File size: 117,411 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
{
    "paper_id": "O08-6003",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:02:34.519871Z"
    },
    "title": "Hierarchical Taxonomy Integration Using Semantic Feature Expansion on Category-Specific Terms",
    "authors": [
        {
            "first": "Cheng-Zen",
            "middle": [],
            "last": "Yang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Yuan Ze University",
                "location": {
                    "addrLine": "135 Yuan-Tung Rd",
                    "postCode": "320",
                    "settlement": "Chungli",
                    "country": "Taiwan"
                }
            },
            "email": "czyang@syslab.cse.yzu.edu.tw"
        },
        {
            "first": "Ing-Xiang",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Yuan Ze University",
                "location": {
                    "addrLine": "135 Yuan-Tung Rd",
                    "postCode": "320",
                    "settlement": "Chungli",
                    "country": "Taiwan"
                }
            },
            "email": ""
        },
        {
            "first": "Cheng-Tse",
            "middle": [],
            "last": "Hung",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Yuan Ze University",
                "location": {
                    "addrLine": "135 Yuan-Tung Rd",
                    "postCode": "320",
                    "settlement": "Chungli",
                    "country": "Taiwan"
                }
            },
            "email": ""
        },
        {
            "first": "Ping-Jung",
            "middle": [],
            "last": "Wu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Yuan Ze University",
                "location": {
                    "addrLine": "135 Yuan-Tung Rd",
                    "postCode": "320",
                    "settlement": "Chungli",
                    "country": "Taiwan"
                }
            },
            "email": "pjwu@syslab.cse.yzu.edu.tw"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In recent years, the hierarchical taxonomy integration problem has obtained considerable attention in many research studies. Many types of implicit information embedded in the source taxonomy are explored to improve the integration performance. The semantic information embedded in the source taxonomy, however, has not been discussed in previous research. In this paper, an enhanced integration approach called SFE (Semantic Feature Expansion) is proposed to exploit the semantic information of the category-specific terms. From our experiments on two hierarchical Web taxonomies, the results show that the integration performance can be further improved with the SFE scheme.",
    "pdf_parse": {
        "paper_id": "O08-6003",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In recent years, the hierarchical taxonomy integration problem has obtained considerable attention in many research studies. Many types of implicit information embedded in the source taxonomy are explored to improve the integration performance. The semantic information embedded in the source taxonomy, however, has not been discussed in previous research. In this paper, an enhanced integration approach called SFE (Semantic Feature Expansion) is proposed to exploit the semantic information of the category-specific terms. From our experiments on two hierarchical Web taxonomies, the results show that the integration performance can be further improved with the SFE scheme.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In many daily information processing tasks, merging two classified information sources to create a larger taxonomy with abundant information is in great demand. For example, an e-commerce service provider may merge various catalogs from other vendors into its local catalog to provide customers with versatile contents. A Web user may also want to integrate different blog catalogs from Web 2.0 portals to organize a personal information management library. In these examples, people may need an efficient automatic integration approach to process the huge amount of information.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "In recent years, the taxonomy integration problem has obtained much attention in many research studies (e.g. Agrawal & Srikan, 2001; Sarawagi, Chakrabarti, & Godbole, 2003; Zhang & Lee, 2004a; Zhang & Lee, 2004b; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2005; Wu, Tsai, & Hsu, 2005; Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007; Cheng & Wei, 2008; Wu, Tsai, Lee, & Hsu, 2008) . As pointed out in these studies, the integration work is more subtle than traditional classification work because the integration accuracy can be further improved with different kinds of implicit information embedded in the source or destination taxonomy. A taxonomy, or catalog, usually contains a set of objects divided into several categories according to some classified characteristics. In the taxonomy integration problem, the objects in a taxonomy, the source taxonomy S, are integrated into another taxonomy, the destination taxonomy D. As shown in earlier research, this problem is more than a traditional document classification problem because different kinds of implicit information in the source taxonomy are explored to greatly help integrate source documents into the destination taxonomy. For example, a Naive Bayes classification approach (Agrawal & Srikan, 2001 ) with the classification relationship information implicitly existing in the source catalog can achieve integration accuracy improvement. Several SVM (Support Vector Machines) approaches (Chen, Ho, & Yang, 2005) can also have similar improvement with other implicit source information.",
                "cite_spans": [
                    {
                        "start": 109,
                        "end": 132,
                        "text": "Agrawal & Srikan, 2001;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 133,
                        "end": 172,
                        "text": "Sarawagi, Chakrabarti, & Godbole, 2003;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 173,
                        "end": 192,
                        "text": "Zhang & Lee, 2004a;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 193,
                        "end": 212,
                        "text": "Zhang & Lee, 2004b;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 213,
                        "end": 236,
                        "text": "Zhu, Yang, & Lam, 2004;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 237,
                        "end": 260,
                        "text": "Chen, Ho, & Yang, 2005;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 261,
                        "end": 283,
                        "text": "Wu, Tsai, & Hsu, 2005;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 284,
                        "end": 307,
                        "text": "Ho, Chen, & Yang, 2006;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 308,
                        "end": 331,
                        "text": "Chen, Ho, & Yang, 2007;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 332,
                        "end": 350,
                        "text": "Cheng & Wei, 2008;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 351,
                        "end": 378,
                        "text": "Wu, Tsai, Lee, & Hsu, 2008)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1237,
                        "end": 1260,
                        "text": "(Agrawal & Srikan, 2001",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 1449,
                        "end": 1473,
                        "text": "(Chen, Ho, & Yang, 2005)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The implicit source information studied in previous enhanced approaches generally includes the following features: (1) co-occurrence relationships of source objects (Agrawal & Srikan, 2001; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2005) , (2) latent source-destination mappings (Sarawagi, Chakrabarti, & Godbole, 2003; Zhang & Lee, 2004b; Cheng & Wei, 2008) , (3) inter-category centroid information (Zhang & Lee, 2004a) , and (4) parent-children relationships in the source hierarchy (Wu, Tsai, & Hsu, 2005; Ho, Chen, & Yang, 2006; Wu, Tsai, Lee, & Hsu, 2008) . In our survey, however, the semantic information embedded in the source taxonomy has not been discussed. Since different applications have shown that the semantic information can benefit the task performance (Krikos, Stamou, Kokosis, Ntoulas, & Christodoulakis, 2005; Hsu, Tsai, & Chen, 2006) , such information should be able to achieve similar improvements for taxonomy integration. In addition, we further study the hierarchical taxonomy integration problem because many taxonomies, such as Web catalogs, existing in the real world are hierarchical.",
                "cite_spans": [
                    {
                        "start": 165,
                        "end": 189,
                        "text": "(Agrawal & Srikan, 2001;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 190,
                        "end": 213,
                        "text": "Zhu, Yang, & Lam, 2004;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 214,
                        "end": 237,
                        "text": "Chen, Ho, & Yang, 2005)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 279,
                        "end": 319,
                        "text": "(Sarawagi, Chakrabarti, & Godbole, 2003;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 320,
                        "end": 339,
                        "text": "Zhang & Lee, 2004b;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 340,
                        "end": 358,
                        "text": "Cheng & Wei, 2008)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 401,
                        "end": 421,
                        "text": "(Zhang & Lee, 2004a)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 486,
                        "end": 509,
                        "text": "(Wu, Tsai, & Hsu, 2005;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 510,
                        "end": 533,
                        "text": "Ho, Chen, & Yang, 2006;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 534,
                        "end": 561,
                        "text": "Wu, Tsai, Lee, & Hsu, 2008)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 772,
                        "end": 831,
                        "text": "(Krikos, Stamou, Kokosis, Ntoulas, & Christodoulakis, 2005;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 832,
                        "end": 856,
                        "text": "Hsu, Tsai, & Chen, 2006)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "In this paper, we propose an enhanced integration approach by exploiting the implicit semantic information in the source taxonomy with a semantic feature expansion (SFE) mechanism. The basic idea behind SFE is that some semantically related terms can be found to represent a source category, and these representative terms can be further viewed as the additional common category labels for all documents in the category. Augmented with these additional semantic category labels, the source documents should be more precisely integrated into the correct destination category. The semantic expanding scheme, however, needs to consider the polysemy situation to avoid introducing many topic-irrelevant features. Therefore,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Semantic Feature Expansion on Category-Specific Terms SFE employs an efficient correlation coefficient method to select representative semantically-related terms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hierarchical Taxonomy Integration Using 423",
                "sec_num": null
            },
            {
                "text": "To study the effectiveness of SFE, we implemented it based on a hierarchical taxonomy integration approach (EHCI) proposed in Ho et al. (2006) and Chen et al. (2007) with the Maximum Entropy (ME) model classifiers. We have conducted experiments with real-world Web catalogs from Yahoo! and Google, and measured the integration performance with precision, recall, and F 1 measures. The results show that the SFE mechanism consistently can improve the integration performance of the EHCI approach.",
                "cite_spans": [
                    {
                        "start": 126,
                        "end": 142,
                        "text": "Ho et al. (2006)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 147,
                        "end": 165,
                        "text": "Chen et al. (2007)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hierarchical Taxonomy Integration Using 423",
                "sec_num": null
            },
            {
                "text": "The rest of the paper is organized as follows. Section 2 describes the problem definition and Section 3 reviews previous related research. Section 4 elaborates the proposed semantic feature expansion approach and the hierarchical integration process. Section 5 presents the experimental results, and discusses the factors that influence the experiments. Section 6 concludes the paper and discusses some future directions of our work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hierarchical Taxonomy Integration Using 423",
                "sec_num": null
            },
            {
                "text": "Following the definitions in Ho et al. (2006) , we assume that two homogeneous hierarchical taxonomies, the source taxonomy S and the destination taxonomy D, participate in the integration process. The taxonomies are said to be homogeneous if the topics of the two taxonomies are similar. In addition, the taxonomies under consideration are required to overlap with a significant number of common documents. For example, in our experimental data sets, 20.6% of the total documents (436/2117) in the Autos directory of Yahoo! also appear in the corresponding Google directory.",
                "cite_spans": [
                    {
                        "start": 29,
                        "end": 45,
                        "text": "Ho et al. (2006)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "2."
            },
            {
                "text": "The source taxonomy S has a set of m categories, or directories, S 1 , S 2 , \u2026, S m . These categories may have subcategories, such as S 1,1 and S 2,1 . Similarly, the destination catalog D has a set of n categories. The integration process is to directly decide the destination category",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "2."
            },
            {
                "text": "S 1 S 1,1 S \u2026 S m D 1 D 1,1 D \u2026 D n D 2 D 2,2 D 2,1 Source Taxonomy Destination Taxonomy S 1,2 1 x d S 1 S 1,1 S \u2026 S m D 1 D 1,1 D \u2026 D n D 2 D 2,2 D 2,1 Source Taxonomy Destination Taxonomy S 1,2 1 x d",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "2."
            },
            {
                "text": "in D for each document d x in S. In this study, we allow that d x can be integrated into multiple destination categories because a document commonly appears in several different directories in a real-world taxonomy. Figure 1 depicts a typical scenario of the integration process on two hierarchical taxonomies. For illustration, we assume that the source category S 1,1 has a significant number of overlapped documents with the destination categories D 1,1 and D 2,2 . This means that the documents appearing in S 1,1 should have similar descriptive information as the documents in D 1,1 and D 2,2 . Therefore, a non-overlapped document 1",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 216,
                        "end": 224,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Figure 1. A typical integration scenario for two hierarchical taxonomies.",
                "sec_num": null
            },
            {
                "text": "x d in category S 1,1 should be intensively integrated into both two destination categories D 1,1 and D 2,2 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1. A typical integration scenario for two hierarchical taxonomies.",
                "sec_num": null
            },
            {
                "text": "In previous studies, different sorts of implicit information embedded in the source taxonomy are explored to help the integration process. These implicit source features can be mainly categorized into four types: (1) co-occurrence relationships of source objects, (2) latent source-destination mappings, (3) inter-category centroid information, and (4) parent-children relationships in the source hierarchy. The co-occurrence relationships of source objects are first studied to enhance a Naive Bayes classifier based on the concept that if two documents are in the same source category, they are more likely to be in the same destination category (Agrawal & Srikan, 2001 ). The enhanced Na\u00efve Bayes classifier (ENB) is shown to have more than 14% accuracy improvement on average. The work in Chen et al. (2005) also has the similar concept in its iterative pseudo relevance feedback approach. As reported in Chen et al. (2005) , the enhanced SVM classifiers consistently achieve improvement.",
                "cite_spans": [
                    {
                        "start": 648,
                        "end": 671,
                        "text": "(Agrawal & Srikan, 2001",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 793,
                        "end": 811,
                        "text": "Chen et al. (2005)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 909,
                        "end": 927,
                        "text": "Chen et al. (2005)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Integration Techniques",
                "sec_num": "3.1"
            },
            {
                "text": "Latent source-destination mappings are explored in Sarawagi et al. (2003) and Zhang and Lee (2004b) . The cross-training (CT) approach (Sarawagi, Chakrabarti, & Godbole, 2003) extracts the mappings from the first semi-supervised classification phase using the source documents as the training sets. Then, the destination documents are augmented with the latent mappings for the second semi-supervised classification phase to complete the integration. The co-bootstrapping (CB) approach (Zhang & Lee, 2004b ) exploits the predicted source-destination mappings to repeatedly refine the classifiers. The experimental results show that both CT and CB outperform ENB (Sarawagi, Chakrabarti, & Godbole, 2003; Zhang & Lee, 2004b) .",
                "cite_spans": [
                    {
                        "start": 51,
                        "end": 73,
                        "text": "Sarawagi et al. (2003)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 78,
                        "end": 99,
                        "text": "Zhang and Lee (2004b)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 135,
                        "end": 175,
                        "text": "(Sarawagi, Chakrabarti, & Godbole, 2003)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 486,
                        "end": 505,
                        "text": "(Zhang & Lee, 2004b",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 662,
                        "end": 702,
                        "text": "(Sarawagi, Chakrabarti, & Godbole, 2003;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 703,
                        "end": 722,
                        "text": "Zhang & Lee, 2004b)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Integration Techniques",
                "sec_num": "3.1"
            },
            {
                "text": "In Zhang and Lee (2004a) , a cluster shrinkage (CS) approach, in which the feature weights of all objects in a document category are shrunk toward the category centroid, is proposed. Therefore, the cluster-binding relationships among all documents of a category are strengthened. In Wu et al. (2005) and Ho et al. (2006) , the parent-children information embedded in hierarchical taxonomies is intentionally extracted. Based on the hierarchical characteristics, Wu et al. extend the CS and CB approach to improve the integration performance. In Ho et al. (2006) , an enhanced approach called EHCI is proposed to further extract the hierarchical relationships as a conceptual thesaurus. Their results show that the implicit hierarchical information can be effectively used to boost the accuracy performance.",
                "cite_spans": [
                    {
                        "start": 3,
                        "end": 24,
                        "text": "Zhang and Lee (2004a)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 283,
                        "end": 299,
                        "text": "Wu et al. (2005)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 304,
                        "end": 320,
                        "text": "Ho et al. (2006)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 545,
                        "end": 561,
                        "text": "Ho et al. (2006)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Integration Techniques",
                "sec_num": "3.1"
            },
            {
                "text": "The semantic information embedded in the source taxonomy has not been discussed in past studies. This observation motivates us to study the embedded taxonomical semantic information and its effectiveness.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Integration Techniques",
                "sec_num": "3.1"
            },
            {
                "text": "In our proposed SFE scheme, we use the Maximum Entropy (ME) model classifiers to perform the main integration task. Here, we provide a brief overview of the ME model as the background of our work. More details can be found in Berger et al. (1996) . In ME, the entropy ( ) H p for a conditional distribution ( | ) p y x is used to measure the uniformity of ( | ) p y x , where y is an instance of all outcomes Y in a random process and x denotes a contextual environment of the contextual space X, or the history space. To express the relationship between x and y, we can have an indicator function ( , ) f x y (usually known as feature function) defined as:",
                "cite_spans": [
                    {
                        "start": 226,
                        "end": 246,
                        "text": "Berger et al. (1996)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 598,
                        "end": 603,
                        "text": "( , )",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 if ( ) has the defined relationship ( , ) 0 else x, y f x y \u23a7 = \u23a8 \u23a9",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "The entropy ( ) H p is defined by:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "( ) ( | )log ( | ) x X H p p y x p y x \u2208 = \u2212 \u2211",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "The Maximum Entropy Principle is to find a probability model * p C \u2208 such that:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "* arg max ( ) p C p H p \u2208 = (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "where C is a set of allowed conditional probabilities. There are, however, two constraints: ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "{ } { } p p E f E f = (4) and ( | ) 1 y Y p y x \u2208 = \u2211",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "{ } ( , ) ( , ) p x y E f p x y f x y \u2261 \u2211 (6) , { } ( ) ( | ) ( , ) p x y E f p x p y x f x y \u2261 \u2211",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "As indicated in [10] , the conditional probability ( | ) p y x can be computed by:",
                "cite_spans": [
                    {
                        "start": 16,
                        "end": 20,
                        "text": "[10]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 ( | ) exp ( , ) ( ) i i i p y x f x y z x \u03bb \u239b \u239e = \u239c \u239f \u239d \u23a0 \u2211",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "where i \u03bb is the Lagrange multiplier for feature i f , and ( ) z x is defined as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "( ) exp ( , ) i i y i z x f x y \u03bb \u239b \u239e = \u239c \u239f \u239d \u23a0 \u2211 \u2211",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "With the improved iterative scaling (IIS) algorithm (Darroch & Ratcliff, 1972; Berger, Pietra, & Pietra, 1996) , the i \u03bb values can be estimated. Then, the classifiers are built according to the ME model and the training data.",
                "cite_spans": [
                    {
                        "start": 52,
                        "end": 78,
                        "text": "(Darroch & Ratcliff, 1972;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 79,
                        "end": 110,
                        "text": "Berger, Pietra, & Pietra, 1996)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Overview of the Maximum Entropy Model Classifiers",
                "sec_num": "3.2"
            },
            {
                "text": "Previous integration research for hierarchal taxonomy integration mainly can be classified into two categories: clustering-based (Cheng & Wei, 2008) and classification-based (Ho, Chen, & Yang, 2006; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2007) . The clustering-based approach has the advantage in handling manifold taxonomies which may even have small overlaps and in performing integration without a priori training work. Therefore, the application of the clustering-based approach is much more general. The effectiveness of the clustering-based approach, however, depends on the clustering parameters. For inexperienced users, finding optimal clustering parameters will be very challenging.",
                "cite_spans": [
                    {
                        "start": 129,
                        "end": 148,
                        "text": "(Cheng & Wei, 2008)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 174,
                        "end": 198,
                        "text": "(Ho, Chen, & Yang, 2006;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 199,
                        "end": 222,
                        "text": "Zhu, Yang, & Lam, 2004;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 223,
                        "end": 246,
                        "text": "Chen, Ho, & Yang, 2007)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hierarchical Taxonomy Integration",
                "sec_num": "3.3"
            },
            {
                "text": "Although the classification-based approach is more appropriate for handling taxonomies which have significant overlaps, it cannot handle the subtle relationships embedded in categories. For example, CatRelate uses five types of hierarchical relationships in a taxonomy to help catalog integration (Zhu, Yang, & Lam, 2004) , and an integration scheme called EHCI uses a hierarchical weighting mechanism to strengthen the integration effectiveness (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007) . Nonetheless, CatRelate only discusses the hierarchical relationships on a category basis with a set of simple rules. It may suffer from complicated hierarchical relationships when handling large taxonomies. In contrast, EHCI's hierarchical weighting mechanism considers the influences of category labels of more comprehensive neighboring levels on a document basis. The experimental results reported in Ho et al. (2006) and Chen et al. (2007) also show that EHCI is effective for handling large taxonomies. Therefore, we use EHCI as our baseline to study the effectiveness of the proposed SFE approach. The following gives a brief overview for EHCI.",
                "cite_spans": [
                    {
                        "start": 297,
                        "end": 321,
                        "text": "(Zhu, Yang, & Lam, 2004)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 446,
                        "end": 470,
                        "text": "(Ho, Chen, & Yang, 2006;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 471,
                        "end": 494,
                        "text": "Chen, Ho, & Yang, 2007)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 900,
                        "end": 916,
                        "text": "Ho et al. (2006)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 921,
                        "end": 939,
                        "text": "Chen et al. (2007)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hierarchical Taxonomy Integration",
                "sec_num": "3.3"
            },
            {
                "text": "In EHCI, the conceptual relationships (category labels) are first extracted from the hierarchical taxonomy structure as a thesaurus (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007) . Then, the features of each document are extended with the thesaurus by adding the weighted label features. A weighting formula is designed to control the impact of the semantic concepts of each hierarchical level. Equation 10 calculates the EHCI feature weight",
                "cite_spans": [
                    {
                        "start": 132,
                        "end": 156,
                        "text": "(Ho, Chen, & Yang, 2006;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 157,
                        "end": 180,
                        "text": "Chen, Ho, & Yang, 2007)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hierarchical Taxonomy Integration Using 427 Semantic Feature Expansion on Category-Specific Terms",
                "sec_num": null
            },
            {
                "text": ", e x d f of each term x in document d, where L i is the relevant label weight assigned as 1 2 i with an i-level depth, , x d",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hierarchical Taxonomy Integration Using 427 Semantic Feature Expansion on Category-Specific Terms",
                "sec_num": null
            },
            {
                "text": "f is the original weight, and \u03bb is used to control the magnitude relation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hierarchical Taxonomy Integration Using 427 Semantic Feature Expansion on Category-Specific Terms",
                "sec_num": null
            },
            {
                "text": ", x d f is assigned by x i TF TF \u2211",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The weight",
                "sec_num": null
            },
            {
                "text": ", where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The weight",
                "sec_num": null
            },
            {
                "text": "x TF is the term frequency of x, and i denotes the number of the stemmed terms in each document. The label weight L i of each thesaurus is exponentially decreased and accumulated based on the increased levels. , , 0",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The weight",
                "sec_num": null
            },
            {
                "text": "(1 ) Table 1 shows the label weights of different levels, where L 0 is the document level, L 1 is one level upper, and so on to L n for n levels upper. The label weighting scheme uses a power-law distribution to avoid over-emphasis on the least related hierarchical levels. To build the enhanced classifiers for destination categories, the same enhancement on hierarchical label information is also applied to the destination taxonomy to strengthen the discriminative power of the classifiers.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 5,
                        "end": 12,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "The weight",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "e x x d x d n i i L f f L \u03bb \u03bb = = \u00d7 + \u2212 \u00d7 \u2211",
                        "eq_num": "(10)"
                    }
                ],
                "section": "The weight",
                "sec_num": null
            },
            {
                "text": "Although the EHCI approach employs only the embedded hierarchical information with a simple power-law distribution, the integration accuracy performance can be effectively improved. As reported in Chen et al. (2007) , the EHCI approach outperforms a straightforward classification scheme that does not employ any embedded information to help hierarchical taxonomy integration. ",
                "cite_spans": [
                    {
                        "start": 197,
                        "end": 215,
                        "text": "Chen et al. (2007)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The weight",
                "sec_num": null
            },
            {
                "text": "Hierarchical Level Label Weight Document Level (L 0 ) 1/2 0 One Level Upper (L 1 ) 1/2 1 Two Levels Upper (L 2 ) 1/2 2 \u2026 \u2026 n Levels Upper (L n ) 1/2 n",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The weight",
                "sec_num": null
            },
            {
                "text": "The proposed semantic feature expansion (SFE) approach is to use extracted representative terms of a category as the implicit semantic information to help the corresponding integration process. In the following, the overall processing flow of SFE is presented first. Related approaches incorporated in the integration process are then described. Finally, the SFE approach is elaborated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hierarchical Taxonomy Integration with Semantic Feature Expansion",
                "sec_num": "4."
            },
            {
                "text": "To apply SFE to hierarchical taxonomies, a hierarchical taxonomy integration approach (EHCI) (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007) is considered as the baseline. Currently, classifiers based on the Maximum Entropy (ME) model are used because of its prominent performance in many tasks, such as natural language processing (Berger, Pietra, & Pietra, 1996) and flattened taxonomy integration (Wu, Tsai, & Hsu, 2005) . Figure 2 shows the entire integration process flow of the SFE approach. ",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 117,
                        "text": "(Ho, Chen, & Yang, 2006;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 118,
                        "end": 141,
                        "text": "Chen, Ho, & Yang, 2007)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 333,
                        "end": 365,
                        "text": "(Berger, Pietra, & Pietra, 1996)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 401,
                        "end": 424,
                        "text": "(Wu, Tsai, & Hsu, 2005)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 427,
                        "end": 435,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Integration Process",
                "sec_num": "4.1"
            },
            {
                "text": "To further improve the integration performance, the semantic information of inter-taxonomy documents is explored in the proposed approach to perform semantic feature expansion (SFE). The main idea is to augment the feature space of each document with representative topic words. As noted in Tseng et al. (2006) , the hypernyms of documents can be considered as the candidates of the representative topic words for the documents. Hereby, SFE adopts a similar approach to Tseng et al. (2006) to first select important term features from the documents and then decide the representative topic terms from hypernyms.",
                "cite_spans": [
                    {
                        "start": 291,
                        "end": 310,
                        "text": "Tseng et al. (2006)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 470,
                        "end": 489,
                        "text": "Tseng et al. (2006)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "Since feature expansion with hypernyms intends to introduce features that are not related to the document topic, these irrelevant features need to be filtered out before the final integration work. From the aspect of improving integration accuracy, the expanded features that have little discriminative power among categories are considered to be removed. According to previous studies (Ng, Goh, & Low, 1997; Yang & Pedersen, 1997; Tseng, Lin, Chen, & Lin, 2006) , although the 2 \u03c7 -test (chi-square) method is very effective in feature selection for text classification, it cannot differentiate negatively related terms from positively related ones. For a term t and a category c, their 2 \u03c7 measure is defined as:",
                "cite_spans": [
                    {
                        "start": 386,
                        "end": 408,
                        "text": "(Ng, Goh, & Low, 1997;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 409,
                        "end": 431,
                        "text": "Yang & Pedersen, 1997;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 432,
                        "end": 462,
                        "text": "Tseng, Lin, Chen, & Lin, 2006)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "( )( )( )( ) 2 2 ( ) ( , ) T T F F T F F T T F F T N N N N N t c N N N N N N N N \u03c7 + \u2212 + \u2212 + \u2212 + \u2212 + + \u2212 \u2212 \u00d7 \u00d7 \u2212 \u00d7 = + + + + (11)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "where N is the total number of the documents, T N + ( F N + ) is the number of the documents of category c (other categories) containing the term t, and T N \u2212 ( F N \u2212 ) is the number of the documents of category c (other categories) not containing the term t.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "Therefore, the correlation coefficient (CC) method is suggested to filter out the negatively related terms (Ng, Goh, & Low, 1997; Tseng, Lin, Chen, & Lin, 2006) . Since N is the same for each term, we can omit it and get the following equation to calculate the CC value for each term:",
                "cite_spans": [
                    {
                        "start": 107,
                        "end": 129,
                        "text": "(Ng, Goh, & Low, 1997;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 130,
                        "end": 160,
                        "text": "Tseng, Lin, Chen, & Lin, 2006)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "( )( )( )( ) ( ) ( , ) T T F F T F F T T F F T N N N N CC t c N N N N N N N N + \u2212 + \u2212 + \u2212 + \u2212 + + \u2212 \u2212 \u00d7 \u2212 \u00d7 = + + + +",
                        "eq_num": "(12)"
                    }
                ],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "Since the categories in a taxonomy are in a hierarchical relationship, SFE only considers the categories of the same parent in the CC method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "Then, the five terms with the highest CC values are selected to perform semantic feature expansion. As indicated by (Ng, Goh, & Low, 1997; Tseng, Lin, Chen, & Lin, 2006) , the terms selected with CC are highly representative for a category. The category-specific terms of a source category, however, may not be topic-genetic to the corresponding destination category. Therefore, SFE uses them as the basis to find more topic-indicative terms for each category.",
                "cite_spans": [
                    {
                        "start": 116,
                        "end": 138,
                        "text": "(Ng, Goh, & Low, 1997;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 139,
                        "end": 169,
                        "text": "Tseng, Lin, Chen, & Lin, 2006)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "Some lexical dictionaries, such as InfoMap (http://infomap.stanford.edu/) and WordNet (http://wordnet.princeton.edu/), can be used to extract the hypernyms of the category-specific terms to get the topic indicative features of a category. For example, if a category has the following five category-specific terms: output, signal, circuit, input, and frequency, SFE gets the following hypernyms from InfoMap: signal, signaling, sign, communication, abstraction, relation, etc . These hypernyms are more topic-generic than the category specific terms. Then, SFE calculates the weight ",
                "cite_spans": [
                    {
                        "start": 399,
                        "end": 474,
                        "text": "InfoMap: signal, signaling, sign, communication, abstraction, relation, etc",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "x HF is the term frequency of x, and i denotes the number of the hypernyms in each category.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "For each document k d , its SFE feature vector k sf is changed by extending Equation 10 as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "[ ] (1 ) (1 ) k k k k \u03bb \u03bb \u03b1 \u03b1 = \u00d7 + \u2212 \u00d7 \u00d7 + \u2212 \u00d7 sf l h f",
                        "eq_num": "(14)"
                    }
                ],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "where k l denotes the feature vector of the hierarchical thesaurus information computed from the left term of Equation 10, k h denotes the feature vector of the topic-generic terms of the category computed from Equation 13, and k f denotes the original feature vector of the document derived from the right term of Equation 10.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Feature Expansion",
                "sec_num": "4.2"
            },
            {
                "text": "We have conducted experiments with real-world catalogs from Yahoo! and Google to study the performance of the SFE scheme with a Maximum Entropy classification tool from Edinburgh University (ver. 20041229) (Zhang, 2004) . Two integration procedures were implemented. The baseline is ME with EHCI (EHCI-ME), and the other is ME with EHCI and SFE (SFE-ME). We measured three scores with different \u03bb and \u03b1 values: precision, recall, and F 1 measures. Both integration directions were evaluated: from Google to Yahoo! and from Yahoo! to Google. The experimental results show that SFE-ME can effectively improve the integration performance. For recall measures, SFE-ME outperforms EHCI-ME in more than 60% of all cases. For precision measures, SFE-ME outperforms EHCI-ME in more than 90% of all cases. SFE-ME can also achieve the best recall and precision performance. For F 1 measures, SFE-ME outperforms EHCI-ME in nearly 95% of all the cases. The experimental results are detailed in the following.",
                "cite_spans": [
                    {
                        "start": 206,
                        "end": 219,
                        "text": "(Zhang, 2004)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Analysis",
                "sec_num": "5."
            },
            {
                "text": "Semantic Feature Expansion on Category-Specific Terms",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hierarchical Taxonomy Integration Using 431",
                "sec_num": null
            },
            {
                "text": "In the experiments, five directories from Yahoo! and Google were extracted to form two experimental taxonomies (Y and G). Table 2 shows these directories and the number of the extracted documents after ignoring the documents that could not be retrieved. As in previous studies (Agrawal & Srikan, 2001; Sarawagi, Chakrabarti, & Godbole, 2003; Ho, Chen, & Yang, 2006) , the documents appearing in only one category were used as the training data (|Y-G| and |G-Y|), and the common documents were used as the testing data (|Y Test| and |G Test|). Since some documents may appear in more than one category in a taxonomy, |Y Test| is slightly different from |G Test|. For simplicity consideration, the level of each hierarchy was controlled to be at most three in the experiments. If the number of the documents of a certain subcategory was less than 10, the subcategory would be merged upward to its parent category. Before the integration, we used the stopword list in Frakes and Baeza-Yates (1992) to remove the stopwords, and the Porter algorithm (Porter, 1980) for stemming. In the integration process, we allow that each source document x d can be integrated into multiple destination categories (one-to-many) as we find in real-world taxonomies. Different \u03bb values from 0.1 to 1.0 were applied to the source taxonomy ( s \u03bb ) and the destination taxonomy ( d \u03bb ). To both taxonomies, the same \u03b1 value ranging from 0.1 to 1.0 was applied for semantic feature expansion. The lexical dictionary used in the experiments was InfoMap to get hypernyms. As reported in Tseng et al. (2006) , we believe that WordNet will result in similar hypernym performance.",
                "cite_spans": [
                    {
                        "start": 277,
                        "end": 301,
                        "text": "(Agrawal & Srikan, 2001;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 302,
                        "end": 341,
                        "text": "Sarawagi, Chakrabarti, & Godbole, 2003;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 342,
                        "end": 365,
                        "text": "Ho, Chen, & Yang, 2006)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 965,
                        "end": 994,
                        "text": "Frakes and Baeza-Yates (1992)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1045,
                        "end": 1059,
                        "text": "(Porter, 1980)",
                        "ref_id": null
                    },
                    {
                        "start": 1561,
                        "end": 1580,
                        "text": "Tseng et al. (2006)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 122,
                        "end": 129,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Data Sets",
                "sec_num": "5.1"
            },
            {
                "text": "In the experiments, we measured the integration performance of EHCI-ME and SFE-ME in six scores: macro-averaged recall (MaR), micro-averaged recall (MiR), macro-averaged precision (MaP), micro-averaged precision (MiP), macro-averaged F 1 measure (MaF), and micro-averaged F 1 measure (MiF). The standard F 1 measure is defined as the harmonic mean of recall and precision: 1 2 F rp r p = + , where recall is computed as correctly integrated documents all test documents r = and precision is computed as correctly integrated documents all predicted positive documents p =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Sets",
                "sec_num": "5.1"
            },
            {
                "text": ". The micro-averaged scores were measured by computing the scores globally over all categories in five directories. The macro-averaged scores were measured by first computing the scores for each individual category, then averaging these scores. The recall measures are used to reflect the traditional performance measurements on integration accuracy. The precision measures show the degrees of false integration. The standard F 1 measures show the compromised scores between recall and precision.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Sets",
                "sec_num": "5.1"
            },
            {
                "text": "Although we have measured the integration performance with different \u03bb values, this paper only lists part of the results in five different d \u03bb values, which are 0.1, 0.3, 0.5, 0.7, and 0.9.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Results and Discussion",
                "sec_num": "5.2"
            },
            {
                "text": "Considering \u03b1, we have also measured the integration performance with different values ranging from 0.1 to 1.0. When \u03b1 is between 0.1 and 0.4, SFE-ME is superior to EHCI-ME. For different integration directions, we found that the optimal \u03b1 value may be also different. Here, we only report two cases, \u03b1 = 0.4 for integrating documents from Google to Yahoo! and \u03b1 = 0.1 for integrating documents from Yahoo! to Google, in which the SFE approach can show its effectiveness. Table 3 and Table 4 show the macro-averaged and micro-averaged recall results of EHCI-ME and SFE-ME. The macro-averaged and micro-averaged precision results of EHCI-ME and SFE-ME are listed in Table 5 and Table 6 . In Table 7 and Table 8 , the macro-averaged and micro-averaged F 1 measure results of EHCI-ME and SFE-ME are listed, respectively.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 472,
                        "end": 479,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 484,
                        "end": 491,
                        "text": "Table 4",
                        "ref_id": null
                    },
                    {
                        "start": 665,
                        "end": 684,
                        "text": "Table 5 and Table 6",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 690,
                        "end": 709,
                        "text": "Table 7 and Table 8",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Results and Discussion",
                "sec_num": "5.2"
            },
            {
                "text": "From Table 3 (a), we can notice that SFE-ME is superior to EHCI-ME in more than 75% of all MaR scores for the integrations from Google to Yahoo!. Although Table 3 (b) shows that SFE-ME can only achieve nearly 40% improvements for the integration from Yahoo! to Google, SFE-ME has consistent MaR performance. Two reasons cause this lower-than-average MaR performance. First, the recall performance of SFE-ME is not as good as EHCI-ME for categories with few positive examples in the Y\u2192G integration process. This can be justified from the superior MiR performance of SFE-ME. Second, the d \u03bb weight increasingly mitigates the improvements of SFE in the MaR measures of SFE-ME in a consistent way in the Y\u2192G integration process. The MiR performance of SFE-ME also has the similar mitigation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 5,
                        "end": 12,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 155,
                        "end": 162,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Results and Discussion",
                "sec_num": "5.2"
            },
            {
                "text": "From Table 3 , we can also notice that SFE-ME achieves the best MaR of 0.8935 when From table 4, we can notice that SFE-ME is superior to EHCI-ME in more than 60% of all MiR scores for the G\u2192Y integration process and in nearly 75% of all MiR scores for the Y\u2192G integration process. Among these cases, SFE-ME can achieve the best G\u2192Y MiR of Table 3 (b), the experimental results suggest that over-emphasizing the weight of Google's hierarchical thesaurus information will impair the effectiveness of SFE. From Table 5 , we can notice that SFE-ME is superior to EHCI-ME in more than 80% of all MaP for the G\u2192Y integration process, and in all cases for the Y\u2192G integration process. In addition, SFE-ME achieves the best G\u2192Y MaP of 0.6662 when s \u03bb = 1.0 and d \u03bb = 0.1, and the best Y\u2192G MaP of 0.4663 when s \u03bb = 0.7 and d \u03bb = 0.9. Table 6 , SFE-ME achieves the best G\u2192Y MiP of 0.6078 when s \u03bb = 0.9 and d \u03bb = 0.1, and the best Y\u2192G MiP of 0.2988 when s \u03bb = 0.7 and d \u03bb = 0.9. In addition, SFE-ME achieves MiP improvements in 90% of all cases for the G\u2192Y integration process and in all cases for the Y\u2192G integration process. These results show that the number of incorrectly integrated documents in SFE-ME is much lower. With high precision performance, SFE-ME may reduce a lot of time for users in manually verifying the integration correctness. For many applications, a compromised performance may be required with a high F 1 score. From Table 7 and Table 8 , we can notice that SFE-ME is superior to EHCI-ME in nearly 90% of all MaF and MiF scores for the G\u2192Y integration process, and it has consistent improvements in all cases for the Y\u2192G integration process. In our experiments with \u03b1 = 0.4, SFE-ME achieves the highest MaF (0.6839) Cheng-Zen Yang et al. We have also measured these six scores for the s \u03bb = 0.0, d \u03bb = 0.0, and \u03b1 = 0.0 cases, which means that the integration is performed by only ME without EHCI and SFE enhancements. In this configuration, for the G\u2192Y integration process, ME can achieve very prominent recall performance in MaR (0.9578) and MiR (0.9616) but with poor precision performance in MaP (0.0111) and MiP (0.0111). Its MaF and MiF are 0.022 and 0.0219, respectively. For the Y\u2192G integration process, ME has similar performance. Although ME can attain the best recall performance, these results show that it allows many documents of other categories to be incorrectly integrated. The experimental results show that SFE-ME can get more improved integration performance with the SFE scheme. Compared with EHCI-ME, SFE-ME shows that the semantic information of the hypernyms of the category-specific terms can be used to facilitate the integration process between two hierarchical taxonomies.",
                "cite_spans": [
                    {
                        "start": 1719,
                        "end": 1731,
                        "text": "MaF (0.6839)",
                        "ref_id": null
                    },
                    {
                        "start": 1732,
                        "end": 1753,
                        "text": "Cheng-Zen Yang et al.",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 5,
                        "end": 12,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 340,
                        "end": 347,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 509,
                        "end": 516,
                        "text": "Table 5",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 826,
                        "end": 833,
                        "text": "Table 6",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 1433,
                        "end": 1452,
                        "text": "Table 7 and Table 8",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Results and Discussion",
                "sec_num": "5.2"
            },
            {
                "text": "In recent years, the taxonomy integration problem has been progressively studied for integrating two homogeneous hierarchical taxonomies. Many types of implicit information embedded in the source taxonomy are explored to improve the integration performance. The semantic information embedded in the source taxonomy, however, has not been discussed in previous research.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6."
            },
            {
                "text": "In this paper, an enhanced integration approach (SFE) is proposed to exploit the semantic information of the hypernyms of the category-specific terms. Augmented with these additional semantic category features, the source documents can be more precisely integrated into the correct destination category in the experiments. The experimental results show that SFE-ME can achieve the best macro-averaged F 1 score and the best micro-averaged F 1 score. The results also show that the SFE scheme can get precision and recall enhancements in a significant portion of all cases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6."
            },
            {
                "text": "There are still some issues left for future study. For example, the effectiveness of SFE on other classification schemes, such as SVM and NB, may need to be investigated to decide which one has the best integration performance. In addition, deciding the optimal parameter configuration is a classical classification problem which is also important to the taxonomy integration problem. Although mining more valuable implicit information can be a tough challenge, we believe that the integration performance can be further improved with appropriate assistance of more effective auxiliary information and advanced classifiers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6."
            }
        ],
        "back_matter": [
            {
                "text": "This work was supported in part by National Science Council of R.O.C. under grant NSC 96-2422-H-006-002 and NSC 96-2221-E-155-067. The authors would also like to express their gratitude to the anonymous reviewers for their precious comments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgement",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "On Integrating Catalogs",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Agrawal",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Srikan",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of the 10 th International Conference on World Wide Web",
                "volume": "",
                "issue": "",
                "pages": "603--612",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Agrawal, R., & Srikan, R. (2001). On Integrating Catalogs. in Proceedings of the 10 th International Conference on World Wide Web, 603-612.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A Maximum Entropy Approach to Natural Language Processing",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "L"
                        ],
                        "last": "Berger",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "J D"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A D"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "39--71",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996). A Maximum Entropy Approach to Natural Language Processing. Computational Linguistics, 39-71.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "An Iterative Approach for Web Catalog Integration with Support Vector Machines",
                "authors": [
                    {
                        "first": "I.-X",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "J.-C",
                        "middle": [],
                        "last": "Ho",
                        "suffix": ""
                    },
                    {
                        "first": "C.-Z",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 2 nd Asia Information Retrieval Symposium (AIRS 2005)",
                "volume": "",
                "issue": "",
                "pages": "703--708",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chen, I.-X., Ho, J.-C., & Yang, C.-Z. (2005). An Iterative Approach for Web Catalog Integration with Support Vector Machines. in Proceedings of the 2 nd Asia Information Retrieval Symposium (AIRS 2005), 703-708.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Hierarchical Web Catalog Integration with Conceptual Relationships in a Thesaurus",
                "authors": [
                    {
                        "first": "I.-X",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "J.-C",
                        "middle": [],
                        "last": "Ho",
                        "suffix": ""
                    },
                    {
                        "first": "C.-Z",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "International Journal of Computational Linguistics and Chinese Language Processing",
                "volume": "12",
                "issue": "2",
                "pages": "155--174",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chen, I.-X., Ho, J.-C., & Yang, C.-Z. (2007). Hierarchical Web Catalog Integration with Conceptual Relationships in a Thesaurus. International Journal of Computational Linguistics and Chinese Language Processing, 12(2), 155-174.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A Clustering-based Approach for Integrating Document-Category Hierarchies",
                "authors": [
                    {
                        "first": "T.-H",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "C.-P",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "IEEE Transactions on Systems, Man, and Cybernetics -Part A: Systems and Humans",
                "volume": "38",
                "issue": "",
                "pages": "410--424",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cheng, T.-H., & Wei, C.-P. (2008). A Clustering-based Approach for Integrating Document-Category Hierarchies. IEEE Transactions on Systems, Man, and Cybernetics -Part A: Systems and Humans, 38(2), 410-424.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Generalized Iterative Scaling for Log-linear Models",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "N"
                        ],
                        "last": "Darroch",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Ratcliff",
                        "suffix": ""
                    }
                ],
                "year": 1972,
                "venue": "Annals of Mathematical Statistics",
                "volume": "43",
                "issue": "",
                "pages": "1470--1480",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Darroch, J. N., & Ratcliff, D. (1972). Generalized Iterative Scaling for Log-linear Models. Annals of Mathematical Statistics, 43, 1470-1480.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Information Retrieval: Data Structures and Algorithms",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Frakes",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Baeza-Yates",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Frakes, W., & Baeza-Yates, R. (1992). Information Retrieval: Data Structures and Algorithms, 1st edition, Prentice Hall, PTR.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Learning to Integrate Web Catalogs with Conceptual Relationships in Hierarchical Thesaurus",
                "authors": [
                    {
                        "first": "J.-C",
                        "middle": [],
                        "last": "Ho",
                        "suffix": ""
                    },
                    {
                        "first": "I.-X",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "C.-Z",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 3 rd Asia Information Retrieval Symposium",
                "volume": "",
                "issue": "",
                "pages": "217--229",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ho, J.-C., Chen, I.-X., & Yang, C.-Z. (2006). Learning to Integrate Web Catalogs with Conceptual Relationships in Hierarchical Thesaurus. in Proceedings of the 3 rd Asia Information Retrieval Symposium (AIRS 2006), 217-229.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Query Expansion with ConceptNet and WordNet: an Intrinsic Comparison",
                "authors": [
                    {
                        "first": "M.-H",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    },
                    {
                        "first": "M.-F",
                        "middle": [],
                        "last": "Tsai",
                        "suffix": ""
                    },
                    {
                        "first": "H.-H",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 3 rd Asia Information Retrieval Symposium",
                "volume": "",
                "issue": "",
                "pages": "1--13",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hsu, M.-H., Tsai, M.-F., & Chen, H.-H. (2006). Query Expansion with ConceptNet and WordNet: an Intrinsic Comparison. in Proceedings of the 3 rd Asia Information Retrieval Symposium (AIRS 2006), 1-13.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "DirectoryRank: Ordering Pages in Web Directories",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Krikos",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Stamou",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Kokosis",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ntoulas",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christodoulakis",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 7 th ACM International Workshop on Web Information and Data Management",
                "volume": "",
                "issue": "",
                "pages": "17--22",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Krikos, V., Stamou, S., Kokosis, P., Ntoulas, A., & Christodoulakis, D. (2005). DirectoryRank: Ordering Pages in Web Directories. in Proceedings of the 7 th ACM International Workshop on Web Information and Data Management (WIDM 2005), 17-22.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Feature selection, Perception Learning, and a Usability Case Study for Text Categorization",
                "authors": [
                    {
                        "first": "H.-T",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "W.-B",
                        "middle": [],
                        "last": "Goh",
                        "suffix": ""
                    },
                    {
                        "first": "K.-L",
                        "middle": [],
                        "last": "Low",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proceedings of the 20 th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "67--73",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ng, H.-T., Goh, W.-B., & Low, K.-L. (1997). Feature selection, Perception Learning, and a Usability Case Study for Text Categorization. in Proceedings of the 20 th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 67-73.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Cross-training: Learning Probabilistic Mappings between Topics",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Sarawagi",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Chakrabarti",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Godbole",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 9 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining",
                "volume": "",
                "issue": "",
                "pages": "177--186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sarawagi, S., Chakrabarti, S., & Godbole, S. (2003). Cross-training: Learning Probabilistic Mappings between Topics. in Proceedings of the 9 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 177-186.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Toward Generic Title Generation for Clustered Documents",
                "authors": [
                    {
                        "first": "Y.-H",
                        "middle": [],
                        "last": "Tseng",
                        "suffix": ""
                    },
                    {
                        "first": "C.-J",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "H.-H",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Y.-I",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 3 rd Asia Information Retrieval Symposium",
                "volume": "",
                "issue": "",
                "pages": "145--157",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tseng, Y.-H., Lin, C.-J., Chen, H.-H., & Lin, Y.-I. (2006). Toward Generic Title Generation for Clustered Documents. in Proceedings of the 3 rd Asia Information Retrieval Symposium (AIRS 2006), 145-157.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Learning to Integrate Web Taxonomies with Fine-Grained Relations: A Case Study Using Maximum Entropy Model",
                "authors": [
                    {
                        "first": "C.-W",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "T.-H",
                        "middle": [],
                        "last": "Tsai",
                        "suffix": ""
                    },
                    {
                        "first": "W.-L",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 2 nd Asia Information Retrieval Symposium (AIRS 2005)",
                "volume": "",
                "issue": "",
                "pages": "190--205",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wu, C.-W., Tsai, T.-H., & Hsu, W.-L. (2005). Learning to Integrate Web Taxonomies with Fine-Grained Relations: A Case Study Using Maximum Entropy Model. in Proceedings of the 2 nd Asia Information Retrieval Symposium (AIRS 2005), 190-205.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Web Taxonomy Integration with Hierarchical Shrinkage algorithm and Fine-Grained Relations",
                "authors": [
                    {
                        "first": "C.-W",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "T.-H",
                        "middle": [],
                        "last": "Tsai",
                        "suffix": ""
                    },
                    {
                        "first": "C.-W",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "W.-L",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Expert Systems with Applications",
                "volume": "35",
                "issue": "4",
                "pages": "2123--2131",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wu, C.-W., Tsai, T.-H., Lee, C.-W., & Hsu, W.-L. (2008). Web Taxonomy Integration with Hierarchical Shrinkage algorithm and Fine-Grained Relations. Expert Systems with Applications, 35(4), 2123-2131.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Semantic Feature Expansion on Category-Specific Terms",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Semantic Feature Expansion on Category-Specific Terms",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "A Comparative Study on Feature Selection in Text Categorization",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "O"
                        ],
                        "last": "Pedersen",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proceedings of the 14 th International Conference on Machine Learning (ICML'97",
                "volume": "",
                "issue": "",
                "pages": "412--420",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yang, Y., & Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text Categorization. in Proceedings of the 14 th International Conference on Machine Learning (ICML'97), 412-420.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Web Taxonomy Integration using Support Vector Machines",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "W.-S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 13 th International Conference on World Wide Web",
                "volume": "",
                "issue": "",
                "pages": "472--481",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhang, D., & Lee, W.-S. (2004a). Web Taxonomy Integration using Support Vector Machines. in Proceedings of the 13 th International Conference on World Wide Web, 472-481.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Web Taxonomy Integration Through Co-Bootstrapping",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "W.-S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 27 th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "410--417",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhang, D., & Lee, W.-S. (2004b). Web Taxonomy Integration Through Co-Bootstrapping. in Proceedings of the 27 th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 410-417.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "CatRelate: A New Hierarchical Document Category Integration Algorithm by learning Category Relationships",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "C"
                        ],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Lam",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 7 th International Conference on Asian Digital Libraries (ICADL 2004)",
                "volume": "",
                "issue": "",
                "pages": "280--289",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhu, S., Yang, C. C., & Lam, W. (2004). CatRelate: A New Hierarchical Document Category Integration Algorithm by learning Category Relationships. in Proceedings of the 7 th International Conference on Asian Digital Libraries (ICADL 2004), Shanghai, China, 280-289.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Online Resources Information Mapping Project",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Online Resources Information Mapping Project, Computational Semantics Laboratory, Stanford University. http://infomap.stanford.edu/.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "A lexical database for the English language",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wordnet",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "WordNet, A lexical database for the English language: Cognitive Science Laboratory, Princeton University, http://wordnet.princeton.edu/.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Maximum Entropy Modeling Toolkit for Python and C++",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhang, L., \"Maximum Entropy Modeling Toolkit for Python and C++,\" http://homepages.inf.ed.ac.uk/s0450736/maxent.html.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "type_str": "figure",
                "text": "= 0.1 and d \u03bb = 0.1 for the G\u2192Y integration process. Although Table 3 (b) shows that EHCI-ME achieves the best MaR for the Y\u2192G integration process, SFE-ME indeed achieves higher MaR of 0.9501 in our experiment while s \u03bb = 0.1, d \u03bb = 0.1, and \u03b1 = 0.4. 0.7317 0.7261 0.7262 0.7292 0.7207 0.7081 0.7284 0.7338 0.7338 0.7338 0.70 0.7262 0.7242 0.7233 0.7263 0.7191 0.6941 0.7227 0.7333 0.7338 0.7338 0.80 0.7231 0.7205 0.7232 0.7253 0.7235 0.6922 0.7208 0.7277 0.7304 0results of the integration from Yahoo! to Google",
                "num": null,
                "uris": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "text": "0.9301 and the best Y\u2192G MiR of 0.9055 when s \u03bb = 0.1 and d \u03bb = 0.1. When d \u03bb = EHCI-ME outperforms SFE-ME for both MaR and MiR in the G\u2192Y integration process. Considering the d \u03bb influences of Google's hierarchical thesaurus information shown in",
                "num": null,
                "uris": null
            },
            "FIGREF3": {
                "type_str": "figure",
                "text": "The micro-averaged recall (MiR) measures of EHCI-ME and SFE-ME. 0.8562 0.8624 0.8627 0.8620 0.8552 0.8545 0.8463 0.8425 0.8418 (b) The results of the integration from Yahoo! to Google Hierarchical Taxonomy Integration Using 435 Semantic Feature Expansion on Category-Specific Terms",
                "num": null,
                "uris": null
            },
            "FIGREF4": {
                "type_str": "figure",
                "text": "0.1012 0.1024 0.1019 0.1017 0.1661 0.1797 0.1847 0.1876 0.1881 (b) The results of the integration from Yahoo! to GoogleFrom",
                "num": null,
                "uris": null
            },
            "FIGREF5": {
                "type_str": "figure",
                "text": "and the highest MiF (0.6764) when s \u03bb = 0.6 and d \u03bb = 0.1 for the G\u2192Y integration process. For the Y\u2192G integration process, SFE-ME achieves the highest MaF (0.5919) and the highest MiF (0.4413) when \u03b1 = 0.1, s \u03bb = 0.7, and d \u03bb = 0.9. These two tables show that the SFE scheme can mostly get more balanced improvements in both recall and precision considerations.",
                "num": null,
                "uris": null
            },
            "FIGREF6": {
                "type_str": "figure",
                "text": "The macro-averaged F 1 (MaF) measures of EHCI-ME and SFE-ME. 0.2355 0.3223 0.3346 0.3345 0.3426 0.3574 0.5225 0.5459 0.5829 0.5904 0.70 0.2354 0.3234 0.3379 0.3352 0.3411 0.3629 0.5251 0.5472 0.5834 0.5919 0.80 0.2358 0.3247 0.3388 0.3356 0.3405 0.3672 0.5251 0.5484 0.5839 0The results of the integration from Yahoo! to Google",
                "num": null,
                "uris": null
            },
            "FIGREF7": {
                "type_str": "figure",
                "text": "438",
                "num": null,
                "uris": null
            },
            "FIGREF8": {
                "type_str": "figure",
                "text": "0.2021 0.1991 0.1982 0.1978 0.1975  0.2508 0.3413 0.3623 0.3973 0.4413 0.80 0.2025 0.2000 0.1980 0.1976 0.1974 0.2558 0.3439 0.3633 0.3964 0.4408 0.90 0.2027 0.1989 0.1972 0.1975 0.1964 0.2584 0.3441 0.3667 0.3952 0",
                "num": null,
                "uris": null
            },
            "TABREF0": {
                "text": "The experimental results show that the CS-enhanced Transductive SVMs give",
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>Hierarchical Taxonomy Integration Using</td><td>425</td></tr><tr><td>Semantic Feature Expansion on Category-Specific Terms</td><td/></tr><tr><td>significant improvement to the original T-SVMs and consistently outperform ENB.</td><td/></tr></table>",
                "html": null
            },
            "TABREF2": {
                "text": "",
                "num": null,
                "type_str": "table",
                "content": "<table/>",
                "html": null
            },
            "TABREF4": {
                "text": "",
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>Category</td><td>Google</td><td colspan=\"3\">|G-Y| |G Class| |G Test|</td><td>Yahoo!</td><td colspan=\"2\">|Y-G| |Y Class| |Y Test|</td></tr><tr><td>Autos</td><td>/autos/\u2026</td><td>1096</td><td>12</td><td colspan=\"3\">427 /automotive/\u2026 1681</td><td>24</td><td>436</td></tr><tr><td colspan=\"2\">Movies /movies/\u2026</td><td>5188</td><td>26</td><td colspan=\"3\">1422 /movies_Film/\u2026 7255</td><td>27</td><td>1344</td></tr><tr><td colspan=\"2\">Outdoors /outdoors/\u2026</td><td>2396</td><td>16</td><td colspan=\"2\">208 /outdoors/\u2026</td><td>1579</td><td>19</td><td>210</td></tr><tr><td>Photo</td><td colspan=\"2\">/photography/\u2026 615</td><td>9</td><td colspan=\"3\">235 /photography/\u2026 1304</td><td>23</td><td>218</td></tr><tr><td colspan=\"2\">Software /software/\u2026</td><td>5829</td><td>27</td><td colspan=\"2\">641 /software/\u2026</td><td>1876</td><td>25</td><td>691</td></tr><tr><td>Total</td><td/><td>15124</td><td>90</td><td>2932</td><td/><td colspan=\"2\">13695 108</td><td>2918</td></tr></table>",
                "html": null
            },
            "TABREF5": {
                "text": "",
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td/><td/><td colspan=\"10\">. The macro-averaged precision (MaP) measures of EHCI-ME and SFE-ME.</td></tr><tr><td/><td/><td/><td/><td>EHCI-ME</td><td/><td/><td/><td colspan=\"3\">SFE-ME (\u03b1 = 0.4)</td><td/></tr><tr><td>\u03bb s</td><td>\u03bb d</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td></tr><tr><td colspan=\"2\">0.10</td><td colspan=\"10\">0.1936 0.3273 0.3356 0.3426 0.3425 0.2122 0.2980 0.3139 0.3158 0.3557</td></tr><tr><td colspan=\"2\">0.20</td><td colspan=\"10\">0.3491 0.3482 0.3475 0.3459 0.3559 0.3664 0.3696 0.3572 0.3477 0.3510</td></tr><tr><td colspan=\"2\">0.30</td><td colspan=\"10\">0.3890 0.3537 0.3486 0.3460 0.3547 0.4707 0.3960 0.3793 0.3523 0.3486</td></tr><tr><td colspan=\"2\">0.40</td><td colspan=\"10\">0.4090 0.3613 0.3497 0.3482 0.3543 0.5794 0.4137 0.3797 0.3723 0.3531</td></tr><tr><td colspan=\"2\">0.50</td><td colspan=\"10\">0.4253 0.3657 0.3515 0.3521 0.3560 0.6279 0.4649 0.3971 0.3778 0.3552</td></tr><tr><td colspan=\"2\">0.60</td><td colspan=\"10\">0.4373 0.3734 0.3565 0.3588 0.3603 0.6613 0.4918 0.4192 0.3556 0.3624</td></tr><tr><td colspan=\"2\">0.70</td><td colspan=\"10\">0.4455 0.3811 0.3611 0.3681 0.3655 0.6600 0.5592 0.4397 0.3663 0.3916</td></tr><tr><td colspan=\"2\">0.80</td><td colspan=\"10\">0.4532 0.3876 0.3686 0.3735 0.3559 0.6607 0.6403 0.4872 0.3876 0.3333</td></tr><tr><td colspan=\"2\">0.90</td><td colspan=\"10\">0.4548 0.3904 0.3747 0.3853 0.3607 0.6636 0.6543 0.5738 0.4321 0.3548</td></tr><tr><td colspan=\"2\">1.00</td><td colspan=\"10\">0.4565 0.4125 0.3862 0.4070 0.3625 0.6662 0.6575 0.5955 0.5043 0.4304</td></tr></table>",
                "html": null
            },
            "TABREF6": {
                "text": "",
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td/><td colspan=\"11\">. The micro-averaged precision (MiP) measures of EHCI-ME and SFE-ME.</td></tr><tr><td/><td/><td/><td/><td>EHCI-ME</td><td/><td/><td/><td colspan=\"3\">SFE-ME (\u03b1 = 0.4)</td><td/></tr><tr><td>\u03bb s</td><td>\u03bb d</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td></tr><tr><td colspan=\"2\">0.10</td><td colspan=\"10\">0.1156 0.2504 0.2715 0.2740 0.2817 0.1205 0.2835 0.3099 0.2782 0.3687</td></tr><tr><td colspan=\"2\">0.20</td><td colspan=\"10\">0.2253 0.3018 0.2947 0.2822 0.3080 0.1569 0.3661 0.3570 0.3504 0.3629</td></tr><tr><td colspan=\"2\">0.30</td><td colspan=\"10\">0.2741 0.3170 0.2984 0.2858 0.3107 0.2737 0.3777 0.3946 0.3515 0.3642</td></tr><tr><td colspan=\"2\">0.40</td><td colspan=\"10\">0.3136 0.3329 0.3002 0.2897 0.3115 0.4721 0.3834 0.3776 0.3866 0.3688</td></tr><tr><td colspan=\"2\">0.50</td><td colspan=\"10\">0.3494 0.3390 0.3033 0.2695 0.3135 0.5581 0.4556 0.3862 0.3879 0.3666</td></tr><tr><td colspan=\"2\">0.60</td><td colspan=\"10\">0.3763 0.3475 0.3101 0.3101 0.3199 0.6061 0.4663 0.4032 0.3147 0.3700</td></tr><tr><td colspan=\"2\">0.70</td><td colspan=\"10\">0.3906 0.3583 0.3192 0.3336 0.3317 0.6041 0.4924 0.3952 0.3180 0.4151</td></tr><tr><td colspan=\"2\">0.80</td><td colspan=\"10\">0.3966 0.3759 0.3334 0.3485 0.3414 0.6016 0.5824 0.4335 0.3229 0.3452</td></tr><tr><td colspan=\"2\">0.90</td><td colspan=\"10\">0.3987 0.3826 0.3402 0.3734 0.3540 0.6078 0.5871 0.4726 0.3509 0.3800</td></tr><tr><td colspan=\"2\">1.00</td><td colspan=\"10\">0.3992 0.4332 0.3772 0.4198 0.3568 0.5999 0.5894 0.4937 0.3879 0.3974</td></tr><tr><td/><td/><td/><td colspan=\"7\">(a) The results of the integration from Google to Yahoo!</td><td/><td/></tr><tr><td/><td/><td/><td/><td>EHCI-ME</td><td/><td/><td/><td colspan=\"3\">SFE-ME (\u03b1 = 0.1)</td><td/></tr><tr><td>\u03bb s</td><td>\u03bb d</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td></tr><tr><td colspan=\"2\">0.10</td><td colspan=\"10\">0.0677 0.1269 0.1172 0.1118 0.1111 0.0943 0.1818 0.2089 0.2344 0.2686</td></tr><tr><td colspan=\"2\">0.20</td><td colspan=\"10\">0.0999 0.1226 0.1145 0.1121 0.1120 0.1183 0.1903 0.2184 0.2485 0.2829</td></tr><tr><td colspan=\"2\">0.30</td><td colspan=\"10\">0.1087 0.1186 0.1137 0.1123 0.1122 0.1269 0.1929 0.2278 0.2534 0.2860</td></tr><tr><td colspan=\"2\">0.40</td><td colspan=\"10\">0.1125 0.1158 0.1131 0.1124 0.1119 0.1318 0.1948 0.2299 0.2585 0.2909</td></tr><tr><td colspan=\"2\">0.50</td><td colspan=\"10\">0.1142 0.1152 0.1127 0.1122 0.1121 0.1365 0.1984 0.2303 0.2606 0.2943</td></tr><tr><td colspan=\"2\">0.60</td><td colspan=\"10\">0.1147 0.1131 0.1123 0.1121 0.1118 0.1418 0.2042 0.2304 0.2612 0.2983</td></tr><tr><td colspan=\"2\">0.70</td><td colspan=\"10\">0.1147 0.1128 0.1122 0.1119 0.1117 0.1469 0.2131 0.2301 0.2597 0.2988</td></tr><tr><td colspan=\"2\">0.80</td><td colspan=\"10\">0.1150 0.1134 0.1121 0.1118 0.1116 0.1503 0.2152 0.2312 0.2591 0.2985</td></tr><tr><td colspan=\"2\">0.90</td><td colspan=\"10\">0.1151 0.1127 0.1116 0.1117 0.1110 0.1522 0.2154 0.2340 0.2581 0.2988</td></tr><tr><td colspan=\"2\">1.00</td><td colspan=\"10\">0.0979 0.0867 0.0865 0.0870 0.0865 0.1190 0.1388 0.1417 0.1468 0.1573</td></tr><tr><td/><td/><td/><td colspan=\"7\">(b) The results of the integration from Yahoo! to Google</td><td/><td/></tr></table>",
                "html": null
            },
            "TABREF7": {
                "text": "",
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>. The micro-averaged F 1 (MiF) measures of EHCI-ME and SFE-ME.</td></tr></table>",
                "html": null
            }
        }
    }
}