File size: 79,102 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
{
    "paper_id": "O08-1002",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:02:36.959534Z"
    },
    "title": "A Semantic Composition Method for Deriving Sense Representations of Determinative-Measure Compounds in E-HowNet",
    "authors": [
        {
            "first": "Chia-Hung",
            "middle": [],
            "last": "Tai",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Academia Sinica glaxy",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Shu-Ling",
            "middle": [],
            "last": "Huang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Academia Sinica glaxy",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Keh-Jiann",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Academia Sinica glaxy",
                "location": {}
            },
            "email": "kchen@iis.sinica.edu.tw"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this paper, we take Determinative-Measure Compounds as an example to demonstrate how the E-HowNet semantic composition mechanism works in deriving the sense representations for all determinative-measure (DM) compounds which is an open set. We define the sense of a closed set of each individual determinative and measure word in E-HowNet representation exhaustively. We then make semantic composition rules to produce candidate sense representations for any newly coined DM. Then we review development set to design sense disambiguation rules. We use these heuristic disambiguation rules to determine the correct context-dependent sense of a DM and its E-HowNet representation. The experiment shows that the current model reaches 88% accuracy in DM identification and sense derivation.",
    "pdf_parse": {
        "paper_id": "O08-1002",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this paper, we take Determinative-Measure Compounds as an example to demonstrate how the E-HowNet semantic composition mechanism works in deriving the sense representations for all determinative-measure (DM) compounds which is an open set. We define the sense of a closed set of each individual determinative and measure word in E-HowNet representation exhaustively. We then make semantic composition rules to produce candidate sense representations for any newly coined DM. Then we review development set to design sense disambiguation rules. We use these heuristic disambiguation rules to determine the correct context-dependent sense of a DM and its E-HowNet representation. The experiment shows that the current model reaches 88% accuracy in DM identification and sense derivation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Building knowledge base is a time consuming work. The CKIP Chinese Lexical Knowledge Base has about 80 thousand lexical entries and their senses are defined in terms of the E-HowNet format. E-HowNet is a lexical knowledge and common sense knowledge representation system. It was extended from HowNet [1] to encode concepts. Based on the framework of E-HowNet, we intend to establish an automatic semantic composition mechanism to derive sense of compounds and phrases from lexical senses [2] [3] .",
                "cite_spans": [
                    {
                        "start": 300,
                        "end": 303,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 492,
                        "end": 495,
                        "text": "[3]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Determinative-Measure compounds (abbreviated as DM) are most common compounds in Chinese. Because a determinative and a measure normally coin a compound with unlimited versatility, the CKIP group does not define the E-HowNet representations for all DM compounds. Although the demonstrative, numerals, and measures may be listed exhaustively, their combination is inexhaustible. However their constructions are regular [4] . Therefore, an automatic identification schema in regular expression [4] and a semantic composition method under the framework of E-HowNet for DM compounds were developed.",
                "cite_spans": [
                    {
                        "start": 418,
                        "end": 421,
                        "text": "[4]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 492,
                        "end": 495,
                        "text": "[4]",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "In this paper, we take DMs as an example to demonstrate how the E-HowNet semantic composition mechanism works in deriving the sense representations for all DM compounds.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The remainder of this paper is organized as follows. The section 2 presents the background knowledge of DM compounds and sense representation in E-HowNet. We'll describe our method in the section 3 and discuss the experiment result in the section 4 before we make conclusion in the section 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "There are numerous studies on determinatives as well as measures, especially on the types of measures. 1 Tai [5] asserts that in the literature on general grammar as well as Chinese grammar, classifiers and measures words are often treated together under one single framework of analysis. Chao [6] treats classifiers as one kind of measures. In his definition, a measure is a bound morpheme which forms a DM compound with the determinatives enumerated below.",
                "cite_spans": [
                    {
                        "start": 103,
                        "end": 104,
                        "text": "1",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 109,
                        "end": 112,
                        "text": "[5]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 294,
                        "end": 297,
                        "text": "[6]",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2."
            },
            {
                "text": "He also divides determinatives word into four subclasses: i. Demonstrative determinatives, e.g. \u9019\" this\", that\"\u90a3\"\u2026",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2."
            },
            {
                "text": "ii. Specifying determinatives, e.g. \u6bcf\"every\", \u5404\" each\"\u2026",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2."
            },
            {
                "text": "iii. Numeral determinatives, e.g. \u4e8c\"two\", \u767e\u5206\u4e4b\u4e09\"three percentage\", \u56db\u767e\u4e94\u5341\" four hundred and fifty\"\u2026 iv. Quantitative determinatives, e.g. \u4e00\" one\", \u6eff\" full\", \u8a31\u591a\" many\"\u2026 Measures are divided into nine classes by Chao [6] . Classifiers are defined as 'individual measures', which is one of the nine kinds of measures.",
                "cite_spans": [
                    {
                        "start": 212,
                        "end": 215,
                        "text": "[6]",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2."
            },
            {
                "text": "i. classifiers, e.g. \u672c\"a (book)\",",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2."
            },
            {
                "text": "ii. classifier associated with V-O constructions, e.g. \u624b \"hand\",",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2."
            },
            {
                "text": "iii. group measures, e.g. \u5c0d\"pair\", iv. partitive measures, e.g. \u4e9b\"some\", v. container measures, e.g. \u76d2\"box\", vi. temporary measures, e.g. \u8eab\"body\", vii. Standard measures, e.g. \u516c\u5c3a\"meter\", viii. quasi-measure, e.g. \u570b\"country\", ix. Measures with verb, e.g. \u6b21\"number of times\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2."
            },
            {
                "text": "As we mentioned in the section of introduction, Chao considers that determinatives are listable and measures are largely listable, so D and M can be defined by enumeration, and that DM compounds have unlimited versatility. However, Li and Thompson [7] blend classifiers with measures. They conclude not only does a measure word generally not take a classifier, but any measure word can be a classifier. In Tai's opinion [5] , in order to better understand the nature of categorization in a classifier system, it is not only desirable but also necessary to differentiate classifiers from measure words. These studies on the distinction between classifiers and measures are not very clear-cut. In this paper, we adopt the CKIP DM rule patterns and Part-of-Speeches for morpho-syntactic analysis, and therefore inherit the definition of determinative-measure compounds (DMs) in [10] . Mo et al. define a DM as the composition of one or more determinatives together with an optional measure. It is used to determine the reference or the quantity of the noun phrase that co-occurs with it. We use the definition of Mo et al. to apply to NLP and somewhat different from traditional linguistics definitions.",
                "cite_spans": [
                    {
                        "start": 248,
                        "end": 251,
                        "text": "[7]",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 420,
                        "end": 423,
                        "text": "[5]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 875,
                        "end": 879,
                        "text": "[10]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "2."
            },
            {
                "text": "Due to the infinite of the number of possible DMs, Mo et al. [10] and Li et al. [4] propose to identify DMs by regular expression before parsing as part of their morphological module in NLP. For example, when the DM compound is the composition of one determinative, e.g.",
                "cite_spans": [
                    {
                        "start": 61,
                        "end": 65,
                        "text": "[10]",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 80,
                        "end": 83,
                        "text": "[4]",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "for numerals in (1), roughly rules (2a), (2b) or (2c) will be first applied, and then rules (2d), NO1  = {\u25cb,\u4e00,\u4e8c,\u5169,\u4e09,\u56db,\u4e94,\u516d,\u4e03,\u516b,\u4e5d,\u5341,\u5eff,\u5345,\u767e,\u5343,\u842c,\u5104,\u5146,\u96f6,  \u5e7e};   b.  NO2  = {\u58f9,\u8cb3,\u53c3,\u8086,\u4f0d,\u9678,\u67d2,\u634c,\u7396,\u62fe,\u4f70,\u4edf,\u842c,\u5104,\u5146,\u96f6,\u5e7e}; c. NO3 = {\uff11,\uff12,\uff13,\uff14,\uff15,\uff16,\uff17,\uff18,\uff19,\uff10,\u767e,\u5343,\u842c,\u5104,\u5146}; The major semantic roles played by determinatives and measures are listed in the Table 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 98,
                        "end": 201,
                        "text": "NO1  = {\u25cb,\u4e00,\u4e8c,\u5169,\u4e09,\u56db,\u4e94,\u516d,\u4e03,\u516b,\u4e5d,\u5341,\u5eff,\u5345,\u767e,\u5343,\u842c,\u5104,\u5146,\u96f6,  \u5e7e};   b.  NO2  = {\u58f9,\u8cb3,\u53c3,\u8086,\u4f0d,\u9678,\u67d2,\u634c,\u7396,\u62fe,\u4f70,\u4edf,\u842c,\u5104,\u5146,\u96f6,\u5e7e};",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 325,
                        "end": 332,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "The basic feature unification processes [12] :",
                "cite_spans": [
                    {
                        "start": 40,
                        "end": 44,
                        "text": "[12]",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "If a morpheme B is a dependency daughter of morpheme A, i.e. B is a modifier or an argument of A, then unify the semantic representation of A and B by the following steps.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "Step 1: Identify semantic relation between A and B to derive relation(A)={B}. Note: the possible semantic relations are shown in Table 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 129,
                        "end": 136,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "Step 2: Unify the semantic representation of A and B by insert relation(A)={B} as a sub-feature of A.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "It seems that a feature unification process can derive the sense representation of a DM compound, as exemplified in (7) and 8 Figure 1 . The dependent relations of \u4e00\u7897\u9eb5\"a bowl of noddle\".",
                "cite_spans": [
                    {
                        "start": 116,
                        "end": 119,
                        "text": "(7)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 126,
                        "end": 134,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "After feature unification process, the semantic representation of \"\u4e00 def: quantity={1}\" becomes the feature of its dependent head \"\u7897 def: container={bowl|\u7897} and derives the feature representation of \"one bowl \u4e00\u7897 def: container={bowl| \u7897 :quantity={1}}\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "Similarly, \"one bowl \u4e00\u7897\" is the dependent daughter of \"noodle|\u9eb5 def:{noodle|\u9eb5}\". After unification process, we derive the result of (9). (9)one bowl of noodle|\u4e00\u7897\u9eb5 def:{noodle|\u9eb5:container={bowl|\u7897:quantity={1}}}",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "The above feature unification process written in term of rule is expressed as (10). If a DM has more than one determinative, we can consider the consecutive determinatives as one D and the feature representation of D is a coordinate conjunction of the features of all its determinatives. For instance, \"this one|\u9019\u4e00\" and \"this one|\u9019\u4e00\u672c\" both are expressed as \"quantifier={definite|\u5b9a\u6307}; quantity={1}\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "Omissions of numeral determinative are occurred very often while the numeral quantity is \"1\". For instance, \"\u9019\u672c\" in fact means \"this one|\u9019\u4e00\u672c\". Therefore the definition of (8)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "should be modified as: \u9019\u672c def: quantifier={definite|\u5b9a\u6307}; quantity={1};",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "The following derivation rules cover the cases of omissions of numeral determinative.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "(12) If both numeral and quantitative determinatives do not occur in a DM, then the feature quantity={1} is the default value of the DM.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "Another major complication is that senses of morphemes are ambiguous. The feature unification process may produce many sense representations for a DM compound. Therefore sense disambiguation is needed and the detail discussions will be in the section 3.1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "Members of every type of determinatives and measures are exhaustively listable except numeral determinatives. Also the formats of numerals are various. For example, \"5020\" is equal to \"\u4e94\u96f6\u4e8c\u96f6\" and \"\u4e94\u5343\u96f6\u4e8c\u5341\" and \"\u4e94\u5343\u4e8c\u5341\". So we have to unify the numeral representation into a standard form. All numerals are composition of basic numeral as shown in the regular expressions (2). However their senses are not possible to define one by one. We take a simple approach. For all numeral, their E-HowNet sense representations are expressed as themselves. For example, is expresses as quantity={5020} and will not further define what is the sense of 5020. Furthermore all non-Arabic forms will be convert into Arabic expression, e.g. \"\u4e94\u5343\u96f6\u4e8c\u5341\" is defined as quantity={5020}.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "The other problem is that the morphological structures of some DMs are not regular patterns.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "Take \"\u5169\u500b\u534a two and half\" as an example. \"\u534a half\" is not a measure word. So we collect those word like \"\u591a many, \u534a half, \u5e7e many, \u4e0a up, \u5927 big, \u4f86 more\" for modify the quantity definition. So we first remove the word \"\u534a\" and define the \"\u5169\u500b\" as quantity={2}.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "Because the word \"\u534a\" means quantity={0.5}, we define the E-HowNet definition for \"\u5169\u500b \u534a\" as quantity={2.5}. For other modifiers such as \"\u591a many, \u5e7e many, \u9918 more, \u4f86 more\", we use a function over() to represent the sense of \"more\", such as \"\u5341\u591a\u500b more than 10\" is represented as quantity={over 10 For an input Chinese sentence, we use the regular expression rules created by Li et al. [2006] to identify all possible DMs in the input sentence. Then, for every DM compound, we segment it into a sequence of determinatives and measures. If any numeral exists in the DM, every numeral is converted into decimal number in Arabic form. For every DM, we follow the feature unification principles to composite semantics of DM in E-HowNet representations and produce possible ambiguous candidates. The final step of sense disambiguation is described in the following section.",
                "cite_spans": [
                    {
                        "start": 369,
                        "end": 385,
                        "text": "Li et al. [2006]",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Regular Expression Approach for Identifying DMs",
                "sec_num": "2.1"
            },
            {
                "text": "Multiple senses will be derived for a DM compound due to ambiguous senses of its morpheme components. For instance, the measure word \"\u982d head\" has either the sense of {\u982d|head}, such as \"\u6eff\u982d\u767d\u9aee full head of white hairs\" or the null sense in \"\u4e00\u982d\u725b a cow\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sense Disambiguation",
                "sec_num": "3.1"
            },
            {
                "text": "Some DMs are inherent sense ambiguous and some are pseudo ambiguous. For instances, the above example \"\u4e00\u982d\" is inherent ambiguous, since it could mean \"full head\" as in the example of \"\u4e00\u982d\u767d\u9aee full head of white hairs\" or could mean \"one + classifier\" as in the example of \"\u4e00\u982d\u725b a cow\". For inherent ambiguous DMs, the sense derivation step will produce ambiguous sense representations and leave the final sense disambiguation until seeing collocation context, in particular seeing dependent heads. Some ambiguous representations are improbable sense combination. The improbable sense combinations should be eliminated during or after feature unification of D and M. For instance, although the determiner \"\u4e00\" has ambiguous senses of \"one\", \"first\", and \"whole\", but \"\u4e00\u516c\u5c3a\" has only one sense of \"one meter\", so the other sense combinations should be eliminated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sense Disambiguation",
                "sec_num": "3.1"
            },
            {
                "text": "The way we tackle the problem is that first we find all the ambiguous Ds and Ms by looking their definitions shown in the appendix A. We then manually design content and context dependent rules to eliminate the improbable combinations for each ambiguous D or M types. For instance, according to the appendix A, \"\u982d\" has 3 different E-HowNet representations while functions as determinant or measure, i.e. \"def:{null}\", \"def:{head| \u982d }\", and \"def:ordinal={1}\". We write 3 content or context dependent rules below to disambiguate its senses.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sense Disambiguation",
                "sec_num": "3.1"
            },
            {
                "text": "(13) \u982d\"head\", Nfa, E-howNet: \"def:{null}\" : while E-HowNet of head word is \"\u52d5 \u7269({animate|\u751f\u7269}\" and it's subclass.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sense Disambiguation",
                "sec_num": "3.1"
            },
            {
                "text": "(14) \u982d\"head\", Nff, E-howNet: \"def:{\u982d}\" : while pre-determinant is \u4e00(Neqa)\"one\" or \u6eff\"full\" or \u5168\"all\" or \u6574\"total\". (15) \u982d\"first\", Nes, E-howNet: \"def:ordinal={1}\" : while this word is being a demonstrative determinatives which is a leading morpheme of the compound.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sense Disambiguation",
                "sec_num": "3.1"
            },
            {
                "text": "The disambiguation rules are shown in appendix B. In each rule, the first part is the word and its part-of-speech. Then the E-HowNet definition of this sense is shown, and followed by the condition constraints for this sense. If there is still ambiguities remained after using the disambiguation rule, we choice the most frequent sense as the result.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sense Disambiguation",
                "sec_num": "3.1"
            },
            {
                "text": "We want to know how good is our candidate production, and how good is our disambiguation rule. We randomly select 40628 sentences (7536 DM words) from Sinica Treebank as our development set and 16070 sentences (3753 DM words) as our testing set. We use development set for designing disambiguation rules and semantic composition rules. Finally, we derive 36 contextual dependent rules as our disambiguation rules. We randomly select 1000 DM words from testing set. We evaluate the composition quality of DMs with E-HowNet representation before disambiguation. For 1000 DM words, the semantic composition rules produce 1226 candidates of E-HowNet representation from 939 words. The program fails to produce E-HowNet representations for the rest of 61 words because of undefined morphemes. There are 162 words out of the 939 words having ambiguous senses. The result shows that the quality of candidates is pretty good. Table 2 gives After data analysis, we conclude the following three kinds of error types.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 918,
                        "end": 931,
                        "text": "Table 2 gives",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment and Discussion",
                "sec_num": "4."
            },
            {
                "text": "\u4e03\u68d2\"7 th batter\", \u4e03\u5c40\"7 th inning\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A. Unknown domain error:",
                "sec_num": null
            },
            {
                "text": "Because there is no text related to baseball domain in development set, we get poor performance in dealing with the text about baseball. The way to resolve this problem is to increase the coverage of disambiguation rules for the baseball domain.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A. Unknown domain error:",
                "sec_num": null
            },
            {
                "text": "\u6bcf\u4e09\u500b\"each three\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B. Undefined senses and morphemes:",
                "sec_num": null
            },
            {
                "text": "We do not define the sense of \u6bcf \"each\" and we only define \u6bcf \"all\", so we have to add the sense of \"each\" in E-HowNet representation about \u6bcf. \u6709\u4e09\u4f4d \"there are three persons\", \u540c\u4e00\u500b \"the same\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B. Undefined senses and morphemes:",
                "sec_num": null
            },
            {
                "text": "Because \u6709 \"have\" and \u540c \"the same\" do not appear in our determinative list, it is not possible to composite their E-HowNet definitions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B. Undefined senses and morphemes:",
                "sec_num": null
            },
            {
                "text": "In parsed sentence: NP(property:DM:\u4e0a\u534a\u5834\"first half \"|Head:DM:\u4e8c\u5341\u5206\"twenty minutes or twenty points\") . The E-HowNet representation of \u4e8c\u5341\u5206\"twenty minutes or twenty points\" can be defined as \"def:role={\u5206\u6578:quantity={20}}\" or \"def:time={\u5206 \u9418:quantity={20}}\". More context information is needed to resolve this kind of sense ambiguity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "C. Sense ambiguities:",
                "sec_num": null
            },
            {
                "text": "For unknown domain error and undefined rule, the solution is to expand the disambiguation rule set and sense definitions for morphemes. For sense ambiguities, we need more information to disambiguate the true sense.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "C. Sense ambiguities:",
                "sec_num": null
            },
            {
                "text": "E-HowNet is a lexical sense representational framework and intends to achieve sense representation for all compounds, phrases, and sentences through automatic semantic composition processing. In this paper, we take DMs as an example to demonstrate how the semantic composition mechanism works in E-HowNet to derive the sense representations for",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "all DM compounds. We analyze morphological structures of DMs and derive their morphological rules in terms of regular expression. Then we define the sense of all determinatives and measure words in E-HowNet definition exhaustively. We make some simple composition rules to produce candidate sense representations for DMs. Then we review development set to write some disambiguation rules. We use these heuristic rules to find the final E-HowNet representation and reach 88% accuracy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "The major target of E-HowNet is to achieve semantic composition. For this purpose, we defined word senses of CKIP lexicon in E-HowNet representation. Then we try to automate semantic composition for phrases and sentences. However there are many unknown or compound words without sense definitions in the target sentences. DM compounds are occurring most frequently and without sense definitions. Therefore our first step is to derive the senses of DM words. In the future, we will use similar methods to handle general compounds and to improve sense disambiguation and semantic relation identification processing. We intend to achieve semantic compositions for phrases and sentences in the future and we had shown the potential in this paper. e.g.\u4e00, Neu, def:quantity={1}, while part-of-speech of head word is Na, except the measure word is \u8eab \"body\" or \u81c9 \"face\" or \u9f3b \u5b50 \"nose\" or \u5634 \"mouth\" or \u809a \u5b50\"belly\" or \u8154\"cavity\" . e.g.\u584a,Nfg,def:role={money|\u8ca8\u5e63}, while E-HowNet representation of head word is \"{money|\u8ca8\u5e63}\" or {null}, or head word is \u9322\"money\" or \u7f8e\u91d1\"dollar\" or the s uffix of word is \u5e63\"currency\" and previous word is not D1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "\u584a,Nfd,def:{null}, otherwise, use this definition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "e.g.\u9762,Nfa,def:{null}, while part-of-speech of head word is Nab.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "\u9762,Nfh,def:direction={aspect|\u5074}, otherwise use this one.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "e.g.\u982d,Nfa,def:{null}, while head word is Nab and E-HowNet representation of head word is \"\u52d5\u7269{animate|\u751f\u7269}\" and it's subclass.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "\u982d,Nfh,def:direction={EndPosition|\u7aef} , if part-of-speech of head word is Na, do not use this definition. The previous word usually are \u9019 \"this\" or \u90a3 \"that\" or \u53e6\"another\". e.g.\u5206,Nfg,def:time={minute|\u5206\u9418}, if the sentence contains the word \u6642\"hour\" or \u9418 \u982d\"hour\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "e.g.\u5169,Nfg,def:weight={\u5169}, if the sentence contains the word \u91cd\"weight\" or \u91cd \u91cf\"weight\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "\u5169,Nfg,def:role={money|\u8ca8\u5e63}, if the sentence contains the word \u9280\"sliver\" or \u9322\"money\" or \u9ec3\u91d1\"gold\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "pre-determinant-based rule e.g.\u982d, Nff,def:{head|\u982d}, while pre-determinant is \u4e00(Neqa)\"one\" or \u6eff\"full\" or \u5168\"all\" or \u6574\"total\". e.g.\u8173, Nff,def:{leg|\u8173}, while pre-determinant is \u4e00(Neqa)\"one\" or \u6eff\"full\" or \u5168 \"all\" or \u6574\"total\" and part-of-speech of head word is not Na.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "\u8173, Nfi,def:frequency={}, while part-of-speech combination is V+D4,D15+\u8173.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "e.g.\u9ede,Nfg, def:time={ \u9ede }, while part-of-speech of pre-determinant is D4 or D15(1~24) and part-of-speech of previous word is not D1 or previous word is not \u6709\"have\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "e.g.\u8f2a,Nfg,def:time={\u8f2a}, while pre-determinant is \u7b2c \" a function word placed in front of a cardinal number to form an ordinal number\" or \u9996\"first\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "e.g.\u4e00\u3001\u4e8c...1\u30012...\u5169..., Neu, def:ordinal={}, the determinant of word is \u7b2c, \u6c11\u570b, \u516c\u5143, \u897f\u5143, \u5e74\u865f, \u4e00\u4e5d XX or 12XX, (four digits number). \u4e00\u3001\u4e8c...1\u30012...\u5169..., Neu,def:quantity={}, otherwise use this definition. e.g.\u982d,Nes,def:ordinal={1},the word \u982d\"head\" is determinant word. e.g.\u5169,Neu,def:quantity={}, the word \u5169\"a unit of weight equal to 50 grams\" is determinant word. measure word based rule e.g.\u4e00,Neqa,def:quantity={all|\u5168}, the part-of-speech of the measure word behind \u4e00 is Nff, or the suffix of the measure word is \u5b50, (for example,\u6ac3\u5b50\" cabinet\", \u74f6 \u5b50\"bottle\")or \u7c6e\u7b50\" large basket\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "determinative-based rule",
                "sec_num": null
            },
            {
                "text": "Chao [6] and Li and Thompson[7] detect measures and classifiers. He[8] traces the diachronic names of measures and mentions related literature on measures. The dictionary of measures pressed by Mandarin Daily News Association and CKIP[9] lists all the possible measures in Mandarin Chinese.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The symbol \"Neu\" stands for Numeral Determinatives. Generation rules for numerals are partially listed in (2).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This research was supported in part by the National Science Council under a Center Excellence Grant NSC 96-2752-E-001-001-PAE and Grant NSC96-2221-E-001-009.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgement:",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "HowNet and the Computation of Meaning",
                "authors": [],
                "year": 2006,
                "venue": "Zhendong Don & Qiang Dong",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhendong Don & Qiang Dong, 2006, HowNet and the Computation of Meaning. World Scientific Publishing Co. Pte. Ltd.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "E-HowNet-an Expansion of HowNet, The First National HowNet Workshop",
                "authors": [
                    {
                        "first": "Shu-Ling",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "You-Shan",
                        "middle": [],
                        "last": "Chung",
                        "suffix": ""
                    },
                    {
                        "first": "Keh-Jiann",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shu-Ling Huang, You-Shan Chung, Keh-Jiann Chen, 2008, E-HowNet-an Expansion of HowNet, The First National HowNet Workshop, Beijing, China.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A Probe into Ambiguities of Determinative-Measure Compounds",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Su-Chu",
                        "middle": [],
                        "last": "Shih-Min",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "International Journal of Computational Linguistics & Chinese Language Processing",
                "volume": "11",
                "issue": "3",
                "pages": "245--280",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Li, Shih-Min, Su-Chu Lin, Chia-Hung Tai and Keh-Jiann Chen, 2006. A Probe into Ambiguities of Determinative-Measure Compounds, International Journal of Computational Linguistics & Chinese Language Processing, Vol. 11, No. 3. pp.245-280.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Chinese classifier systems and human categorization",
                "authors": [
                    {
                        "first": "J. H-Y ;",
                        "middle": [],
                        "last": "Tai",
                        "suffix": ""
                    },
                    {
                        "first": "S-Y.",
                        "middle": [],
                        "last": "William",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Interdisciplinary Studies on Language and Language Change",
                "volume": "",
                "issue": "",
                "pages": "479--494",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tai, J. H-Y, Chinese classifier systems and human categorization, In Honor of William S-Y. Wang: Interdisciplinary Studies on Language and Language Change, ed. by M. Y. Chen and O J.-L. Tzeng, Pyramid Press, Taipei, 1994, pp. 479-494.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "A grammar of Spoken Chinese",
                "authors": [
                    {
                        "first": "Y.-R",
                        "middle": [],
                        "last": "Chao",
                        "suffix": ""
                    }
                ],
                "year": 1968,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chao, Y.-R., A grammar of Spoken Chinese, University of California Press, Berkeley, 1968.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Mandarin Chinese: A Functional Reference Grammar",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "N"
                        ],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Thompson",
                        "suffix": ""
                    }
                ],
                "year": 1981,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Li, C. N. and S. A. Thompson, Mandarin Chinese: A Functional Reference Grammar, University of California Press, Berkeley, 1981.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Determinative-Measure Compounds in Mandarin Chinese: Their Formation Rules and Parser Implementation",
                "authors": [
                    {
                        "first": "R.-P",
                        "middle": [],
                        "last": "Mo",
                        "suffix": ""
                    },
                    {
                        "first": "Y.-J",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "K.-J",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "C.-R",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "Proceedings of ROCLING IV (R.O.C. Computational Linguistics Conference)",
                "volume": "",
                "issue": "",
                "pages": "111--134",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mo, R.-P., Y.-J. Yang, K.-J. Chen and C.-R. Huang, Determinative-Measure Compounds in Mandarin Chinese: Their Formation Rules and Parser Implementation, In Proceedings of ROCLING IV (R.O.C. Computational Linguistics Conference), 1991, National Chiao-Tung University, Hsinchu, Taiwan, pp. 111-134.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Extended-HowNet-A Representational Framework for Concepts",
                "authors": [
                    {
                        "first": "Chen",
                        "middle": [],
                        "last": "Keh-Jiann",
                        "suffix": ""
                    },
                    {
                        "first": "Shu-Ling",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Yueh-Yin",
                        "middle": [],
                        "last": "Shih",
                        "suffix": ""
                    },
                    {
                        "first": "Yi",
                        "middle": [
                            "-"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "OntoLex 2005 -Ontologies and Lexical Resources IJCNLP-05 Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chen Keh-Jiann, Shu-Ling Huang, Yueh-Yin Shih, Yi-Jun Chen, 2005a, Extended-HowNet-A Representational Framework for Concepts, OntoLex 2005 -Ontologies and Lexical Resources IJCNLP-05 Workshop, Jeju Island, South Korea",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Concurrent constraint programming in Oz for natural language processing",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Duchier",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Gardent",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Niehren",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Lecture notes",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Duchier, D., Gardent, C. and Niehren, J. (1999a) Concurrent constraint programming in Oz for natural language processing. Lecture notes, http://www.ps.uni-sb.de/~niehren/ oz-natural-language-script.html.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Determinative and measure word in E-HowNet representation \u5b9a\u8a5e(Determinative word) \u5b9a\u6307",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Appendix",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Appendix A. Determinative and measure word in E-HowNet representation \u5b9a\u8a5e(Determinative word) \u5b9a\u6307 D1-> \u9019\u3001\u90a3\u3001\u6b64\u3001\u8a72\u3001\u672c\u3001\u8cb4\u3001\u655d\u3001\u5176\u3001\u67d0\u3001\u8af8 def: quantifier={definite|\u5b9a \u6307}\uff1b\u9019\u4e9b\u3001\u90a3\u4e9b def: quantifier={definite|\u5b9a\u6307}, quantity={some|\u4e9b} D2-> \u7b2c\u3001\u9996 def: ordinal={D4}",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "def: quantity={1\u30012\u300110000\u30012...} or def:ordinal={1\u30012\u3001 10000\u30012",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "D3-> \u4e0a \u3001 \u524d Def: Qualification={preceding| \u4e0a \u6b21 } \u3001 \u4e0b \u3001 \u5f8c Def ; -> \u4e00\u3001\u4e8c\u3001\u842c\u3001\u96d9",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "qualification={next|\u4e0b\u6b21}\u3001\u982d\u3001\u9996 def:ordinal={1}\u3001\u672b def: qualification={last| \u6700 \u5f8c}\u3001\u6b21 def:ordinal={2} \u4e0d\u5b9a\u6307 D4",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D3-> \u4e0a \u3001 \u524d def: qualification={preceding| \u4e0a \u6b21 } \u3001 \u4e0b \u3001 \u5f8c def: qualification={next|\u4e0b\u6b21}\u3001\u982d\u3001\u9996 def:ordinal={1}\u3001\u672b def: qualification={last| \u6700 \u5f8c}\u3001\u6b21 def:ordinal={2} \u4e0d\u5b9a\u6307 D4-> \u4e00\u3001\u4e8c\u3001\u842c\u3001\u96d9... def: quantity={1\u30012\u300110000\u30012...} or def:ordinal={1\u30012\u3001 10000\u30012...} D5-> \u7532\u3001\u4e59... def: ordinal={1\u30012...} D6-> \u5176\u4ed6\u3001\u5176\u9918\u3001\u5225\u3001\u65c1\u3001\u4ed6\u3001\u53e6\u3001\u53e6\u5916 def: qualification={other|\u53e6} D7-> \u6bcf\u3001\u4efb\u4f55\u3001\u4e00\u3001\u5168\u3001\u6eff\u3001\u6574\u3001\u4e00\u5207 def: quantity={all|\u5168} D8-> \u5404 def: qualification={individual|\u5206\u5225\u7684} D9-> \u82e5\u5e72\u3001\u6709\u7684\u3001\u4e00\u4e9b\u3001\u90e8\u4efd\u3001\u6709\u4e9b def: quantity={some|\u4e9b} D10-> \u534a def: quantity={half|\u534a} D11-> \u591a\u5c11\u3001\u5e7e\u591a def: quantity={.Ques.} D12-> \u4f55\u3001\u5565\u3001\u4ec0\u9ebc def: fomal={.Ques.} D13->\u6578\u3001\u8a31\u591a\u3001\u5f88\u591a\u3001\u597d\u591a\u3001\u597d\u5e7e\u3001\u597d\u4e9b\u3001\u591a\u3001\u8a31\u8a31\u591a\u591a\u3001\u591a\u6578\u3001\u5927\u591a\u6578\u3001 \u4e0d\u5c11\u3001\u6cf0\u534a\u3001\u534a\u6578\u3001\u8af8\u591a def: quantity={many|\u591a}\u3001\u5c11\u8a31\u3001\u5c11\u6578\u3001\u5e7e\u8a31\u3001\u500b\u628a def: quantity={few|\u5c11} D14->\u9918\u3001\u8a31\u3001\u4e4b\u591a def: approximate()\u3001\u8db3\u3001\u6574\u3001\u6b63 def: exact()\u3001\u51fa\u982d\u3001\u597d\u5e7e\u3001 \u958b\u5916\u3001\u591a def: over();",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "uris": null,
                "text": "Determinative + Measure (D+M) def: semantic-role(M) = {Sense-representation(M): Representation(D)} The rule (10) says that the sense representation of a DM compound with a determinative D and a measure M is a unification of the feature representation of D as a feature of the sense representation of M as exemplified in (9). However a DM compound with a null sense measure word, such as 'this copy|\u9019\u672c' , ' a copy|\u4e00\u672c', or without measure word, such as 'this three|\u9019\u4e09', will be exceptions, since the measure word cannot be the semantic head of DM compound. The dependent head of determinatives become the head noun of the NP containing the DM and the sense representation of a DM is a coordinate conjunction of the feature representations of its morphemes of determinatives only. For instance, in (8), 'copy' has weak content sense; we thus regard it as a null-sense measure word and only retain the feature representation of the determinative as the definition of \"this copy|\u9019\u672c\". The unification rule for DM with null-sense measure is expressed as (11). (11) Determinative + {Null-sense Measure} (D+M) def: Representation(D);",
                "type_str": "figure"
            },
            "FIGREF1": {
                "num": null,
                "uris": null,
                "text": "some examples of the result. For testing the correctness of our candidates, we manually check the format of 1226 candidates. Only 5 candidates out of 1226 are wrong or meaningless representations. After disambiguation processes, the resulting 1000 DM words in E-HowNet representation are judged manually. There are 880 correct E-HowNet representations for 1000 DM words in both sense and format. It is an acceptable result. Among 120 wrong answers, 57 errors are due to undefined morpheme, 28 errors are unique sense but wrong answer and the number of sense disambiguation errors is 36. Therefore accuracy of sense disambiguation is (162-36)/162=0.778.",
                "type_str": "figure"
            },
            "FIGREF2": {
                "num": null,
                "uris": null,
                "text": "Measure word) \u6709\u8a9e\u610f\u91cf\u8a5e(Measures with content sense ) Nff-> \u66ab\u6642\u91cf\u8a5e-\u8eab\u3001\u982d\u3001\u81c9\u3001\u9f3b\u5b50\u3001\u5634\u3001\u809a\u5b50\u3001\u624b\u3001\u8173 def:{\u8eab,\u982d, \u2026} Nff-> \u66ab\u6642\u91cf\u8a5e-\u684c\u5b50\u3001\u9662\u5b50\u3001\u5730\u3001\u5c4b\u5b50\u3001\u6c60\u3001\u8154\u3001\u5bb6\u5b50 def: position={\u684c\u5b50, \u9662\u5b50...:quantity={all|\u5168}} Nfe-> \u5bb9\u5668\u91cf\u8a5e-\u76d2(\u5b50)\u3001\u5323(\u5b50)\u3001\u7bb1(\u5b50)\u3001\u6ac3\u5b50\u3001\u6ae5(\u5b50)\u3001\u7c43(\u5b50)\u3001\u7c0d(\u5b50)\u3001\u7210 \u5b50\u3001\u5305(\u5152)\u3001\u888b(\u5152)\u3001\u6c60\u5b50\u3001\u74f6(\u5b50)\u3001\u6876(\u5b50)\u3001\u807d\u3001\u7f50(\u5b50)\u3001\u76c6(\u5b50)\u3001\u934b(\u5b50)\u3001 \u7c60(\u5b50)\u3001\u76e4(\u5b50)\u3001\u7897\u3001\u676f(\u5b50)\u3001\u52fa(\u5b50)\u3001\u5319(\u6e6f\u5319)\u3001\u7b52(\u5b50)\u3001\u64d4(\u5b50)\u3001\u7c6e\u7b50\u3001 \u6753 (\u5b50)\u3001\u8336\u5319\u3001\u58fa\u3001\u76c5\u3001\u7b50\u3001\u74e2\u3001\u936c\u3001\u7f38 def: container={\u76d2,\u5323,...} Nfg-> \u6a19\u6e96\u91cf\u8a5e-\u8868\u9577\u5ea6\u7684\uff0c\u5982\uff1a\u516c\u5398\u3001\u516c\u5206\u3001\u516c\u5bf8\u3001\u516c\u5c3a\u3001\u516c\u4e08\u3001\u516c\u5f15\u3001\u516c\u91cc\u3001\u5e02\u5c3a\u3001\u71df \u9020 \u5c3a\u3001\u53f0\u5c3a\u3001\u540b(inch)\u3001\u544e(feet)\u3001\u78bc(yard)\u3001\u54e9(mile)\u3001 (\u6d77)\u6d6c\u3001\u5eb9\u3001\u565a\u3001 \u5c3a\u3001\u91cc\u3001\u91d0\u3001\u5bf8\u3001\u4e08\u3001\u7c73\u3001\u5398\u3001\u5398\u7c73\u3001\u6d77 \u54e9\u3001\u82f1\u5c3a\u3001\u82f1\u91cc\u3001\u82f1\u544e\u3001\u82f1\u5bf8\u3001 \u7c73\u7a81\u3001\u7c73\u5c3a\u3001\u5fae\u7c73\u3001\u6beb\u7c73\u3001 \u82f1\u540b\u3001\u82f1\u54e9\u3001\u5149\u5e74\u3002 def: length={\u516c\u5206,...} \u8868\u9762\u7a4d\u7684\uff0c\u5982\uff1a\u516c\u755d\u3001\u516c\u9803\u3001\u5e02\u755d\u3001\u71df\u9020\u755d\u3001\u576a\u3001\u755d\u3001\u5206\u3001\u7532\u3001\u9803\u3001\u5e73\u65b9 \u516c\u91cc\u3001\u5e73\u65b9\u516c\u5c3a\u3001\u5e73\u65b9\u516c\u5206\u3001\u5e73\u65b9\u5c3a\u3001\u5e73\u65b9\u82f1\u54e9\u3001\u82f1\u755d\u3002def: size={\u516c\u755d,...} \u8868\u91cd\u91cf\u7684\uff0c\u5982\uff1a\u516c\u514b\u3001\u516c\u65a4\u3001\u516c\u5678\u3001\u5e02\u65a4\u3001\u53f0\u5169\u3001\u53f0\u65a4(\u65e5\u65a4)\u3001\u76ce\u53f8(\u65af)\u3001 \u78c5\u3001\u516c\u64d4\u3001\u516c\u8861\u3001\u516c\u5169\u3001\u514b\u62c9\u3001\u65a4\u3001\u5169\u3001\u9322\u3001\u5678\u3001\u514b\u3001\u82f1\u78c5\u3001\u82f1\u5169\u3001\u516c\u9322\u3001 \u6beb\u514b\u3001\u6beb\u5206\u3001\u4edf\u514b\u3001\u516c\u6beb\u3002def: weight={\u516c\u514b,...} \u8868\u5bb9\u91cf\u7684\uff0c\u5982\uff1a\u516c\u64ae\u3001\u516c\u5347(\u5e02\u5347)\u3001\u71df\u9020\u5347\u3001\u53f0\u5347(\u65e5\u5347)\u3001\u76ce\u53f8\u3001\u54c1\u812b(pint)\u3001 \u52a0\u4f96(gallon)\u3001\u84b2\u5f0f\u8033(bushel)\u3001\u516c\u6597\u3001\u516c\u77f3\u3001\u516c\u79c9\u3001\u516c\u5408\u3001\u516c\u52fa\u3001\u6597\u3001\u6beb \u5347\u3001\u5938\u3001\u5938\u7279\u3001\u5938\u723e\u3001\u7acb\u65b9\u7c73\u3001\u7acb\u65b9\u5398\u7c73\u3001\u7acb\u65b9\u516c\u5206\u3001\u7acb\u65b9\u516c\u5bf8\u3001\u7acb\u65b9\u516c \u5c3a\u3001\u7acb\u5206\u516c\u91cc\u3001\u7acb\u65b9\u82f1\u5c3a\u3001\u77f3\u3001\u659b\u3001\u897f\u897f\u3002def: volume={\u516c\u64ae,\u516c\u5347,...} \u8868\u6642\u9593\u7684\uff0c\u5982\uff1a\u5fae\u79d2\u3001\u91d0\u79d2\u3001\u79d2\u3001\u79d2\u9418\u3001\u5206\u3001\u5206\u9418\u3001\u523b\u3001\u523b\u9418\u3001\u9ede\u3001\u9ede\u9418\u3001 \u6642\u3001\u5c0f\u6642\u3001\u66f4\u3001\u591c\u3001\u65ec\u3001\u7d00(\u8f2a, 12 \u5e74) \u3001\u4e16\u7d00\u3001\u5929(\u65e5)\u3001\u661f\u671f(\u79ae\u62dc\u3001\u9031\u3001 \u5468) \u3001\u6708\u3001\u6708\u4efd\u3001\u5b63\u3001\u5e74(\u8f09\u3001\u6b72) \u3001\u5e74\u4efd\u3001\u665a\u3001\u5bbf\u3001\u3002def:temporal={\u5fae \u79d2,\u6708\u2026}, \u9031\u5e74\u3001\u5468\u6b72 def:duration={\u5e74} \u8868\u9322\u5e63\u7684\uff0c\u5982\uff1a\u5206\u3001\u89d2(\u6bdb)\u3001\u5143(\u5713)\u3001\u584a\u3001\u5169\u3001\u5148\u4ee4\u3001\u76e7\u6bd4\u3001\u6cd5\u90ce(\u6717)\u3001\u8fa8",
                "type_str": "figure"
            },
            "FIGREF3": {
                "num": null,
                "uris": null,
                "text": "e.g.All Nfi, def:frequency={}, while part-of-speech of head word is Verb, i.e. E-HowNet representation of head word is {event|\u4e8b\u4ef6} and it's subclass. Except POS V_2 and VG. All Nfi,def:{null}, while part-of-speech of head word is Noun, i.e. E-HowNet of head word is {object|\u7269\u9ad4} and it's subclass. e.g.\u90e8, \u80a1\u2026,Nfh,def:location={ }, if part-of-speech of head word is Na or previous word is \u9019\"this\" or \u90a3\"that\" or \u6bcf\"every\", do not use this definition. \u90e8,\u80a1\u2026,Nfa,def:{null}, otherwise use this definition. e.g. \u76e4 ,Nfe,def:container={plate| \u76e4 },while head word is food, i.e. E-HowNet representation of head word is {edible|\u98df\u7269} and it's subclass. \u76e4,Nfb,def:{null},otherwise use this one. e.g. \u5206 ,Nfg, def:role={ \u5206 }, while head word is \u9322 \"money\", i.e. E-HowNet representation of head word is {money|\u8ca8\u5e63} and it's subclass. \u5206,Nfg, def:size={ \u5206 }, while head word is \u5730 \"land\", i.e. E-HowNet representation of head word is {land|\u9678\u5730} and it's subclass. \u5206,Nfa, def:{null}, while part-of-speech of head word is Na or Nv. For example: \u4e00\u5206\u8015\u8018\uff1b\u5341\u5206\u529b\u6c23\uff1b\u4e94\u5206\u719f. e.g.\u9ede,Nfh;Nfd,def:{null}, while part-of-speech of head word is Nab. If part-of-speech of head word is V, Naa or Nad, do not use this definition. collocation-based rule e.g.\u5206,Nfh,def:role={score|\u5206\u6578:quantity={D4,D15}}, while the sentence also contains the words \u8003 \"give an exam\" (E-HowNet representation is {exam|\u8003\u8a66}) or \u5f97 \"get\" (E-HowNet representation is {obtain|\u5f97\u5230}) or \u5931\"lose\" (E-HowNet representation is {lose|\u5931\u53bb}), then use this definition.",
                "type_str": "figure"
            },
            "TABREF1": {
                "html": null,
                "type_str": "table",
                "text": "\u56e0\u70ba because' are function words. The difference of their representation is that function words start with a relation but content words have under-specified relations. If a content word plays a dependent daughter of a head concept, the relation between the head concept and this content word will be established after parsing process. Suppose that the following dependent structure and semantic relations are derived after parsing the sentence",
                "num": null,
                "content": "<table><tr><td>sense representations are exemplified below:</td></tr><tr><td>(6) The definition of measure words in E-HowNet</td></tr><tr><td>a) Measure words with content sense</td></tr><tr><td>d. e. f. g. represent and to identify morphological structures of DM compounds, but do not derive the IN1 -&gt; { NO1*, NO3*} ; IN2 -&gt; NO2* ; IN3 -&gt; {IN1,IN2} {\u591a,\u9918,\u4f86,\u5e7e} ({\u842c,\u5104,\u5146}) ; Neu -&gt; {IN1,IN2,IN3 } ; senses of complex DM compounds. 2.2 Lexical Sense Representation in E-HowNet Core senses of natural language are compositions of relations and entities. Lexical senses are processing units for sense composition. Conventional linguistic theories classify words into content words and function words. Content words denote entities and function words without too much content sense mainly serve grammatical function which links relations between entities/events. In E-HowNet, the senses of function words are represented by semantic roles/relations [11]. For example, 'because' is a function word. Its E-HowNet definition is shown in (1). (1) because|\u56e0\u70ba def: reason={}; which means reason(x)={y} where x is the dependent head and y is the dependent daughter of '\u56e0\u70ba'. In following sentence (2), we'll show how the lexical concepts are combined into the sense representation of the sentence. (2) Because of raining, clothes are all wet. \u56e0\u70ba\u4e0b\u96e8\uff0c\u8863\u670d\u90fd\u6fd5\u4e86 In the above sentence, '\u6fd5 wet', '\u8863\u670d clothes' and '\u4e0b\u96e8 rain' are content words while '\u90fd (3) S(reason:VP(Head:Cb:\u56e0\u70ba|dummy:VA:\u4e0b\u96e8)|theme:NP(Head:Na:\u8863\u670d) | quantity: Da:\u90fd | Head:Vh:\u6fd5|particle:Ta:\uf9ba)\u3002 After feature-unification process, the following semantic composition result (4) is derived. The sense representations of dependent daughters became the feature attributes of the sentential head 'wet|\u6fd5'. (4) def:{wet|\u6fd5: aspect={Vachieve|\u9054\u6210}, manner={complete|\u6574}, reason={rain|\u4e0b\u96e8}} In (3), function word '\u56e0\u70ba because' links the relation of 'reason' between head concept '\u6fd5 wet' and '\u4e0b\u96e8 rain'. The result of composition is expressed as reason(wet|\u6fd5)={rain|\u4e0b\u96e8}, since for simplicity the dependent head of a relation is normally omitted. Therefore reason(wet|\u6fd5)={rain|\u4e0b\u96e8} is expressed as reason={rain|\u4e0b\u96e8}; theme(wet|\u6fd5)={clothing|\u8863 \u7269} is expressed as theme={clothing|\u8863\u7269} and so on. 2.3 The sense representation for determinatives and measures in E-HowNet The sense of a DM compound is determined by its morphemes and the set of component morphemes are determinatives and measures which are exhaustively listable. Therefore in order to apply semantic composition mechanism to derive the senses of DM compounds, we need to establish the sense representations for all morphemes of determinatives and measures (5) The definition of determinatives in E-HowNet this \u9019 def: quantifier={definite|\u5b9a\u6307} first \u9996 def: ordinal={1} one \u4e00 def: quantity={1} bowl \u7897 def: container={bowl|\u7897} meter \u7c73 def: length={meter|\u516c\u5c3a} month \u6708 def: time={month|\u6708} b) Measure words without content sense \u672c copy def:{null} \u9593 room def:{null} all', '\uf9ba Le' and '(2). theme={clothing|\u8863\u7269}, \u6a23 kind def:{null}</td></tr></table>"
            },
            "TABREF2": {
                "html": null,
                "type_str": "table",
                "text": "However there are some complications need to be resolved. First of all we have to clarify the dependent relation between the determinative and the measure of a DM in order to make a right feature unification process. In principle, a dependent head will take semantic representation of its dependent daughters as its features. Usually determinatives are modifiers of measures, such as \u9019\u7897, \u4e00\u7897, \u9019\u4e00\u7897. For instance, the example (9) has the dependent",
                "num": null,
                "content": "<table><tr><td>quantifier address</td><td>e.g. \u9019\u3001\u90a3\u3001\u6b64\u3001\u8a72\u3001\u672c\u3001\u8cb4\u3001\u655d\u3001\u5176\u3001\u67d0\u3001\u8af8 e.g. \u570b\u3001\u7701\u3001\u5dde\u3001\u7e23\u3001\u9109\u3001\u6751\u3001\u93ae\u3001\u9130\u3001\u91cc\u3001\u90e1\u3001\u5340\u3001</td></tr><tr><td>ordinal</td><td>e.g. \u7b2c\u3001\u9996 \u7ad9\u3001\u5df7\u3001\u5f04\u3001\u6bb5\u3001\u865f\u3001\u6a13\u3001\u8856\u3001\u5e02\u3001\u6d32\u3001\u5730\u3001\u8857</td></tr><tr><td>qualification place</td><td>e.g. \u4e0a\u3001\u4e0b\u3001\u524d\u3001\u5f8c\u3001\u982d\u3001\u672b\u3001\u6b21\u3001\u9996\u3001\u5176\u4ed6\u3001\u5176\u9918\u3001 e.g \u90e8\u3001\u53f8\u3001\u8ab2\u3001\u9662\u3001\u79d1\u3001\u7cfb\u3001\u7d1a\u3001\u80a1\u3001\u5ba4\u3001\u5ef3</td></tr><tr><td>duration</td><td>\u5225\u3001\u65c1\u3001\u4ed6\u3001\u53e6\u3001\u53e6\u5916\u3001\u5404 e.g \u9663(\u5b50)\u3001\u6703\u3001\u6703\u5152\u3001\u4e0b\u5b50</td></tr><tr><td>quantity</td><td>e.g. \u4e00\u3001\u4e8c\u3001\u842c\u3001\u96d9\u3001\u6bcf\u3001\u4efb\u4f55\u3001\u4e00\u3001\u5168\u3001\u6eff\u3001\u6574\u3001\u4e00</td></tr><tr><td/><td>\u5207\u3001\u82e5\u5e72\u3001\u6709\u7684\u3001\u4e00\u4e9b\u3001\u90e8\u4efd\u3001\u6709\u4e9b\u3001\u8a31\u591a\u3001\u5f88\u591a\u3001\u597d</td></tr><tr><td/><td>\u591a\u3001\u597d\u5e7e\u3001\u597d\u4e9b\u3001\u5c11\u8a31\u3001\u591a\u3001\u8a31\u8a31\u591a\u591a\u3001\u5e7e\u8a31\u3001\u591a\u6578\u3001</td></tr><tr><td/><td>\u5c11\u6578\u3001\u5927\u591a\u6578\u3001\u6cf0\u534a\u3001\u4e0d\u5c11\u3001\u500b\u628a\u3001\u534a\u6578\u3001\u8af8\u591a</td></tr><tr><td>Formal={.Ques.}</td><td>e.g. \u4f55\u3001\u5565\u3001\u4ec0\u9ebc</td></tr><tr><td>Quantity={over,</td><td>e.g. \u9918\u3001\u8a31\u3001\u8db3\u3001\u4e4b\u591a\u3001\u51fa\u982d\u3001\u597d\u5e7e\u3001\u958b\u5916\u3001\u6574\u3001\u6b63</td></tr><tr><td>approximate, exact} relations of</td><td/></tr><tr><td colspan=\"2\">position NP(quantifier:DM(quantifier:Neu:\u4e00|container:Nfa:\u7897)|Head:Nab:\u9eb5) e.g. \u684c\u5b50\u3001\u9662\u5b50\u3001\u5730\u3001\u5c4b\u5b50\u3001\u6c60\u3001\u8154\u3001\u5bb6\u5b50</td></tr><tr><td>container</td><td>e.g. \u76d2(\u5b50)\u3001\u5323(\u5b50)\u3001\u7bb1(\u5b50)\u3001\u6ac3\u5b50\u3001\u6ae5(\u5b50)\u3001\u7c43(\u5b50)\u3001\u7c0d(\u5b50)\u3001</td></tr><tr><td/><td>\u7210\u5b50\u3001\u5305(\u5152)\u3001\u888b(\u5152)\u3001\u6c60\u5b50\u3001\u74f6(\u5b50)\u3001\u6876(\u5b50)\u3001\u807d\u3001\u7f50(\u5b50)\u3001</td></tr><tr><td/><td>\u76c6(\u5b50)\u3001\u934b(\u5b50)\u3001\u7c60(\u5b50)\u3001\u76e4(\u5b50)\u3001\u7897\u3001\u676f(\u5b50)\u3001\u52fa(\u5b50)\u3001</td></tr><tr><td/><td>\u5319(\u6e6f\u5319)\u3001\u7b52(\u5b50)\u3001\u64d4(\u5b50)\u3001\u7c6e\u7b50\u3001\u6753(\u5b50)\u3001\u8336\u5319\u3001\u58fa\u3001\u76c5\u3001</td></tr><tr><td/><td>\u7b50\u3001\u74e2\u3001\u936c\u3001\u7f38</td></tr><tr><td>length</td><td>e.g. \u516c\u5398\u3001\u516c\u5206\u3001\u516c\u5bf8\u3001\u516c\u5c3a\u3001\u516c\u4e08\u3001\u516c\u5f15\u3001\u516c\u91cc\u3001\u5e02</td></tr><tr><td/><td>\u5c3a\u3001\u71df\u9020 \u5c3a\u3001\u53f0\u5c3a\u3001\u540b(inch)\u3001\u544e(feet)\u3001\u78bc(yard)\u3001\u54e9</td></tr><tr><td/><td>(mile)\u3001 (\u6d77)\u6d6c\u3001\u5eb9\u3001\u565a\u3001\u5c3a\u3001\u91cc\u3001\u91d0\u3001\u5bf8\u3001\u4e08\u3001\u7c73\u3001</td></tr><tr><td/><td>\u5398\u3001\u5398\u7c73\u3001\u6d77 \u54e9\u3001\u82f1\u5c3a\u3001\u82f1\u91cc\u3001\u82f1\u544e\u3001\u82f1\u5bf8\u3001\u7c73\u7a81\u3001</td></tr><tr><td/><td>\u7c73\u5c3a\u3001\u5fae\u7c73\u3001\u6beb\u7c73\u3001 \u82f1\u540b\u3001\u82f1\u54e9\u3001\u5149\u5e74</td></tr><tr><td>size</td><td>e.g. \u516c\u755d\u3001\u516c\u9803\u3001\u5e02\u755d\u3001\u71df\u9020\u755d\u3001\u576a\u3001\u755d\u3001\u5206\u3001\u7532\u3001\u9803\u3001</td></tr><tr><td/><td>\u5e73\u65b9\u516c\u91cc\u3001\u5e73\u65b9\u516c\u5c3a\u3001\u5e73\u65b9\u516c\u5206\u3001\u5e73\u65b9\u5c3a\u3001\u5e73\u65b9\u82f1\u54e9\u3001</td></tr><tr><td/><td>\u82f1\u755d</td></tr><tr><td>weight</td><td>e.g. \u516c\u514b\u3001\u516c\u65a4\u3001\u516c\u5678\u3001\u5e02\u65a4\u3001\u53f0\u5169\u3001\u53f0\u65a4(\u65e5\u65a4)\u3001\u76ce\u53f8</td></tr><tr><td/><td>(\u65af)\u3001\u78c5\u3001\u516c\u64d4\u3001\u516c\u8861\u3001\u516c\u5169\u3001\u514b\u62c9\u3001\u65a4\u3001\u5169\u3001\u9322\u3001\u5678\u3001</td></tr><tr><td/><td>\u514b\u3001\u82f1\u78c5\u3001\u82f1\u5169\u3001\u516c\u9322\u3001\u6beb\u514b\u3001\u6beb\u5206\u3001\u4edf\u514b\u3001\u516c\u6beb</td></tr><tr><td>volume</td><td>e.g. \u516c\u64ae\u3001\u516c\u5347(\u5e02\u5347)\u3001\u71df\u9020\u5347\u3001\u53f0\u5347(\u65e5\u5347)\u3001\u76ce\u53f8\u3001\u54c1</td></tr><tr><td/><td>, once its morpheme sense representations and \u812b(pint)\u3001\u52a0\u4f96(gallon)\u3001\u84b2\u5f0f\u8033(bushel)\u3001\u516c\u6597\u3001\u516c\u77f3\u3001\u516c</td></tr><tr><td colspan=\"2\">semantic head are known. \u79c9\u3001\u516c\u5408\u3001\u516c\u52fa\u3001\u6597\u3001\u6beb\u5347\u3001\u5938\u3001\u5938\u7279\u3001\u5938\u723e\u3001\u7acb\u65b9\u7c73\u3001</td></tr><tr><td colspan=\"2\">(7) one \u4e00 def:quantity={1} + bowl \u7897 def: container={bowl|\u7897} \u7acb\u65b9\u5398\u7c73\u3001\u7acb\u65b9\u516c\u5206\u3001\u7acb\u65b9\u516c\u5bf8\u3001\u7acb\u65b9\u516c\u5c3a\u3001\u7acb\u5206\u516c\u91cc\u3001</td></tr><tr><td>one bowl \u4e00\u7897</td><td>def: container={bowl|\u7897:quantity={1}} \u7acb\u65b9\u82f1\u5c3a\u3001\u77f3\u3001\u659b\u3001\u897f\u897f</td></tr><tr><td colspan=\"2\">(8) this \u9019 def: quantifier={definite|\u5b9a\u6307} + \u672c copy def:{null} time e.g. \u5fae\u79d2\u3001\u91d0\u79d2\u3001\u79d2\u3001\u79d2\u9418\u3001\u5206\u3001\u5206\u9418\u3001\u523b\u3001\u523b\u9418\u3001\u9ede\u3001</td></tr><tr><td>this copy \u9019\u672c</td><td>def: quantifier={definite|\u5b9a\u6307} \u9ede\u9418\u3001\u6642\u3001\u5c0f\u6642\u3001\u66f4\u3001\u591c\u3001\u65ec\u3001\u7d00(\u8f2a, 12 \u5e74) \u3001\u4e16\u7d00\u3001\u5929</td></tr><tr><td colspan=\"2\">Table 1. Major semantic roles played by determinants and measures (\u65e5)\u3001\u661f\u671f(\u79ae\u62dc\u3001\u9031\u3001\u5468) \u3001\u6708\u3001\u6708\u4efd\u3001\u5b63\u3001\u5e74(\u8f09\u3001\u6b72) \u3001</td></tr><tr><td/><td>\u9031\u5e74\u3001\u5468\u6b72\u3001\u5e74\u4efd\u3001\u665a\u3001\u5bbf\u3001\u4e16\u3001\u8f29\u3001\u8f29\u5b50\u3001\u4ee3\u3001\u5b78\u671f\u3001</td></tr><tr><td>Semantic Role</td><td>D/M \u5b78\u5e74\u3001\u5e74\u4ee3</td></tr></table>"
            },
            "TABREF4": {
                "html": null,
                "type_str": "table",
                "text": "The result of semantic composition for DM compounds.",
                "num": null,
                "content": "<table><tr><td colspan=\"2\">DM Compounds E-HowNet Representation</td></tr><tr><td>\u4e8c\u5341\u842c\u5143</td><td>def:role={money|\u8ca8\u5e63:quantity={200000}}</td></tr><tr><td>\u53e6\u4e00\u500b</td><td>def:qualification={other|\u53e6},quantity={1}</td></tr><tr><td>\u4e8c\u767e\u4e09\u5341\u516d\u5206</td><td>def:role={\u5206\u6578:quantity={236}}</td></tr><tr><td>\u524d\u4e94\u5929</td><td>def:time={day| \u65e5 :qualification={preceding| \u4e0a \u6b21 },</td></tr><tr><td/><td>quantity={5}}</td></tr><tr><td>\u4e00\u767e\u4e00\u5341\u516d\u9ede\u4e03</td><td>def:role={\u7f8e\u5143:quantity={11670000000}}</td></tr><tr><td>\u5104\u7f8e\u5143</td><td/></tr></table>"
            }
        }
    }
}