File size: 38,351 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
{
"paper_id": "O08-1006",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:02:32.261342Z"
},
"title": "\u4e00\u500b \u4e00\u500b \u4e00\u500b \u4e00\u500b\u7d50\u5408 \u7d50\u5408 \u7d50\u5408 \u7d50\u5408 SVM \u8207 \u8207 \u8207 \u8207 Eigen-MLLR \u65b0 \u65b0 \u65b0 \u65b0\u7684 \u7684 \u7684 \u7684\u591a\u8a9e\u8005 \u591a\u8a9e\u8005 \u591a\u8a9e\u8005 \u591a\u8a9e\u8005\u7dda\u4e0a \u7dda\u4e0a \u7dda\u4e0a \u7dda\u4e0a\u8abf\u9069\u67b6\u69cb \u8abf\u9069\u67b6\u69cb \u8abf\u9069\u67b6\u69cb \u8abf\u9069\u67b6\u69cb\u61c9\u7528\u65bc \u61c9\u7528\u65bc \u61c9\u7528\u65bc \u61c9\u7528\u65bc \u6cdb\u5728 \u6cdb\u5728 \u6cdb\u5728 \u6cdb\u5728\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71 \u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71 \u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71 \u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71 A New On-Line Multi-Speaker Adaptation Architecture Combining SVM with Eigen-MLLR for Ubiquitous Speech Recognition System",
"authors": [
{
"first": "\u65bd\u4f2f\u5b9c",
"middle": [],
"last": "Po",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Yi",
"middle": [],
"last": "Shih",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Yuan-Ning",
"middle": [],
"last": "\u6797\u82d1\u5be7",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "",
"middle": [],
"last": "Lin",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Jhing-Fa",
"middle": [],
"last": "Wang",
"suffix": "",
"affiliation": {},
"email": "wangjf@mail.ncku.edu.tw"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "This work presents a novel architecture using SVM and Eigen-MLLR for rapid on-line multi-speaker adaptation in ubiquitous speech recognition. The recognition performance in speaker independent system is better than in conventional speaker dependence system, and the key point is speaker adaptation techniques. The adaptation approach is on the basis of combine SVM and Eigen-MLLR, generating a classification model and building parameters vector-space for all speakers' individual training data. While in recognition, to find test speaker classification by SVM and look for MLLR parameters matrix correspond to speaker classification, then the MLLR parameters matrix and original acoustic model will integrate into speaker dependent model. Last, we estimate the adapted MLLR transformation matrix set by weighting function with recognition result, the present MLLR matrix, and Eigenspace. The estimate result will be used to update the MLLR matrices in adaptation phase. The experimental results show that the proposed method can improve 5% to 8% speech recognition accuracy with speaker adaptation.",
"pdf_parse": {
"paper_id": "O08-1006",
"_pdf_hash": "",
"abstract": [
{
"text": "This work presents a novel architecture using SVM and Eigen-MLLR for rapid on-line multi-speaker adaptation in ubiquitous speech recognition. The recognition performance in speaker independent system is better than in conventional speaker dependence system, and the key point is speaker adaptation techniques. The adaptation approach is on the basis of combine SVM and Eigen-MLLR, generating a classification model and building parameters vector-space for all speakers' individual training data. While in recognition, to find test speaker classification by SVM and look for MLLR parameters matrix correspond to speaker classification, then the MLLR parameters matrix and original acoustic model will integrate into speaker dependent model. Last, we estimate the adapted MLLR transformation matrix set by weighting function with recognition result, the present MLLR matrix, and Eigenspace. The estimate result will be used to update the MLLR matrices in adaptation phase. The experimental results show that the proposed method can improve 5% to 8% speech recognition accuracy with speaker adaptation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "(x) (x, x ) L i i i i f t K \u03b3 \u03be = = + \u2211 (1) t i \u8868\u793a\u70ba\u7406\u60f3\u7684\u8f38\u51fa\u503c\uff0c 1 0 L i i i t \u03b3 = = \u2211 \uff0c\u4e26\u4e14 0 i \u03b3 > \u3002\u5411\u91cf\u7fa4 Xi",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "A B A f x A B B f x A B \u03b8 \u03b8 = = (3) \u5728\u9019\u88e1\u03b8\u6307\u7684\u662f\u6240\u6709\u8a9e\u97f3\u53c3\u6578\u6a21\u578b\u7684\u96c6\u5408\uff0cx \u5247\u8868\u793a\u8abf\u9069\u8a9e\u6599\u7684\u89c0\u6e2c\u503c\u3002 \u5728\u8a31\u591a\u7684\u8a9e\u8005\u8abf\u9069\u6cd5\u7576\u4e2d\uff0c\u6700\u5927\u76f8\u4f3c\u5ea6\u7dda\u6027\u8ff4\u6b78\u7684\u65b9\u6cd5\u88ab\u5ee3\u6cdb\u7684\u61c9\u7528\u5728\u5feb\u901f\u8a9e\u8005\u8abf\u9069\uff0c \u4f8b\u5982\u5b83\u53ea\u9700\u8981\u4e9b\u8a31\u7684\u8a9e\u6599\u4fbf\u53ef\u4ee5\u5c0d\u6a21\u578b\u53c3\u6578\u505a\u8abf\u9069\u3002\u5728\u6700\u5927\u76f8\u4f3c\u5ea6\u7dda\u6027\u8ff4\u6b78\u4e2d\uff0c\u975e\u8a9e\u8005 \u7368\u7acb\u7684\u6a21\u578b\u53c3\u6578\u53ef\u4ee5\u6839\u64da\u4e00\u500b\u6216\u591a\u500b\u4eff\u5c04\u8f49\u63db\u65b9\u5f0f(affine transformations)\u4f86\u9054\u5230\u8abf\u9069 \u7684 \u76ee \u7684 \u3002 \u6700 \u5927 \u76f8 \u4f3c \u5ea6\u7dda \u6027 \u8ff4 \u6b78 \u8abf \u9069 \u6cd5 \u662f \u4f7f\u7528 \u4eff \u5c04 \u8f49 \u63db \u65b9 \u5f0f \u4f86 \u8abf\u9069 \u9ad8 \u65af \u6df7 \u5408 \u6a21 \u578b (Gaussian mixture model, GMM)\u4e2d\u6240\u6709\u6df7\u5408\u5143\u4ef6\u7684\u5e73\u5747\u503c(mean) \uff0c\u800c\u540c\u4e00\u500b\u4eff\u5c04\u8f49 \u63db\u6cd5\u5247\u53ef\u4ee5\u63d0\u4f9b\u6240\u6709\u7684\u6df7\u5408\u5143\u4ef6\u5171\u4eab\uff0c\u8868\u793a\u6cd5\u5982\u4e0b\uff1a \u02c6A b i i i \u00b5 \u00b5 = + \u2200 (4) i \u00b5 \u8868\u793a\u5728 GMM \u4e2d\u9084\u6c92\u88ab\u8abf\u9069\u904e\u7684\u5e73\u5747\u503c\uff0c\u800c\u02c6i \u00b5 \u8868\u793a\u5df2\u7d93\u8abf\u9069\u904e\u7684\u5e73\u5747\u503c\u3002 \u5728\u773e\u591a\u7684\u8cc7\u6599\u91cf\u7576\u4e2d\uff0c\u6df7\u5408\u7684\u5143\u4ef6\u53ef\u4ee5\u88ab\u6b78\u985e\u6210\u591a\u500b\u985e\u5225\uff0c\u4e14\u4e0d\u540c\u7684\u4eff\u5c04\u8f49\u63db\u65b9\u5f0f\u53ef\u4ee5 \u5728\u4e0d\u540c\u7684\u985e\u5225\u4e2d\u88ab\u5171\u7528\uff0c\u5ef6\u4f38(4)\u7684\u8868\u793a\u6cd5\uff1a 1 1 1,\u00c2 b class i i i \u00b5 \u00b5 \u00b5 = + \u2200 \u2208 (5) 2 2 2,\u00c2 b class i i i \u00b5 \u00b5 \u00b5 = + \u2200 \u2208",
"eq_num": "(6)"
}
],
"section": "",
"sec_num": null
},
{
"text": "\uff1a ) \uff1a ) \uff1a ) \uff1a \u5728\u7d93\u904e\u8fa8\u8b58\u968e\u6bb5\u53d6\u5f97\u8fa8\u8b58\u7d50\u679c\u5f8c\uff0c\u6703\u5c07\u8fa8\u8b58\u7d50\u679c\u7576\u6210\u70ba\u8abf\u9069\u8a9e\u6599 (adaptation data) \uff0c \u5c0d \u65bc \u6bcf \u4e00 \u500b \u6e2c \u8a66 \u8a9e \u8005 \u6240 \u63d0 \u4f9b \u7684 \u8abf \u9069 \u8a9e \u6599 \u6703 \u4f7f \u7528 \u6700 \u5927 \u76f8 \u4f3c \u5ea6 \u4f30 \u6e2c (",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Fast speaker adaptation using eigenspace-based maximum likelihood linear regression",
"authors": [
{
"first": "K",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2000,
"venue": "Proc. ICSLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. Chen et al, \"Fast speaker adaptation using eigenspace-based maximum likelihood linear regression,\" in Proc. ICSLP, Beijing, Oct. 2000.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Speaker Adaptation: Techniques and Challenges",
"authors": [
{
"first": "P",
"middle": [
"C"
],
"last": "Woodland",
"suffix": ""
}
],
"year": 2000,
"venue": "Proc. IEEE Workshop on Automatic Speech Recognition and Understanding",
"volume": "",
"issue": "",
"pages": "85--90",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. C. Woodland, \"Speaker Adaptation: Techniques and Challenges\", Proc. IEEE Workshop on Automatic Speech Recognition and Understanding, pp.85-90, 2000.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Kernel Eigenspace-Based MLLR Adaptation",
"authors": [
{
"first": "Brian Kan-Wing",
"middle": [],
"last": "Mak",
"suffix": ""
},
{
"first": "Roger Wend-Huu",
"middle": [],
"last": "Hsiao",
"suffix": ""
}
],
"year": 2007,
"venue": "IEEE Trans. on Audio, Speech, and Language Processing",
"volume": "15",
"issue": "3",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Brian Kan-Wing Mak, and Roger Wend-Huu Hsiao, \"Kernel Eigenspace-Based MLLR Adaptation\", IEEE Trans. on Audio, Speech, and Language Processing, vol. 15, no. 3, Mar 2007.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Mean and variance adaptation within the MLLR framework",
"authors": [
{
"first": "M",
"middle": [
"J F"
],
"last": "Gales",
"suffix": ""
},
{
"first": "P",
"middle": [
"C"
],
"last": "Woodland",
"suffix": ""
}
],
"year": 1996,
"venue": "Computer Speech and Language",
"volume": "10",
"issue": "4",
"pages": "249--264",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M.J.F.Gales and P.C.Woodland, \"Mean and variance adaptation within the MLLR framework\", Computer Speech and Language, vol. 10, no. 4, pp. 249-264, 1996.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "The HTK book",
"authors": [
{
"first": "S",
"middle": [],
"last": "Young",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S.Young et al, \"The HTK book,\" http://htk.eng.cam.ac.uk.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "A multi-class MLLR kernel for SVM speaker recognition",
"authors": [
{
"first": "N",
"middle": [],
"last": "Zahi",
"suffix": ""
},
{
"first": "William",
"middle": [
"M"
],
"last": "Karam",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Campbell",
"suffix": ""
}
],
"year": 2008,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zahi N. Karam and William M. Campbell, \"A multi-class MLLR kernel for SVM speaker recognition,\" in ICASSP 2008.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Eigen-MLLR Coefficients as New Feature Parameters for Speaker Identification",
"authors": [
{
"first": "J",
"middle": [
"C"
],
"last": "Nick",
"suffix": ""
},
{
"first": "Wei-Ho",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Lin-Shan",
"middle": [],
"last": "Tsai",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Lee",
"suffix": ""
}
],
"year": 2001,
"venue": "European Conference on Speech Communication and Technology",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nick J.C.Wang, Wei-Ho Tsai and Lin-shan Lee, \"Eigen-MLLR Coefficients as New Feature Parameters for Speaker Identification,\" 2001 European Conference on Speech Communication and Technology, Aalborg, Denmark, Sept 2001",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Critical Band Subspace-Based Speech Enhancement Using SNR and Auditory Masking Aware Technique",
"authors": [
{
"first": "Wang",
"middle": [],
"last": "Jia-Ching",
"suffix": ""
},
{
"first": "Lee",
"middle": [],
"last": "Hsiao-Ping",
"suffix": ""
},
{
"first": "Wang",
"middle": [],
"last": "Jhing-Fa",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Chung-Hsien",
"suffix": ""
}
],
"year": 2007,
"venue": "IEICE Transactions on Information and Systems. vol",
"volume": "90",
"issue": "7",
"pages": "1055--1062",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wang Jia-Ching, Lee Hsiao-Ping, Wang Jhing-Fa, and Yang Chung-Hsien, \"Critical Band Subspace-Based Speech Enhancement Using SNR and Auditory Masking Aware Technique\", IEICE Transactions on Information and Systems. vol 90; number 7, pages 1055-1062, July 2007",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Fast speaker adaptation using eigenspace-based maximum-likelihood linear regression",
"authors": [
{
"first": "K",
"middle": [
"T"
],
"last": "Chen",
"suffix": ""
},
{
"first": "W",
"middle": [
"W"
],
"last": "Liau",
"suffix": ""
},
{
"first": "H",
"middle": [
"M"
],
"last": "Wang",
"suffix": ""
},
{
"first": "L",
"middle": [
"S"
],
"last": "Lee",
"suffix": ""
}
],
"year": 2000,
"venue": "Proc. ICSLP",
"volume": "3",
"issue": "",
"pages": "742--745",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. T. Chen, W. W. Liau, H. M. Wang, and L. S. Lee, \"Fast speaker adaptation using eigenspace-based maximum-likelihood linear regression,\" in Proc. ICSLP, 2000, vol. 3, pp. 742-745.",
"links": null
}
},
"ref_entries": {
"TABREF1": {
"content": "<table><tr><td>\u7684\u6c7a\u5b9a\u662f\u5728\u65bc\u6240\u5b9a\u7684\u6a19\u6e96(threshold)\u4e4b\u4e0a\u6216\u4e4b\u4e0b\u3002</td><td/></tr><tr><td>(\u4e09) \u3001\u7279\u5fb5\u5f0f\u6700\u5927\u76f8\u4f3c\u5ea6\u7dda\u6027\u8ff4\u6b78(Eigen-Maximum Likelihood Linear</td><td/></tr><tr><td>Regression, Eigen-MLLR)</td><td/></tr><tr><td colspan=\"2\">\u9996\u5148\u6211\u5011\u5f9e\u539f\u59cb\u7684 MLLR \u6f14\u7b97\u6cd5\u4f86\u770b [3] [5]\uff0c\u6b64\u65b9\u6cd5\u7684\u539f\u7406\u80cc\u5f8c\u662f\u900f\u904e\u5047\u8a2d\u6539\u8b8a\u5f8c\u7684</td></tr><tr><td>\u53c3\u6578\u6703\u548c\u539f\u672c\u7684\u57fa\u672c\u53c3\u6578\u9593\u552f\u4e00\u7dda\u6027\u8ff4\u6b78\u7684\u51fd\u6578\u95dc\u4fc2\uff1a\u5982\u4e0b</td><td/></tr><tr><td>Y AX B = +</td><td>(2)</td></tr><tr><td colspan=\"2\">\u82e5\u5c07\u6b64\u539f\u7406\u4f7f\u7528\u5728\u8a9e\u8005\u8abf\u9069\u4e2d\uff0c\u8a9e\u6599\u7684\u6bcf\u4e00\u500b\u7279\u5fb5\u5411\u91cf\u63a5\u4ee3\u8868\u8457\u8a9e\u8005\u8207\u56e0\u7a7a\u9593\u4e2d\u7684\u5176\u4e2d</td></tr><tr><td colspan=\"2\">\u4e00\u500b\u6a23\u672c\uff0c\u800c\u6211\u5011\u4e5f\u5047\u8a2d\u4e86\u5f85\u6c42\u53c3\u6578\u548c\u73fe\u6709\u53c3\u6578\u4e4b\u9593\u7684\u51fd\u6578\u95dc\u4fc2\uff0c\u56e0\u6b64\u53ef\u4ee5\u4fbf\u53ef\u4ee5\u4f7f\u7528</td></tr><tr><td>\u6700\u5927\u76f8\u4f3c\u5ea6(Maximum Likelihood, ML)\u4f30\u6e2c\u6cd5\u4f86\u6c42\u5f97 A\u3001B \u7684\u503c\uff0c\u5982\u4e0b\u6240\u793a\uff1a</td><td/></tr><tr><td>arg max ( | , , )</td><td/></tr><tr><td>arg max ( | , , )</td><td/></tr></table>",
"text": "\u70ba\u85c9\u7531\u6700\u4f73\u5316\u8655\u7406 \u5f9e\u8a13\u7df4\u96c6\u5408\u4e2d\u7372\u5f97\u7684\u652f\u63f4\u5411\u91cf\u7fa4(Support Vectors) \u3002\u7406\u60f3\u7684\u8f38\u51fa\u503c\u85c9\u8457\u76f8\u95dc\u7684\u652f\u63f4\u5411\u91cf \u662f\u843d\u5728\u985e\u5225 1(\u5176\u503c\u70ba\uff0b1)\u6216\u985e\u5225 2(\u5176\u503c\u70ba-1) \u3002\u5c0d\u65bc\u5206\u985e\u4f86\u8aaa\uff0c\u6578\u503c f(x)\u6240\u5c6c\u985e\u5225",
"num": null,
"html": null,
"type_str": "table"
},
"TABREF3": {
"content": "<table><tr><td/><td colspan=\"2\">Recognition Phase SVM classification (Recognition Phase)</td><td>Test Data MLLR regression Matrix database</td></tr><tr><td/><td/><td/><td>(One of S speakers)</td></tr><tr><td colspan=\"4\">Adaptation Phase SVM classification Adaptation Data 2 3 \u6b63\u78ba\u8a9e\u53e5 139 136 137 142 142 135 142 141 142 138 Update Speech SI Model Find speaker database \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 1 4 5 6 7 8 9 10 \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c SI Model MLLR-MS \u6b63\u78ba\u8a9e\u53e5 \u6b63\u78ba\u8a9e\u53e5 \u6b63\u78ba\u8a9e\u53e5 1394</td></tr><tr><td>\u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 \u8fa8 \u8b58 \u6b63 \u78ba \u8fa8 \u8b58 \u6b63 \u78ba \u8fa8 \u8b58 \u6b63 \u78ba \u8fa8 \u8b58 \u6b63 \u78ba \u7387 \u7387 \u7387 \u7387(%)</td><td colspan=\"3\">Finding speaker MLLR matrix set MLLR full regression To find speaker MLLR-RMS 14 13 8 8 8 matrix estimation Maximum likelihood coordinate estimation MLLR-RMS By ML 92.6 90.6 91.3 94.6 94.6 90 94.6 94 94.6 92 recognition Adaptation Data weight 11 9 8 12</td><td>106 92.9</td></tr><tr><td/><td>MLLR matrix set</td><td>MLLR regression</td><td>(Adaptation Phase)</td></tr><tr><td/><td>(Adaptation Phase) Eigenspace</td><td>Matrix database</td></tr><tr><td/><td colspan=\"3\">(Training Phase) \u5716\u516d\u3001\u6cdb\u5728\u9ea5\u514b\u98a8\u9663\u5217\u793a\u610f\u5716</td></tr><tr><td/><td colspan=\"3\">\u5716\u4e94\u3001\u8abf\u9069\u968e\u6bb5\u67b6\u69cb\u5716</td></tr><tr><td colspan=\"4\">\u5be6\u9a57\u904e\u7a0b\u7e3d\u5171\u4f7f\u7528\u4e86 10 \u500b\u4eba\u70ba\u63d0\u4f9b\u8a13\u7df4\u8a9e\u6599\u4ee5\u53ca\u8abf\u9069\u7684\u8a9e\u8005\uff0c\u6bcf\u500b\u8a9e\u8005\u7684\u8a13\u7df4\u8a9e\u53e5\u90fd \u56db\u3001\u5be6\u9a57\u7d50\u679c \u70ba 15 \u53e5\u3002\u6240\u63a1\u53d6\u7684\u8fa8\u8b58\u7387\u8a08\u7b97\u4ee5\u6b63\u78ba\u7387\u70ba\u4e3b\uff0c\u7686\u4ee5\u767e\u5206\u6bd4\u8868\u793a\uff0c\u8a08\u7b97\u65b9\u5f0f\u5982\u4e0b\uff1a \u8868\u4e03\u3001\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u7684\u8a9e\u8005\u8abf\u9069\u6cd5 150 \u53e5\u751f\u6d3b\u7528\u8a9e\u6e2c\u8a66</td></tr><tr><td colspan=\"4\">Maximum Likelihood estimate, ML)\u65b9\u6cd5\u4f86\u5c07\u8a9e\u8005\u5b9a\u4f4d\u5728\u7279\u5fb5\u7a7a\u9593\u4e2d\u7684\u56de\u6b78\u77e9\u9663\u3002\u6700\u5927\u76f8\u4f3c\u5ea6 \u4f30\u6e2c\u548c\u6700\u5927\u76f8\u4f3c\u5ea6\u7dda\u6027\u56de\u6b78\u6703\u4f7f\u7528\u8abf\u9069\u8a9e\u6599\u4f86\u500b\u5225\u505a\u4e00\u500b\u65b0\u7684\u4f30\u6e2c\u3002\u500b\u5225\u4f30\u6e2c\u5f8c\u6240 \u7372\u5f97\u7684\u7d50\u679c\u5c07\u6703\u548c\u5229\u7528 SVM \u6240\u627e\u51fa\u5c0d\u61c9\u8a9e\u8005\u7684 MLLR \u56de\u6b78\u77e9\u9663\uff0c\u4e09\u8005\u505a\u4e00\u500b weighting \u7684\u904b\u7b97\uff0c\u4e26\u5c07\u7372\u5f97\u7684\u7d50\u679c\u5c0d\u539f\u672c\u8a9e\u8005\u7684 MLLR \u56de\u6b78\u77e9\u9663\u4f5c\u66f4\u65b0\u3002\u65bc\u662f\u6211 \u6211\u5011\u5be6\u73fe\u5be6\u9a57\u7684\u7d50\u679c\u662f\u4ee5\u53f0\u7063\u53e3\u97f3\u4e2d\u6587\u8a9e\u6599 MAT-400 \u70ba\u57fa\u790e\u7684\u8a9e\u97f3\u6a21\u578b\u3002\u8abf\u9069\u8a9e\u6599\u5247 \u662f\u4ee5\u65e5\u5e38\u751f\u6d3b\u7528\u8a9e\u5927\u7d04 7~10 \u500b\u5b57\uff0c\u800c\u5728\u6e2c\u8a66\u6642\u5247\u4ee5\u4eba\u540d\u6216\u662f\u65e5\u5e38\u751f\u6d3b\u7528\u8a9e\u70ba\u4e3b\u3002\u8a9e\u97f3 = 100% \u00d7 \u8fa8\u8b58\u6b63\u78ba\u8a9e\u53e5\u53e5\u6578 \u8fa8\u8b58\u6b63\u78ba\u7387 (8) \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 1 2 3 4 5 6 7 8 9 10 \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c \u5168\u90e8\u8a9e\u53e5\u53e5\u6578 \u6b63\u78ba\u8a9e\u53e5 \u6b63\u78ba\u8a9e\u53e5 \u6b63\u78ba\u8a9e\u53e5 \u6b63\u78ba\u8a9e\u53e5 142 137 139 144 141 138 140 144 145 138 1408 \u7279\u5fb5\u7684\u652b\u53d6\u8a2d\u5b9a\u5247\u5b9a\u7fa9\u5728\u8868\u4e09\u3002\u6211\u5011\u4f7f\u7528 MLLR \u8abf\u9069\u88fd\u9020\u51fa\u64f4\u5f35\u6bcf\u4e00\u500b\u8a9e\u53e5\u7684\u57fa\u5e95 SVM \u7279\u5fb5\uff0c\u5c0d\u65bc\u9ad8\u65af\u6df7\u5408\u6a21\u578b\u7684\u6bcf\u4e00\u500b\u5177\u9ad4\u7684\u985e\u5225\u90fd\u8981\u505a\u8abf\u9069\u3002\u6211\u5011\u4fbf\u4f7f\u7528 HTK[6] \u4f86 \u5efa\u7acb\u4e0a\u8ff0\u7684\u5de5\u4f5c\u4e26\u4e14\u7522\u751f\u4e00\u905e\u8ff4\u5f0f MLLR \u4f86\u5efa\u7acb\u8f49\u63db\u5f0f\u3002 \u8868\u56db\u70ba\u5728\u5c1a\u672a\u6709\u4efb\u4f55\u8a9e\u8005\u8abf\u9069\u65b9\u6cd5\u7684\u6cdb\u5728\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u4e0b\u6240\u6e2c\u8a66\u7684\u7d50\u679c\uff0c\u53ef\u4ee5\u767c\u73fe\u521d\u59cb \u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 8 13 11 6 9 12 10 6 5 12 92 \u8072\u97f3\u6a21\u578b\u78ba\u5be6\u662f\u5c0d\u4efb\u4f55\u4e00\u500b\u8a9e\u8005\u90fd\u63d0\u4f9b\u76f8\u540c\u7684\u8fa8\u8b58\u6e96\u78ba\u6548\u80fd\uff0c\u7e3d\u5e73\u5747\u6e96\u78ba\u7387\u70ba 85.7%\u3002 \u8868\u56db\u3001\u672a\u6709\u4efb\u4f55\u8a9e\u8005\u8abf\u9069\u6cd5 150 \u53e5\u751f\u6d3b\u7528\u8a9e\u6e2c\u8a66 \u8fa8 \u8b58 \u6b63 \u78ba \u8fa8 \u8b58 \u6b63 \u78ba \u8fa8 \u8b58 \u6b63 \u78ba \u8fa8 \u8b58 \u6b63 \u78ba \u7387 \u7387 \u7387 \u7387(%) 94.7 91.3 92.7 96 94 92 93.3 96 96.7 92 93.9</td></tr><tr><td colspan=\"4\">\u5c0d\u65bc\u5df2\u7d93\u63d0\u4f9b\u8a13\u7df4\u8a9e\u6599\u7684\u76ee\u6a19\u8a9e\u8005\uff0c\u6bcf\u53e5\u8a71\u90fd\u6703\u7528\u4e00\u500b SVM \u7279\u5fb5\u5411\u91cf\u4f86\u4ee3\u8868\uff0c\u800c\u9078\u64c7 \u5011\u4fee\u6539\u4e86 [10] \u4e2d\u7684 Equation (5) \u589e\u52a0\u4e86\u4e00\u500b\u8abf\u9069\u4fe1\u5fc3\u5ea6\u7684\u4f30\u7b97\u3002\u4e0b\u5217\u70ba\u4e00\u500b\u66f4\u65b0 SVM \u7684\u985e\u5225\u5247\u6703\u900f\u904e\u76ee\u6a19\u8a9e\u8005\u7684\u7279\u5fb5\u5411\u91cf\u548c\u539f\u6709\u7684 SVM \u7279\u5fb5\u5411\u91cf\u985e\u5225\u4f86\u4f5c\u4e00\u6bd4\u91cd\u9078 \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 1 2 3 4 5 6 7 8 9 10 \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c \u503c\u7684\u904b\u7b97\u3002 \u64c7\u3002 \u6b63\u78ba\u8a9e\u53e5 \u6b63\u78ba\u8a9e\u53e5 \u6b63\u78ba\u8a9e\u53e5 \u6b63\u78ba\u8a9e\u53e5 130 124 126 133 129 126 127 131 134 125 1285 \u4e94\u3001\u7d50\u8ad6</td></tr><tr><td colspan=\"4\">( ) ( ) \u0174 (1 ) W n c present conf c m m \u03b3 \u03be \uf8f6 \uf8f7 \uf8f7 + \u2212 \u22c5 \uf8f7 \uf8f7 \uf8f8 (7) \u5728\u6211\u5011\u7684\u5be6\u9a57\u4e2d\uff0c\u4f7f\u7528\u4e86\u6cdb\u5728\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71(ubiquitous speech recognition system)\u4f86\u6e2c 1 1 1 1 W W c N M EIGEN c m n c conf S N n m n \u03bb \u03be \u03bb \u03b3 = = = = \uf8eb \u22c5 + \uf8ec \uf8ec = \u22c5 \uf8ec + \uf8ec \uf8ed \u2211 \u2211 \u8a66\uff0c\u7e3d\u5171\u4f7f\u7528\u4e86 6 \u652f\u5168\u5411\u6027\u9ea5\u514b\u98a8\u4f48\u5728\u623f\u9593\u7684\u5929\u82b1\u677f\uff0c\u5176\u6536\u97f3\u7bc4\u570d\u53ef\u4ee5\u6db5\u84cb\u4e86\u6574\u500b\u623f\u9593 \u5167\u90e8\uff0c\u5982\u5716\u516d\u3002\u7531\u65bc\u5176\u6392\u5217\u65b9\u5f0f\u4e26\u975e\u50b3\u7d71\u7684\u9ea5\u514b\u98a8\u9663\u5217\u65b9\u5f0f\uff0c\u7121\u6cd5\u4f7f\u7528\u50b3\u7d71\u7684\u96dc\u8a0a\u6d88\u9664 \u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 20 26 24 17 21 24 23 19 16 25 215 \u8fa8 \u8b58 \u6b63 \u78ba \u8fa8 \u8b58 \u6b63 \u78ba \u8fa8 \u8b58 \u6b63 \u78ba \u5728\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u4e2d\uff0c\u8a9e\u8005\u8abf\u9069\u7684\u5de5\u4f5c\u662f\u6574\u9ad4\u8fa8\u8b58\u6548\u80fd\u7684\u4e00\u500b\u5f88\u91cd\u8981\u7684\u74b0\u7bc0\uff0c\u800c\u4e14\u5c0d\u65bc\u5728 \u8fa8 \u8b58 \u6b63 \u78ba \u7387 \u7387 \u7387 \u7387(%) 86.6 82.6 84 88.7 86 84 84.7 87.3 89.3 83.3 \u591a\u4eba\u4f7f\u7528\u7684\u74b0\u5883\u4e0b\uff0c\u8a9e\u8005\u8abf\u9069\u6280\u8853\u5728\u5feb\u901f\u8abf\u9069\u4ee5\u53ca\u975e\u76e3\u7763\u5f0f\u8abf\u9069\u7684\u60c5\u6cc1\u4e0b\u5c31\u66f4\u5fc5\u9808\u52a0 85.7 \u5f37\uff0c\u9019\u5169\u65b9\u9762\u4e5f\u6703\u662f\u4eca\u5f8c\u8a9e\u8005\u8abf\u9069\u6280\u8853\u767c\u5c55\u7684\u91cd\u9ede\u3002\u4e00\u500b\u8abf\u9069\u6280\u8853\u4e0d\u50c5\u8981\u80fd\u5920\u9054\u6210\u5feb\u901f \u2211 \u2211 M \u8868\u793a\u70ba\u7279\u5fb5\u5411\u7684\u6578\u76ee\uff0cn \u8868\u793a\u70ba\u5728 N c \u4e2d\u7684\u4e00\u500b\u6df7\u5408\u5143\u4ef6\uff0cr n (m)\u8868\u793a\u5728\u6642\u9593\u70ba t \u6642\u7684\u89c0\u6e2c\u6a5f\u7387\uff0cW c present \uff0cW c EIGEN \uff0cW c \u6cd5\u4f86\u9054\u5230\u8f03\u597d\u7684\u6548\u679c\uff0c\u6240\u4ee5\u4fbf\u5c07 6 \u652f\u9ea5\u514b\u98a8\u4f7f\u7528\u591a\u901a\u9053\u6df7\u97f3(multi-channel mixer)\u7684 \u65b9\u5f0f\u6210\u55ae\u4e00\u8f38\u5165\uff0c\u518d\u4f7f\u7528\u5b50\u7a7a\u9593\u5f0f\u8a9e\u97f3\u589e\u5f37\u6f14\u7b97\u6cd5 [9](Subspace Speech Enhancement, Using SNR and Auditory Masking Aware Technique)\u5728\u8a9e\u97f3\u8a0a\u865f\u7684\u524d\u8655\u7406\u4f86\u6d88\u9664\u8a9e\u97f3\u96dc \u8a0a\uff0c\u518d\u958b\u59cb\u53d6\u8a9e\u97f3\u7279\u5fb5\u3002 \u8abf\u9069\uff0c\u4e14\u5fc5\u9808\u80fd\u5920\u5728\u53ea\u6709\u5c11\u91cf\u8a9e\u6599\u7684\u60c5\u5f62\u4e0b\u5c07\u73fe\u6709\u539f\u59cb\u7684\u8072\u5b78\u6a21\u578b\u8abf\u6574\u81f3\u66f4\u9069\u5408\u7576\u4e0b\u8a9e \u63a5\u8457\u6211\u5011\u4ee5\u50b3\u7d71\u7684 MAP \u8a9e\u8005\u8abf\u9069\u65b9\u5f0f\u4f86\u4f7f\u7528\u65bc\u7cfb\u7d71\uff0c\u8868\u4e94\u70ba\u4f7f\u7528 MAP \u8a9e\u8005\u8abf\u9069\u5f8c\u7684 \u8005\u7684\u72c0\u614b\uff0c\u7279\u5225\u662f\u5c0d\u65bc\u5728\u4e00\u500b\u7a7a\u9593\u4e2d\u7684\u56fa\u5b9a\u6210\u54e1\u66f4\u662f\u6709\u6240\u9700\u8981\uff0c\u5982\u5bb6\u5ead\u6210\u54e1\u3002\u5728\u672c\u8ad6\u6587 \u7d50\u679c\u3002\u53ef\u4ee5\u767c\u73fe\u5c0d\u65bc\u6bcf\u500b\u8a9e\u8005\u505a\u8abf\u9069\u4e4b\u5f8c\uff0c\u8fa8\u8b58\u7cfb\u7d71\u5c0d\u65bc\u6bcf\u500b\u4eba\u7684\u6e96\u78ba\u7387\u5e73\u5747\u90fd\u6709 \u63d0\u51fa\u7684\u67b6\u69cb\u4e2d\uff0c\u5229\u7528\u7279\u5fb5\u5f0f\u6700\u5927\u76f8\u4f3c\u5ea6\u7dda\u6027\u56de\u6b78(Eigen-MLLR)\u6240\u5efa\u7acb\u7684\u591a\u8a9e\u8005\u7279\u5fb5 2%~3%\u7684\u6e96\u78ba\u7387\u63d0\u5347\uff0c\u7e3d\u5e73\u5747\u6e96\u78ba\u7387\u70ba 88.2%\u3002 \u5411\u91cf\u7a7a\u9593\u7d50\u5408\u652f\u63f4\u5411\u91cf\u6a5f(SVM)\u7684\u5206\u985e\u4f86\u9054\u6210\u5feb\u901f\u591a\u8a9e\u8005\u8abf\u9069\u3002\u6e2c\u8a66\u8a9e\u8005\u7684\u8a9e\u53e5\u7d93 estimate \u5247\u5206\u5225\u70ba\u985e\u5225 c \u76ee\u524d\u7684\u56de\u6b78\u77e9\u9663\uff0c\u7531 ML \u4f30\u6e2c\u51fa\u4f86\u7684\u7279\u5fb5\u7a7a\u9593\u77e9\u9663\uff0c\u4ee5\u53ca\u7531 MLLR full regression \u4f30\u6e2c\u51fa\u4f86\u7684\u56de\u6b78\u77e9\u9663\u3002 W c \u70ba\u66f4\u65b0\u904e\u5f8c\u7684\u56de\u6b78\u77e9\u9663\u3002 conf \u03be \u70ba\u4fe1\u5fc3\u6bd4\u91cd\uff0c\u4fe1\u5fc3\u6bd4\u91cd\u5247\u662f\u4f9d\u7167\u8fa8\u8b58\u7d50\u679c\u800c\u5f97 \u7684\u3002\u589e\u52a0\u4fe1\u5fc3\u6bd4\u91cd\u53c3\u6578\u662f\u907f\u514d\u7576\u767c\u751f\u8fa8\u8b58\u7d50\u679c\u7522\u751f\u932f\u8aa4\u800c\u63a5\u53d7, \u4e5f\u5c31\u662f\u5c0d\u7684\u8a9e\u97f3\u8fa8 \u8868\u4e94\u3001\u4f7f\u7528 MAP \u8a9e\u8005\u8abf\u9069\u6cd5 150 \u53e5\u751f\u6d3b\u7528\u8a9e\u6e2c\u8a66 \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 \u6e2c\u8a66\u8a9e\u8005 1 2 3 4 5 6 7 8 9 10 \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c \u7e3d\u7d50\u679c \u6b63\u78ba\u8a9e\u53e5 \u6b63\u78ba\u8a9e\u53e5 \u6b63\u78ba\u8a9e\u53e5 \u6b63\u78ba\u8a9e\u53e5 135 126 131 136 134 129 132 135 137 128 1323 \u904e Likelihood estimate)\u4e09\u8005\u4f86\u4f7f\u7528\u6bd4\u91cd\u53d6\u6c7a\u91cd\u65b0\u8a08\u7b97\uff0c\u4e26\u4e14\u5c07\u7d50\u679c\u4f86\u5373\u6642\u66f4\u65b0\u6e2c\u8a66\u8a9e\u8005\u76f8</td></tr><tr><td colspan=\"4\">\u8b58\u6210\u932f\u7684, \u6216\u932f\u7684\u8a9e\u97f3\u8fa8\u8b58\u6210\u5c0d\u7684, \u4f86\u5c0e\u81f4\u6574\u500b\u8abf\u9069\u6a21\u578b\u8d8a\u4f86\u8d8a\u5dee\u3002\u6574\u500b\u8abf\u9069\u904e\u7a0b \u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 \u932f\u8aa4\u8a9e\u53e5 15 24 19 14 16 21 18 15 13 22 177 \u5c0d\u61c9\u7684 MLLR \u56de\u6b78\u77e9\u9663\u53c3\u6578\u3002\u5728\u672c\u8ad6\u6587\u4e2d\u4e5f\u767c\u73fe\uff0c\u82e5\u53ef\u4ee5\u518d\u52a0\u5f37\u8a9e\u97f3\u589e\u5f37\u8655\u7406\u7684\u6f14\u7b97</td></tr><tr><td colspan=\"4\">\u5982\u5716\u4e94\u3002 \u8fa8 \u8b58 \u6b63 \u78ba \u8fa8 \u8b58 \u6b63 \u78ba \u8fa8 \u8b58 \u6b63 \u78ba \u8fa8 \u8b58 \u6b63 \u78ba \u7387 \u7387 \u7387 \u7387(%) \u6cd5\u964d\u4f4e\u66f4\u591a\u96dc\u8a0a\u4ee5\u53ca\u63d0\u5347\u8a0a\u865f\u5f37\u5ea6\uff0c\u5247\u5c0d\u6574\u500b\u8a9e\u8005\u8abf\u9069\u548c\u8fa8\u8b58\u6548\u80fd\u518d\u9032\u4e00\u6b65\u63d0\u5347\u3002\u5728\u672a 90 84 87.3 90.7 89.3 86 88 90 91.3 85.3 88.2 \u4f86\u7684\u8a9e\u97f3\u8fa8\u8b58\u74b0\u5883\u4e2d\uff0c\u5e0c\u671b\u80fd\u5920\u589e\u52a0\u66f4\u591a\u7684\u9ea5\u514b\u98a8\uff0c\u4f7f\u7684\u80fd\u9054\u5230\u5bec\u5bb9\u5ea6\u66f4\u9ad8\u7684\u6cdb\u5728\u8a9e\u97f3</td></tr><tr><td colspan=\"4\">\u4f7f\u7528\u74b0\u5883\uff0c\u4e5f\u53ef\u4ee5\u96a8\u6642\u52a0\u5165\u65b0\u7684\u8a9e\u8005\u8b93\u7cfb\u7d71\u53ef\u4ee5\u81ea\u6211\u66f4\u65b0\u4ee5\u53ca\u4f5c\u8abf\u9069\uff0c\u4e5f\u5e0c\u671b\u9019\u9805\u6280\u8853</td></tr><tr><td colspan=\"4\">\u80fd\u7d50\u5408\u5176\u4ed6\u7684\u61c9\u7528\u5230\u66f4\u5ee3\u6cdb\u7684\u5c64\u9762\uff0c\u8b93\u4eba\u5011\u751f\u6d3b\u53ef\u4ee5\u85c9\u8457\u6578\u4f4d\u5316\u66f4\u4fbf\u5229\u3002</td></tr></table>",
"text": "\u8868\u516d\u5247\u4f7f\u7528\u50b3\u7d71 MLLR \u8a9e\u8005\u8abf\u9069\u6cd5\u4f7f\u7528\u65bc\u8fa8\u8b58\u7cfb\u7d71\u7684\u8fa8\u8b58\u7d50\u679c\uff0c\u76f8\u8f03\u65bc MAP \u8abf\u9069\u6cd5\uff0c \u6709\u8457\u66f4\u9ad8\u7684\u8fa8\u8b58\u7387\uff0c\u6703\u9020\u6210\u9019\u6a23\u7684\u7d50\u679c\u6700\u6709\u53ef\u80fd\u7684\u539f\u56e0\u662f 15 \u53e5\u7684\u8abf\u9069\u8a9e\u6599\u5c0d MAP \u4f86 \u8aaa\u662f\u975e\u5e38\u7684\u5c11\u91cf\uff0c\u800c\u4f7f\u5f97 MAP \u771f\u6b63\u7684\u512a\u9ede\u6839\u672c\u9084\u4f86\u4e0d\u53ca\u767c\u63ee\uff0c\u76f8\u8f03\u65bc MLLR\uff0c\u53cd\u800c\u80fd \u5728\u5c11\u91cf\u8a9e\u6599\u6642\u5c31\u986f\u793a\u51fa\u76f8\u7576\u51fa\u8272\u7684\u8868\u73fe\uff0c\u6bd4\u672a\u8abf\u9069\u7684\u6b63\u78ba\u7387\u591a\u51fa 5%~8%\uff0c\u6bd4 MAP \u591a \u51fa 3%~5%\u7684\u8fa8\u8b58\u6b63\u78ba\u7387\u3002 \u8868\u516d\u3001\u4f7f\u7528 MLLR \u8a9e\u8005\u8abf\u9069\u6cd5 150 \u53e5\u751f\u6d3b\u7528\u8a9e\u6e2c\u8a66 \u8868\u4e03\u7684\u5be6\u9a57\u7d50\u679c\u5247\u70ba\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u61c9\u7528\u7279\u5fb5\u5f0f MLLR \u8207 SVM \u7684\u8a9e\u8005\u8abf\u9069\u67b6\u69cb\u3002\u8207 MAP \u8abf\u9069\u6cd5\u4f86\u6bd4\u8f03\uff0c\u7531\u65bc\u85c9\u8457 MLLR \u7684\u7279\u6027\u95dc\u4fc2\uff0c\u9084\u662f\u53ef\u4ee5\u85c9\u8457\u5c11\u91cf\u8a9e\u6599\u800c\u9054\u5230\u660e\u986f\u7684\u6548 \u679c\uff0c\u4e14\u5229\u7528 SVM \u4f86\u76f4\u63a5\u9078\u64c7\u76f8\u5c0d\u61c9\u7684\u7279\u5fb5\u53c3\u6578\u77e9\u9663\uff0c\u5c11\u6389\u4e86\u91cd\u65b0\u7531\u8a9e\u6599\u8a08\u7b97\u53c3\u6578\u7684\u904b \u7b97\u91cf\uff0c\u4e5f\u6bd4\u50b3\u7d71\u7684 MLLR \u5e73\u5747\u63d0\u5347\u4e86 1%\u5de6\u53f3\u8fa8\u8b58\u7387\uff0c\u76f8\u8f03\u65bc\u672a\u8abf\u9069\u7684\u8fa8\u8b58\u7cfb\u7d71\u66f4\u63d0\u5347 \u4e86 8%\u5e73\u5747\u8fa8\u8b58\u7387\uff0c\u76f8\u8f03\u65bc MAP \u5e73\u5747\u63d0\u5347\u4e86 4%~5%\u8fa8\u8b58\u7387\u3002 SVM \u5206\u985e\u5b8c\u7562\u4e4b\u5f8c\uff0c\u4fbf\u6703\u5728 MLLR \u56de\u6b78\u77e9\u9663\u7fa4\u4e2d\u627e\u51fa SVM \u985e\u5225\u76f8\u5c0d\u61c9\u7684\u56de\u6b78\u77e9\u9663 \u4e26\u4e14\u8207\u521d\u59cb\u6a21\u578b\u7d50\u5408\u6210\u8a9e\u8005\u7279\u5b9a\u6a21\u578b\uff0c\u518d\u9032\u884c\u8a9e\u97f3\u8fa8\u8b58\u3002\u7136\u5f8c\u5c07\u8a9e\u97f3\u8fa8\u8b58\u7684\u7d50\u679c\u5229\u7528 MLLR \u56de\u6b78\u77e9\u9663\u4f30\u6e2c (MLLR regression matrix estimate) \u4ee5\u53ca\u6700\u5927\u76f8\u4f3c\u5ea6\u4f30\u6e2c (Maximum",
"num": null,
"html": null,
"type_str": "table"
}
}
}
} |