File size: 68,681 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 |
{
"paper_id": "O08-4001",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:02:36.113820Z"
},
"title": "Multiple Document Summarization Using Principal Component Analysis Incorporating Semantic Vector Space Model",
"authors": [
{
"first": "Om",
"middle": [],
"last": "Vikas",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Akhil",
"middle": [
"K"
],
"last": "Meshram",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Girraj",
"middle": [],
"last": "Meena",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Amit",
"middle": [],
"last": "Gupta",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Text Summarization is very effective in relevant assessment tasks. The Multiple Document Summarizer presents a novel approach to select sentences from documents according to several heuristic features. Summaries are generated modeling the set of documents as Semantic Vector Space Model (SVSM) and applying Principal Component Analysis (PCA) to extract topic features. Pure Statistical VSM assumes terms to be independent of each other and may result in inconsistent results. Vector space is enhanced semantically by modifying the weight of the word vector governed by Appearance and Disappearance (Action class) words. The knowledge base for Action words is maintained by classifying the words as Appearance or Disappearance with the help of Wordnet. The weights of the action words are modified in accordance with the Object list prepared by the collection of nouns corresponding to the action words. Summary thus generated provides more informative content as semantics of natural language has been taken into consideration.",
"pdf_parse": {
"paper_id": "O08-4001",
"_pdf_hash": "",
"abstract": [
{
"text": "Text Summarization is very effective in relevant assessment tasks. The Multiple Document Summarizer presents a novel approach to select sentences from documents according to several heuristic features. Summaries are generated modeling the set of documents as Semantic Vector Space Model (SVSM) and applying Principal Component Analysis (PCA) to extract topic features. Pure Statistical VSM assumes terms to be independent of each other and may result in inconsistent results. Vector space is enhanced semantically by modifying the weight of the word vector governed by Appearance and Disappearance (Action class) words. The knowledge base for Action words is maintained by classifying the words as Appearance or Disappearance with the help of Wordnet. The weights of the action words are modified in accordance with the Object list prepared by the collection of nouns corresponding to the action words. Summary thus generated provides more informative content as semantics of natural language has been taken into consideration.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "With the advent of the information revolution, electronic documents are becoming a principal media of business and academic information. The Internet is being populated with hundreds of thousands of electronic documents each day. In order to fully utilize these on-line documents effectively, it is crucial to be able to extract the main idea of these documents. Having a Text Summarization system would thus be immensely useful in serving this need. Multiple Document Summarization System aids to provide the summary of a document set that \uff0a Indian Institute of Information Technology and Management, Gwalior, India-474010 E-mail: {omvikas, akhil, girrajmeena, amitgupta}@iiitm.ac.in contains documents which belong to same topic. It can also be used to generate the summary of a single document.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1."
},
{
"text": "In the present work, we propose a method of text summarization that uses semantics of data in order to form efficient and relevant summary. Summary is generated by constructing Statistical Vector Space Model (3.1) and then modifying it using the concept of Action words to form Semantic Vector Space Model (3.2). Action Words are identified using the Action Word Classifier which makes use of Wordnet [Kedar et al.] in order to analyze the semantics of word.",
"cite_spans": [
{
"start": 401,
"end": 415,
"text": "[Kedar et al.]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1."
},
{
"text": "Principal Component Analysis (3.3) is then applied on SVSM to reduce the dimension of multidimensional data sets. Singular Value Decomposition (SVD) is carried out on SVSM as a part of PCA to yield singular values and eigen vectors. Backprojection is then performed to project the documents onto the eigen space yielding projected values of documents which are henceforth compared with the singular values to yield the most relevant document/topic. Sentence Extraction (3.4) from multiple document sets has been assigned weight on the basis of keywords obtained from the most important document/topic. Sentences with higher weight are taken to form a summary.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1."
},
{
"text": "Various multiple document summarization systems already exist. This document summarizer is based on Kupeic 95 [Kupeic et al. 1995] which is a method of training a Bayesian classifier to recognize sentences that should belong in a summary. The classifier estimates the probability that a sentence belongs in a summary given a vector of features that are computed over the sentence. It identifies a set of features that correspond to the absence/presence of certain words or phrases and avoids the problem of having to analyze sentence structure. Their work focused on analyzing a single document at a time. Since then, there has been lot of work on the related problem of Multiple-document Summarization [Regina et al. 1999; Radev et al. 1998 ], where a system summarizes multiple documents on the same topic. For example, a system might summarize multiple news accounts of the recent massacre in Nepal; into a single document. Our hypothesis is that the similarities and differences between documents of the same type (e.g. bios of CS professors, earnings releases, etc.) provide information about the features that make a summary informative. The intuition is that the 'information content' of a document can be measured by the relationship between the document and a corpus of related documents. To be an informative summary, an abstract has to capture as much of the 'information content' as possible. To gain a handle on the problem of capturing the relationship between a document and a corpus, we examined several papers on Multiple-Document Summarization [Regina et al. 1999; Radev et al. 1998 Radev et al. , 2000 Radev et al. , 2004 Otterbacher et al. 2002] . However, we found most of their approaches were not applicable to Multiple Document Summarization Using 143 Principal Component Analysis Incorporating Semantic Vector Space Model our problem since they are mostly trying to match sentences of the same meaning to align multiple documents. The MEAD summarizer [Radev et al. 2000 [Radev et al. , 2001 , which was developed at the University of Michigan and at the Johns Hopkins University 2001 Summer Workshop on Automatic Summarization, produces summaries of one or more source articles (or a 'cluster' of topically related articles).",
"cite_spans": [
{
"start": 110,
"end": 130,
"text": "[Kupeic et al. 1995]",
"ref_id": null
},
{
"start": 671,
"end": 723,
"text": "Multiple-document Summarization [Regina et al. 1999;",
"ref_id": null
},
{
"start": 724,
"end": 741,
"text": "Radev et al. 1998",
"ref_id": "BIBREF11"
},
{
"start": 1562,
"end": 1582,
"text": "[Regina et al. 1999;",
"ref_id": null
},
{
"start": 1583,
"end": 1600,
"text": "Radev et al. 1998",
"ref_id": "BIBREF11"
},
{
"start": 1601,
"end": 1620,
"text": "Radev et al. , 2000",
"ref_id": "BIBREF14"
},
{
"start": 1621,
"end": 1640,
"text": "Radev et al. , 2004",
"ref_id": "BIBREF16"
},
{
"start": 1641,
"end": 1665,
"text": "Otterbacher et al. 2002]",
"ref_id": "BIBREF9"
},
{
"start": 1976,
"end": 1994,
"text": "[Radev et al. 2000",
"ref_id": "BIBREF14"
},
{
"start": 1995,
"end": 2015,
"text": "[Radev et al. , 2001",
"ref_id": "BIBREF15"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2."
},
{
"text": "Our Summarizer works on the documents belonging to same topic. It is strongly motivated by the analogy between this problem and the problem of face identification, where a system learns features for facial identification by applying PCA to find the characteristic eigenfaces [Turk et al. 1991; Pentland et al. 1994; Moon et al. 2001] .",
"cite_spans": [
{
"start": 275,
"end": 293,
"text": "[Turk et al. 1991;",
"ref_id": "BIBREF19"
},
{
"start": 294,
"end": 315,
"text": "Pentland et al. 1994;",
"ref_id": "BIBREF10"
},
{
"start": 316,
"end": 333,
"text": "Moon et al. 2001]",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2."
},
{
"text": "Any set of documents dealing with the same subject is decomposed using Vector Space model. The important keywords can be extracted from the Vector Space Model using a threshold. Such keywords are called thematic keywords which are based on statistics. Important sentences can be extracted and a summary can be made using thematic keywords. We propose a new methodology for multiple document summarization by enhancing the VSM using semantics and identifying topic features based keywords to make the multiple document summary. The approach is:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "New Methodology",
"sec_num": "3."
},
{
"text": "1. Statistical VSM construction from Multiple Document Set.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "New Methodology",
"sec_num": "3."
},
{
"text": "Wordnet.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic VSM generation using the concept of Contextual Action Words using",
"sec_num": "2."
},
{
"text": "3. Application of PCA on Semantic VSM to reduce the dimension of the multidimensional data set yielding the most important Keywords.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic VSM generation using the concept of Contextual Action Words using",
"sec_num": "2."
},
{
"text": "4. Score Sentences based on several features such as sentence length cut-off feature, position feature, keyword weight, etc.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic VSM generation using the concept of Contextual Action Words using",
"sec_num": "2."
},
{
"text": "5. Generation of Summary extracting the sentences with high Score.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic VSM generation using the concept of Contextual Action Words using",
"sec_num": "2."
},
{
"text": "The Multiple Document Summarizer models the set of documents related to the same topic as the Statistical Vector Space Model based on several heuristics. The simplest way to transform a document into a vector is to define each unique word as a feature. The weight of a feature being decided based on the contribution of various parameters such as Cue-phrase Keywords, topic keywords and term frequency in document. The weight of the feature is being termed as Feature Combination.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Statistical VSM Construction",
"sec_num": "3.1"
},
{
"text": "The vector representations of the documents; collectively define an n-dimensional vector space (where each document is an nx1 vector). The m document vectors taken as the columns of an nxm matrix D, define a linear transformation into the vector space.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Statistical VSM Construction",
"sec_num": "3.1"
},
{
"text": "The existing vector space model is statistical in nature. This vector space is input to a number of tools and processes like a summarizer and information retrieval system. PCA/SVD Technique has been applied earlier for Summarization based on statistical vector space [Gong et al. 2001] . Some times this statistically generated model is unable to define the context.",
"cite_spans": [
{
"start": 267,
"end": 285,
"text": "[Gong et al. 2001]",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic VSM Construction",
"sec_num": "3.2"
},
{
"text": "Keywords identified by a statistical model can be non-contextual in nature. Therefore, an effort is to be made in the direction of identification of contextual keywords and modification of existing model so that it can be more helpful and contextual for various applications like text summarization and text retrieval.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic VSM Construction",
"sec_num": "3.2"
},
{
"text": "To identify the contextual keywords, we try to exploit human psychology. In any article, we identify that those words are important which either give a sense of either appearance or disappearance of any object/event. Thus, after we have the pure statistical vector space we need to enhance the vector space semantically by modifying the weights of the word vector by identifying the Appearance and Disappearance (ACTION class) words. To do so, we need to have a knowledgebase (KB) with some seed wordlist which belongs to appearance or disappearance. Following, are the steps involved in the semantic vector space model. 1. Get the tf matrix, T from existing document D.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic VSM Construction",
"sec_num": "3.2"
},
{
"text": "2. Identify the set of action words, A from the given tf matrix, T, (number of action words =n).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic VSM Construction",
"sec_num": "3.2"
},
{
"text": "A i ; A i \u03b5 A, 0<i<n.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Find the associated object list O i for action word",
"sec_num": "3."
},
{
"text": "4. Find contextual objects Co from Object list O1,O2,\u2026.,On.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Find the associated object list O i for action word",
"sec_num": "3."
},
{
"text": "5. Modify weight of contextual objects in T to form semantic vector space S{T}.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Find the associated object list O i for action word",
"sec_num": "3."
},
{
"text": "Action words are the backbone of the semantic vector space model.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Identification of Action words",
"sec_num": "3.2.1"
},
{
"text": "Definition: Action words are verbs that are used to strengthen the way experiences are presented whether it is expressing positive or negative experience.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Identification of Action words",
"sec_num": "3.2.1"
},
{
"text": "With the help of Wordnet, the terms from the tf (term frequency) matrix which belong to the ACTION class can be easily classified. The algorithm uses a seed word list to identify the action words.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Identification of Action words",
"sec_num": "3.2.1"
},
{
"text": "Whenever a term from the tf matrix is fetched, it is matched against seed word list. If it is matched, then the fetched term is action word; otherwise, synonyms of the fetched terms are matched.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Multiple Document Summarization Using 145 Principal Component Analysis Incorporating Semantic Vector Space Model Definition: Seed Word List is the collection of action words. (Appendix A)",
"sec_num": null
},
{
"text": "Given Input: T = {t1,t2,\u2026..,tn}. List type: A = { }, integer type: depth Do: for every t \u03b5 T depth = 0; match(t,seedwrdlst) if found then A = A U t. else, not found if(depth == 0) match(extractsynonym (t),seedwordlist) depth = 1 else continue endif endif endfor Output : A = {t1,t2,\u2026.tm}.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Multiple Document Summarization Using 145 Principal Component Analysis Incorporating Semantic Vector Space Model Definition: Seed Word List is the collection of action words. (Appendix A)",
"sec_num": null
},
{
"text": "To decide whether the word belongs to action list or not, we have to build a seed wordlist and compare them with standard meaning. For example, let 'devastation' be the word to be decided as action or not. After searching in WordNet, the following meanings were obtained:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Figure 1. ACTION Word Classifier",
"sec_num": null
},
{
"text": "\u2022 desolation (an event that results in total destruction) \u2022 destruction, (the termination of something by causing so much damage to it that it cannot be repaired or no longer exists)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Figure 1. ACTION Word Classifier",
"sec_num": null
},
{
"text": "From the first and last meaning, it clearly lies in the phenomenon of appear/disappear so it will be appended into the seed list along with its Synset.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Figure 1. ACTION Word Classifier",
"sec_num": null
},
{
"text": "Merely acquiring the ACTION words doesn't provide the semantic to the vector space. We have to find whether these words are really important. The importance of the word can be estimated by the application of the word in the article. Objects corresponding to the Action Words and their weight in Statistical VSM have to be identified in order to determine the extent of relevancy of Action Words. The Objects are the Nouns or Adjectives for the Action. The nearest Noun for Verb is identified using POS Tagger and termed as Object of Action. Only those sentences are to be chosen which contain action words. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Finding the Objects of the Action",
"sec_num": "3.2.2"
},
{
"text": "Contextual words are being defined as those action words which are applied to the important object. The Weight of Action Word is being taken as the maximum weight amongst all the objects corresponding to the given Action Word. The weight obtained is added to the weight of the corresponding Action Words in Statistical VSM yielding Semantic Vector Space Model for the given set of Documents.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Classification of Contextual Words",
"sec_num": "3.2.3"
},
{
"text": "If we take an example of a single document:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Classification of Contextual Words",
"sec_num": "3.2.3"
},
{
"text": "Today broke fire in Delhi. Mass Destruction of material happens due to this fire. Many suffered from the broken glass in the road. The authority arrives here soon. Till now there is report of any casualties in these fire except from few injures. Thanks for the local communities for help.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Classification of Contextual Words",
"sec_num": "3.2.3"
},
{
"text": "the Vector Space generated on the basis of term frequency feature is The Action Word List obtained corresponding to the above example is: broke, destruction, and arrives. Now, the Action-Object list is prepared by identifying the Object words in which the ACTION words are acted. The Statistical VSM is now modified and the Semantic VSM is being generated as follows ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Classification of Contextual Words",
"sec_num": "3.2.3"
},
{
"text": "Principal Component Analysis (PCA) [Michael et al. 2003 ] is used to reduce the multidimensional datasets to lower dimensions for analysis. Singular Value Decomposition (SVD) [Michael et al. 2003 ] is carried out on Semantic VSM to find the principal components of Vector Space. The singular value decomposition (SVD) of matrix A mxn is the factorization A=U\u2211V T , where U and V are orthogonal, and \u2211= diag (\u03c3 1,\u2026, \u03c3 r ), r= min (m,n), with \u03c3 1 \u2265 \u03c3 2 \u2265 \u2026\u2026\u2265 \u03c3 r \u22650 . The columns of V are the 'hidden' dimensions that we are looking for. The diagonal of \u2211 are the singular values which are the weights for the new set of basis vectors. \u2211 is symmetric, its singular values are its eigen values and its basis vectors are the eigen vectors.",
"cite_spans": [
{
"start": 35,
"end": 55,
"text": "[Michael et al. 2003",
"ref_id": null
},
{
"start": 175,
"end": 195,
"text": "[Michael et al. 2003",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Principal Component Analysis",
"sec_num": "3.3"
},
{
"text": "Given an eigen vector e, we can find the corresponding dimension in document space.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Principal Component Analysis",
"sec_num": "3.3"
},
{
"text": "Multiple Document Summarization Using",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "d= D.e",
"sec_num": null
},
{
"text": "After determining out the dimension of eigen vector in document space, backprojection of d * is carried out. Commonly, composing a vector in terms of the principal components is called backprojection. Since our principal components or eigen documents are all orthogonal vectors, this is easy to accomplish. Let E be the matrix formed from the eigen documents then vector p is the document projected onto the eigenspace.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Principal Component Analysis Incorporating Semantic Vector Space Model",
"sec_num": "149"
},
{
"text": "p = E T d",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Principal Component Analysis Incorporating Semantic Vector Space Model",
"sec_num": "149"
},
{
"text": "Relevance of the topic/document is calculated by dividing projected component by the corresponding Singular Value. Metrics thus obtained is arranged in decreasing order excluding out the negative metrics. Main topic/Document is the one with highest metric value.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Principal Component Analysis Incorporating Semantic Vector Space Model",
"sec_num": "149"
},
{
"text": "After selecting the main topic, we now need the topic keywords. We simply take the eigen document vector corresponding to main document and select the words with high weight. These are the set of Keywords which are of high relevance in summary.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Principal Component Analysis Incorporating Semantic Vector Space Model",
"sec_num": "149"
},
{
"text": "To identify sentences that should belong to summary, several features have been taken into consideration.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Sentence Extraction",
"sec_num": "3.4"
},
{
"text": "\u2022 Sentence-Length Cut off Feature -If the sentence length is greater than 4 words, only then it is taken into consideration. \u2022 Position Feature -Sentences have been given some weight based on their position in the paragraph whether it is in initial, middle or final.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Sentence Extraction",
"sec_num": "3.4"
},
{
"text": "\u2022 Keywords -Sentence weight also depends not only on the number of keywords present in it but also the weight of each keyword.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Sentence Extraction",
"sec_num": "3.4"
},
{
"text": "\u2022 Upper Case Feature -Sentences containing upper case words have been given additional weight as it is probable that they may contain proper nouns.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Sentence Extraction",
"sec_num": "3.4"
},
{
"text": "Sentences with higher weight are taken as the relevant sentences for the summary and arranged in the order they appear in the document yielding the required summary. The rearrangement becomes a challenge in the case of multiple documents. In that case, sentences are kept at the position at which they appear in original document (initial/middle/final). This rearrangement technique provides fair results.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Sentence Extraction",
"sec_num": "3.4"
},
{
"text": "The Multiple Document Summarization System is implemented in Java using JAMA (Java Matrix Package) and WVTool (Word Vector Tool) packages. JAMA is used to perform all the matrix operations as computing SVD, eigen vector, Backprojection, etc. WVTool is used to generate the Statistical Vector Space Model taking input as the Multiple Document Set or a Single document based on user requirement.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Implementation",
"sec_num": "4."
},
{
"text": "The present section will focus on the accuracy of the proposed summarization method. The accuracy of the method was examined on both single as well as multiple document summaries:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation of Summarizer",
"sec_num": "5."
},
{
"text": "Text belonging to different areas was taken. Summaries to the same texts were made by sentence extractions by different people. Based on the set of the summaries, we ranked sentences of the texts.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Single Document summary",
"sec_num": "5.1"
},
{
"text": "We then carried out the summarization process using our algorithm, the Auto Summarizer in MS Word, and the Gnome Summarizer and compared their agreement on the extracted sentences with the human sentence extractions.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Single Document summary",
"sec_num": "5.1"
},
{
"text": "The results are given in the following table. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Single Document summary",
"sec_num": "5.1"
},
{
"text": "On an average, we get an average accuracy of 61.85% and improvement of 39.17% with respect to MS Word Summarizer.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "44.44% 47%",
"sec_num": null
},
{
"text": "The set of Documents belonging to \"Introduction to Web crawler\" were taken and then summary was generated using the proposed algorithm, and it was observed that the summary thus generated was in coherence with most of the documents. The input documents set consisting of documents related to the topic for summarization has been shown in Table 7 . The cause of the low contribution of Doc4 to the summary generated was observed to be sentences with fewer keywords in them with respect to sentences from other documents, resulting in a low score of sentence.",
"cite_spans": [],
"ref_spans": [
{
"start": 338,
"end": 345,
"text": "Table 7",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Multiple Documents Summary",
"sec_num": "5.2"
},
{
"text": "As seen from the results, the proposed method works better for various domains and, by using Semantic VSM instead of Statistical VSM; the summary obtained has become more informational and meaningful. Moreover, this method can be used to generate single as well as multiple document summaries.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "6."
},
{
"text": "The following areas in Multiple Document Summarization System require improvement: 1 Documents for Summary % age in sum m ary Doc1 Doc2 Doc3 Doc4 1. Rearrangement of Extracted Sentences in the case of Multiple Documents Summarization to form an effective summary.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "6."
},
{
"text": "2. Enhance Flexibility of the system to generate a summary of multiple documents not necessarily belonging to the same topic.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "6."
},
{
"text": "3. Develop better methodology to incorporate the ACTION word score into Statistical VSM.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "6."
},
{
"text": "4. Evaluation of the system on large data samples. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "6."
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Information fusion in the context of multi-document summarization",
"authors": [
{
"first": "R",
"middle": [],
"last": "Barzilay",
"suffix": ""
}
],
"year": 2003,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Barzilay, R., \"Information fusion in the context of multi-document summarization,\" Phd. Thesis, Columbia University, 2003.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Generic Text Summarization using WordNet",
"authors": [
{
"first": "K",
"middle": [],
"last": "Bellare",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Sarma",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Sarma",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Loiwal",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Mehta",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Ramakrishnan",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Bhattacharya",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bellare, K., A. Das Sarma, A. Das Sarma, N. Loiwal, V. Mehta, G. Ramakrishnan, and P. Bhattacharya, Generic Text Summarization using WordNet, http://i.stanford.edu/ ~anishds/publications/lrec04/lrec04.ps.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Using linear algebra for intelligent information-retrieval",
"authors": [
{
"first": "M",
"middle": [
"W"
],
"last": "Berry",
"suffix": ""
},
{
"first": "S",
"middle": [
"T"
],
"last": "Dumais",
"suffix": ""
},
{
"first": "G",
"middle": [
"W"
],
"last": "Obrien",
"suffix": ""
}
],
"year": 1995,
"venue": "Siam Review",
"volume": "37",
"issue": "",
"pages": "573--95",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Berry, M. W., S. T. Dumais, and G. W. Obrien, \"Using linear algebra for intelligent information-retrieval,\" Siam Review, 37, 1995, pp. 573-95.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Generic Text Summarization Using Relevance Measure and Latent Semantic Analysis",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Gong",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2001,
"venue": "",
"volume": "",
"issue": "",
"pages": "19--25",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gong, Y., and X. Liu, \"Generic Text Summarization Using Relevance Measure and Latent Semantic Analysis,\" SIGIR 2001, pp. 19-25.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "A parallel algorithm for computing the singular-value decomposition of a matrix",
"authors": [
{
"first": "E",
"middle": [
"R"
],
"last": "Jessup",
"suffix": ""
},
{
"first": "D",
"middle": [
"C"
],
"last": "Sorensen",
"suffix": ""
}
],
"year": 1994,
"venue": "Siam Journal on Matrix Analysis and Applications",
"volume": "15",
"issue": "",
"pages": "530--548",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jessup, E. R., and D. C. Sorensen, \"A parallel algorithm for computing the singular-value decomposition of a matrix,\" Siam Journal on Matrix Analysis and Applications, 15, 1994, pp. 530-548.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Principal Component Analysis",
"authors": [
{
"first": "I",
"middle": [
"T"
],
"last": "Jolliffe",
"suffix": ""
}
],
"year": 1986,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jolliffe, I. T., Principal Component Analysis, New York: Springer, 1986.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "A Trainable Document Summarizer",
"authors": [
{
"first": "J",
"middle": [],
"last": "Kupiec",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Pedersen",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 1995,
"venue": "Proceedings of the 18th ACM-SIGIR Conference",
"volume": "",
"issue": "",
"pages": "68--73",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kupiec, J., J. Pedersen, and F. Chen, \"A Trainable Document Summarizer,\" In Proceedings of the 18th ACM-SIGIR Conference, 1995, pp. 68-73.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Computational and Performance aspects of PCA-based Face Recognition Algorithms",
"authors": [
{
"first": "H",
"middle": [],
"last": "Moon",
"suffix": ""
},
{
"first": "P",
"middle": [
"J"
],
"last": "Phillips",
"suffix": ""
}
],
"year": 2001,
"venue": "Perception",
"volume": "30",
"issue": "",
"pages": "303--321",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Moon, H., and P. J. Phillips, \"Computational and Performance aspects of PCA-based Face Recognition Algorithms,\" Perception, 30, 2001, pp. 303-321.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "The Michigan Single and Multidocument Summarizer for DUC",
"authors": [
{
"first": "J",
"middle": [
"C"
],
"last": "Otterbacher",
"suffix": ""
},
{
"first": "A",
"middle": [
"J"
],
"last": "Winkel",
"suffix": ""
},
{
"first": "D",
"middle": [
"R"
],
"last": "Radev",
"suffix": ""
}
],
"year": 2002,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Otterbacher, J. C., A. J. Winkel, and D. R. Radev, The Michigan Single and Multidocument Summarizer for DUC 2002, http://www-nlpir.nist.gov/projects/duc/pubs/2002papers/umich_otter.pdf.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "View-Based and Modular Eigenspaces for Face Recognition",
"authors": [
{
"first": "A",
"middle": [],
"last": "Pentland",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Moghaddam",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Starner",
"suffix": ""
}
],
"year": 1994,
"venue": "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition",
"volume": "",
"issue": "",
"pages": "84--91",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Pentland, A., B. Moghaddam, and T. Starner, \"View-Based and Modular Eigenspaces for Face Recognition,\" Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 21-23 June, 1994, Seattle, Washington, USA, pp. 84-91.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Generating natural language summaries from multiple on-line sources",
"authors": [
{
"first": "D",
"middle": [
"R"
],
"last": "Radev",
"suffix": ""
},
{
"first": "K",
"middle": [
"R"
],
"last": "Mckeown",
"suffix": ""
}
],
"year": 1998,
"venue": "Computational Linguistics",
"volume": "24",
"issue": "3",
"pages": "469--500",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Radev, D. R., and K. R. McKeown, \"Generating natural language summaries from multiple on-line sources,\" Computational Linguistics, 24(3), 1998, pp. 469-500.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Multiple Document Summarization Using 153",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Multiple Document Summarization Using 153",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Principal Component Analysis Incorporating Semantic Vector Space Model",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Principal Component Analysis Incorporating Semantic Vector Space Model",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Centroid-based summar-ization of multiple documents: sentence extraction, util-ity based evaluation, and user studies",
"authors": [
{
"first": "D",
"middle": [
"R"
],
"last": "Radev",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Jing",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Budzikowska",
"suffix": ""
}
],
"year": 2000,
"venue": "ANLP /NAACL Workshop on Summarization",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Radev, D. R., H. Jing, and M. Budzikowska, \"Centroid-based summar-ization of multiple documents: sentence extraction, util-ity based evaluation, and user studies,\" In ANLP /NAACL Workshop on Summarization, Seattle, WA, April 2000.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Evaluation challenges in large-scale multidocument summarization: the MEAD project",
"authors": [
{
"first": "D",
"middle": [],
"last": "Radev",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Teufel",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Saggion",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Lam",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Blitzer",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Celebi",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Qi",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Drabek",
"suffix": ""
}
],
"year": 2001,
"venue": "Johns Hopkins University CLSP Workshop Final Report",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Radev, D., S. Teufel, H. Saggion, W. Lam, J. Blitzer, A. Celebi, H. Qi, D. Liu, and E. Drabek, \"Evaluation challenges in large-scale multidocument summarization: the MEAD project,\" Johns Hopkins University CLSP Workshop Final Report, 2001.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Centroid-based summarization of multiple documents",
"authors": [
{
"first": "D",
"middle": [
"R"
],
"last": "Radev",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Jing",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Sty",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Tam",
"suffix": ""
}
],
"year": 2004,
"venue": "Information Processing and Management",
"volume": "40",
"issue": "",
"pages": "919--957",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Radev, D. R., H. Jing, M. Sty, and D. Tam, \"Centroid-based summarization of multiple documents,\" Information Processing and Management, 40, 2004, pp. 919-38.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "The Smart Retrieval System",
"authors": [
{
"first": "G",
"middle": [],
"last": "Salton",
"suffix": ""
}
],
"year": 1971,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Salton, G., The Smart Retrieval System, Prentice Hall, Englewood Cliffs, N.J. 1971.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Introduction to Linear Algebra",
"authors": [
{
"first": "G",
"middle": [],
"last": "Strang",
"suffix": ""
}
],
"year": 1998,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Strang, G., Introduction to Linear Algebra, Wellesley, MA: Wellesley Cambridge Press, 1998.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Eigenfaces for Face Detection/Recognition",
"authors": [
{
"first": "M",
"middle": [],
"last": "Turk",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Pentland",
"suffix": ""
}
],
"year": 1991,
"venue": "Journal of Cognitive Neuroscience",
"volume": "3",
"issue": "1",
"pages": "71--86",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Turk, M., and A. Pentland, \"Eigenfaces for Face Detection/Recognition,\" Journal of Cognitive Neuroscience, 3(1), 1991, pp. 71-86.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Singular Value Decomposition and Principal Component Analysis",
"authors": [
{
"first": "M",
"middle": [
"E"
],
"last": "Wall",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Rechtsteinen",
"suffix": ""
},
{
"first": "L",
"middle": [
"M"
],
"last": "Rocha",
"suffix": ""
}
],
"year": 2003,
"venue": "A Practical Approach to Microarray Data Analysis",
"volume": "",
"issue": "",
"pages": "91--109",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wall, M. E., A. Rechtsteinen, and L. M. Rocha, \"Singular Value Decomposition and Principal Component Analysis,\" In A Practical Approach to Microarray Data Analysis (D.P. Berrar, W. Dubitzky, M. Granzow, eds.) Kluwer: Norwell, MA, 2003, pp. 91-109, LANL LA-UR-02-4001.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"uris": null,
"text": "ravaging, (plundering with excessive damage and destruction)",
"type_str": "figure"
},
"FIGREF1": {
"num": null,
"uris": null,
"text": "broke fire in Delhi. (Action is verb) Today/NN broke/VBD fire/NN in/IN Delhi/NNP Destruction of material happens due to this fire. Destruction//NN of/IN material/NN happens/VBZ due/JJ to/TO this/DT fire/NN ./. Many suffered from the broken glass in the road. (Action is Adjective) Many/JJ suffered/VBD from/IN the/DT broken/JJ glass/NN in/IN the/DT road/NN. /. The authority arrives here soon.The/DT authority/NN arrives/VBZ here/RB soon/RB. /.",
"type_str": "figure"
},
"FIGREF2": {
"num": null,
"uris": null,
"text": "has been given weight as per the contextual word obtained corresponding to it.",
"type_str": "figure"
},
"FIGREF4": {
"num": null,
"uris": null,
"text": "Figure 2. Contribution percentage",
"type_str": "figure"
},
"FIGREF6": {
"num": null,
"uris": null,
"text": "Schemed Screened Set goals Shaped Skilled Solicited Solved Specialized Spoke Stimulated Strategized Streamlined Strengthened Stressed Studied Substantiated Succeeded Summarized Synthesized",
"type_str": "figure"
},
"TABREF0": {
"num": null,
"text": "",
"html": null,
"content": "<table><tr><td>broke</td><td>fire, glass</td></tr><tr><td>arrives</td><td>Authority</td></tr><tr><td>destruction</td><td>material</td></tr></table>",
"type_str": "table"
},
"TABREF1": {
"num": null,
"text": "",
"html": null,
"content": "<table><tr><td>Broke</td><td>0.1889 Injuries</td><td>0.1889</td></tr><tr><td>Fire</td><td>0.5669 Thanks</td><td>0.1889</td></tr><tr><td>Delhi</td><td>0.1889 Local</td><td>0.1889</td></tr><tr><td>Mass</td><td>0.1889 communities</td><td>0.1889</td></tr><tr><td>Destruction</td><td>0.1889 Help</td><td>0.1889</td></tr><tr><td>Material</td><td>0.1889 Authority</td><td>0.1889</td></tr><tr><td>Happens</td><td>0.1889 Arrives</td><td>0.1889</td></tr><tr><td>Suffered</td><td>0.1889 Report</td><td>0.1889</td></tr><tr><td>Broken</td><td>0.1889 Casualties</td><td>0.1889</td></tr><tr><td>glass</td><td>0.1889 Road</td><td>0.1889</td></tr></table>",
"type_str": "table"
},
"TABREF2": {
"num": null,
"text": "Similarly, the model is extended for multiple documents. This Semantic Vector Space Model is used further to determine important Keywords and henceforth, the summary.",
"html": null,
"content": "<table><tr><td/><td>0.7558 Injuries</td><td>0.1889</td></tr><tr><td>Fire</td><td>0.5669 Thanks</td><td>0.1889</td></tr><tr><td>Delhi</td><td>0.1889 Local</td><td>0.1889</td></tr><tr><td>Mass</td><td>0.1889 communities</td><td>0.1889</td></tr><tr><td colspan=\"2\">Destruction 0.3778 Help</td><td>0.1889</td></tr><tr><td>Material</td><td>0.1889 Authority</td><td>0.1889</td></tr><tr><td>Happens</td><td>0.1889 Arrives</td><td>0.3778</td></tr><tr><td>Suffered</td><td>0.1889 Report</td><td>0.1889</td></tr><tr><td>Broken</td><td>0.1889 Casualties</td><td>0.1889</td></tr><tr><td>glass</td><td>0.1889 Road</td><td>0.1889</td></tr></table>",
"type_str": "table"
},
"TABREF3": {
"num": null,
"text": "",
"html": null,
"content": "<table><tr><td>Science (789 words)</td><td>60.0%</td><td>50.0%</td><td>70.0%</td></tr><tr><td>Geography (725 words)</td><td>55.56%</td><td>33.33%</td><td>22.5%</td></tr><tr><td>History (557 words)</td><td>70.0%</td><td>50.0%</td><td>48.5%</td></tr><tr><td>Average accuracy</td><td>61.85%</td><td/><td/></tr></table>",
"type_str": "table"
},
"TABREF4": {
"num": null,
"text": "",
"html": null,
"content": "<table><tr><td>Doc No.</td><td>Title of Doc</td><td>Doc Length</td></tr><tr><td>Doc1</td><td>Introduction to Crawler Architecture</td><td>1076 words</td></tr><tr><td>Doc2</td><td>Developing Web Search Engine</td><td>890 words</td></tr><tr><td>Doc3</td><td>Overview of Web Crawler</td><td>945 words</td></tr><tr><td>Doc4</td><td>Future of Search Engines</td><td>970 words</td></tr></table>",
"type_str": "table"
}
}
}
} |