File size: 86,778 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
{
    "paper_id": "O08-6001",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:02:05.635056Z"
    },
    "title": "Feature Weighting Random Forest for Detection of Hidden Web Search Interfaces",
    "authors": [
        {
            "first": "Yunming",
            "middle": [],
            "last": "Ye",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harbin Institute of Technology",
                "location": {
                    "country": "China"
                }
            },
            "email": "yeyunming@hit.edu.cn"
        },
        {
            "first": "Hongbo",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harbin Institute of Technology",
                "location": {
                    "country": "China"
                }
            },
            "email": ""
        },
        {
            "first": "Xiaobai",
            "middle": [],
            "last": "Deng",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harbin Institute of Technology",
                "location": {
                    "country": "China"
                }
            },
            "email": ""
        },
        {
            "first": "Joshua",
            "middle": [
                "Zhexue"
            ],
            "last": "Huang",
            "suffix": "",
            "affiliation": {},
            "email": "jhuang@eti.hku.hk"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Search interface detection is an essential task for extracting information from the hidden Web. The challenge for this task is that search interface data is represented in high-dimensional and sparse features with many missing values. This paper presents a new multi-classifier ensemble approach to solving this problem. In this approach, we have extended the random forest algorithm with a weighted feature selection method to build the individual classifiers. With this improved random forest algorithm (IRFA), each classifier can be learned from a weighted subset of the feature space so that the ensemble of decision trees can fully exploit the useful features of search interface patterns. We have compared our ensemble approach with other well-known classification algorithms, such as SVM, C4.5, Na\u00efve Bayes, and original random forest algorithm (RFA). The experimental results have shown that our method is more effective in detecting search interfaces of the hidden Web.",
    "pdf_parse": {
        "paper_id": "O08-6001",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Search interface detection is an essential task for extracting information from the hidden Web. The challenge for this task is that search interface data is represented in high-dimensional and sparse features with many missing values. This paper presents a new multi-classifier ensemble approach to solving this problem. In this approach, we have extended the random forest algorithm with a weighted feature selection method to build the individual classifiers. With this improved random forest algorithm (IRFA), each classifier can be learned from a weighted subset of the feature space so that the ensemble of decision trees can fully exploit the useful features of search interface patterns. We have compared our ensemble approach with other well-known classification algorithms, such as SVM, C4.5, Na\u00efve Bayes, and original random forest algorithm (RFA). The experimental results have shown that our method is more effective in detecting search interfaces of the hidden Web.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Hidden Web refers to the Web pages that are dynamically generated from searchable structured or unstructured databases. Different from the Publicly Indexable Web that is accessible through static hyperlinks, the pages in a hidden Web can only be obtained through queries submitted via the search interface to the databases containing data about the hidden Web. Search interfaces are usually encoded as HTML forms that need to be filled out and submitted by users to obtain information. On the Web, there are many different HTML forms, and many of them are not search interfaces (He, Patel, Zhang, & Chang, 2007) . To extract useful information from hidden Web pages, effectively detecting the search interfaces is an essential step since the interface is the only entrance to the hidden Web. Therefore, we first need to find the entrance to the hidden database. The entrance (i.e., search forms) is mixed with lots of non-search forms in HTML pages. Thus, it is very important to distinguish the two types of forms in order to enable the Hidden Web crawler to locate the entrance and extract information further.",
                "cite_spans": [
                    {
                        "start": 578,
                        "end": 611,
                        "text": "(He, Patel, Zhang, & Chang, 2007)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Information extraction from the hidden Web has been a hot research topic (BrightPlanet.com, 2000) since the term \"Hidden Web\" was first coined (Florescu, Levy, & Mendelzon, 1998) . Most previous work, however, has been focused on the problems of automatic query generation (Ntoulas, Zerfos, & Cho, 2005) , form filling (Cavelee, Liu, & Probe, 2004) , and wrapper generation for extracting structured information (Wang & Lochovsky, 2003) , where detecting search interface was performed manually or by some heuristic methods. Using heuristic rules to find search forms is the simplest and most effective method (Raghavan & Garcia-Molina, 2001; Lage, Silva, Golgher, & Laender, 2004) . As hidden Web sites adopt different search forms, though, it is time-consuming to compose different rules for different search forms. Employing machine learning and information retrieval techniques to learn classification models from the content of search forms and using the models to classify different forms automatically is a more desirable approach with respect to scalability and robustness. This approach regards search interface detection as a two-class classification problem. One example of this is using decision trees to build form classification models to detect search interface (Cope, Craswell, & Hawking, 2003) .",
                "cite_spans": [
                    {
                        "start": 73,
                        "end": 97,
                        "text": "(BrightPlanet.com, 2000)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 143,
                        "end": 178,
                        "text": "(Florescu, Levy, & Mendelzon, 1998)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 273,
                        "end": 303,
                        "text": "(Ntoulas, Zerfos, & Cho, 2005)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 319,
                        "end": 348,
                        "text": "(Cavelee, Liu, & Probe, 2004)",
                        "ref_id": null
                    },
                    {
                        "start": 412,
                        "end": 436,
                        "text": "(Wang & Lochovsky, 2003)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 610,
                        "end": 642,
                        "text": "(Raghavan & Garcia-Molina, 2001;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 643,
                        "end": 681,
                        "text": "Lage, Silva, Golgher, & Laender, 2004)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 1277,
                        "end": 1310,
                        "text": "(Cope, Craswell, & Hawking, 2003)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Automatic search interface detection was first explored by Raghavan and Garcia-Molina in their hidden Web crawler HiWE (Hidden Web Exposer) (Raghavan & Garcia-Molina, 2001 ). Their crawling system used heuristic rules to detect the search entrance to the hidden database. Juliano P. Lage (Lage, Silva, Golgher, & Laender, 2004) used two heuristic rules to perform detection tasks. The first heuristic was the same as HiWE. The second one was to check whether the form contains the \"password\" HTML element or not. The disadvantage of this method, however, lies in that it does not have auto-leaning capability. Moreover, it is not robust and scalable to diverse hidden Web databases because the rules are too simple to match different form structures. Cope et al. (2003) used a decision tree classification algorithm to detect search interfaces. This method usually generates long rules due to the large size of the feature space in the training set (the number of training samples is too small compared to the number of features). Therefore, it is prone to overfitting, and the classification precision is not satisfying. Zhang et al. (2004) presented a best-effort parsing framework to address the problem of understanding Web search interfaces. The authors transformed search interfaces into a visual language under the hypothesis that automatic construction of search interfaces is guided by a hidden syntax. This hypothesis enables parsing as a principled framework to understand the semantic model of the visual language. The experimental results testified the effectiveness of their approach.",
                "cite_spans": [
                    {
                        "start": 140,
                        "end": 171,
                        "text": "(Raghavan & Garcia-Molina, 2001",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 288,
                        "end": 327,
                        "text": "(Lage, Silva, Golgher, & Laender, 2004)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 751,
                        "end": 769,
                        "text": "Cope et al. (2003)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1122,
                        "end": 1141,
                        "text": "Zhang et al. (2004)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "To summarize, little previous work has addressed the special characteristics of the search interface detection domain, for instance, large and diverse features, small size of training samples with many missing values, etc. The high dimension and sparse data of search interfaces present a tricky problem for the traditional single classifier approach. As collecting training samples (i.e., HTML forms) is costly, the training data set is usually small, while the number of features in the learning space is relatively large, due to multi-type features existing in forms. It's difficult for a single classifier to fully exploit the rich feature space (very sparse in the data matrix). For many classification methods, the single classifier tends to be overfitting. To attack this problem, we propose a multi-classifier ensemble approach in this paper.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Our method is based on the random forest algorithm. A random forest model consists of a set of decision trees that are constructed by bootstrapping the training data. In our approach, we develop a weighted feature selection method to select a subset of features for each decision tree in the tree induction process. Classification is made by aggregating predictions of individual decision trees in the forest. Since each classifier is learned from a subset of the feature space, the ensemble approach can fully exploit the useful features in search forms. We have conducted experiments on several real data sets. The experimental results have shown that our random forest approach improves the classification accuracy in search interface detection.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The contributions of this paper can be summarized as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "1. We explored the random forest approach to attacking the problem of detecting search interfaces from the sparse feature space of hidden Webs where specific feature extraction and representation techniques were used.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "2. We extended the random forest algorithm with a weighted feature selection method to select a subset of features for each decision tree. The new algorithm can automatically remove the noisy features in search forms so that decision tree classifiers can be learned from more representative subsets of the feature space.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "3. We conducted experiments on real data sets to compare the improved random forest algorithm with other well-known classification algorithms, such as SVM and C4.5. The experimental results have shown that the new method is more effective in detecting search interfaces of the hidden Web.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The rest of this paper is organized as follows. In Section 2, we formalize the detecting search interface problem as a form classification problem and present the feature extraction techniques. Section 3 describes the improved random forest algorithm for form classification. Experimental results and analysis are presented in Section 4. Section 5 concludes this paper and presents our future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Search interface detection is a process of distinguishing the search forms of the hidden Web from non-search forms. It is a two-class classification problem in machine learning. This section describes how to extract form features from HTML pages and discusses the characteristics of the data matrix for form classification. HTML forms contain two kinds of features: one is the attributes of forms and elements, and the other is the statistics of those attributes. A form mainly contains four kinds of elements, that is, \"INPUT\", \"SELECT\", \"LABEL\" and \"TEXTAREA\", which are the children elements of \"FORM\" element. Element \"INPUT\" contains several types, such as \"text\", \"hidden\", etc. The hierarchy of a form is shown in Figure 1 . All of these elements contain a set of attributes, such as \"name\", \"value\", \"size\", etc. The attributes of \"form\" elements are \"method\", \"action\", and \"name\". Attribute \"method\" indicates the method for the form to submit query data, such as \"POST\" or \"GET\". Attribute \"action\" indicates the address of the corresponding server of the form, and attribute \"name\" indicates the name of the form. Some elements and attributes can be removed because they are not useful for form classification, for instance \"option\", \"size\", \"width\", etc. Besides, the statistics about the number of elements or attributes in each element can also be computed as important features. Figure 2 shows an example of a search form. The form contains three elements: one \"SELECT\" element and two \"INPUT\" elements. There are three attributes in the \"SELECT\" element : \"name\" with value \"and\", \"size\" with value \"1\", and \"width\" with value \"50\". It also contains several \"OPTION\" elements. The \"size\" and \"width\" attributes, along with the \"OPTION\" elements are not useful for form classification, so they can be removed. The corresponding HTML codes are shown in Figure 3 . Figure 5 . According the feature extraction rules, the useful form elements in this form include \"INPUT\", \"LABEL\", and \"FORM\", which can be used to compose the feature space. Elements \"TABEL\", \"FONT\", and \"TR\" can be removed because they are not useful. There are some important differences between the features of search form and non-search form. First, the number of \"INPUT\", \"SELECT\", and \"TEXTAREA\" elements in search forms is larger than that in non-search forms. Second, the value of the \"method\" attribute in \"FORM\" elements is always set as \"POST\" in search forms, while it is always set as \"GET\" in non-search forms. Moreover, the elements' values of search forms often contain some keywords such as \"search\", \"find\", or other words that have the same meaning as \"search\". These differences, however, are not the only decisive factors. There are other features that can be explored by classification algorithms.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 721,
                        "end": 729,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1395,
                        "end": 1403,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 1868,
                        "end": 1876,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 1879,
                        "end": 1887,
                        "text": "Figure 5",
                        "ref_id": "FIGREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Feature Extraction for Form Classification",
                "sec_num": "2."
            },
            {
                "text": "According to the major differences, six kinds of rules are used in the feature extraction process as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Extraction Rules",
                "sec_num": "2.1"
            },
            {
                "text": "1. Extract the \"name\" attribute values from \"input\", \"select\", \"textarea\", and \"label\" elements;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Extraction Rules",
                "sec_num": "2.1"
            },
            {
                "text": "2. Extract the \"value\" attribute value from \"input\", \"textarea\", and \"label\" elements;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Extraction Rules",
                "sec_num": "2.1"
            },
            {
                "text": "3. Extract the \"name\" and \"method\" attribute values from \"form\" elements;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Extraction Rules",
                "sec_num": "2.1"
            },
            {
                "text": "4. Extract the words that appear between slashes(/) in the \"action\" attributes of the \"form\" elements;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Extraction Rules",
                "sec_num": "2.1"
            },
            {
                "text": "5. Extract the words that appear between slashes(/) in the \"src\" and \"alt\" attributes of the \"input-image\" element;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Extraction Rules",
                "sec_num": "2.1"
            },
            {
                "text": "6. Calculate the number of \"input\", \"select\", \"label\", and \"textarea\" elements in each form.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Extraction Rules",
                "sec_num": "2.1"
            },
            {
                "text": "The next step is to standardize the value of the features that are extracted from the forms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Extraction Rules",
                "sec_num": "2.1"
            },
            {
                "text": "First, all strings are transformed into lowercases; then the string type values are aggregated and mapped to specific enumerating values. For instance, the values of \"search\", \"find\", or \"srch\" are mapped to \"search\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Weighting Random Forest for Detection of 393 Hidden Web Search Interfaces",
                "sec_num": null
            },
            {
                "text": "The extracted features and the labels of forms are used to compose the data matrix for the classification algorithm. The formalized data matrix is shown in Table 1 . ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 156,
                        "end": 163,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "The Sparse Data Matrix",
                "sec_num": "2.2"
            },
            {
                "text": "class 1 t 2 t i t m t 1 c 11 a 12 a 1i a 1m a j c 1 j a 2 j a ji a jm a n c 1 n a 2 n a ni a nm a The set { } 1 2 m T t t t = ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Sparse Data Matrix",
                "sec_num": "2.2"
            },
            {
                "text": ", in Table 1 represents the names of the form features. For form classification, the label of a form is represented as an element in the set { } C yes no = , , while \"yes\" indicates that the form is a search interface of hidden Web and \"no\" indicates a non-search interface. Each row is a sample form. ji a represents the value of feature i t in the j th form, and j c indicates the class of the j th form. Table 2 illustrates two examples of a search form and a non-search form as shown in Figure 2 and Figure 4 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 5,
                        "end": 12,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 407,
                        "end": 414,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 491,
                        "end": 499,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 504,
                        "end": 512,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "The Sparse Data Matrix",
                "sec_num": "2.2"
            },
            {
                "text": "The expression of i t is a four-tuple of \"element name\"-\"type\"-\"attribute name\"-\"sequence number\". The \"element name\" contains six values: \"FORM\", \"SELECT\", \"INPUT\", \"TEXT AREA\", \"LABEL\", and their statistics. For element, \"INPUT\", the value of \"type\" can be \"text\", \"hidden\", and so on. \"attribute name\" has six options: \"name\", \"value\", \"src\", \"alt\", \"method\", and \"action\". Sequence number represents the sequence of the features in the form.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Sparse Data Matrix",
                "sec_num": "2.2"
            },
            {
                "text": "As illustrated in Table 2 , the combination of \"element name\",\"type\",\"attribute name\", and \"sequence number\" has many unique alternatives. This will result in a high-dimensional feature space for form classification. Furthermore, since each form has just a few features, the data matrix for classification is very sparse and there are many missing values and noisy features. This problem presents a big challenge for search form detection. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 18,
                        "end": 25,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "The Sparse Data Matrix",
                "sec_num": "2.2"
            },
            {
                "text": "This section presents an improved random forest algorithm, which extends the classical random forest method with a feature weighting technique. We describe the basic random forest classification approach in Subsection 3.1 and our new algorithm in Subsection 3.2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Weighting Random Forest Algorithm",
                "sec_num": "3."
            },
            {
                "text": "Random Forest (RFA) (Ho, 1998; Breiman, 2001 ) is an ensemble of unpruned classification or regression trees, which is induced from bootstrapping samples of the training set, using random feature selection in the tree induction process. Prediction is made by aggregating the predictions of the ensemble. Random Forest grows many classification trees. To classify a new object from an input vector, it passes the sample vector to each of the trees in the forest. Each tree gives a classification decision. All the classification results of individual trees are combined to choose the classification having the most votes over all the classification trees in the forest.",
                "cite_spans": [
                    {
                        "start": 20,
                        "end": 30,
                        "text": "(Ho, 1998;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 31,
                        "end": 44,
                        "text": "Breiman, 2001",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Random Forest Algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "Random forest generally exhibits a substantial performance improvement over single tree classifiers, such as CART (Breiman, Friedman, & Olshen, 1984) and C4.5 (Quinlan, 1993) . It presents a good solution for classification of sparse data sets. Since basic RFA selects features randomly, it's easy to select unimportant or noisy features, especially when there are many noisy features in the training data. This may lead to bad classification results. As discussed in previous sections, the data matrix for form classification contains many missing values. It's necessary to enhance basic RFA so that the performance can be improved in search form classification.",
                "cite_spans": [
                    {
                        "start": 114,
                        "end": 149,
                        "text": "(Breiman, Friedman, & Olshen, 1984)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 159,
                        "end": 174,
                        "text": "(Quinlan, 1993)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Random Forest Algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "Due to the sparse feature space, there are a lot of missing values in the training data set. The features with too many missing values become less important and can be treated as noisy features. Random selection of features often obtains many unimportant or noisy features, which leads to bad trees in the forest. To avoid this, we extend basic RFA, using a weighting scheme in feature selection to replace random selection. We use 2 \u03c7 statistic to measure the importance of features (Larson, 1982) . The 2 \u03c7 statistic of a feature A against the class feature is computed as follows. ",
                "cite_spans": [
                    {
                        "start": 484,
                        "end": 498,
                        "text": "(Larson, 1982)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Improved Random Forest with Weighted Feature Selection",
                "sec_num": "3.2"
            },
            {
                "text": "If class i c has the highest probability, i c is the class of x . Kittler has provided a more profound explanation of this method (Kittler, Hatef, Duin, & Matas, 1998) . The pseudo-code of the new algorithm (IRFA) is given in 1 Algorithm .",
                "cite_spans": [
                    {
                        "start": 130,
                        "end": 167,
                        "text": "(Kittler, Hatef, Duin, & Matas, 1998)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Improved Random Forest with Weighted Feature Selection",
                "sec_num": "3.2"
            },
            {
                "text": "Step 1 is to compute a weight for each feature according to (1). Step 2 sorts the features in descending order of feature weights. Step 3 selects n\u2032 features from the entire feature set according to a given feature selection rate \u03b2 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Improved Random Forest with Weighted Feature Selection",
                "sec_num": "3.2"
            },
            {
                "text": "Step 4 learns individual classifiers from the selected training samples (and selected features). Selection of training samples employs the bootstrapping method. The method of sampling without replacement is used to select t features from n\u2032 features, where 2 log 1 t n = + \u23a2 \u23a5 \u23a3 \u23a6 . After each iteration, the learned decision tree classifier will be added to forest M * . After forest M * is grown,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Improved Random Forest with Weighted Feature Selection",
                "sec_num": "3.2"
            },
            {
                "text": "Step 5 classifies the unlabeled instances based on (4).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Improved Random Forest with Weighted Feature Selection",
                "sec_num": "3.2"
            },
            {
                "text": "The pseudo-code of the feature weighting random forest algorithm Input: ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Algorithm 1",
                "sec_num": null
            },
            {
                "text": "-D :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Algorithm 1",
                "sec_num": null
            },
            {
                "text": "The computational complexity of RFA (Breiman, 2001) The computational cost depends on three factors: the number of decision trees k , the number of features n , and the number of training samples d . We will discuss how to select the number of decision trees k and the number of features n to balance between classification accuracy and computational cost in Section 4. ",
                "cite_spans": [
                    {
                        "start": 36,
                        "end": 51,
                        "text": "(Breiman, 2001)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The computational complexity",
                "sec_num": "3.3"
            },
            {
                "text": "We used two Web page collections in our experiments. One was taken from project Metaquerier 1 , and the other was created by crawling the website Search Engine Guide 2 with a Web crawler implemented in Java. The two collections represent a pseudo-random crawling of the Web. A HTML parser was developed to extract the HTML forms and their context features from these two collections. The extracted forms were used to compose the final data sets for experiments. The forms are selected from data set 1 and data set 2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Sets",
                "sec_num": "4.1"
            },
            {
                "text": "We manually classified the extracted forms into search forms (i.e., real search interface of hidden Web) and non-search forms. Three classification data sets were constructed from the classified forms, as shown in Table 3 . The three data sets have a variety of sample distributions. Data set 1 and Data set 2 cover different domains, while Data set 3 is a mixture of the two domains. The three data sets also have different feature types and feature numbers. The average number of features in the data sets is over 200, while the average number of samples is less than 140. The matrices of the three data sets were quite sparse, and the number of features was quite large.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 214,
                        "end": 221,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Figure 6. The domain distribution of non-search forms",
                "sec_num": null
            },
            {
                "text": "To further test the robustness of our method, the non-search forms in the data sets were made of a variety of forms, including registration forms, login forms, network investigation forms, etc. Figure 6 shows the distribution of different non-search forms.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 194,
                        "end": 202,
                        "text": "Figure 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Figure 6. The domain distribution of non-search forms",
                "sec_num": null
            },
            {
                "text": "We first carried out experiments to compare our random forest method with four well-known classification algorithms, i.e., Support Vector Machine (SVM), C4.5, Na\u00efve Bayes,and Random Forest Algorithm (RFA) implemented in Weka 3 . We also implemented our algorithm (IRFA) as a plug-in of Weka and conducted all experiments in this environment to make a fair comparison. We conducted the standard 10-fold classification experiments on the three data sets. The evaluation metrics used were precision and computation time. The number of trees was set to 100 for IRFA and parameter \u03b2 set to 0.5 . The final experimental results are shown in Table 4 . We can see that IRFA showed significant improvement over the other four algorithms. The result of C4.5 was better than SVM and Na\u00efve Bayes. This was due to the fact that there were a lot of missing values in the data sets and SVM and Na\u00efve Bayes did not perform well in this kind of sparse data. The high dimensionality in the training sets, however, causes an overfitting problem to C4.5 because the single decision tree could become very complex. RFA and IRFA can avoid this problem by selecting different subsets of features to build individual decision trees. Compared with RFA, IRFA uses features that are more correlated to the class label feature, so the accuracy of each individual tree is improved. Therefore, our method got better performance than RFA. Since IRFA needed to compute the 2 \u03c7 values for features, it",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 635,
                        "end": 642,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison Experiments",
                "sec_num": "4.2"
            },
            {
                "text": "Hidden Web Search Interfaces took more computational time. This extra overhead, however, is worthwhile and acceptable in real applications because the training process is offline and not executed frequently.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison Experiments",
                "sec_num": "4.2"
            },
            {
                "text": "When building each decision tree, IRFA only selects a subset of the original features. The number of selected features is controlled by the selection rate \u03b2 . Different selection rates result in different classification precisions and computational costs. We carried out experiments on the three data sets with 0.1, 0.2, , 1.0",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Selection of the Number of Features",
                "sec_num": "4.3"
            },
            {
                "text": "\u03b2 = \u2026",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Selection of the Number of Features",
                "sec_num": "4.3"
            },
            {
                "text": ". Figure 7 plots selection rate \u03b2 against precision, while Figure 8 is \u03b2 against computational cost. Figure 7 shows that when 0.5 \u03b2 < , the precision increases greatly as the selection rate increases. The reason is that a larger selection rate increases the number of features to be selected. When 0.5 0.8 \u03b2 \u2264 \u2264 , the classification performance becomes relatively stable. This means that the forest has selected enough discriminative features. When 0.8 \u03b2 > , the precision will decrease as the selection rate increases. This can be explained by the idea that having too large a selection rate will increase the possibility of selecting noisy features. Most experiments have shown that 0.5 \u03b2 = was a good setting. Figure 8 shows that the computational time of IRFA increases linearly as the feature selection rate increases. This property indicates that IRFA is scalable to large high-dimensional data. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 2,
                        "end": 10,
                        "text": "Figure 7",
                        "ref_id": null
                    },
                    {
                        "start": 59,
                        "end": 67,
                        "text": "Figure 8",
                        "ref_id": null
                    },
                    {
                        "start": 101,
                        "end": 109,
                        "text": "Figure 7",
                        "ref_id": null
                    },
                    {
                        "start": 713,
                        "end": 721,
                        "text": "Figure 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Selection of the Number of Features",
                "sec_num": "4.3"
            },
            {
                "text": "Another interesting issue is whether the performance of IRFA highly depends on the size of a forest (number of decision trees in the forest). Since a large number of trees lead to a considerable computational cost, we need to find a good tradeoff between classification precision and computational cost. We performed experiments on the three data sets with different tree numbers ( 10, 25, 50, 75, 100, 125, 150, 200) k = . The feature selection rate \u03b2 was set to 0.5 in all experiments. The experimental results are shown in Figure 9 and Figure 10 . Figure 9 plots the precision against the number of trees k . The results show that if the number of trees is too small, the classification performance of the forest will be unstable. If the number of trees is too large, however, the computational cost for generating a forest will be very high. The classification precision becomes stable when 75 150 k < <",
                "cite_spans": [
                    {
                        "start": 380,
                        "end": 385,
                        "text": "( 10,",
                        "ref_id": null
                    },
                    {
                        "start": 386,
                        "end": 389,
                        "text": "25,",
                        "ref_id": null
                    },
                    {
                        "start": 390,
                        "end": 393,
                        "text": "50,",
                        "ref_id": null
                    },
                    {
                        "start": 394,
                        "end": 397,
                        "text": "75,",
                        "ref_id": null
                    },
                    {
                        "start": 398,
                        "end": 402,
                        "text": "100,",
                        "ref_id": null
                    },
                    {
                        "start": 403,
                        "end": 407,
                        "text": "125,",
                        "ref_id": null
                    },
                    {
                        "start": 408,
                        "end": 412,
                        "text": "150,",
                        "ref_id": null
                    },
                    {
                        "start": 413,
                        "end": 417,
                        "text": "200)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 526,
                        "end": 534,
                        "text": "Figure 9",
                        "ref_id": "FIGREF9"
                    },
                    {
                        "start": 539,
                        "end": 548,
                        "text": "Figure 10",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 551,
                        "end": 559,
                        "text": "Figure 9",
                        "ref_id": "FIGREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Selection of the Number of Trees",
                "sec_num": "4.4"
            },
            {
                "text": ". The near-optimal precision can be obtained when k is set to 100. Moreover, as shown in Figure 10 , with the increase of the number of trees, the computational time increases linearly as well. Therefore, in most situations, 100 k = is a good balance between classification accuracy and computational cost. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 89,
                        "end": 98,
                        "text": "Figure 10",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Selection of the Number of Trees",
                "sec_num": "4.4"
            },
            {
                "text": "The representation of search forms in different domains varies, so it is necessary to investigate if the performance of IRFA can be consistent in different domains. An experiment was designed to classify search interfaces from four different domains. We used the Web collection provided by Metaquerier 4 , which contains the information about Books, Movies, Airfares, and Jobs. The number of trees for IRFA was set to 100, and parameter \u03b2 was set to 0.5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison in Different Domains",
                "sec_num": "4.5"
            },
            {
                "text": "The experimental results are shown in Table 5 . We can see the obvious variance of accuracy with regard to different domains. The detection accuracies for Books and Jobs domains are higher than those of Movies and Airfares. This was due to the different HTML structures of the search interfaces, as the search interfaces of Movies and Airfares domains are more complex and some of them require more than one step to get the content. The results imply that more formalized and simpler interfaces are more easily recognized. From the results, we also observe that the classification performance of IRFA was very stable in various domains. Even though the precision of SVM on the Movies data set was a little better than IRFA, it became the worst in other domains. Compared with other algorithms, IRFA was the most stable. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 38,
                        "end": 45,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison in Different Domains",
                "sec_num": "4.5"
            },
            {
                "text": "We conducted experiments to demonstrate the performance of IRFA with different feature selection schemes. In this section, we used four commonly used feature selection functions mentioned in (Dash & Liu, 1997) .",
                "cite_spans": [
                    {
                        "start": 191,
                        "end": 209,
                        "text": "(Dash & Liu, 1997)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison with Different Feature Selection Schemes",
                "sec_num": "4.6"
            },
            {
                "text": "1. Random selection, which randomly selects the features using sampling without replacement, is the simplest feature selection method. Random feature selection is the method used in the original random forest (Breiman, 2001 ).",
                "cite_spans": [
                    {
                        "start": 209,
                        "end": 223,
                        "text": "(Breiman, 2001",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison with Different Feature Selection Schemes",
                "sec_num": "4.6"
            },
            {
                "text": "2. Information gain is defined as the difference between the original information requirement and the new requirement (Han & Kamber, 2007) . The information gain value of a feature X is attained by computing the difference between the prior uncertainty and expected posterior uncertainty using X . Feature X is preferred to feature Y if the information gain from feature X is greater than that from feature Y (Dash & Liu, 1997) . In this experiment, the information gain from feature X is set to feature X as its weight instead of Chi-square value in IRFA.",
                "cite_spans": [
                    {
                        "start": 118,
                        "end": 138,
                        "text": "(Han & Kamber, 2007)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 409,
                        "end": 427,
                        "text": "(Dash & Liu, 1997)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison with Different Feature Selection Schemes",
                "sec_num": "4.6"
            },
            {
                "text": "3. Gain Ratio is an extension of information gain. It attempts to overcome the problem that the information gain measure is biased toward tests with many outcomes (i.e., it prefers to select attributes having a large number of values) (Han & Kamber, 2007) . The process of embedding gain ratio into IRFA is similar to information gain in our experiment.",
                "cite_spans": [
                    {
                        "start": 235,
                        "end": 255,
                        "text": "(Han & Kamber, 2007)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison with Different Feature Selection Schemes",
                "sec_num": "4.6"
            },
            {
                "text": "4. Chi-square 2 \u03c7 that has been explained in Section 3.2. The experiments in the prior sections were all based on this feature selection method. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison with Different Feature Selection Schemes",
                "sec_num": "4.6"
            },
            {
                "text": "We implemented the four feature selection methods in Weka's random forest package, and carried out experiments on the data sets described in Section 4.1. The results are shown in Table 6 . From the results, we can see that the Chi-square method is better than the others. The reason that Information Gain and Gain Ratio scheme did not attain better performance can be explained as follows: since both of them use the same feature evaluation criterion in feature sampling and tree construction (for node splitting), the information of features cannot be fully exploited.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 179,
                        "end": 186,
                        "text": "Table 6",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "93.88%",
                "sec_num": null
            },
            {
                "text": "This paper has proposed IRFA, an improved random forest algorithm, for detecting search interfaces of the hidden Web. We extend the original random forest algorithm with a weighted feature selection method to automatically select a more representative subset of features for building each decision tree. The new method can overcome the problem of classifying high-dimensional and sparse search interface data through the ensemble of decision trees, each learned from a different subset of the original feature space. We have implemented the new algorithm and compared it with SVM, C4.5, Na\u00efve Bayes, and original random forest algorithm (RFA). The experimental results have shown that our method is more accurate and robust. We have also observed that the new method is scalable to high dimensional data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "5."
            },
            {
                "text": "In the future, we plan to investigate more feature weighting methods for construction of random forests. Currently, we just use the features in the search forms. It is expected that using contextual information near the search forms may improve detection performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Weighting Random Forest for Detection of 403 Hidden Web Search Interfaces",
                "sec_num": null
            },
            {
                "text": "http://metaquerier.cs.uiuc.edu/repository/ training data set 2 http://www.searchengineguide.com",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.cs.waikato.ac.nz/ml/weka/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://metaquerier.cs.uiuc.edu/repository/training data set",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This research is supported in part by NSFC under grant No.60603066 and China National High-tech Program under grants No.2007AA01Z436 and No.2006AA01A124. Part of Joshua Huang's research was supported by the 863 project matching fund from The University of Hong Kong.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Random forests",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Breiman",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Machine Learning",
                "volume": "45",
                "issue": "",
                "pages": "5--32",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Classification and regression trees",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Breiman",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "H"
                        ],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "A"
                        ],
                        "last": "Olshen",
                        "suffix": ""
                    }
                ],
                "year": 1984,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Breiman, L., Friedman, J. H., & Olshen, R. A. (1984). Classification and regression trees. New York: Chapman & Hall.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "The deep web: Surfacing hidden value",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Brightplanet",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Com",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "BrightPlanet.com (2000). The deep web: Surfacing hidden value. URL http://www.brightplanet.com",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Cluster and discover: focused extraction of qa-pagelets from the deep web",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Caverlee",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "B"
                        ],
                        "last": "Probe",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceeding of the 20th International Conference of Data Engineering",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Caverlee, J., Liu, L., & Probe, D. B. (2004). Cluster and discover: focused extraction of qa-pagelets from the deep web. Proceeding of the 20th International Conference of Data Engineering.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Automated discovery of search nterfaces on the web. Fourteenth Australasian Database Conference",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Cope",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Craswell",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Hawking",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Fourteenth Australasian Database Conference",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cope, J., Craswell, N., & Hawking, D. (2003). Automated discovery of search nterfaces on the web. Fourteenth Australasian Database Conference. Adelaide, Australia: Fourteenth Australasian Database Conference.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Feature selection for classification",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Dash",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "1",
                "issue": "",
                "pages": "131--156",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data nalysis, 1(3), 131-156.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Database techniques for the world wide web: A survey",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Florescu",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "Y"
                        ],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "O"
                        ],
                        "last": "Mendelzon",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "SIGMOD Record",
                "volume": "27",
                "issue": "3",
                "pages": "59--74",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Florescu, D., Levy, A. Y., & Mendelzon, A. O. (1998). Database techniques for the world wide web: A survey. SIGMOD Record, 27(3), 59-74.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Data Mining: Concepts and Techniques",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Kamber",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Han, J., & Kamber, M. (2007). Data Mining: Concepts and Techniques(2nd version). China Machine Press.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Accessing the deep web",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Patel",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "C"
                        ],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Communications Of The ACM",
                "volume": "50",
                "issue": "5",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "He, B., Patel, M., Zhang, Z., & Chang, K. C. (2007). Accessing the deep web. Communications Of The ACM, 50(5).",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "The random subspace method of constructing decision forests",
                "authors": [
                    {
                        "first": "T",
                        "middle": [
                            "K"
                        ],
                        "last": "Ho",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "IEEE Trans. on Pattern Analysis and Machine Intelligence",
                "volume": "20",
                "issue": "8",
                "pages": "832--844",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ho, T. K. (1998). The random subspace method of constructing decision forests. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(8), 832-844.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "On combining classifiers",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kittler",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Hatef",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Duin",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Matas",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "IEEE Transactions on Pattern Analysis and Machine Intelligence",
                "volume": "20",
                "issue": "",
                "pages": "226--239",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kittler, J., Hatef, M., Duin, R., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 226-239.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Automatic generation of agents for collecting hidden web pages for data extraction",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Lage",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Silva",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "B"
                        ],
                        "last": "Golgher",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "H F"
                        ],
                        "last": "Laender",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Data and Knowledge Engineering",
                "volume": "49",
                "issue": "",
                "pages": "177--196",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lage, J. P., Silva, D., Golgher, P. B., & Laender, A. H. F. (2004). Automatic generation of agents for collecting hidden web pages for data extraction. Data and Knowledge Engineering, 49, 177-196.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Introduction to probability theory and statistical inference",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "J"
                        ],
                        "last": "Larson",
                        "suffix": ""
                    }
                ],
                "year": 1982,
                "venue": "",
                "volume": "3",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Larson, H. J. (1982). Introduction to probability theory and statistical inference. New York: Wiley, 3 ed.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Downloading textual hidden web content through keyword queries",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ntoulas",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Zerfos",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ntoulas, A., Zerfos, P., & Cho, J. (2005). Downloading textual hidden web content through keyword queries.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "C4.5: Programs for Machine LearningMachine Learning",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Quinlan",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Quinlan, J. R. (1993). C4.5: Programs for Machine LearningMachine Learning. Morgan Kaufmann.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Crawling the hidden web",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Raghavan",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Garcia-Molina",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of the 27th International Conference on Very Large Data Bases",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Raghavan, S., & Garcia-Molina, H. (2001). Crawling the hidden web. Proceedings of the 27th International Conference on Very Large Data Bases. Roma, Italy.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Data extraction and label assignment for web databases",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Lochovsky",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 12th International World Wide Web Conference",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wang, J., & Lochovsky, F. (2003). Data extraction and label assignment for web databases. Proceedings of the 12th International World Wide Web Conference. Budapest, Hungary.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Understanding web query interfaces: best-effort parsing with hidden syntax",
                "authors": [
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "C"
                        ],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhang, Z., He, B., & Chang, K. C. (2004). Understanding web query interfaces: best-effort parsing with hidden syntax. Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. Paris, France.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "",
                "uris": null,
                "num": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "text": "The hierarchy of form elements Feature Weighting Random Forest for Detection of 391 Hidden Web Search Interfaces",
                "uris": null,
                "num": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "text": "A search formFigure 3. The HTML codes of the form inFigure 2",
                "uris": null,
                "num": null
            },
            "FIGREF3": {
                "type_str": "figure",
                "text": "shows an example of a non-search form. The corresponding HTML codes are shown in",
                "uris": null,
                "num": null
            },
            "FIGREF4": {
                "type_str": "figure",
                "text": "A non-search form",
                "uris": null,
                "num": null
            },
            "FIGREF5": {
                "type_str": "figure",
                "text": "The HTML codes of the form inFigure 4",
                "uris": null,
                "num": null
            },
            "FIGREF6": {
                "type_str": "figure",
                "text": "of samples whose value of the class feature is j c .An 2\u03c7 statistic weight is calculated for each feature. From the weights, we select only different subsets of features with high weights to build individual decision trees.Given a set of decision trees built from different subsets of features, we use a probability estimation technique to combine the results of individual classifiers. Assume x is a test instance and is given to each classifier (",
                "uris": null,
                "num": null
            },
            "FIGREF7": {
                "type_str": "figure",
                "text": "",
                "uris": null,
                "num": null
            },
            "FIGREF8": {
                "type_str": "figure",
                "text": "Influence of the number of features on precision Influence of the number of features on time cost 400YunmingYe et al.",
                "uris": null,
                "num": null
            },
            "FIGREF9": {
                "type_str": "figure",
                "text": "Influence of the number of trees on precision Figure 10. Influence of the number of trees on time cost Feature Weighting Random Forest for Detection of 401 Hidden Web Search Interfaces",
                "uris": null,
                "num": null
            },
            "TABREF1": {
                "html": null,
                "text": "",
                "content": "<table/>",
                "type_str": "table",
                "num": null
            },
            "TABREF2": {
                "html": null,
                "text": "",
                "content": "<table><tr><td colspan=\"4\">class form-action-1 form-action-2 form-action-3</td><td colspan=\"2\">input-text-number input-submit-number</td></tr><tr><td colspan=\"2\">yes www.thearda.com</td><td>cgi-bin</td><td>search</td><td>1</td><td>1</td></tr><tr><td>no</td><td>servlet</td><td>login</td><td>?</td><td>3</td><td>0</td></tr></table>",
                "type_str": "table",
                "num": null
            },
            "TABREF4": {
                "html": null,
                "text": ", where k is the number of decision trees, t is the number of attributes, d is the number of training samples. In IRFA, the enumerating number of the feature attribute is constant(Formula (1)). The computational complexity of all feature weights is ( ) O n . Using the bucket sorting method, the weights can be sorted in linear time. Therefore, the computational complexity of the IRFA",
                "content": "<table><tr><td>is ( log ) O ktd d is ( log ) O ktd d n \u03b1 + , where 2 log 1 t n = + \u23a2 \u23a5 \u23a3 \u23a6 . Therefore, the computational complexity of</td></tr><tr><td>IRFA is very close to the complexity of RFA.</td></tr></table>",
                "type_str": "table",
                "num": null
            },
            "TABREF5": {
                "html": null,
                "text": "",
                "content": "<table><tr><td/><td>search</td><td>non-search</td><td colspan=\"2\">features content of data sets</td></tr><tr><td/><td/><td/><td/><td>Extracted from the website</td></tr><tr><td>Data set 1</td><td>46</td><td>43</td><td>198</td><td>collection crawled from Search</td></tr><tr><td/><td/><td/><td/><td>Engine Guide by crawler</td></tr><tr><td/><td/><td/><td/><td>Extracted from artificial</td></tr><tr><td>Data Set 2</td><td>65</td><td>116</td><td>208</td><td>website collection of</td></tr><tr><td/><td/><td/><td/><td>Metaquerier project</td></tr><tr><td>Data Set 3</td><td>51</td><td>96</td><td>202</td><td/></tr></table>",
                "type_str": "table",
                "num": null
            },
            "TABREF6": {
                "html": null,
                "text": "",
                "content": "<table><tr><td/><td/><td colspan=\"3\">Bayes C4.5 Decision Tree SVM</td><td>RFA</td><td>IRFA</td></tr><tr><td>Data Set 1</td><td>Precision Time Cost(s)</td><td>82.02% &lt; 0.005</td><td>80.90% 0.05</td><td>79.78% 0.52</td><td>88.76% 3.16</td><td>91.01% 7.08</td></tr><tr><td>Data Set 2</td><td>Precision Time Cost(s)</td><td>83.43% &lt; 0.005</td><td>88.40% 0.03</td><td>82.87% 0.88</td><td>91.71% 5.22</td><td>92.27% 17.86</td></tr><tr><td>Data Set 3</td><td>Precision Time Cost(s)</td><td>84.35% &lt; 0.005</td><td>89.79% 0.02</td><td>85.71% 0.88</td><td>91.84% 3.58</td><td>93.88% 15.13</td></tr></table>",
                "type_str": "table",
                "num": null
            },
            "TABREF7": {
                "html": null,
                "text": "",
                "content": "<table><tr><td/><td colspan=\"2\">Dataset Size Bayes</td><td>C4.5</td><td>SVM</td><td>RFA</td><td>IRFA</td></tr><tr><td>Books</td><td>251</td><td colspan=\"3\">92.83% 96.41% 89.24%</td><td>92.03% 96.81%</td></tr><tr><td>Movies</td><td>126</td><td colspan=\"4\">91.27% 91.27% 92.06% 87.30%</td><td>91.27%</td></tr><tr><td>Airfares</td><td>265</td><td colspan=\"3\">89.06% 90.94% 87.92%</td><td>91.69% 91.70%</td></tr><tr><td>Jobs</td><td>104</td><td colspan=\"4\">88.46% 94.23% 78.85% 96.15% 96.15%</td></tr></table>",
                "type_str": "table",
                "num": null
            },
            "TABREF8": {
                "html": null,
                "text": "",
                "content": "<table><tr><td/><td>Random</td><td colspan=\"3\">Information Gain Gain Ratio Chi-square 2 \u03c7</td></tr><tr><td>Data Set 1</td><td>88.76%</td><td>88.76%</td><td>89.89%</td><td>91.01%</td></tr><tr><td>Data Set 2</td><td>91.71%</td><td>91.16%</td><td>92.27%</td><td>92.27%</td></tr><tr><td>Data Set 3</td><td>91.84%</td><td>93.20%</td><td>93.20%</td><td/></tr></table>",
                "type_str": "table",
                "num": null
            }
        }
    }
}