a9\u672c\u7814\u7a76\u7684\u9032\ufa08\uff0c\u6211\u5011\u9996\u5148\u5efa\uf9f7\u4e00\u500b\u524d\u63d0\uff1a</td></tr><tr><td colspan=\"12\">\u7684\u65b0\u8208\u5716\u793a\u96c6\u5408\u901a\u7a31\u70baSmiley\u6216Emoticon\uff0c\u9019\u4e9b\u5716\u793a\u88ab\u5927\uf97e\u4f7f\u7528\u5728\u4ee5\u7db2\u969b\u7db2\uf937\u70ba\u4e3b\u7684\u901a\u8a0a \u662f\u500b\u76f8\u7576\u5177\u6709\u6311\u6230\u6027\u7684\u8b70\u984c\u3002\u672c\u6587\u5f9e\u9019\u500b\u89d2\ufa01\ufa00\u5165\uff0c\u9032\u4e00\u6b65\u4ee5\u6587\uf906\u70ba\u55ae\u4f4d\uff0c\u89c0\u5bdf\u500b\u4eba\u60c5\u7dd2 (p1) \u4f7f\u7528\u8005\u60c5\u7dd2\u7684\u50b3\u905e\u6703\u53cd\u6620\u5728\u9019\u4e9b\u60c5\u7dd2\u7b26\u865f\u7684\u4f7f\u7528\u4e0a\u3002</td></tr><tr><td colspan=\"12\">\u5a92\u4ecb\u4e2d\u3002\u800c\u500b\u4eba\u5316\u8a0a\u606f\u50b3\u905e\u670d\u52d9\u7684\uf9ca\ufa08\uf901\u52a0\u901f\uf9ba\u9019\u7a2e\u5716\u793a\uf9ca\ufa08\u7684\u8da8\u52e2\uff0c\u5982\u96c5\u864e\u5373\u6642\u901a\u3001\u5fae \u5728Blog\u6587\u672c\u4e0a\u53cd\u6620\u7684\u73fe\u8c61\uff0c\u9019\u662f\u4e2d\u6587\u60c5\u7dd2\u5206\u6790\u7684\u5275\u65b0\u5617\u8a66\u3002 \u4e26\u63d0\u51fa\u4e00\u500b\u5047\u8a2d\uff1a</td></tr><tr><td colspan=\"12\">\u8edfMSN Messenger\u7b49\u50b3\u8a0a\u8edf\u9ad4\uff0c\u7686\u63d0\u4f9b\u4f7f\u7528\u8005\u53ef\u5728\u50b3\u8a0a\u7684\u4ecb\u9762\u4e0a\u4f7f\u7528\u8a31\u591a\uf967\u540c\u60c5\u7dd2\u7b26\u865f\u6216 \u672c\u6587\u5167\u5bb9\u5b89\u6392\u5982\u4e0b\uff1a\u7b2c\u4e8c\u7bc0\u4ecb\u7d39\u5e36\u6709\u60c5\u7dd2\u8868\u9054\u7684Blog\u6587\u672c\uff0c\u7b2c\u4e09\u7bc0\u6558\u8ff0\u4ee5\u6587\u672c\u8cc7\u8a0a\u9032 (a1) \u4f7f\u7528\u8005\u4f34\u96a8\u8457\u6587\u672c\u7684\u60c5\u7dd2\u5c31\u662f\u8a72\u60c5\u7dd2\u7b26\u865f\u7684\u610f\u6db5\u3002</td></tr><tr><td colspan=\"12\">\u3002\u60c5\u7dd2\uf9fa\u614b\u7684\u50b3\u905e\u4ea6\u5c6c\u65bc \u662f\u81ea\u8a02\u5716\u793a\u3002\u6b64\uf9d0\u5716\u5f62\u5c0d\u61c9\u5230\u4e00\u4e9b\u8868\u60c5\u6587\u5b57\u6216\u662f\u81ea\u8a02\u7684\u5b57\u5143\u9806\u5e8f\uff0c\u8b93\u500b\u4eba\u504f\u597d\u7684\u5716\u793a\u8207\u52d5 \ufa08\u60c5\u7dd2\u5206\uf9d0\u7684\u5be6\u9a57\u8a2d\u8a08\u3001\u8207\u5be6\u9a57\u7d50\u679c\uff0c\u7b2c\u56db\u7bc0\u7e3d\u7d50\u6210\u679c\u3001\u4e26\u6307\u51fa\u672a\uf92d\u7684\u7814\u7a76\u65b9\u5411\u3002 \uf9b5\u5982\u4e0b\uf99c\uf906\u5b50\u4e2d\uff1a</td></tr><tr><td colspan=\"12\">\u4eba\uf9d0\u6e9d\u901a\ufa08\u70ba\u7684\u4e00\u500b\u91cd\u9ede\u6210\u4efd\uff0c\u4eba\uf9d0\u53ef\u4ee5\u900f\u904e\u81c9\u90e8\u8868\u60c5\u3001\u80a2\u9ad4\u52d5\u4f5c\u3001\u624b\u52e2\u3001\u8a9e\u8a00\u3001\u8072\u8abf\u7b49 \u8a0a\u606f\uf92d\u8868\u9054\u81ea\u5df1\u7684\u60c5\u7dd2\uf9fa\u614b\uff0c\u6e9d\u901a\u7684\u5c0d\u8c61\u4e5f\u6703\u6839\u64da\u81ea\u8eab\u7684\u7d93\u9a57\u3001\u4ee5\u53ca\u5c0d\u8868\u9054\u8005\u7684\uf9e4\u89e3\uf92d\u89e3 \u756b\u5f97\u4ee5\u5373\u6642\u5167\u5d4c\u5728\u901a\u8a0a\u7684\u5167\u6587\u4e2d\u9593\u3002Liu\u7b49\u4eba (2003)\u66fe\u4ee5\u6587\u5b57\u8207\u751f\u6d3b\u5e38\uf9fc\u5efa\uf9f7\u6a21\u578b\uf92d\u5224\u65b7 (s1) \u4e00\u6b21\u53c8\u4e00\u6b21\u7684\u9019\u6a23~\u5fc3\u4e2d\u83ab\u540d\u7684\u706b\u5927..\u6bcf\u6b21\u4ed6\u4e00\u56de\uf92d~\u6211\ufa26\u7761\uf967\u98fd 2. \u90e8\uf918\u683c\u6587\u672c\u8207\u60c5\u7dd2\u7b26\u865f \u4eba\u7684\u60c5\u7dd2\uff0c\u4e26\u8a2d\u8a08\u51fa\u4e00\u500b\u96fb\u5b50\u90f5\u4ef6\u4ecb\u9762EmpathyBuddy\uff0c\u6839\u64da\u90f5\u4ef6\u4e2d\u6bcf\u4e00\uf906\u8a71\u8ce6\u4e88\u4e00\u500b (s2) \u6211\u5011\u4e5f...\u50bb\u773c\uf9ba</td></tr><tr><td colspan=\"12\">\uf95a\u5c0d\u65b9\u7684\u60c5\u7dd2\u3002 Chernoff Faces\uff0c\u9019\u4e9b\u81c9\u90e8\u8868\u60c5\u4e5f\u589e\u9032\uf9ba\u4f7f\u7528\u8005\u8a0a\u606f\u4e92\u52d5\u7684\u8da3\u5473\u6027\u3002 \u7531\u65bc\u672c\u6587\u63a2\u8a0e\u7684\u500b\u4eba\u60c5\u7dd2\u5206\u6790\u6240\u63a1\u7528\u7684\u8a9e\uf9be\uf92d\u81ea Blog \u6587\u672c\uff0c\u56e0\u6b64\u5148\u4ecb\u7d39\u5efa\uf9f7 Blog \u6587 (s3) \u6bcf\u6b21\u548c\u59b3\u8b1b\u96fb\u8a71\u5c31\u662f\u83ab\u540d\u7684\u958b\u5fc3</td></tr><tr><td colspan=\"12\">\u60c5\u7dd2\u89e3\uf95a\u7684\u5de5\u4f5c\u4e5f\u5438\u5f15\u96fb\u8166\u79d1\u5b78\uf9b4\u57df\u5b78\u8005\u7684\u6ce8\u610f\uff0c\u96a8\u8457\u96fb\u8166\u8fa8\uf9fc\u6280\u8853\u7684\u6f14\u9032\uff0c\u4eba\uf9d0\u8868 \u9664\uf9ba\u8868\u60c5\u8207\u60c5\u7dd2\u7b26\u865f\u7684\u4f7f\u7528\u5916\uff0c\u7db2\u969b\u7db2\uf937\u4f7f\u7528\u8005\u4e5f\u6703\u5728\u65e2\u6709\u8a9e\u8a00\u7bc4\u7587\u4e4b\u5916\uff0c\u5275\u9020\u65b0\u7684 \u672c\u8a9e\uf9be\u5eab\u76f8\u95dc\u7684\u8b70\u984c\u3002\u904e\u53bb\u96a8\u8457 WWW \u7684\u767c\u5c55\uff0c\u7db2\u7ad9\u767b\uf93f\u8207\u5404\u5bb6\u641c\u5c0b\u5f15\u64ce\u76f8\u7e7c\u800c\u8d77\uff0c\u63d0</td></tr><tr><td colspan=\"12\">\u9054\u51fa\u7684\u5404\u9805\u8a0a\u606f\u8f49\u63db\u6210\uf969\u4f4d\u8cc7\u8a0a\uff0c\u7814\u7a76\u4eba\u54e1\u63a1\u7528\u6a5f\u5668\u5b78\u7fd2\u7b49\u65b9\u5f0f\uff0c\u8a08\u7b97\u9019\u4e9b\u8cc7\u8a0a\u8207\u5404\u9805\u60c5 \u6587\u5b57\u8868\u9054\u898f\u5247\u3002\u6240\u5275\u9020\u7684\u65b0\u8a5e\u5f59\u6216\u7528\u8a9e\uff0c\u5f62\u6210\u7db2\uf937\u65b9\u8a00\u7684\u4e00\u90e8\u5206\u3002\u9019\u4e9b\u65b9\u8a00\u901a\u5e38\u51fa\u73fe\u5728\u4ee5 \u4f9b\u4f7f\u7528\u8005\u5feb\u901f\uf965\uf9dd\u7684\u8cc7\u8a0a\u641c\u5c0b\u670d\u52d9\u3002Blogosphere \u7684\u767c\u5c55\u6709\u9ede\uf9d0\u4f3c\uff0c\u8fd1\uf98e\uf92d\uf9d3\u7e8c\u6709\u8a31\u591a\u7db2 3 http://www.technorati.com/</td></tr><tr><td colspan=\"12\">4 http://weblogs.com/ \u7db2\u969b\u7db2\uf937\u70ba\u4e3b\u7684\u96fb\u5b50\u5a92\u4ecb\u6240\u4f7f\u7528\u7684\u6e9d\u901a\u8a0a\u606f\u4e2d\uff0c\u593e\u96dc\u65bc\u6b63\u5e38\u7684\u8a9e\u8a00\u6587\uf906\u4e4b\u5167\u3002\u9019\u6a23\u7684\u5448\u73fe \u7dd2\uf9d0\u5225\u7684\u95dc\u4fc2\u3002\u76f8\u95dc\u7684\u7814\u7a76\u5305\u62ec\uff1a\u7576\u5224\u65b7\u7684\uf9d0\u5225\u5b9a\u7fa9\u6210\u4eba\uf9d0\u7684\u60c5\u7dd2\uf9fa\u614b\u5f8c\uff0c\u5982\u4f55\u6311\u9078\u9069\u7576 5 http://www.blogspot.com/</td></tr><tr><td colspan=\"12\">\u7684\u8cc7\u8a0a\u4f5c\u70ba\u7279\u5fb5\uff0c\u4ee5\u8a13\uf996\u51fa\u76f8\u95dc\u6a21\u578b\uf92d\u5224\u65b7\u4eba\uf9d0\u7684\u60c5\u7dd2\u3002\u5982 Chuang and Wu (2004)\u4f7f\u7528\u6587 \u901a\u5e38\u6703\u8b93\u539f\uf906\u5b50\uf967\u5408\u65bc\u6587\u6cd5\u3001\u6216\u662f\u8b93\u7db2\uf937\u65b9\u8a00\u672c\u8eab\u5f62\u6210\uf9ba\u672a\u77e5\u8a5e\u5f59\u3002\u9ad8\u8207\u502a(2003)\u900f\u904e\u7db2 6 http://spaces.msn.com/</td></tr><tr><td colspan=\"3\">7 http://tw.blog.yahoo.com/</td><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr></table>",
                "num": null,
                "html": null,
                "type_str": "table"
            },
            "TABREF1": {
                "text": "\u958b\u61f7 \u611b\u610f \u5927\u54ed \u5fae\u7b11 \u5410\u820c \u9a5a\u8a1d \u82b1 \u751f\u6c23 \u7948\u79b1 \u5bb3\u7f9e \u96e3\u904e \u9f13\u638c \u64d4\u5fc3 \u7591\u60d1 \u7728\u773c",
                "content": "<table><tr><td>\u6587\u7ae0\uf969 29,528 8,374 9,668 47,570 \u5716 1\u3001Blog \u6587\u672c 8 \u3001\u767c\u6587\u4ecb\u9762\u7bc4\uf9b5\u3001\u7d50\u69cb\u793a\u610f\u5716 \u5e36\u6709\u60c5\u7dd2\u7b26\u865f \u6587\u7ae0\uf969 \u6bd4\uf9b5 \u7121\u60c5\u7dd2\u7b26\u865f\u6587\u7ae0 \u5e73\u5747\u9577\ufa01 4,146 14.04% 1,934 1,241 14.82% 1,776 1,289 13.33% 1,614 5,435 13.87% \u9577\ufa01\u8861\uf97e\u6587\u7ae0\u7684\u76f8\u5c0d\u9577\ufa01\uff0c\u53ef\u767c\u73fe\u901a\u5e38\u6c92\u6709\u4f7f\u7528\u60c5\u7dd2\u7b26\u865f\u9054\u7684\u6587\u7ae0\u5e73\u5747\u9577\ufa01\u8f03\u9577\uff0c\u4e14\u8207\u6709 \u6709\u60c5\u7dd2\u7b26\u865f\u6587\u7ae0 \u5e73\u5747\u9577\ufa01 \u8a13\uf996\u8cc7\uf9be\u96c6 1,131 \u88dc\u5145\u8a13\uf996\u96c6 1,096 \u6e2c\u8a66\u8cc7\uf9be\u96c6 1,058 \u5408\u8a08 \u4f7f\u7528\u60c5\u7dd2\u7b26\u865f\u6587\u7ae0\u7684\u9577\ufa01\u6709\u4e00\u5b9a\u7a0b\ufa01\u7684\u5dee\u8ddd\u3002\u9019\u500b\u73fe\u8c61\u986f\u793a\u60c5\u7dd2\u7b26\u865f\u5728\u6587\u672c\u4e2d\u626e\u6f14\u91cd\u8981\u89d2 \u8272\uff0c\u6709\u4e9b\u610f\u6db5\u96b1\u542b\u5728\u7b26\u865f\u4e2d\u3002 2.2 \u90e8\uf918\u683c\u4f7f\u7528\u8005\u5fc3\u60c5\u4e4b\u53cd\u61c9\u8207\u6587\u672c\u98a8\u683c \u524d\u6587\u63d0\u53ca\u4ee5\u6b50\u7f8e\u5730\u5340\u4f7f\u7528\u8005\u70ba\u4e3b\u7684 Blog \u670d\u52d9 LiveJournal\uff0c\u63d0\u4f9b\u4f7f\u7528\u8005\u91dd\u5c0d\u767c\u8868\u6587\u7ae0 \u7576\u6642\u7684\u5fc3\u60c5\u7d66\u4e88\u4e00\u500b\u6a19\u8a18\uff0c\u4e26\u642d\u914d\u4e00\u500b\u60c5\u7dd2\u7b26\u865f\u52a0\u4ee5\u8868\u9054\u3002\u672c\u7814\u7a76\u7684\u8a9e\uf9be\uf92d\u6e90\u96c5\u864e Blog \u670d\u52d9\uff0c\u5247\u63d0\u4f9b\u4f7f\u7528\u8005\u4ee5\u5e73\u6642\u5728\u7db2\uf937\u8868\u9054\u7684\u7fd2\u6163\u5728\u6587\uf906\u4e2d\u52a0\u5165\u81ea\u5df1\u7684\u60c5\u7dd2\u3002\u5716 1 \u70ba\u672c\u7814\u7a76\u6240 \u53d6\u56de\u7684 Blog \u6587\u672c\u7bc4\uf9b5\uff0c\u6587\u672c\u4e00\u500b\u9801\u9762\u4e2d\u5305\u542b\u6709\u6a19\u984c\u3001\u5206\uf9d0\u3001\u767c\u4f48\u6642\u9593\u3001\u53ca\u5167\u6587\u7b49\u8cc7\u8a0a\u3002 \u4f7f\u7528\u8005\u5728\u767c\u4f48\u5167\u6587\u6642\uff0c\u53ef\u81ea\u7531\u52a0\u5165\u76f8\u7247\u3001\u6587\u5b57\u3001\u60c5\u7dd2\u7b26\u865f\uff0c\u767c\u6587\u7684\u4ecb\u9762\u4e5f\u63d0\u4f9b\u8b8a\uf901\u6587\u5b57\u683c \u5f0f\u3001\u52a0\u5165\uf99a\u7d50\u3001\u8b8a\uf901\u6392\u7248\u6a23\u5f0f\u7b49\u529f\u80fd\u3002\u5728\u9019\u500b\uf9b5\u5b50\u4e2d\uff0c\u767c\u6587\u4f5c\u8005\u66fe\u4f7f\u7528\u904e\u300c\u5fae\u7b11\u300d \u3001 \u300c\u9a5a\u8a1d\u300d \u3001 \u300c\u5927\u7b11\u300d \u3001 \u300c\u82b1\u300d\u7b49\u56db\u7a2e\u60c5\u7dd2\u7b26\u865f\uff0c\u76f8\u7576\u7a0b\ufa01\u5730\u8868\u9054\uf9ba\u5176\u958b\u5fc3\u7684\u60c5\u7dd2\u3002 \u5982\u540c\u4e00\u822c\u4f5c\u6587\u6642\uff0c\u6709\ufa22\u5982\u8a18\u4e8b\u3001\u6292\u60c5\u3001\uf941\uf96f\u3001\u516c\u6587\u7b49\u9ad4\u88c1\u3002\u4f7f\u7528\u8005\uf9dd\u7528 Blog \u767c\u4f48\u6587 \u6a19\u984c \u767c\u4f48\u6642\u9593 \u5206\uf9d0 \u76f8\u7247\u3001\u6587\u5b57\u3001\u8868\u60c5 \u5167\u6587 \u7ae0\u6642\uff0c\u5c0d\u65bc\u5167\u6587\u7684\u5448\u73fe\uff0c\u4e5f\u6709\u8a31\u591a\uf967\u540c\u7684\u8868\u9054\u65b9\u5f0f\uff0c\uf9b5\u5982\uff1a \u65e5\u8a18\u3001\u6292\u767c\u5fc3\u60c5\u3001\u8a69\u8ce6\u3001\u5275\u4f5c\u3001\u8a55\uf941\uff0c\u53ef\u80fd\u6703\u5f15\u7528\u4e00\u4e9b\u76f8\u7247\u3002 \u7d14\u904a\u8a18\u3001\u904a\u8a18\u52a0\u4e0a\u8a31\u591a\u76f8\u7247\u3001\u6216\u662f\u7d14\u7cb9\u53ea\u6709\u76f8\u7247\u5206\u4eab\u3002 \u8cc7\u8a0a\u3001\u6559\u5b78\u3001\u8f49\u8cbc\uff0c\u901a\u5e38\u6709\uf96f\u660e\u5716\u7247\u548c\uf99a\u7d50\uff0c\u4e5f\u53ef\u80fd\u53ea\u7d66\uf99a\u7d50\u6c92\u5167\u6587\u3002 \u7368\u767d\u3001\u5c0d\u8a71\u3001\uf9cd\u8a00\u3001\u6e9d\u901a\uff0c\u53ef\u80fd\u6703\u64fa\u4e00\u5e45\u8fd1\u7167\u3002 \uf967\u540c\u4f7f\u7528\u8005\ufa26\u6703\u6709\u81ea\u5df1\u504f\u597d\u7684\u8868\u9054\u65b9\u5f0f\u3002\u53e6\u5916\uff0cBlog \u7db2\u7ad9\u901a\u5e38\u6703\u63d0\u4f9b\u9810\u8a2d\u3001\u6216\u662f\u53ef\u81ea\ufa08\u8a2d \u5b9a\u7684\u5206\uf9d0\uff0c\u8b93\u4f7f\u7528\u8005\u6a19\u8a18\u6240\u767c\u8868\u7684\u6587\u7ae0\u3002 \u4ee5\u4e0a\u4e00\u7bc0\u4ecb\u7d39\u7684\u8a13\uf996\u8cc7\uf9be\u96c6\u70ba\uf9b5\uff0c\u8490\u96c6\u5230\u7684 29,528 \u7bc7\u6587\u7ae0\u4e2d\uff0c\u4f7f\u7528\u8005\u81ea\ufa08\u6a19\u8a18\u7684\u5206 \uf9d0\u9054 10,306 \u7a2e\u4e4b\u591a\uff0c\u5176\u4f7f\u7528\u524d 20 \u540d\u7684\u5206\uf9d0\u540d\u7a31\u5982\u8868 3 \u6240\u793a\u3002\u5176\u4e2d\u300c\u672a\u5206\uf9d0\u8cc7\uf9be\u593e\u300d\uf9d1\u5b57 \u70ba\u96c5\u864e Blog \u7cfb\u7d71\u9810\u8a2d\u7684\u5206\uf9d0\uff0c\u6b64\uf9d0\u6587\u7ae0\u5171\u6709 32.21\uff05\uff0c\u8868\u793a\u7d04\u4e09\u6210\u4f7f\u7528\u8005\u6c92\u523b\u610f\u5c07\u6587\u7ae0\u8ce6 \u4e88\u5206\uf9d0\u8cc7\u8a0a\u3002\u5176\u4ed6\u5206\uf9d0\u9664\uf9ba\u300c\u5fc3\u60c5\u65e5\u8a18\u300d\u9019\u56db\u5b57\u7372\u5f97\u6700\u591a\u4eba\u4f7f\u7528\uff0c\u4f7f\u7528\uf961\u6bd4\uf9b5\u5927\u65bc 1%\u5916\uff0c \u5176\u9918\u5206\uf9d0\u7684\u4f7f\u7528\u6bd4\uf9b5\u7686\u5c0f\u65bc 1%\u3002\u9019\u4e9b\u5206\uf9d0\u5b57\u9762\u4f7f\u7528\u6700\u591a\u7684\u8a5e\u5f59\u662f\u300c\u5fc3\u60c5\u300d \uff0c\u53cd\u6620\u51fa\u4f7f\u7528\u8005 \u9858\u610f\u900f\u904e Blog \u9054\u5230\u6292\u767c\u5fc3\u60c5\u7684\u76ee\u7684\u3002\u8868 4 \u5c07\u6240\u6709\u4f7f\u7528\u5230\u60c5\u7dd2\u7b26\u865f\u7684\u6587\u7ae0\uff0c\u4f9d\u7167\u5176\u6240\u5c6c\u5206 \uf9d0\u51fa\u73fe\u6b21\uf969\u9806\u5e8f\uf99c\u51fa\u524d 30 \u540d\uff0c\u53ef\u767c\u73fe\u4f7f\u7528\u8005\u6703\u900f\u904e\u90e8\uf918\u683c\uff0c\u5728\u6292\u60c5\u3001\u65e5\u8a18\u7b49\u9019\u6a23\u7684\u9ad4\u88c1 \u4e0b\u6292\u767c\u81ea\u5df1\u7684\u60c5\u611f\uff0c\u4e26\u4f7f\u7528\u9069\u7576\u7684\u60c5\u7dd2\u7b26\u865f\u63cf\u8ff0\u81ea\u5df1\u7684\u5fc3\u60c5\u3002 \u8868 3\u3001\u96c5\u864e Blog \u5206\uf9d0\u4f7f\u7528\u6bd4\uf9b5\u524d 20 \u540d\uf99c\u8868 \u5206\uf9d0 \u7bc7\uf969 \u6bd4\uf9b5 \u5206\uf9d0 \u7bc7\uf969 \u6bd4\uf9b5 \u5206\uf9d0 \u7bc7\uf969 \u6bd4\uf9b5 \u672a\u5206\uf9d0\u8cc7\uf9be\u593e 9190 32.21% \u5fc3\u60c5\u9ede\u6ef4 105 0.37% \u5fc3\u60c5\u8a18\u4e8b 61 0.21% \u5fc3\u60c5\u65e5\u8a18 348 1.22% \u6587\u7ae0\u5206\u4eab 104 0.36% \u5fc3\u60c5\u6545\u4e8b 55 0.19% \u6b4c\u8a5e 178 0.62% \u7b11\u8a71 95 0.33% \u661f\u5ea7\u900f\u8996 55 0.19% \u5fc3\u60c5 162 0.57% \u751f\u6d3b\u9ede\u6ef4 84 0.29% \u5c0f\uf96f 49 0.17% \u65e5\u8a18 152 0.53% \u6587\u7ae0 74 0.26% \u751f\u6d3b 48 0.17% \u5fc3\uf9e4\u6e2c\u9a57 138 0.48% \u8521\u4f9d\uf9f4 73 0.26% \u5fc3\u60c5\u5beb\u771f 48 0.17% \u661f\u5ea7 124 0.43% \u5fc3\u60c5\u672d\u8a18 70 0.25% \u8868 4\u3001\u96c5\u864e Blog \u4f7f\u7528\u60c5\u7dd2\u7b26\u865f\u6587\u7ae0\u6240\u5c6c\u5206\uf9d0\u524d 30 \u540d\uf99c\u8868 \u5206\uf9d0 \u7bc7\uf969 \u5206\uf9d0 \u7bc7\uf969 \u5206\uf9d0 \u7bc7\uf969 \u5206\uf9d0 \u7bc7\uf969 \u672a\u5206\uf9d0\u8cc7\uf9be\u593e 1387 \u5fc3\u60c5\u96dc\u8a18 16 \u6587\u7ae0\u5206\u4eab 11 \u81ea\u8a00\u81ea\u8a9e 7 \u5fc3\u60c5\u65e5\u8a18 84 \u751f\u6d3b 16 \u6211\u7684\u65e5\u8a18 11 \u5fc3\u60c5\u624b\u672d 7 \u65e5\u8a18 35 \u5fc3\u60c5\u672d\u8a18 14 \u5fc3\u60c5\u5beb\u771f 9 \u7d50\u5a5a\u7bc7 6 \u5fc3\u60c5 34 \u5fc3\u60c5\u8a18\u4e8b 12 \u5fc3\u60c5\u7b46\u8a18 8 \u7b11\u8a71 6 \u751f\u6d3b\u9ede\u6ef4 26 \u96dc\u8a18 12 \u5fc3\uf9e4\u6e2c\u9a57 8 \u751f\u6d3b 543 6 \u5fc3\u60c5\u9ede\u6ef4 26 \u751f\u6d3b\u96dc\u8a18 12 \u5206\u4eab 6 \u751f\u6d3b\u65e5\u8a18 22 \u751f\u6d3b\u8a18\u4e8b 12 \u6211\u7684\u5fc3\u60c5 \u65e5\u8a18 8 \u5fc3\u60c5\u65e5\u8a8c 6 \u5fc3\u60c5\u6545\u4e8b 21 \u5fc3\u60c5\u5206\u4eab 11 \u751f\u6d3b\u672d\u8a18 8 3. \u60c5\u7dd2\u5206\uf9d0\u5be6\u9a57 \u91dd\u5c0d\u5f9e\u96c5\u864e Blog \u670d\u52d9\u6240\u8490\u96c6\u7684\u6587\u672c\u7279\u6027\uff0c\u6211\u5011\u5c07\u60c5\u7dd2\u5206\u6790\u7684\u554f\u984c\u8f49\u63db\u6210\u91dd\u5c0d\u6587\uf906\u7279 \u8868 5\u300140 \uf9d0\u7d9c\u5408\u5206\uf9d0\u5668\u932f\u8aa4\u5206\u6790 \u6a19\u8a18\u7b54\u6848 \u6b63\u78ba \u7b54\u6848 \uf969\uf97e \u5927\u7b11 \u5927\u7b11 109 55 11 9 15 5 3 1 2 2 1 1 1 \u70ba\uf9ba\u8abf\u6574\u5206\uf9d0\u5668\u8a2d\u8a08\u7684\u7b56\uf976\uff0c\u6211\u5011\u5148\u91dd\u5c0d\u7d9c\u5408\u5206\uf9d0\u5668\u8868\u73fe\uf967\u4f73\u7684\u539f\u56e0\u9032\ufa08\u63a2\u8a0e\uff0c\u9032\ufa08 \u932f\u8aa4\u5206\u6790\u3002\u8868 5 \u7d71\u8a08\u8a13\uf996\u96c6\u5be6\uf9b5\uf969\uf97e\u5206\u4f48\u524d 16 \u540d\u60c5\u7dd2\u5206\uf9d0\uff0c\u5728\u6e2c\u8a66\u96c6\u6240\u5f97\u5230\u7684\u8868\u73fe\uff0c\u4ee5 \uf9d0\u914d\u5c0d\u5f62\u6210\u7684 16 2 C =120 \u500b\u4e8c\u5143\u5206\uf9d0\u5668\u7684\u5be6\u9a57\uf969\u64da\u6b78\u7d0d\u5728\u8868 8\uff0c\u5176\u4e2d\u53f3\u4e0a\u89d2\u70ba\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0 \u6b63\u78ba\uf961\u3001\u5de6\u4e0b\u89d2\u70ba\u57fa\u6e96\u503c\uff0c\u6a19\u793a\u7070\u5e95\u7684\u683c\u5b50\u8868\u793a\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u6bd4\u57fa\u6e96\u503c\u9084\u8981\u5dee\u3002\u5c0d vs.\u96e3\u904e\u300d\u5206\uf9d0\u5668\u7684\u57fa\u6e96\u503c\u662f 55.09%\uff0c\u5167\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u662f 90.74%\uff0c\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba \u8868 13\u3001\u7a2e\u5b50\u521d\u59cb\u4e8c\u5143\u5206\uf9d0\u5668\u8207\u6f14\u7b97\u6cd5\u6b78\uf9d0\u5f8c\u4e4b\u6b63\u8ca0\u60c5\u7dd2\u5206\uf9d0\u5668\u6548\u80fd\u6bd4\u8f03 3.3 \u5be6\u9a57 3-\u589e\u52a0\u8a13\uf996\u8cc7\uf9be\uf97e\u5f8c\u6548\u80fd\u4e4b\u6bd4\u8f03 \u6839\u64da\u7d93\u9a57\u6cd5\u5247(h4)\uff0c\u672c\u5be6\u9a57\u5f15\u5165 2.1 \u7bc0\u6240\u4ecb\u7d39\u7684\u88dc\u5145\u8a13\uf996\u8cc7\uf9be\u96c6\uff0c\u85c9\u6b64\u8a13\uf996\u5be6\uf9b5\u53ef\u589e 85 \u589e\u52a0\u8a13\uf996\uf97e \u57fa\u672c \u7dda\u6027 (\u589e\u52a0\u8a13\uf996\uf97e) \u7dda\u6027 (\u57fa\u672c) \uf961\u662f 75.93%\uff0c\u5c0d\u60c5\u7dd2\u5177\u6709\u4e00\u5b9a\u7a0b\ufa01\u7684\u5340\u5206\u80fd\uf98a\u3002\u56e0\u6b64\uff0c\u6211\u5011\u9996\u5148\u8a2d\u5b9a\u6b63\u9762\u7684\u7a2e\u5b50\u60c5\u7dd2\u662f \u5167\u6e2c \u5916\u6e2c \u5167\u6e2c \u5916\u6e2c \u57fa\u6e96\u503c \u6b63\u78ba\uf961 \u6b63\u78ba\uf961 \u63d0\u6607\uf961 \u63d0\u6607\uf961 1 \u958b\u61f7 81 28 9 15 13 4 3 1 2 2 1 1 1 \u611b\u610f 90 17 9 47 9 1 2 2 2 \u9032\ufa08\u932f\u8aa4\u5206\u6790\u3002\uf9cd\u610f\u8a13\uf996\u96c6\u5206\u4f48\uf969\uf97e\u6392\u540d\uff0c\u8ddf\u6e2c\u8a66\u96c6\u6392\u540d\u53ef\u80fd\u6709\u4e9b\u8a31\u5dee\uf962\uff0c\uf9b5\u5982\u300c\u611b\u610f\u300d \u89d2\u7dda\u4e0a\u7684\u683c\u5b50\u6c92\u6709\u7279\u6b8a\u610f\u7fa9\uff0c\uf9b5\u5982\uf967\u9700\u8981\u8a13\uf996\u300c\u5927\u7b11 vs.\u5927\u7b11\u300d\u5206\uf9d0\u5668\u3002 \u52a0\u81f3 5,279 \u7b46\uff0c\u5404\uf9d0\u7684\u8a13\uf996\u5be6\uf9b5\uf969\uf97e\u4e5f\u6703\u6709\u6240\uf901\u52d5\u3002\uf96b\u7167 3.1 \u7bc0\u4ee5\u6392\u540d\u7be9\u9078\u51fa\uf967\u540c\u5be6\uf9b5\u96c6 80 \u300c\u5fae\u7b11\u300d \uff0c\u8ca0\u9762\u7684\u7a2e\u5b50\u60c5\u7dd2\u662f\u300c\u96e3\u904e\u300d \uff0c\u4e26\u4f9d\u64da\u4ee5\u4e0b\u7684\u6f14\u7b97\u6cd5\u628a\u5176\u4ed6 38 \uf9d0\u60c5\u7dd2\u6b78\u7d0d\u9032\uf92d\uff1a \u521d\u59cb\u5206\uf9d0\u5668 55.09% 90.74% 75.93% 35.65% 20.84% \u5fae\u7b11 vs.\u96e3\u904e \u6b63\u8ca0\u5206\uf9d0\u5668 50.31% 80.28% 63.45% 29.97% 13.14% \u5fb5\uf92d\u5224\u65b7\u60c5\u7dd2\uf9d0\u5225\u7684\u554f\u984c\u3002\u672c\u6587\u63a1\u7528 SVM \u505a\u70ba\u5efa\uf9f7\u60c5\u7dd2\u5206\uf9d0\u5668\u7684\u6838\u5fc3\uff0cSVM \u7684\u5de5\u5177\u5957\u4ef6 \u70ba Fan \u7b49\u4eba(2005)\u6240\u63d0\u51fa\u7684 Libsvm\u3002\u672c\u7bc0\u5be6\u9a57\u4e2d\u6240\u63d0\u5230\u7684\u57fa\u6e96\u503c\uff0c\u5373\u662f Libsvm \u5728\uf967\u4e0b\u4efb \u4f55\uf96b\uf969\u7684\u60c5\u6cc1\u4e0b\u6240\u505a\u51fa\u7684\u5206\uf9d0\u5668\uff0c\u5c0d\u6e2c\u8a66\u8cc7\uf9be\u96c6\u6240\u80fd\u4f5c\u51fa\u7684\u5206\uf9d0\u6548\u80fd\uff0c\u9019\u7a2e\u60c5\u6cc1\u4e0b\u5206\uf9d0\u5668 \u901a\u5e38\u6703\u628a\uf9d0\u5225\u6b78\u7d66\u5be6\uf9b5\u6700\u591a\u7684\u4e00\uf9d0\u3002\uf96b\u7167 Libsvm\uff0c\u672c\u7bc0\u5be6\u9a57\u7d71\u4e00\u8a2d\u5b9a\u7684\u8a13\uf996\uf96b\uf969\u70ba c=10\u3001 g=1.6 \u8a13\uf996\u51fa\u5404\u5206\uf9d0\u5668\uff0c\u4e4b\u5f8c\u5404\u5c0f\u7bc0\u6240\u56de\u5831\u5167\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u3001\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u662f \u5927\u54ed 75 17 2 3 31 2 1 2 1 5 2 3 2 \u5fae\u7b11 75 22 6 22 8 3 1 1 6 2 1 \u5410\u820c 71 23 9 17 9 2 2 1 2 1 1 \u9a5a\u8a1d 43 13 3 3 16 1 1 3 1 \u82b1 51 13 2 20 5 1 2 5 1 2 \u751f\u6c23 41 17 1 7 1 1 1 2 2 2 1 1 \u7948\u79b1 52 5 4 5 17 2 13 1 2 1 \u5bb3\u7f9e 36 9 5 13 4 2 1 1 \u96e3\u904e 33 6 3 7 1 1 2 8 3 2 \u9f13\u638c 29 9 6 5 4 2 2 \u5206\uf9d0\u7684\u6e2c\u8a66\u5be6\uf9b5\u6709 90 \u7b46\uff0c\u6bd4\u300c\u958b\u61f7\u300d\uf9d0 81 \u7b46\u591a\u3002\u8868\u683c\u4e2d\u5c0d\u89d2\u7dda\u4e0a\u986f\u793a\u7c97\u9ad4\u5b57\u7684\u683c\u5b50\uff0c\u8868 \u793a\u8a72\u5206\uf9d0\u5206\u5230\u6b63\u78ba\uf9d0\u5225\u7684\uf969\uf97e\u3002\u6a19\u793a\u7070\u5e95\u7684\u683c\u5b50\uff0c\u8868\u793a\u8a72\u5206\uf9d0\u5728\u7d9c\u5408\u5206\uf9d0\u5668\u8655\uf9e4\u904e\u5f8c\u5206\u5230 \u6700\u591a\u7684\u5730\u65b9\u3002\u8868\u73fe\u6700\u597d\u7684\u5206\uf9d0\u662f\u300c\u5927\u7b11\u300d\u548c\u300c\u611b\u610f\u300d \uff0c\u4f46\u6b63\u78ba\uf961\u50c5\u6709 5 \u6210\u4e0a\u4e0b\u3002\u6839\u64da\u5c0d\u89d2 \u7dda\u5f80\u53f3\u4e0b\u89d2\u89c0\u5bdf\uff0c\u751a\u81f3\u53ef\u4ee5\u767c\u8a31\u591a\u5206\uf967\u5230\u6b63\u78ba\uf9d0\u7684\u60c5\u6cc1\u3002\u4ee5\u659c\u7dda\u6a19\u8a18\u7684\u683c\u5b50\u4ee3\u8868\u6e2c\u8a66\u5f8c\uff0c \u6c92\u6709\u4efb\u4f55\u4e00\u7b46\u5206\u5230\u8a72\uf9d0\u5225\uff0c\u6211\u5011\u53ef\u4ee5\u767c\u73fe\u5927\u90e8\u5206\u7684\u6587\uf906\ufa26\u6709\u6a5f\u6703\u5206\u5230\u524d\u56db\uf9d0\uff0c\u537b\u5f88\u96e3\u6b78\uf9d0 \u5206\u6790\u8868 8 \u7684\uf969\u64da\uff0c\u4ee5\u6b63\u9762\u60c5\u7dd2\u300c\u5927\u7b11\u300d\u70ba\uf9b5\uff0c\u8ddf\u300c\u958b\u61f7\u300d(56.8%)\u3001 \u300c\u5410\u820c\u300d(58.9%\u3001 \u5c0f\u65bc\u57fa\u6e96\u503c 66.3%)\u8868\u793a\u6700\uf967\u5bb9\uf9e0\u5340\u5206\uff0c\u800c\u8ddf\u8ca0\u9762\u60c5\u7dd2\u300c\u96e3\u904e\u300d(78.2%)\u3001 \u300c\u7591\u60d1\u300d(78.8%\u3001 \u5c0f\u65bc\u57fa\u6e96\u503c 79.9%)\u6700\u5bb9\uf9e0\u5340\u5206\u958b\uf92d\u3002\u53e6\u5916\uff0c\u6b63\u9762\u60c5\u7dd2\uf901\u5f37\uf99f\u7684\u300c\u611b\u610f\u300d \uff0c\u8ddf\u5176\u4ed6\u8ca0\u9762\u60c5\u7dd2 \u300c\u5927\u54ed\u300d(79.4%)\u3001 \u300c\u64d4\u5fc3\u300d(79.5%)\u3001 \u300c\u96e3\u904e\u300d(80.5%)\u3001 \u300c\u751f\u6c23\u300d(81.7%)\ufa26\u5bb9\uf9e0\u5340\u5206\u958b\uf92d\u3002 \u4f46\u662f\u300c\u611b\u610f\u300d\u8ddf\u300c\u5fae\u7b11\u300d(56.4%)\u548c\u300c\u82b1\u300d(64.5%)\uff0c\u9664\uf9ba\u57fa\u6e96\u503c\u4f4e\u5916\uff0c\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba \u5408\uff0c\u6240\u505a\u51fa\u7684\u5206\uf9d0\u7d50\u679c\u5982\u8868 10 \u6240\u793a\u3002\u9996\u5148\u5f9e\u8868 6 \u5f15\u5165\u589e\u52a0\u8a13\uf996\uf97e\u524d\u7684\u5206\uf9d0\u5668\u6548\u80fd\uf969\u64da\uff0c \u63a5\u8457\u4e5f\u4ee5\uf967\u540c\u5206\uf9d0\u500b\uf969\u5957\u7528\u5728\u589e\uf97e\u5f8c\u7684\u8a13\uf996\u8cc7\uf9be\uff0c\uf99c\u51fa\uf9ba\u4e00\u7d44\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\uf96b\u8003\uf969 \u64da\u3002\u6700\u5f8c\uf99c\u51fa\u589e\u52a0\u8a13\uf996\u8cc7\uf9be\uf97e\u5f8c\uff0c\u4ee5\uf967\u540c\u5206\uf9d0\u500b\uf969\u7be9\u9078\u5be6\uf9b5\u5f8c\u6240\u4f5c\u7684\u5404\u9805\u6e2c\u8a66\uff0c\u76f8\u5c0d\u63d0\u6607 70 75 1. \u6b63\u9762\u60c5\u7dd2\u96c6\u5408 P \u8a2d\u6210\u7a2e\u5b50\u60c5\u7dd2\u5982{\u5fae\u7b11}\uff0c\u8ca0\u9762\u60c5\u7dd2\u96c6\u5408 N \u5982{\u96e3\u904e}\u3002 2. \u5f9e\u5269\u4e0b\u672a\u6b78\uf9d0\u7684\u60c5\u7dd2\u4e2d\u6311\u51fa\u4e00\u500b\u60c5\u7dd2 e\uff1a 2.1 \u8a13\uf996\u300c{P e} \u222a vs. N\u300d\u5206\uf9d0\u5668\uff0c\u5f97\u5230\u5167\u90e8\u6e2c\u8a66\u5206\uf9d0\u63d0\u6607\uf961 increase P \u3002 \u521d\u59cb\u5206\uf9d0\u5668 53.58% 88.42% 70.85% 34.84% 17.27% \u611b\u610f vs.\u5927\u54ed \u6b63\u8ca0\u5206\uf9d0\u5668 51.81% 78.71% 57.78% 26.90% 5.97% \u521d\u59cb\u5206\uf9d0\u5668 54.25% 83.10% 56.84% 28.85% 2.59% \u5927\u7b11 vs.\u958b\u61f7 \u6b63\u8ca0\u5206\uf9d0\u5668 50.41% 78.20% 56.16% 27.79% 5.75% \u5916\u6e2c\u6b63\u78ba\uf961(%) 2.2 \u8a13\uf996\u300cP vs. {N e} \u222a \u300d\u5206\uf9d0\u5668\uff0c\u5f97\u5230\u5167\u90e8\u6e2c\u8a66\u5206\uf9d0\u63d0\u6607\uf961 increase N \u3002 \u8868 13 \u986f\u793a\u539f\u7a2e\u5b50\u6240\u5c0d\u61c9\u7684\u4e8c\u5143\u5206\uf9d0\u5668\u5206\uf9d0\u6548\u80fd\uff0c\u4ee5\u53ca\u85c9\u7531\u8a72\u7a2e\u5b50\u5206\uf9d0\u7d93\u7531\u672c\u7bc0\u6240\u8ff0 \uf961\u662f\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u6e1b\u53bb\u589e\u52a0\u8a13\uf996\uf97e\u524d\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u7684\uf969\u503c\u3002\u8207\u8868 6 \uf9d0\u4f3c\u7684\uf9fa 65 3. \u5982\u679c increase P &gt; increase N \uff0c\u5247 e \u52a0\u5165\u96c6\u5408 P\uff0c\u53cd\u4e4b\u52a0\u5165\u96c6\u5408 N\u3002 \u6f14\u7b97\u6cd5\u5b78\u51fa\u6700\u5f8c\u6b63\u8ca0\u60c5\u7dd2\u5206\uf9d0\u5668\u7684\u6548\u80fd\uff0c\u7b2c\u4e00\u7d44\u4ee5\u5178\u578b\u7684\u6b63\u53cd\u9762\u60c5\u7dd2\u70ba\u7a2e\u5b50\uff0c\u6700\u5f8c\u5f97\u5230\u5916 \u6cc1\uff0c\u662f\u5404\u9805\u8a55\u4f30\ufa26\u96a8\u8457\u5206\uf9d0\uf969\uf97e\u7684\u7e2e\u5c0f\u800c\u5448\u73fe\u4e0a\u5347\u7684\u8da8\u52e2\u3002\u4f46\u662f\u8207\u589e\u52a0\u8a13\uf996\uf97e\u524d\u7684\uf969\u64da\u6bd4 \u8a72\u5206\uf9d0\u5668\u5206\u5225\u61c9\u7528\u5728\u8a13\uf996\u3001\u6e2c\u8a66\u8cc7\uf9be\u96c6\u5f8c\u6240\u5f97\u5230\u7684\u5206\uf9d0\u6548\u80fd\uff0c\u800c\u5167\u6e2c\u63d0\u6607\uf961\u548c\u5916\u6e2c\u63d0\u6607\uf961 \u64d4\u5fc3 37 10 1 2 18 2 1 1 \u7591\u60d1 28 7 7 2 9 1 \u5230\u5982\u300c\u9a5a\u8a1d\u300d \u3001 \u300c\u7728\u773c\u300d\u7b49\uf9d0\u5225\u3002\u70ba\uf9ba\u9032\u4e00\u6b65\uf9ba\u89e3\uf9d0\u5225\u500b\uf969\u662f\u5426\u6703\u5f71\u97ff\u5230\u5206\uf9d0\u5668\u8868\u73fe\uff0c\u6211\u5011 \uf961\u4e5f\u7121\u6cd5\u8d85\u8d8a\uff0c\u9019\u986f\u793a\u8ddf\u9019\uf978\u7d44\u6b63\u9762\u60c5\u7dd2\u96e3\u4ee5\u5340\u5206\u958b\uf92d\u3002 60 4. \u91cd\u8907\u6b65\u9a5f 2\uff0c\u76f4\u5230\u6240\u6709\u7684\u60c5\u7dd2\ufa26\u88ab\u6b78\uf9d0\u5b8c\u7562\u3002 \u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u6700\u9ad8\uff0c\u9054 63.45%\uff0c\u5176\u5404\u9805\u6548\u80fd\u8861\uf97e\u4e5f\u6bd4\u5176\u4ed6\uf978\u7d44\u70ba\u9ad8\u3002\u7b2c\u4e09\u7d44\u53cd\uf9b5\u9078 \u8f03\u8d77\uf92d\uff0c\u5728 16 \uf9d0\u5206\uf9d0\u5668\u8207 4 \uf9d0\u5206\uf9d0\u5668\u7684\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u537b\ufa09\u4f4e\uf9ba\u3002\u53e6\u5916\u4e8c\u5143\u5206\uf9d0\u5668 \u5247\u662f\u5167\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u548c\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u5206\u5225\u6e1b\u53bb\u57fa\u6e96\u503c\u3002 SVM \u900f\u904e\u5404\u500b\u5be6\uf9b5\u6240\u5e36\u6709\u7684\u7279\u5fb5\u5411\uf97e\u9032\ufa08\u8a13\uf996\u96c6\u5206\uf9d0\u7684\u52d5\u4f5c\uff0c\u6211\u5011\uf96b\u8003\u7b2c\u4e00\u7bc0\u6240\u63d0 \u9ad8\u8207\u502a(2002)\u95dc\u65bc\u7db2\uf937\u60c5\u7dd2\u5b57\u773c\u7684\u7814\u7a76\uff0c\u4f7f\u7528\u5176\u8490\u96c6\u7684\u5206\uf9d0\uff0c\u5305\u62ec\u61a4\uf960\uf9d0\u3001\u5bb3\u6015\uf9d0\u3001\u60b2\u50b7 \uf9d0\u3001\u540c\u60c5\uf9d0\u3001\u611b\u8207\u559c\u6085\uf9d0\u3001\u8b3e\u7f75\uf9d0\uff0c\u5171 2,659 \u500b\u8a5e\u5f59\u4f5c\u70ba\u7279\u5fb5\u5411\uf97e\uff0c\u56e0\u6b64\u6bcf\u500b\u6587\uf906\u7684\u7279\u5fb5 \u6709 2,659 \u500b\u7dad\ufa01\uff0c\u7279\u5fb5\u503c\u662f\u6709(1)\u6216\u6c92\u6709(0)\u51fa\u73fe\u904e\u8a72\u7279\u5fb5\u8a5e\u5f59\u3002 \u6211\u5011\u9032\u4e00\u6b65\u628a\u8a13\uf996\u3001\u6e2c\u8a66\u96c6\u4e2d\u5e36\u6709\u8868\u60c5\u7684\u6587\uf906\u53d6\u51fa\u3002\u7531\u65bc\u6709\u4e9b\u6587\uf906\u4e2d\u6703\uf99a\u7e8c\u4f7f\u7528\u591a\u500b \u7728\u773c 30 11 5 6 2 1 3 \u8868 6\u3001\uf967\u540c\uf9d0\u5225\u500b\uf969\u7684\u7d9c\u5408\u5206\uf9d0\u5668\u7684\u6548\u80fd \u5206\uf9d0\u5668 \u8a13\uf996\uf97e \u6e2c\u8a66\uf97e \u57fa\u6e96\u503c \u5167\u6e2c \u6b63\u78ba\uf961 \u5916\u6e2c \u6b63\u78ba\uf961 \u5167\u6e2c \u63d0\u6607\uf961 \u5206\u5225\u4fdd\uf9cd\u6392\u540d\u5206\uf9d0\u524d 32\u300116\u30018\u30014\u30012 \u540d\u7684\u5206\uf9d0\uff0c\uf92d\u7be9\u9078\u51fa\uf967\u540c\u7684\u8a13\uf996\u6e2c\u8a66\u96c6\u5be6\uf9b5\uff0c\u4ee5\u9019 \u4e9b\u5be6\uf9b5\u6240\u505a\u51fa\u7684\u5206\uf9d0\u7d50\u679c\u5982\u8868 6 \u6240\u793a\u3002 \u6211\u5011\u53e6\u5916\u88fd\u4f5c\u4e00\u5f35\uf9d0\u4f3c\u8868 8 \u7684\u5206\u6790\u8868\u683c\uff0c\u9996\u5148\u628a\u76f8\u540c\u7684\u7070\u8272\u5340\u584a\u8907\u88fd\u5230\u8868 9\uff0c\u63a5\u8457\u5728 \u53f3\u4e0a\u4e09\u89d2\u586b\u5165\u5c0d\u61c9\u4e8c\u5143\u5206\uf9d0\u5668\u5167\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u3001\u5de6\u4e0b\u4e09\u89d2\u586b\u5165\u5c0d\u61c9\u5167\u90e8\u6e2c\u8a66\u5206\uf9d0\u63d0\u6607 \u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u5927\u5e45\u63d0\u6607\u81f3 70.85%\uff0c\u662f\u56e0\u70ba\u300c\u5927\u7b11 vs.\u611b\u610f\u300d\u6bd4\u539f\u5148\u300c\u5927\u7b11 vs.\u958b\u61f7\u300d \u6b78\uf9d0\u5f8c\u7684\u7d50\u679c\u5982\u8868 12 \u6240\u793a\uff0c\u53e6\u5916\u4e5f\u6311\u9078\uf978\u7d44\u7a2e\u5b50\uff0c\u5305\u62ec\u300c\u611b\u610f vs.\u5927\u54ed\u300d \uff0c\u4ee5\u53ca\ufa26\u662f \u7684\ufa26\u662f\u6b63\u9762\u60c5\u7dd2\u7a2e\u5b50\uff0c\u6700\u5f8c\u5f97\u5230\u7684\u6548\u80fd\u6700\u4f4e\uff0c\u7b2c\u4e8c\u7d44\u7684\u6548\u80fd\u5247\u4ecb\u65bc\u5176\u4ed6\uf978\u7d44\u4e4b\u9593\u3002 55 50 55 60 65 70 75 \u57fa\u6e96\u503c(%) \u6b63\u9762\u7684\u60c5\u7dd2\u300c\u5927\u7b11 vs.\u958b\u61f7\u300d \uff0c\u4ee5\u89c0\u5bdf\uf967\u540c\u7a2e\u5b50\u7684\u5c0d\u6b78\uf9d0\u7d50\u679c\u7684\u5f71\u97ff\u3002\u524d\uf978\u7d44\u7d50\u679c\u53ef\u4ee5\u767c\u73fe 3.5 \u5c0f\u7d50 \u9084\u5bb9\uf9e0\u5340\u5206\u7684\u95dc\u4fc2\uff0c\u56e0\u6b64\u6211\u5011\u4ecd\u9700\u91dd\u5c0d\u4e8c\u5143\u5206\uf9d0\u5668\u63d0\u6607\u6548\u80fd\u7684\u8868\u73fe\u4f5c\u9032\u4e00\u6b65\u7684\u5206\u6790\u3002 \u5916\u6e2c \u63d0\u6607\uf961 \u8868 6 \u986f\u793a\u96a8\u8457\u5206\uf9d0\u7be9\u9078\uf969\u76ee\u7684\u6e1b\u5c11\uff0c\u8a13\uf996\uf97e\u548c\u6e2c\u8a66\uf97e\u4e5f\u96a8\u4e4b\u4e0b\ufa09\uff0c\u4f46\u662f\u5728\u57fa\u6e96\u503c\u3001\u5167 \uf961(\u5167\u90e8\u6e2c\u8a66\u5206\uf9d0\u78ba\uf961\u6e1b\u6389\u57fa\u6e96\u503c)\uff0c\u5176\u63d0\u6607\uf961\u7bc4\u570d\u5206\u4f48\u5728 13.0%\u5230 43.9%\u4e4b\u9593\uff0c\u63d0\u6607\uf961\u5c0f \u8868 10\u3001\u7d9c\u5408\u5206\uf9d0\u5668\u589e\u52a0\u8a13\uf996\uf97e\u5f8c\u4e4b\u6548\u80fd \u5716 2\u3001\u589e\u52a0\u8a13\uf996\uf97e\u524d\u5f8c\u5206\uf9d0\u5668\u6548\u80fd\u5206\u4f48\u8207\u7dda\u6027\u8da8\u52e2 \u504f\u6b63\u9762\u60c5\u7dd2{\u5fae\u7b11\u3001\u5f97\u610f\u3001\u82b1\u3001\u611b\u610f}\uff0c\uf978\u56de\ufa26\u53ef\u4ee5\u6b78\u5728\u6b63\u9762\u60c5\u7dd2\uf9d0\u3002\u76f8\u5c0d\u5730\uff0c{\u96e3\u904e\u3001\u5927 \u5be6\u9a57 1 \u6211\u5011\u770b\u5230\u61c9\u7528\u5728\u5168\u9ad4\u6587\u7ae0\u7684 40 \uf9d0\u7d9c\u5408\u5206\uf9d0\u5668\u7684\u6548\u80fd\u50c5\u6709 14.02%\uff0c\u4e26\uf967\uf9e4\u60f3\u3002 40 \uf9d0 4,049 1,234 8.45% 55.32% 14.02% 46.87% 5.57% 32 \uf9d0 3,877 1,177 8.82% 56.10% 14.70% 47.28% 5.88% 16 \uf9d0 2,937 881 11.77% 61.94% 19.98% 50.17% 8.21% 8 \uf9d0 1,860 595 18.38% 68.98% 28.91% 50.60% 10.53% 4 \uf9d0 1,225 355 27.92% 79.51% 46.76% 51.59% 18.84% 2 \uf9d0 628 190 54.46% 85.03% 56.84% 30.57% 2.38% \u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u3001\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u90e8\u4efd\uff0c\u7686\u96a8\u8457\u5206\uf9d0\u96e3\ufa01\u7684\u6e1b\u5c11\u800c\u63d0\u6607\uff0c\u9019\u500b\u7d50\u679c \u6307\u51fa\u5206\uf9d0\uf9d0\u578b\u7684\u6e1b\u5c11\u6709\u52a9\u65bc\u5206\uf9d0\u5668\u6548\u80fd\u7684\u63d0\u6607\u3002\u53e6\u5916\u5167\u3001\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\u63d0\u6607\uf961\u70ba\u5167\u3001 \u5916\u90e8\u5206\uf9d0\u6e2c\u8a66\u6b63\u78ba\uf961\u6e1b\u53bb\u57fa\u6e96\u503c\uff0c\u63d0\u6607\u7684\u5e45\ufa01\u96a8\u8457\u5206\uf9d0\u7684\u6e1b\u5c11\u4e5f\u5448\u73fe\u722c\u5347\u7684\uf9fa\u614b\uff0c\u552f\u7368\u5230 \u65bc 25%\u8005\u4ee5\u7c97\u9ad4\u5b57\u8868\u793a\u3002\u8868 9 \u7684\uf969\u64da\u5728\u8a13\uf996\u5f8c\u7684\u5167\u90e8\u6e2c\u8a66\u968e\u6bb5\u5373\u53ef\u7372\u5f97\uff0c\u85c9\u7531\u9019\u6a23\u7684\u89c0\u5bdf \u6211\u5011\u7372\u5f97\u5728\u5167\u90e8\u6e2c\u8a66\u968e\u6bb5\u53ef\u4ee5\u61c9\u7528\u4e0a\u7684\u7d93\u9a57\u6cd5\u5247\u70ba\uff1a (h1) \u6b63\u9762\u60c5\u7dd2\u548c\u8ca0\u9762\u60c5\u7dd2\u6bd4\u8f03\u5bb9\uf9e0\u5340\u5206\u958b\uf92d\uff0c\u5176\u4e8c\u5143\u5206\uf9d0\u5668\u6240\u8868\u73fe\u7684\u5167\u90e8\u6e2c\u8a66\u5206\uf9d0 \u589e\u52a0\u8a13\uf996\uf97e\u524d \u589e\u52a0\u8a13\uf996\uf97e\u5f8c \u5206\uf9d0\u5668 \u57fa\u6e96\u503c \u5916\u6e2c\u6b63\u78ba\uf961 \u57fa\u6e96\u503c \u5916\u6e2c\u6b63\u78ba\uf961 \u5916\u6e2c\u63d0\u6607\uf961 \u54ed\u3001\u5606\u6c23\u3001\uf967\uf96f\uf9ba\u3001\u9a5a\u8a1d\u3001\u751f\u6c23}\uff0c\uf978\u56de\ufa26\u6b78\u5728\u8ca0\u9762\u60c5\u7dd2\uf9d0\u3002\u4f46\u662f\uff0c{\u958b\u61f7\u3001\u5927\u7b11}\u4e5f\u5404\u6709 \u7be9\u9078\u6210\u4e8c\u5143\u5206\uf9d0\u5668\u5f8c\uff0c\u96d6\u7136\u6709 56.84%\u7684\u6548\u80fd\uff0c\u4f46\u662f\u53ea\u80fd\u61c9\u7528\u5728\uf978\u7a2e\u5206\uf9d0\u6240\u6db5\u84cb\u7684\u5be6\uf9b5\u3002 \u76f8\u5c0d\u63d0\u6607\uf961 40 \uf9d0 8.45% 14.02% 8.94% 14.26% 5.32% 0.24% 32 \uf9d0 8.82% 14.70% 9.33% 14.93% 5.60% \u4e00\u6b21\u6b78\u5230\u76f8\u53cd\uf9d0\u5225\u3002\u6211\u5011\u63a5\u8457\u61c9\u7528\u6b78\uf9d0\u7d50\u679c\u4f5c\u6210\u6b63\u8ca0\u60c5\u7dd2\u5206\uf9d0\u5668\uff0c\u5206\u5225\u5c07(\u589e\uf97e\u5f8c)\u8a13\uf996\u8207 \u5be6\u9a57 2 \u6211\u5011\u9032\u4e00\u6b65\u63a2\u8a0e 780 \u500b\u4e8c\u5143\u5206\uf9d0\u7684\u6548\u80fd\uff0c\u767c\u73fe\u5176\u4e2d\u5e36\u6709\u6b63\u53cd\u9762\u60c5\u7dd2\u5206\u8fa8\u610f\u7fa9\u7684\u5206\uf9d0 \u6211\u5011\u9996\u5148\u5c07 40 \uf9d0\u5225\u4e2d\u5404\u500b\u55ae\u4e00\uf9d0\u5225\uff0c\u8207\u5176\u4ed6 39 \u500b\uf9d0\u5225\u6240\u5c0d\u61c9\u7684\u4e8c\u5143\u5206\uf9d0\u5668\u4e4b\u5916\u90e8\u6e2c 0.23% 16 \uf9d0 11.77% 19.98% 12.35% 19.55% 7.20% -0.43% \u8a66\u5206\uf9d0\u6b63\u78ba\uf961\uff0c\u5728\u589e\u52a0\u8a13\uf996\u8cc7\uf9be\uf97e\u524d\u5f8c\u7684\uf978\u7a2e\uf9fa\u614b\u4e0b\u53d6\u4e00\u500b\u5e73\u5747\uf969\u503c\uff0c\u4e26\u4f9d\u7167\u589e\u52a0\u8a13\uf996\uf97e \u6e2c\u8a66\u96c6\u539f\u59cb\u60c5\u7dd2\u6a19\u8a18\u5c0d\u61c9\u6210\u6b63\u8ca0\uf9d0\u60c5\u7dd2\u6a19\u8a18\uff0c\u4ee5\u5206\uf9d0\u5668\u6548\u80fd\u8861\uf97e\u8caa\u5a6a\u6b78\uf9d0\u6f14\u7b97\u6cd5\u7684\u5be6\u7528 \u5668\u6548\u80fd\u8f03\u9ad8\u3002\u900f\u904e\u5be6\u9a57 3 \u9a57\u8b49\uf9ba\u589e\u52a0\u8a13\uf996\u8cc7\uf9be\uf97e\u53ef\u4ee5\u63d0\u6607\u6548\u80fd\u5f8c\uff0c\u5be6\u9a57 4 \u4f7f\u7528\u8caa\u5a6a\u6b78\uf9d0\u6f14 \u76f8\u540c\u6216\uf967\u540c\u60c5\u7dd2\u7b26\u865f\uff0c\u70ba\uf9ba\u7c21\u5316\u554f\u984c\u6392\u9664\u6b67\u7fa9\u6027\uff0c\u6211\u5011\u53ea\u6311\u51fa\u5e36\u6709\u4e00\u500b\u60c5\u7dd2\u7b26\u865f\u7684\u6587\uf906\uff0c \u8868 7\u300116 \uf9d0\u7d9c\u5408\u5206\uf9d0\u5668\u932f\u8aa4\u5206\u6790 \uf9ba\u4e8c\u5143\u5206\uf9d0\u5668\u6642\u63d0\u6607\u7a0b\ufa01\u50c5\u5269 2.38%\u3002\u5206\u6790\u5176\u539f\u56e0\u662f\u7531\u65bc\u524d 2 \uf9d0\u300c\u5927\u7b11\u300d\u548c\u300c\u958b\u61f7\u300d\u662f\u76f8 \u63d0\u6607\uf961\u4e0a\u5347\u7684\u5e45\ufa01\u8f03\u9ad8\u3002 8 \uf9d0 18.38% 28.91% 18.73% 30.20% 11.47% 1.29% 4 \uf9d0 27.92% 46.76% 28.59% 45.92% 17.33% -0.84% \u524d\u7684\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u7531\u9ad8\u5230\u4f4e\u7684\u9806\u5e8f\uf99c\u51fa\u5982\u8868 11 \u6240\u793a\uff0c\u5176\u4e2d\u589e\u52a0\u8a13\uf996\uf97e\u5f8c\u5916\u90e8\u6e2c\u8a66 \u6027\uff0c\u4e09\u7d44\u7a2e\u5b50\u6700\u5f8c\u6240\u5f62\u6210\u7684\u5206\uf9d0\u5668\u6548\u80fd\u5982\u8868 13 \u6240\u793a\u3002 \u7b97\u6cd5\uf9dd\u7528\u4e16\u754c\u901a\u7528\u300c:)\u300d\u548c\u300c:(\u300d\u60c5\u7dd2\u7b26\u865f\u70ba\u7a2e\u5b50\uff0c\u6700\u5f8c\u5f97\u5230\u4e00\u500b\u80fd\u5957\u7528\u5728\u5168\u90e8\u6e2c\u8a66\u5be6\uf9b5\uff0c \u4e5f\u5c31\u662f\u6c92\u6709\u5206\uf9d0\u7684\u6a21\u7cca\u6027\uff0c\u9019\u4e9b\u6587\uf906\u4ee5 HTML \u7684\u6a19\u8a18&lt;p&gt;\u70ba\u754c\u5206\u9694\u3002\u5982\u679c\u6587\uf906\u4e2d\u5305\u542b\u81f3\u5c11 \u4e00\u500b\u975e\uf9b2\u7684\u7279\u5fb5\u503c\uff0c\u5247\u5f62\u6210\u8a13\uf996\u6216\u6e2c\u8a66\u5be6\uf9b5\u3002\u7d93\u7531\u9019\u6a23\u7684\u8a2d\u5b9a\uff0c\u6211\u5011\u5206\u5225\u5f9e\u8a13\uf996\u8cc7\uf9be\u96c6\u548c \u6e2c\u8a66\u8cc7\uf9be\u96c6\u4e2d\u7372\u5f97\uf9ba 4,049 \u7b46\u8a13\uf996\u5be6\uf9b5\uff0c\u4ee5\u53ca 1,234 \u7b46\u6e2c\u8a66\u5be6\uf9b5\u3002 3.1 \u5be6\u9a57 1-\u7d9c\u5408\u5206\uf9d0\u5668 \u5728\u9019\u4e00\u7d44\u5be6\u9a57\u4e2d\uff0c\u6211\u5011\u5c07 4,049 \u7b46\u8a13\uf996\u8cc7\uf9be\uff0c\u76f4\u63a5\u8a13\uf996\u51fa\u4e00\u500b\u80fd\u6a19\u8a18\u51fa 40 \u7a2e\u60c5\u7dd2\uf9d0 \u5225\u7684\u5206\uf9d0\u5668\u3002\u6839\u64da\u8a13\uf996\u6a19\u8a18\uf969\uf97e\u7684\u5206\u4f48\uff0c \u300c\u5927\u7b11\u300d\uf9d0\u7684 342 \u7b46\u6700\u591a\uff0c\u7d04\u4f54 8.45%\uff1b \u300c\ufa16\u982d\u300d \uf9d0\u7684 8 \u7b46\u6700\u5c11\uff0c\u50c5\u4f54 0.2\uff05\u3002\u8a13\uf996\u51fa\uf92d\u7684\u5206\uf9d0\u5668\u76f4\u63a5\u5957\u7528\u5728\u539f\u59cb\u7684\u8a13\uf996\u96c6\uff0c\u5f97\u5230\u7684\u5167\u90e8\u6e2c \u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u662f 55.32%\uff1b\u5957\u7528\u5728\u6e2c\u8a66\u96c6\u6240\u5f97\u5230\u7684\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\uff0c\u50c5\u6709 14.02%\u3002\u96d6 \u7136\u6bd4\u57fa\u6e96\u503c 8.45%\u9ad8\uff0c\u537b\u6c92\u6709\u5be6\u969b\u4e0a\u61c9\u7528\u7684\u7a7a\u9593\u3002 \u6a19\u8a18\u7b54\u6848 \u6b63\u78ba \u7b54\u6848 \uf969\uf97e \u5927\u7b11 \u958b\u61f7 \u611b\u610f \u5927\u54ed \u5fae\u7b11 \u5410\u820c \u9a5a\u8a1d \u82b1 \u751f\u6c23 \u7948\u79b1 \u5bb3\u7f9e \u96e3\u904e \u9f13\u638c \u64d4\u5fc3 \u7591\u60d1 \u7728\u773c \u5927\u7b11 109 56 12 9 15 5 3 1 2 2 1 1 1 1 \u958b\u61f7 81 28 9 15 13 4 3 1 2 2 1 1 1 1 \u611b\u610f 90 17 9 47 9 1 2 2 3 \u5927\u54ed 75 18 2 3 33 2 1 2 1 5 1 2 3 2 \u5fae\u7b11 75 23 6 22 10 3 1 1 6 2 1 \u5410\u820c 71 24 9 17 10 2 2 1 2 1 1 1 1 \u9a5a\u8a1d 43 13 3 3 16 1 3 3 1 \u82b1 51 13 2 20 5 1 2 5 1 2 \u751f\u6c23 41 17 1 11 1 1 1 1 2 2 2 1 1 \u7948\u79b1 52 6 4 5 17 2 14 1 2 1 \u5bb3\u7f9e 36 9 5 13 5 2 1 \u7576\u63a5\u8fd1\u7684\u60c5\u7dd2\uff0c\u9020\u6210\u5206\uf9d0\u5668\u96e3\u4ee5\u5340\u5206\u3002\u53e6\u5916\u8868 7 \uf9d0\u4f3c\u8868 5\uff0c\uf99c\u51fa 16 \uf9d0\u7d9c\u5408\u5206\uf9d0\u5668\u5206\uf9d0\u6b63 \u78ba\u548c\u932f\u8aa4\u7684\uf969\uf97e\u7d71\u8a08\uff0c\u5404\uf9d0\u6b63\u78ba\u5206\uf9d0\uf969(\u5c0d\u89d2\u7dda\u4e0a) \u63d0\u6607\u7d04 0 \u5230 2 \u7b46\uf967\u7b49\u3002\u96d6\u7136\u89c0\u5bdf\u5230\u7684\u6b63 \u78ba\u5206\uf9d0\u6240\u63d0\u6607\u7684\uf969\uf97e\u6709\u9650\uff0c\u4f46\u662f\u7d9c\u5408\u8868 5\u3001\u8868 7 \u6211\u5011\u53ef\u4ee5\u767c\u73fe-\u5118\u7ba1\u6587\uf906\u5f88\u5bb9\uf9e0\u5206\uf9d0\u5230\u524d \u56db\uf9d0\uff0c\u4f46\u662f\u5c6c\u65bc\u300c\u96e3\u904e\u300d\uf9d0\u7684\u5c31\uf967\u6703\u88ab\u6a19\u6210\u300c\u958b\u61f7\u300d\uf9d0\uff0c\u5c6c\u65bc\u300c\u751f\u6c23\u300d\uf9d0\u7684\u5c31\uf967\u6703\u88ab\u6a19\u6210 \u300c\u611b\u610f\u300d\uf9d0\u3002 3.2 \u5be6\u9a57 2-\u5404\u7a2e\u4e8c\u5143\u5206\uf9d0\u5668\u6548\u80fd\u4e4b\u6bd4\u8f03 (h2) \u5982\u679c\u67d0\u4e8c\u5143\u5206\uf9d0\u5668\u5167\u90e8\u6e2c\u8a66\u5206\uf9d0\u63d0\u6607\uf961\u904e\u4f4e\uff0c\u5982\u300c\u5927\u7b11 vs.\u7591\u60d1\u300d\u70ba 14.0%\u3001 \u300c\u611b 2 \uf9d0 54.46% 56.84% 53.58% 70.85% 17.27% 14.01% \u5206\uf9d0\u6b63\u78ba\uf961\u4e0b\ufa09\u7684\u5206\uf9d0\u4ee5\u7070\u8272\u7db2\u5e95\u6a19\u793a\u4e4b\u3002\u7531\u8868 11 \u6211\u5011\u767c\u73fe 40 \u500b\u5206\uf9d0\u4e2d\uff0c\u6709 27 \u500b\u5206\uf9d0 \u8868 12\u3001\u6839\u64da\uf967\u540c\u60c5\u7dd2\u7a2e\u5b50\u5957\u7528\u8caa\u5a6a\u6b78\uf9d0\u6f14\u7b97\u6cd5\u5c0d\u6b63\u8ca0\u9762\u60c5\u7dd2\u6b78\uf9d0\u5f8c\u7d50\u679c \u4e14\u6548\u80fd\u9054 63.45%\u7684\u6b63\u8ca0\u9762\u60c5\u7dd2\u5206\uf9d0\u5668\u3002 \u8868 11\u3001\u4e8c\u5143\u5206\uf9d0\u5668\u589e\u52a0\u8a13\uf996\uf97e\u524d\u5f8c\u300c\u55ae\uf9d0 vs.\u5176\u4ed6\uf9d0\u300d\u5e73\u5747\u5916\u90e8\u6e2c\u8a66\u6b63\u5206\uf9d0\u78ba\uf961 \u7a2e\u5b50 \u6b63\u9762\u60c5\u7dd2 \u8ca0\u9762\u60c5\u7dd2 \u610f vs.\u82b1\u300d\u70ba 18.8%\uff0c\u53ef\u4ee5\u9810\u671f\u8a72\u5206\uf9d0\u5668\u5728\u5916\u90e8\u6e2c\u8a66\u6642\u4e5f\u5f88\u96e3\u6709\u597d\u7684\u8868\u73fe\u3002 (h3) \u5982\u679c\u5167\u90e8\u6e2c\u8a66\u5f8c\uff0c\u8a72\uf9d0\u6240\u6709\u5206\uf9d0\u5668\u5e73\u5747\u63d0\u6607\uf961\u904e\u4f4e\uff0c\u5982\u300c\u7591\u60d1\u300d\uf9d0\uff0c\u5247\u8a72\uf9d0\u5728 \u5916\u90e8\u6e2c\u8a66\u6642\uff0c\u4e5f\u5f88\u96e3\u6709\u597d\u7684\u8868\u73fe\u3002 (h4) \u5167\u90e8\u6e2c\u8a66\u5206\uf9d0\u63d0\u6607\uf961\u7686\u70ba\u6b63\uf969\uff0c\u8868\u793a\u4ee5 SVM \uf92d\u89e3\u6c7a\u672c\u7814\u7a76\u8b70\u984c\u6709\u4e00\u5b9a\u7a0b\ufa01\u7684 \u5206\uf9d0 \u589e\uf97e\u524d \u589e\uf97e\u5f8c \u5206\uf9d0 \u589e\uf97e\u524d \u589e\uf97e\u5f8c \u5206\uf9d0 \u589e\uf97e\u524d \u589e\uf97e\u5f8c \u5c0f\u4e11 89.06% 88.99% \u89aa\u89aa 72.29% 72.56% \u5927\u7b11 81.34% 81.38% \u5f97\u610f 72.08% 71.60% \ufa19\u667a \uf967\u6e05 69.03% 68.58% \u611b\u610f 81.13% 81.25% \u5606\u6c23 72.04% \u7684\u5916\u90e8\u5206\uf9d0\u6e2c\u8a66\u6b63\u78ba\uf961\u5728\u8a13\uf996\uf97e\u589e\u52a0\u5f8c\u4e0a\u5347\u300113 \uf9d0\u4e0b\ufa09\u3002\u63a5\u8457\uff0c\u6211\u5011\u65bc\u5716 2 \u5c07 720 \u500b\u5206 \u5fae\u7b11 \u5fae\u7b11\u3001\u5929\u4f7f\u3001\u7761\u8457\u3001\u5446\u4f4f\u3001\uf967\u8212\u670d\u3001 \u5475\u6b20\u3001\u90aa\uf9b9\u3001\u5f97\u610f\u3001\u800d\u5e25\u3001\u89aa\u89aa\u3001\u8003\u616e\u3001 \u96e3\u904e\u3001\u5c0f\u4e11\u3001\u5b89\u975c\u3001\u518d\ufa0a\u3001\u6234\u773c\u93e1\u3001\ufa16\u982d\u3001 4. \u7d50\uf941\u8207\u672a\uf92d\u7814\u7a76\u65b9\u5411 \uf9ca\u53e3\u6c34\u3001\u76ba\u7709\u3001\u74b0\u9867\u3001\u5606\u6c23\u3001\u5478\u3001\u5077\u7b11\u3001 \uf9d0\u5668\u7684\u57fa\u6e96\u503c\u8207\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63\u78ba\uf961\u7684\u5206\u4f48\uff0c\u6839\u64da\u589e\u52a0\u8a13\uf996\uf97e\u524d\u5f8c\u7684\uf9fa\u6cc1\u4ee5\u7d05\u3001\uf923\uf978\u7a2e\u984f vs.\u96e3\u904e \u7728\u7728\u773c\u3001\u7591\u60d1\u3001\u9f13\u638c\u3001\u5bb3\u7f9e\u3001\u82b1\u3001 \uf967\uf96f\uf9ba\u3001\ufa19\u667a\uf967\u6e05\u3001\u7728\u773c\u3001\u64d4\u5fc3\u3001\u7948\u79b1\u3001 72.82% \u6234\u773c\u93e1 69.01% 70.12% \u5927\u54ed 79.41% 79.28% \u9a5a\u8a1d 71.88% 71.85% \u96e3\u904e 68.94% \u8272\u6a19\u793a\uff0c\u4e26\u5404\uf99c\u51fa\u4e00\u500b\u7dda\u6027\u8da8\u52e2\u7dda\uff0c\u8da8\u52e2\u7dda\u9a57\u8b49\uf9ba\u96a8\u8457\u5206\uf9d0\u57fa\u6e96\u503c\u4e0a\u6607\uff0c\u5916\u90e8\u6e2c\u8a66\u5206\uf9d0\u6b63 \u5410\u820c\u982d\u3001\u611b\u610f\u3001\u958b\u61f7 \u751f\u6c23\u3001\u9a5a\u8a1d\u3001\u5927\u54ed\u3001\u5927\u7b11 \u672c\u7814\u7a76\u63a2\u8a0e\u4eba\u5011\u7684\u6e9d\u901a\u5a92\u4ecb\u64f4\u5c55\u5230\u7db2\u969b\u7db2\uf937\u5f8c\uff0c\u6e9d\u901a\ufa08\u70ba\u4e2d\u7684\u60c5\u7dd2\u50b3\u905e\u9700\u6c42\uff0c\u4e5f\u53cd\u61c9 69.30% \u7761\u8457 79.04% 76.96% \u82b1 71.78% 72.03% \u90aa\uf9b9 68.73% 68.40% \u5fae\u7b11 78.20% 77.66% \u64d4\u5fc3 70.79% 71.67% \uf967\uf96f\uf9ba 67.58% \u78ba\uf961\u4e5f\u6703\u4e0a\u5347\u7684\u73fe\u8c61\uff0c\u4e26\u4e14\uf96f\u660e\u589e\u52a0\u8a13\uf996\uf97e\u5c0d\u5206\uf9d0\u5668\u6548\u80fd\u7684\u5f71\u97ff\u662f\u6b63\u9762\u7684\u3002 \u611b\u610f \u611b\u610f\u3001\u7761\u8457\u3001\ufa16\u982d\u3001\u6234\u773c\u93e1\u3001\u76ba\u7709\u3001\u74b0 \u9867\u3001\u5f97\u610f\u3001\u90aa\uf9b9\u3001\u800d\u5e25\u3001\u5478\u3001\ufa19\u667a\uf967\u6e05\u3001 \u5927\u54ed\u3001\u5c0f\u4e11\u3001\u5b89\u975c\u3001\u518d\ufa0a\u3001\u5929\u4f7f\u3001\uf9ca\u53e3\u6c34\u3001 \u5728\u5a92\u4ecb\u7684\u4f7f\u7528\u4e0a\u3002\u90e8\uf918\u683c\u4f5c\u70ba\u4e00\u500b\u65b0\u8208\u7684\u5a92\u4ecb\u4ee3\u8868\uff0c\u4e5f\u5354\u52a9\u6211\u5011\u89c0\u5bdf\u5230\u4f7f\u7528\u8005\u5728\u7ad9\u53f0\u3001\u6587 \u5446\u4f4f\u3001\u5475\u6b20\u3001\uf967\u8212\u670d\u3001\u5606\u6c23\u3001\u8003\u616e\u3001\u5077\u7b11\u3001 67.22% \u5f37\u5065\ufa01\uff0c\u6216\u8a31\u6709\u6a5f\u6703\u518d\u900f\u904e\u8a13\uf996\u8cc7\uf9be\u7684\u589e\u52a0\uff0c\u9032\u4e00\u6b65\u63d0\u6607\u6b63\u78ba\uf961\u3002 \u958b\u61f7 77.88% 78.22% \uf9ca\u53e3\u6c34 70.60% 71.69% \u9f13\u638c 67.26% 67.39% \u5929\u4f7f 75.21% 75.44% \u5b89\u975c 70.54% 70.76% \u7591\u60d1 66.59% 68.11% 3.4 \u5be6\u9a57 4-\u8caa\u5a6a\u6b78\uf9d0\u6f14\u7b97\u6cd5 vs.\u5927\u54ed \u89aa\u89aa\u3001\u7728\u773c\u3001\u64d4\u5fc3\u3001\u82b1\u3001\u5bb3\u7f9e\u3001\u7948\u79b1\u3001 \u5fae\u7b11\u3001\u5927\u7b11 \u7591\u60d1\u3001\uf967\uf96f\uf9ba\u3001\u7728\u7728\u773c\u3001\u9f13\u638c\u3001\u9a5a\u8a1d\u3001\u751f\u6c23\u3001 \u7ae0\u3001\u6587\uf906\u5404\u500b\u5c64\u6b21\u8868\u9054\u60c5\u7dd2\u7684\ufa08\u70ba\u3002\u6211\u5011\u9032\u4e00\u6b65\u63a2\u8a0e\u4e2d\u6587\u60c5\u7dd2\u8655\uf9e4\u3001\u4e14\u7531\u6587\uf906\u5c64\u6b21\u51fa\u767c\uff0c \u96e3\u904e\u3001\u5410\u820c\u982d\u3001\u958b\u61f7 1 \u96e3\u904e 33 6 3 7 1 1 2 8 3 2 \u9f13\u638c 29 9 6 5 4 2 2 1 \u64d4\u5fc3 37 12 1 2 18 2 1 1 \u7591\u60d1 28 8 7 2 9 1 1 \u7728\u773c 30 12 5 6 3 1 3 \u6839\u64da\u4e0a\u4e00\u7bc0\u5c0d\u8868 6 \u7684\u89c0\u5bdf\u986f\u793a\u4e8c\u5143\u5206\uf9d0\u5668\u63d0\u6607\u6548\u80fd\u7684\u6f5b\uf98a\uff0c\u800c\u91dd\u5c0d\u8868 5\u3001\u8868 7 \u7684\u4ea4\u53c9 \u5206\u6790\uff0c\u4e5f\u8b93\u6211\u5011\u63a8\u6e2c\u7279\u5b9a\uf9d0\u5225\u7279\u5fb5\u4e4b\u9593\u53ef\u80fd\u6709\u4e92\u65a5\u7684\u8868\u73fe\u3002\u56e0\u6b64\u6211\u5011\u63a5\u8457\u5c07 40 \u500b\uf9d0\u5225\u7684 \u4efb\uf978\uf9d0\u7684\u8cc7\uf9be\uff0c\uf92d\u8a13\uf996\u51fa\u5171 40 2 C =780 \u500b\u4e8c\u5143\u5206\uf9d0\u5668\u3002\u70ba\uf9ba\u7b26\u5408\u9801\u9762\u986f\u793a\uff0c\u6211\u5011\u5148\u5c07\u524d 16 \ufa16\u982d 75.16% 74.39% \u5446\u4f4f 70.30% 71.00% \u74b0\u9867 66.48% 66.20% \u5410\u820c\u982d 75.15% 75.36% \u5478 69.90% 71.24% \u76ba\u7709 66.42% 68.16% \u751f\u6c23 74.60% 74.95% \u518d\ufa0a 69.65% 68.25% \u5077\u7b11 66.04% 66.44% \u5475\u6b20 74.10% 72.49% \u7728\u773c 69.06% 69.64% \u8003\u616e 65.04% 66.02% \u7948\u79b1 72.96% 71.93% \u7728\u7728\u773c 69.04% 69.29% \u900f\u904e\u4e0a\u6587\u5c0d\u4e8c\u5143\u5206\uf9d0\u5668\u6548\u80fd\u7684\u638c\u63e1\uff0c\u6211\u5011\u85c9\u6b64\u8a2d\u8a08\u4e00\u5957\u8caa\u5a6a\u6f14\u7b97\u6cd5\uff0c\u8a66\u8457\u5c07\u6240\u6709\u60c5\u7dd2 \u6b78\u7d0d\u5230\u6b63\u9762\u6216\u8ca0\u9762\u60c5\u7dd2\uf9d0\u3002\u6211\u5011\u66fe\u5728\u7b2c 1 \u7bc0\u63d0\u5230\u7db2\uf937\u754c\u9996\u5148\u767c\u660e\u7684\u60c5\u7dd2\u7b26\u865f\u662f\u5fae\u7b11\u300c:)\u300d \u548c\u96e3\u904e\u300c:(\u300d \uff0c\u5206\u5225\u7528\uf92d\u6e9d\u901a\u4eba\u5011\u6700\u57fa\u672c\u7684\u6b63\u9762\u548c\u8ca0\u9762\u60c5\u7dd2\u3002\u7d93\u7531\u5be6\u9a57 3 \u6211\u5011\u5f97\u5230\u300c\u5fae\u7b11 \u5927\u7b11\u3001\u6234\u773c\u93e1\u3001\u5446\u4f4f\u3001\uf967\u8212\u670d\u3001\u74b0\u9867\u3001 \u958b\u61f7\u3001\u5c0f\u4e11\u3001\u5b89\u975c\u3001\u518d\ufa0a\u3001\u5929\u4f7f\u3001\u7761\u8457\u3001\ufa16 \u8a66\u8457\u5c0d\u4f7f\u7528\u8005\u6240\u8868\u9054\u7684\u60c5\u7dd2\u52a0\u4ee5\u5206\uf9d0\u3002\uf9dd\u7528\u96c5\u864e\u5947\u6469\u63d0\u4f9b\u7684\u90e8\uf918\u683c\u670d\u52d9\uff0c\u53d6\u5f97\u5305\u542b\u60c5\u7dd2\u7b26 (\u53cd\uf9b5) \u5927\u7b11 \u5606\u6c23\u3001\u5f97\u610f\u3001\u800d\u5e25\u3001\u89aa\u89aa\u3001\u8003\u616e\u3001 \u7728\u7728\u773c\u3001\u7591\u60d1\u3001\u64d4\u5fc3\u3001\u5bb3\u7f9e\u3001\u751f\u6c23\u3001\u82b1\u3001 \u982d\u3001\uf9ca\u53e3\u6c34\u3001\u76ba\u7709\u3001\u5475\u6b20\u3001\u90aa\uf9b9\u3001\u5478\u3001\u5077\u7b11\u3001 \u865f\u7684\u6587\u672c\uf92d\u6e90\u3002\u4e26\u9032\u4e00\u6b65\u900f\u904e\u60c5\u7dd2\u5206\uf9d0\u5668\u7684\u8a2d\u8a08\uff0c\u4ee5\u5be6\u9a57\uf969\u64da\u5206\u6790\u554f\u984c\u7684\u96e3\ufa01\u3001\u6548\u80fd\u63d0\u6607 \uf967\uf96f\uf9ba\u3001\ufa19\u667a\uf967\u6e05\u3001\u7728\u773c\u3001\u9f13\u638c\u3001\u96e3\u904e\u3001 vs.\u958b\u61f7 \u5fae\u7b11\u3001\u611b\u610f \u7948\u79b1\u3001\u9a5a\u8a1d\u3001\u5410\u820c\u982d\u3001\u5927\u54ed \u7684\u65b9\u5f0f\u3001\u4ee5\u53ca\u61c9\u7528\u5728\u60c5\u7dd2\u6b78\uf9d0\u7684\u65b9\u6cd5\u3002</td></tr></table>",
                "num": null,
                "html": null,
                "type_str": "table"
            }
        }
    }
}