File size: 79,962 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
{
    "paper_id": "O06-2005",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:07:46.062456Z"
    },
    "title": "A Fast Framework for the Constrained Mean Trajectory Segment Model by Avoidance of Redundant Computation on Segment 1",
    "authors": [
        {
            "first": "Yun",
            "middle": [],
            "last": "Tang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "addrLine": "nlpr",
                    "postBox": "P.O.Box 2728",
                    "postCode": "100080",
                    "settlement": "Beijing"
                }
            },
            "email": "tangyun@nlpr.ia.ac.cn"
        },
        {
            "first": "Wenju",
            "middle": [],
            "last": "Liu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "addrLine": "nlpr",
                    "postBox": "P.O.Box 2728",
                    "postCode": "100080",
                    "settlement": "Beijing"
                }
            },
            "email": ""
        },
        {
            "first": "Yiyan",
            "middle": [],
            "last": "Zhang",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Bo",
            "middle": [],
            "last": "Xu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "addrLine": "nlpr",
                    "postBox": "P.O.Box 2728",
                    "postCode": "100080",
                    "settlement": "Beijing"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The segment model (SM) is a family of methods that use the segmental distribution rather than frame-based density (e.g. HMM) to represent the underlying characteristics of the observation sequence. It has been proved to be more precise than HMM. However, their high level of complexity prevents these models from being used in practical systems. In this paper, we propose a framework that can reduce the computational complexity of the Constrained Mean Trajectory Segment Model (CMTSM), one type of SM, by fixing the number of regions in a segment so as to share the intermediate computation results. Our work is twofold. First, we compare the complexity of SM with that of HMM and point out the source of the complexity in SM. Secondly, a fast CMTSM framework is proposed, and two examples are used to illustrate this framework. The fast CMTSM achieves a 95.0% string accurate rate in the speaker-independent test on our mandarin digit string data corpus, which is much higher than the performance obtained with HMM-based system. At the mean time, we successfully keep the computation complexity of SM at the same level as that of HMM.",
    "pdf_parse": {
        "paper_id": "O06-2005",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The segment model (SM) is a family of methods that use the segmental distribution rather than frame-based density (e.g. HMM) to represent the underlying characteristics of the observation sequence. It has been proved to be more precise than HMM. However, their high level of complexity prevents these models from being used in practical systems. In this paper, we propose a framework that can reduce the computational complexity of the Constrained Mean Trajectory Segment Model (CMTSM), one type of SM, by fixing the number of regions in a segment so as to share the intermediate computation results. Our work is twofold. First, we compare the complexity of SM with that of HMM and point out the source of the complexity in SM. Secondly, a fast CMTSM framework is proposed, and two examples are used to illustrate this framework. The fast CMTSM achieves a 95.0% string accurate rate in the speaker-independent test on our mandarin digit string data corpus, which is much higher than the performance obtained with HMM-based system. At the mean time, we successfully keep the computation complexity of SM at the same level as that of HMM.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The Hidden Markov Model (HMM) [Rabiner et al. 1993 ] has been used successfully for acoustic modeling in many speech recognition systems. Given the state sequence, feature vectors are assumed to be conditionally independent, and the task of extracting the trajectory can be elegantly achieved by applying the Viterbi algorithm frame by frame. However, the above assumption is far from realistic, which limits the HMM's ability to capture the relations within a segment. Another weakness of HMM is that it is not accurate enough to represent a non-stationary observation sequence by means of a piecewise constant state [Deng et al. 1994; Hon et al. 1999] . In order to handle these problems, a lot of methods have been proposed, including SM [Ostendorf et al. 1996] , which is a family of methods among them.",
                "cite_spans": [
                    {
                        "start": 30,
                        "end": 50,
                        "text": "[Rabiner et al. 1993",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 618,
                        "end": 636,
                        "text": "[Deng et al. 1994;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 637,
                        "end": 653,
                        "text": "Hon et al. 1999]",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 741,
                        "end": 764,
                        "text": "[Ostendorf et al. 1996]",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "SM is totally different from HMM in terms of its segmental decoding method and potential for accomplishing some tasks effectively that are naturally difficult for an HMM based system, since it integrates more segmental information into the decoding process, produces the n-best list during the decoding process etc. However, the good acoustic modeling of SM is at the cost of high computation, which is much higher than that of HMM. It prevents SM from being applied in practical systems. The high complexity of SM is mainly due to the segment evaluation process. Segment evaluation cannot be decomposed and the intermediate computation information is not shareable between different segments even when two segments only differ by one frame. Previous work accelerated SM using efficient segment pruning algorithms. V. Digalakis et al. [1992] proposed a pruning method to speed up SM. They estimate the score of a segment from part of the segment. Then those hypotheses with low likelihood are pruned before the whole segment is evaluated. The amount of reduction in computation depends on the discrimination ability of the feature vector. S. Lee et al. [1998] and J. Glass [2003] proposed a landmark-based algorithm that reduces the search space by detecting the potential boundaries of phonemes with the aid of special features or HMM decoders, so that the number of the possible hypothesized segments in the search space can be reduced greatly. However, since the detection of boundaries is unreliable and not accurate enough, the efficiency of this algorithm is discounted. The most important point is that the speed of SM based on the above methods is still far slower than that of HMM, since the computations performed by these algorithms are based on segments, while in the case of HMM, they are based on frames. In this paper, we propose a framework to reduce the complexity of the Constrained Mean Trajectory Segment Model (CMTSM) [Ostendorf et al. 1996] , one family of SM. In this new framework, CMTSM can divide segment computations into frame computations, which are shared between different segments; thus, the redundant computations of segments can be avoided. Guided by this framework, we have measured the complexity of Stochastic Segment Model (SSM) [Ostendorf et al. 1989 ] based on the number of Gaussian mixture models evaluated during recognition, and found that the complexity is not proportional to the product of the model's number and the maximum allowable duration, but is only related to the number of models, or more exactly, to the number of regions in the system.",
                "cite_spans": [
                    {
                        "start": 818,
                        "end": 841,
                        "text": "Digalakis et al. [1992]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1142,
                        "end": 1159,
                        "text": "Lee et al. [1998]",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1167,
                        "end": 1179,
                        "text": "Glass [2003]",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1939,
                        "end": 1962,
                        "text": "[Ostendorf et al. 1996]",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 2267,
                        "end": 2289,
                        "text": "[Ostendorf et al. 1989",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The complexity of SSM is on the same level as that of HMM. The speed of the Parametric Trajectory Model (PTM) [Gish et al. 1992; Deng et al. 1994] , another type of CMTSM, can also be greatly enhanced with some minor modifications of the original algorithm, based on our framework.",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 128,
                        "text": "[Gish et al. 1992;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 129,
                        "end": 146,
                        "text": "Deng et al. 1994]",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The rest of this paper is organized as follows. SM is introduced in the next section by comparing HMM with SM in terms of modeling and decoding. Then, in Section 3, we present the fast framework for CMTSM and two examples, the fast SSM and the fixed PTM, illustrate it. Section 4 presents experimental results obtained with the fast framework. Finally, conclusions are drawn in Section 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "In HMM, the model unit is the state, and the relations among feature vectors are represented by the relations among the states mapping to these features. In SM, the model unit is based on segments, such as phonemes, syllables, and words. Hence, the relations between feature vectors in the same segment are modeled directly. The probability density of a variable length feature sequence 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction to the Segment Model",
                "sec_num": "2.1"
            },
            {
                "text": "1 2 { , ,... } l l x x x x =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction to the Segment Model",
                "sec_num": "2.1"
            },
            {
                "text": "measured by SM can be represented as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction to the Segment Model",
                "sec_num": "2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 1 1 ( | ) ( | ) ( | ) l l l p x f x g x \u03b1 \u03b1 \u03b1 = ,",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Introduction to the Segment Model",
                "sec_num": "2.1"
            },
            {
                "text": "where \u03b1 is the label of the acoustic model, ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction to the Segment Model",
                "sec_num": "2.1"
            },
            {
                "text": "The goal of a speech recognizer is to find the most likely word sequence given sentence 1 T",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding Comparison between HMM and SM",
                "sec_num": "2.2"
            },
            {
                "text": "x . Let 1 N \u03b1 be the label sequence of acoustic models representing words intended by the speaker, ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding Comparison between HMM and SM",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "who produces 1 T x above. That is, 1 1 1 1 1 1 1 1 , , arg max ( | ) arg max ( ) ( | ) N N N N T N T N N N p x p p x \u03b1 \u03b1 \u03b1 \u03b1 \u03b1 \u03b1 = = ,",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Decoding Comparison between HMM and SM",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 ( 1) 1 ( 1) 1 1 1 ( | ) ( | ) max ( | ) T N N N S i S i T N i i S i S i S S i i p x p x p x \u03b1 \u03b1 \u03b1 \u2212 + \u2212 + \u2208\u039b = = = \u2248 \u2211 \u220f \u220f ,",
                        "eq_num": "( ) ( ) 1"
                    }
                ],
                "section": "Decoding Comparison between HMM and SM",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "( ) S i S i \u2212 < ,",
                        "eq_num": "(3)( 1)"
                    }
                ],
                "section": "Decoding Comparison between HMM and SM",
                "sec_num": "2.2"
            },
            {
                "text": "0",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding Comparison between HMM and SM",
                "sec_num": "2.2"
            },
            {
                "text": "S = and ( ) S N T = , where , T N \u039b",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding Comparison between HMM and SM",
                "sec_num": "2.2"
            },
            {
                "text": "is the segmentation boundary set dividing a T -length sequence into N parts and ( ) S i is the boundary point of segment i .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding Comparison between HMM and SM",
                "sec_num": "2.2"
            },
            {
                "text": "The above decoding process is accomplished by the Viterbi algorithm in HMM. We will take a left-to-right HMM without state skipping as an example to illustrate decoding in HMM:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "* * 1 1 ( , ) ln ( | , ) max ( ( , )). , 1 | |, 2 m m m i j i J i p x i J j i m T i L \u03b1 \u03b1 \u03b1 \u03b1 \u03b1 \u2212 \u2212 \u2264 \u2264 = + \u2264 \u2264 \u2264 \u2264\u2126 \u2264 \u2264 ,",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "* ( , ) m J i \u03b1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "is the maximum accumulated score for the state sequence from the 1-th frame to the m -th frame, given state i and model label \u03b1 for frame m",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "x ; ( | , ) m p x i \u03b1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "is the state score of frame m",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "x ; \u2126 is the number of models; L \u03b1 is the number of states for \u03b1 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "The above formula can be applied to all internal states of each model (i.e., 2 i \u2265 ). At the boundary of the model, i.e., 1 i = , the formula is in the following form:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "* * * 1 1 1 | | ( ,1) ln ( | ,1) max [ ( , ) ln( ( )), ( ,1)]. m m m m J px J L p J \u03b2 \u03b2 \u03b1 \u03b1 \u03b2 \u03b1 \u03b1 \u2212 \u2212 \u2264 \u2264\u2126 = + + (5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "The final solution for the best path is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "* * 1 max[ ( , ] T J J L \u03b1 \u03b1 \u03b1 \u2264 \u2264\u2126 = ,",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "and the best path can be obtained by backtracking the best final score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "The cost of the Viterbi algorithm is essentially the cost of computing the state scores. According to (4) and (5), the amount of computation required for the state scores is proportional to the number of states in each model and the observation sequence length. If the pruning is not considered, the approximate time complexity for the Viterbi algorithm is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "( | | ) S O T L C \u22c5 \u2126 \u22c5 \u22c5",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": ", where S C is the time cost of computing ( | , )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "m p x i \u03b1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "and L is the average number of states in each model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in HMM",
                "sec_num": "2.2.1"
            },
            {
                "text": "SMs have to explore all possible segment boundaries due to the segmental decoding, whereas the problem of obtaining exact acoustic model boundaries can be avoided with HMM, since the frame that the exit state maps to is the boundary of the model. Though the decoding procedure can be performed by means of dynamic programming, the complexity of SM is still much higher than that of HMM. The decoding formula for SM is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in SM",
                "sec_num": "2.2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "* * , max{ ln[ ( | )]( ) ln[ ( )] }, m m J J p x m P C \u03c4 \u03c4 \u03c4 \u03b1 \u03b1 \u03c4 \u03b1 = + \u2212 + +",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Decoding in SM",
                "sec_num": "2.2.2"
            },
            {
                "text": "Avoidance of Redundant Computation on Segment where * m J is the accumulated score of the best model sequence ending at time point m and C is the insert factor for each segment. The best segment sequence can be obtained by back-tracking from the best final score * T J .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in SM",
                "sec_num": "2.2.2"
            },
            {
                "text": "Given the beginning (or end) point of models, the decoder has to hypothesize segments with different durations, from the minimum to the maximum length, to determine the other boundary point of the segment that may spring from this point. Assuming that the maximum allowed duration is max L , we find that the time complexity of SM is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in SM",
                "sec_num": "2.2.2"
            },
            {
                "text": "max ( | | ) Seg O C T L \u22c5 \u22c5 \u2126 \u22c5",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in SM",
                "sec_num": "2.2.2"
            },
            {
                "text": ", where Seg C is the time cost of a segment and is comparable with or even more complex than S C L \u22c5 in HMM. Hence, SM is more costly than HMM.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoding in SM",
                "sec_num": "2.2.2"
            },
            {
                "text": "As discussed in Section 2.2.2, the high complexity of SM is due to two factors. First, SM explores more hypothesized models than HMM does in each frame; second, in each frame, SM needs to measure the densities of segments that pass this point, whereas HMM only needs to evaluate the densities of states mapping to this point. The second factor is more important for current SM systems, since density evaluation represents the lion's share in the whole computation. Figure 1 shows the percentage of the time spent on density evaluation against the total time needed for the digit string recognition task with HMM and SSM. The model unit for SSM and HMM is the context independent whole-word. The computation involved in density evaluation is extremely time-consuming in the case of the conventional SSM and 97.6% of the time is spent obtaining segment scores, whereas the corresponding percentage in the case of HMM is only 51.4%. The time cost ratio for density evaluation in SM is much higher than that in HMM. The key advantage of our fast framework is that it changes the computation in SM from segment-based style to frame-based style and the frame-based results can be shared by different segments. Such transformation can be achieved in one family of SM, i.e., CMTSM.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 465,
                        "end": 473,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Fast Framework for CMTSM",
                "sec_num": "3."
            },
            {
                "text": "In the fast SM, which we will describe below, the time cost ratio for density evaluation is lowered to 64.2%, close to that of HMM. The details of experimental setup and total time used for decoding will be given in Section 4 ( ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fast Framework for CMTSM",
                "sec_num": "3."
            },
            {
                "text": "Those SMs, including SSM and PTM, whose segmental distributions are modeled by means of region distributions while frame-based features are assumed to be conditionally independent given the region sequence, are called CMTSM. The so-called region here is similar to the conception of the state in HMM, which is the basic unit used to measure the probability distribution of a frame. The value of",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "1 ( | ) l f x \u03b1 in (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "is the product of a series of frame-based region scores [Ostendorf et al. 1996] :",
                "cite_spans": [
                    {
                        "start": 56,
                        "end": 79,
                        "text": "[Ostendorf et al. 1996]",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 1 ln ( | ) ln ( | , , ) l l i i i f x px rl \u03b1 \u03b1 = = \u2211 ,",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "where ( | , , ) i",
                "cite_spans": [
                    {
                        "start": 6,
                        "end": 15,
                        "text": "( | , , )",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "i p x r l \u03b1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "is the score of region i r in frame i",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "x for model \u03b1 , given duration l .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "The mapping of a feature vector to a region is only related to the segment duration and its position in the segment. So the measurement of the frame score for a specific region is unrelated to other frames or other regions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "The assumption, frame-based features being assumed to be conditionally independent given the region sequence in CMTSM, guarantees to change the density evaluation from segment-based style to frame-based style, and the segment score can be obtained by recombining the region scores in an efficient way. However, these frame-based results can not be shared among different segments, since region models are conditional on the segment duration, as Equation (8) shows. We relax the modeling condition by assuming that the region model is independent of the segment duration. In order to achieve this, we use linear time resampling to map the variable length segment 1 l x to a fixed length feature sequence l L y , so all the segment models have the same duration. In other words, the duration can be ignored in region models. In this way, the region scores can be shared by segments with different durations. The resampling function is [Ostendorf et al. 1989] , 0 ,",
                "cite_spans": [
                    {
                        "start": 933,
                        "end": 956,
                        "text": "[Ostendorf et al. 1989]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "i i l L y x i L \u23a2 \u23a5 \u22c5 \u23a2 \u23a5 \u23a3 \u23a6 = \u2264 <",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "where z \u23a2 \u23a5 \u23a3 \u23a6 is the largest integer n z \u2264 . Equation (8) can be simplified as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 1 ln ( | ) ln ( | , ) L l i i i f x py r \u03b1 \u03b1 = = \u2211 .",
                        "eq_num": "(10)"
                    }
                ],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "In short, to speed up CMTSM, we first resample a variable length segment to obtain a fixed length sequence and then measure region models using the fixed length segment model. In our implementation, a memory table is used to store the region scores in different frames. The computation at each feature frame consists of two parts: the computations for all the region models mapping to that frame, and addition operations needed to obtain the scores of segments over that frame; whereas the conventional SMs have to completely measure all the segments that pass that frame. This is the framework we propose to reduce the complexity of",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. Percentage of the time for density evaluation in the decoding",
                "sec_num": null
            },
            {
                "text": "CMTSM. In the following, two examples will be given to illustrate the framework.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Avoidance of Redundant Computation on Segment",
                "sec_num": null
            },
            {
                "text": "SSM represents a variable length observation sequence by means of a fixed length region sequence. A resampling function is used to map the variable length segment 1 l x to the fixed length model region sequence 1 L y . Two kinds of resampling can be adopted to map a variable length sequences to a fixed L-length sequence. One is space-based resampling, and the other is linear time resampling [Ostendorf et al. 1989] . Space resampling chooses L sampling points, which are equidistant (Euclidean distance) along the segment trajectory, by means of interpolation. The linear time resampling is similar to (9). The two resampling functions have similar performances as reported by M. Ostendorf. Given model \u03b1 , the log conditional",
                "cite_spans": [
                    {
                        "start": 394,
                        "end": 417,
                        "text": "[Ostendorf et al. 1989]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Complexity of SSM",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "probability of a segment 1 l x is 1 1 log[ ( | )] log[ ( | , )] log[ ( | )] L l i i i P x a p y a r P l \u03bb \u03b1 = = + \u2211 ,",
                        "eq_num": "(11)"
                    }
                ],
                "section": "Complexity of SSM",
                "sec_num": "3.1"
            },
            {
                "text": "where ( | ) P l \u03b1 is the duration distribution of the segment, given \u03b1 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Complexity of SSM",
                "sec_num": "3.1"
            },
            {
                "text": "According to (11), Seg C is proportional to the number of regions in the model and can be represented as R C L \u22c5 , where R C is the time cost of region model ( | , )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Complexity of SSM",
                "sec_num": "3.1"
            },
            {
                "text": "i i p y a r and L is the average number of region models. The complexity of SSM is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Complexity of SSM",
                "sec_num": "3.1"
            },
            {
                "text": "max ( | | ) R O T L C L \u22c5 \u2126 \u22c5 \u22c5",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Complexity of SSM",
                "sec_num": "3.1"
            },
            {
                "text": "\u22c5 , according to the conclusion drawn in Section 2.2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Complexity of SSM",
                "sec_num": "3.1"
            },
            {
                "text": "Based on the discussion of the fast CMTSM, SSM can be greatly accelerated by choosing the linear time resampling, and the computation of region scores in (11) can be shared by segments with different durations. The total cost of the SSM algorithm is essentially the cost of computing the region scores. Thus, the time complexity, measured based on the number of evaluated region models, is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Complexity of SSM",
                "sec_num": "3.1"
            },
            {
                "text": "( | | ) R O T L C \u22c5 \u2126 \u22c5 \u22c5 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Complexity of SSM",
                "sec_num": "3.1"
            },
            {
                "text": "In PTM, the features in a segment are modeled by means of parameterization through constant, linear, or higher order polynomial regression instead of by using a sequence of regions to represent the curve of the trajectory. Given model \u03b1 , a speech segment 1 l x can be modeled as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fast PTM",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "0 1 ( ) ( ) 1 p P i i p i x B p E l \u03b1 \u03b1 = \u2212 \u239b \u239e = + \u03a3 \u239c \u239f \u2212 \u239d \u23a0 \u2211 ,",
                        "eq_num": "(12)"
                    }
                ],
                "section": "Fast PTM",
                "sec_num": "3.2"
            },
            {
                "text": "where ) ( p B \u03b1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fast PTM",
                "sec_num": "3.2"
            },
            {
                "text": "is the polynomial regression coefficient of order P and i E is a residual error with covariance matrix \u03b1 \u03a3 after fitting data using the first term in (12). The frame score with",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fast PTM",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "duration l is, / 2 1 / 2 1 0 0 1 ( | , ) , ( 2 ) | | 1 1 1 e x p { ( ( ) ) ( ( ) ) } . 2 1 1 i i d p p P P i i p p p x r i i x B p x B p l l \u03b1 \u03b1 \u03b1 \u03b1 \u03b1 \u03c0 \u2212 = = = \u2211 \u2212 \u2212 \u239b \u239e \u239b \u239e \u2032 \u2212 \u2212 \u2211 \u2212 \u239c \u239f \u239c \u239f \u2212 \u2212 \u239d \u23a0 \u239d \u23a0 \u2211 \u2211",
                        "eq_num": "(13)"
                    }
                ],
                "section": "Fast PTM",
                "sec_num": "3.2"
            },
            {
                "text": "In the conventional method, the region models are conditional on the segment duration. The durations of segments are different and so are the P -order polynomials in (12). As a result, the frame score ( | , ) p x r i i \u03b1 calculated using (13) can not be shared among different segments, even when two segments only differ from each other by one frame. For example, assume that two segments for the same model both begin at the 1-st frame and that the first one ends at the 10-th frame and the other at the 15-th frame. The polynomial coefficients of these two segments are listed in Table 1 .",
                "cite_spans": [
                    {
                        "start": 201,
                        "end": 208,
                        "text": "( | , )",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 583,
                        "end": 590,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Fast PTM",
                "sec_num": "3.2"
            },
            {
                "text": "No.i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 i/10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ----i/15 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87 0.93 1.00",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rate",
                "sec_num": null
            },
            {
                "text": "In fast PTM, we also fix the number of regions in the model and use the linear time resampling to map a variable length segment to the region sequence with a fixed duration, so the region model is independent of the segment duration. In this way, the speed of PTM can be greatly enhanced.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rate",
                "sec_num": null
            },
            {
                "text": "There are two main factors that limit errors introduced by resampling of the original feature on an acceptable scale, and these errors do little harm to the accuracy of the system. The first is the slowly time varying nature of speech signals [Rabiner et al. 1993] , which can be seen as a quasi-stationary process. The speech feature vector is similar to the nearby feature vectors. Usually, the length of a region sequence in our system is longer than the average length of an observation sequence, so the region model can well approximate the feature that would appear in the corresponding position of a segment. The second factor is that resampled features are used in both the training phase and recognition phase, which guarantees the compatibility of resampled features with models. Figure 2 shows the trajectories of a speech data sequence and two man-made data sequences produced by 5-order polynomial regression. One polynomial fit the original observation sequence, and the other one fit the fixed length observation sequence resampled from the original features. The fixed length was 56. All the trajectories are shown in normalized time axes in Figure 2 . It can be seen that the two regression trajectories are almost tiled together and that the linear time resampling does little harm to the model. ",
                "cite_spans": [
                    {
                        "start": 243,
                        "end": 264,
                        "text": "[Rabiner et al. 1993]",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 790,
                        "end": 798,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 1158,
                        "end": 1166,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Rate",
                "sec_num": null
            },
            {
                "text": "Our methods were verified on a mandarin digit string recognition system. Digit string recognition has achieved a satisfied performance in English [Rabiner et al. 1989] . However, due to the serious confusion among mandarin digits, the state-of-the-art of mandarin digital string recognition systems does not match that of the English counterpart. The performance of a recognition system depends not only on the size of the vocabulary but also on the degree of confusability among words in the vocabulary. Mandarin is a monosyllabic and tonal language, in which a syllable is composed of a syllable initial, syllable final, and tone. Insertion or deletion errors mainly exist in non-syllable initial words, e.g., \"1,\" \"2,\" and \"5.\" If a digit's syllable final is similar to that of non-syllable initial words, it is difficult to segment the non-syllable initial words and segmentation errors tend to occur, such as the confusability between \"5\" and \"55.\" Substitution errors mainly occur among \"6,\" \"9,\" and \"yiao\" (\"yiao\" is the variation of \"1\"), or between \"2\" and \"8\" because of the similarity of their syllable finals.",
                "cite_spans": [
                    {
                        "start": 146,
                        "end": 167,
                        "text": "[Rabiner et al. 1989]",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "4."
            },
            {
                "text": "Data Corpus: the mandarin digit string database includes the speech of 55 males, each of which made 80 utterances. The length of each utterance varies from 1 to 7 digits with an average length of 4. The vocabulary is \"0\" to \"9\"and \"yiao1.\" Statistical results show that all digits have the same probability of being uttered, and that the connections among digits are considered and balanced. At the same time, the positions (start/middle/end) of the digits in strings are also balanced [Deng et al. 2000] . We took the speech of the first 40 speakers (ordered by the name of speakers) as the training set and the data from the remaining 15 speakers as the test set. The frame size of acoustic features was 25.6 ms and the frame shift was 10ms. For each frame, a 39-dimension vector, composed of 12 MFCC and 1 normalized energy, 13 first order deviations and 13 secondary deviations, was calculated.",
                "cite_spans": [
                    {
                        "start": 486,
                        "end": 504,
                        "text": "[Deng et al. 2000]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "4.1"
            },
            {
                "text": "Baseline Systems: three systems were studied, HMM, SSM, and PTM. The state in HMM (or region in SSM) was modeled by the Gaussian Mixture Model (GMM). In all the experiments, a diagonal covariance matrix was assumed for each GMM. Table 2 compares the baselines' configures. Sts is the number of states, Res is the number of regions, MCs is the number of mixture components, \"ID\" means the acoustic unit is modeled by the whole-word (context independent), and \"D\" means the acoustic unit is tri-word based (context dependent) in Table 2 . The HMMs in the experiments were structured left to right with 8 states, 6 emitting distributions, and no state skipping, except for the \"silence\" model, which had 3 states and 1 emitting distribution. HMMI was decoded with the conventional Viterbi algorithm, and HMMII adopted a two-pass search strategy: the first pass was implemented using the forward Viterbi algorithm, and the second pass using the backward A* decoding to integrate the duration distribution [Deng et al. 2000] . HMMII was modeled using the tri-word model, while the other systems were modeled by the whole-word model. SSMI and SSMII were two SSM systems. SSMI had Gaussian densities comparable with those of HMMI so that a comparison of the performance between SSM and HMM would be meaningful. SSMII, which had more region models and mixture components than SSMI, achieved the best performance in the digit string recognition task. The baseline PTM was consisted of three sub-segments [Deng et al. 1994] and the polynomial regression order was 2. Table 3 compares the modeling ability of HMM and SSM. It can be seen that SSM achieved better performance than HMM. SSMI performed better than not only HMMI but also HMMII. When the number of regions and mixture components increased, SSMII achieved 95% string accuracy for mandarin digit strings. \"S Cor,\" \"W err,\" \" Ins err,\" \"Del err\" and \"Sub err\" are the string correction rate, word error rate, insertion error rate, deletion error rate and the",
                "cite_spans": [
                    {
                        "start": 1001,
                        "end": 1019,
                        "text": "[Deng et al. 2000]",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1495,
                        "end": 1513,
                        "text": "[Deng et al. 1994]",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 229,
                        "end": 236,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 527,
                        "end": 534,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 1557,
                        "end": 1564,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "4.1"
            },
            {
                "text": "substitution error rate respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Avoidance of Redundant Computation on Segment",
                "sec_num": null
            },
            {
                "text": "For the purpose of comparison, the number of regions in a sub-region sequence was fixed at 20 and the total number of region models was 60 (20 \u00d7 3) in each fast PTM. The feature frames in a segment were mapping to these 60 region models using the time linear resampling. The other parameters were the same as those for the baseline PTM system. Table 4 presents the recognition results obtained with the fixed PTM and the original PTM. It shows that the performance of the PTM system was slightly downgraded following the modifications but still acceptable (0.6% string accuracy loss). The efficiency of the different recognition systems, including the conventional SSM, fast SSM, PTM, fixed PTM, and HMM, is compared in Table 5 . We used the utterances of one person (80 strings) in the test set. As shown in Table 5 , the fast algorithm boosted SMs and reduced the complexity of SM to the same level of that of HMM. The most noticeable achievement was made by the fixed PTM system, which was 90 times faster than the original one. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 344,
                        "end": 351,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 720,
                        "end": 727,
                        "text": "Table 5",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 809,
                        "end": 816,
                        "text": "Table 5",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Table 3. Comparison of digit string recognition performance achieved with SSM and HMM",
                "sec_num": null
            },
            {
                "text": "In this paper, a fast framework has been proposed to boost the speed of CMTSM based on the assumption that the region model of SM is independent from the segment duration, so that intermediate results are shared during the computation of segment scores. Two examples, SSM and PTM, have been used to illustrate this framework. The improved systems are far more effective than the original models. Based on this framework, it is potential to implement SM to LVCSR [Tang et al. 2005] in current computation condition and this will be our focus of future work.",
                "cite_spans": [
                    {
                        "start": 462,
                        "end": 480,
                        "text": "[Tang et al. 2005]",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "5."
            },
            {
                "text": "This work was supported in part by the China National Nature Science Foundation (No. 60172055) and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The authors would like to thank the anonymous reviewers and Mr. Ludwig for their useful comments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Speech Recognition Using Hidden Markov Models with Polynomial Regression Functions as Non-stationary States",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Aksmanovic",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "IEEE Trans. Speech Audio Processing",
                "volume": "2",
                "issue": "",
                "pages": "507--520",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Deng, L., M. Aksmanovic, X. Sun, and C. Wu, \"Speech Recognition Using Hidden Markov Models with Polynomial Regression Functions as Non-stationary States,\" IEEE Trans. Speech Audio Processing, 2, 1994, pp. 507-520",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Towards high performance continuous mandarin digit string recognition",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceeding of Int. Conf. on Spoken Language Processing",
                "volume": "3",
                "issue": "",
                "pages": "642--645",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Deng, Y., T. Huang, and B. Xu, \"Towards high performance continuous mandarin digit string recognition,\" In Proceeding of Int. Conf. on Spoken Language Processing, 2000, Beijing, China, vol.3, 642-645.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Fast Algorithms for phone classification and recognition using Segment-based Models",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Digalakis",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ostendorf",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Rohlicek",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "IEEE Trans. Speech Audio Processing",
                "volume": "40",
                "issue": "12",
                "pages": "2885--2896",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Digalakis, V., M. Ostendorf, and J. Rohlicek, \"Fast Algorithms for phone classification and recognition using Segment-based Models,\" IEEE Trans. Speech Audio Processing, 40(12), 1992, pp 2885-2896.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Secondary Processing using Speech Segments for an HMM Word Spotting System",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Gish",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Rohlicek",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Proceeding of Int. Conf. on Spoken Language Processing",
                "volume": "",
                "issue": "",
                "pages": "17--20",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gish, H., K.Ng, and J. Rohlicek, \"Secondary Processing using Speech Segments for an HMM Word Spotting System,\" In Proceeding of Int. Conf. on Spoken Language Processing, 1992, Banff, Canada, pp. 17-20.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "A probabilistic framework for segment-based speech recognition",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Glass",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Computer Speech and Language",
                "volume": "17",
                "issue": "",
                "pages": "137--152",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Glass, J., \"A probabilistic framework for segment-based speech recognition,\" Computer Speech and Language, 17, 2003, pp. 137-152.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Combining Frame and Segment Based Models for Large Vocabulary Continuous Speech Recognition",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "W"
                        ],
                        "last": "Hon",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "IEEE Workshop on Automatic Speech Recognition and Understanding",
                "volume": "",
                "issue": "",
                "pages": "221--224",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hon, H.W., and K. Wang. \"Combining Frame and Segment Based Models for Large Vocabulary Continuous Speech Recognition\", In IEEE Workshop on Automatic Speech Recognition and Understanding. 1999, Keystone, USA, pp. 221-224.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Real-Time Probabilistic Segmentation for Segment-Based Speech Recognition",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Glass",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Proceeding of Int. Conf. on Spoken Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1803--1806",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee S., and J. Glass, \"Real-Time Probabilistic Segmentation for Segment-Based Speech Recognition,\" In Proceeding of Int. Conf. on Spoken Language Processing, 1998, Sydney, Australia, pp. 1803-1806.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "A Stochastic Segment Model for Phoneme--Based Continuous Speech Recognition",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ostendorf",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Roucos",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "IEEE Transactions on Acoustics, Speech and Signal Processing",
                "volume": "4",
                "issue": "12",
                "pages": "1857--1869",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ostendorf, M., and S. Roucos, \"A Stochastic Segment Model for Phoneme--Based Continuous Speech Recognition,\" IEEE Transactions on Acoustics, Speech and Signal Processing, 4(12), 1989, pp. 1857-1869.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Avoidance of Redundant Computation on Segment",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Avoidance of Redundant Computation on Segment",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "From HMM's to Segment Models: A Unified View of Stochastic Modeling for Speech Recognition",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ostendorf",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Digalakis",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Kimball",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "IEEE Trans. Speech Audio Processing",
                "volume": "4",
                "issue": "5",
                "pages": "360--378",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ostendorf, M., V. Digalakis, and O. Kimball, \"From HMM's to Segment Models: A Unified View of Stochastic Modeling for Speech Recognition.\" IEEE Trans. Speech Audio Processing, 4(5), 1996, pp. 360-378.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Fundamentals of speech recognition",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Rabiner",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "H"
                        ],
                        "last": "Juang",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rabiner, L., and B. H. Juang, Fundamentals of speech recognition, Prentice Hall, 1993.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "High Performance Connected Digit Recognition Using Hidden Markov Models",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Rabiner",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Wilpon",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Soong",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "IEEE Transactions on Acoustics, Speech, and Signal Processing",
                "volume": "37",
                "issue": "8",
                "pages": "1214--1225",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rabiner, L., J. Wilpon, and F. Soong, \"High Performance Connected Digit Recognition Using Hidden Markov Models,\" IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(8), 1989, pp. 1214-1225.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Coloring the Speech Utterance to Accelerate the SM based LVCSR Decoding",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Tang",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "IEEE International Conference on Natural Language Processing and Knowledge Engineering",
                "volume": "",
                "issue": "",
                "pages": "121--126",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tang, Y., H. Zhang, W. Liu, and B. Xu, \"Coloring the Speech Utterance to Accelerate the SM based LVCSR Decoding\", in IEEE International Conference on Natural Language Processing and Knowledge Engineering, 2005, Wuhan, China, pp. 121-126.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "is a segment level score, such as the duration score.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "uris": null,
                "text": "or y f or or i gi nal speech dat a sequence Fi t t i ng t r aj ect or y f or or i gi nal speech dat a sequence Fi t t i ng t r aj ect or y f or 56 f i xed r e-sam pl e speech dat a sequence Or i gi nal speech dat a t r aj ect or yTr aj ect or y pr oduced by f i t t i ng t he or i gi nal dat a Tr aj ect or y pr oduced by f i t t i ng t he r esam pl i ng dat a",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF2": {
                "uris": null,
                "text": "Trajectories for an original data sequence and two man-made data sequences produced by polynomial regression.",
                "num": null,
                "type_str": "figure"
            },
            "TABREF1": {
                "num": null,
                "content": "<table><tr><td>100%</td><td/><td>97. 6%</td></tr><tr><td>80%</td><td/><td/></tr><tr><td/><td/><td/><td>64. 2%</td></tr><tr><td>60%</td><td>51. 4%</td><td/></tr><tr><td>40%</td><td/><td/></tr><tr><td>20%</td><td/><td/></tr><tr><td>0%</td><td/><td/></tr><tr><td colspan=\"2\">HMM ( Uni phone, Vi t er bi )</td><td>SSM</td><td>Fas t SSM</td></tr></table>",
                "text": ").",
                "type_str": "table",
                "html": null
            },
            "TABREF2": {
                "num": null,
                "content": "<table><tr><td>Model</td><td>Sts (Res)</td><td>MCs</td><td>Type</td></tr><tr><td>HMMI</td><td>8</td><td>16</td><td>ID</td></tr><tr><td>HMMII</td><td>8</td><td>16</td><td>D</td></tr><tr><td>SSMI</td><td>25</td><td>5</td><td>ID</td></tr><tr><td>SSMII</td><td>40</td><td>10</td><td>ID</td></tr><tr><td>PTM</td><td/><td>15</td><td>ID</td></tr></table>",
                "text": "",
                "type_str": "table",
                "html": null
            },
            "TABREF3": {
                "num": null,
                "content": "<table><tr><td>Methods</td><td>S Corr.</td><td colspan=\"2\">W err Ins err Del err Sub err</td></tr><tr><td>PTM</td><td colspan=\"2\">95.10% 1.53% 0.30% 0.24%</td><td>0.99%</td></tr><tr><td colspan=\"3\">Fixed PTM 94.50% 1.82% 0.14% 0.68%</td><td>1.00%</td></tr></table>",
                "text": "",
                "type_str": "table",
                "html": null
            },
            "TABREF4": {
                "num": null,
                "content": "<table><tr><td/><td>T (s)</td></tr><tr><td>HMMI</td><td>35</td></tr><tr><td>HMMII</td><td>87</td></tr><tr><td>Conventional SSMI</td><td>1816</td></tr><tr><td>Fast SSMI</td><td>101</td></tr><tr><td>Fast SSMII</td><td>162</td></tr><tr><td>PTM</td><td>23854</td></tr><tr><td>Fixed PTM</td><td>271</td></tr></table>",
                "text": "",
                "type_str": "table",
                "html": null
            }
        }
    }
}