File size: 117,411 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 |
{
"paper_id": "O08-6003",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:02:34.519871Z"
},
"title": "Hierarchical Taxonomy Integration Using Semantic Feature Expansion on Category-Specific Terms",
"authors": [
{
"first": "Cheng-Zen",
"middle": [],
"last": "Yang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Yuan Ze University",
"location": {
"addrLine": "135 Yuan-Tung Rd",
"postCode": "320",
"settlement": "Chungli",
"country": "Taiwan"
}
},
"email": "czyang@syslab.cse.yzu.edu.tw"
},
{
"first": "Ing-Xiang",
"middle": [],
"last": "Chen",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Yuan Ze University",
"location": {
"addrLine": "135 Yuan-Tung Rd",
"postCode": "320",
"settlement": "Chungli",
"country": "Taiwan"
}
},
"email": ""
},
{
"first": "Cheng-Tse",
"middle": [],
"last": "Hung",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Yuan Ze University",
"location": {
"addrLine": "135 Yuan-Tung Rd",
"postCode": "320",
"settlement": "Chungli",
"country": "Taiwan"
}
},
"email": ""
},
{
"first": "Ping-Jung",
"middle": [],
"last": "Wu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Yuan Ze University",
"location": {
"addrLine": "135 Yuan-Tung Rd",
"postCode": "320",
"settlement": "Chungli",
"country": "Taiwan"
}
},
"email": "pjwu@syslab.cse.yzu.edu.tw"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "In recent years, the hierarchical taxonomy integration problem has obtained considerable attention in many research studies. Many types of implicit information embedded in the source taxonomy are explored to improve the integration performance. The semantic information embedded in the source taxonomy, however, has not been discussed in previous research. In this paper, an enhanced integration approach called SFE (Semantic Feature Expansion) is proposed to exploit the semantic information of the category-specific terms. From our experiments on two hierarchical Web taxonomies, the results show that the integration performance can be further improved with the SFE scheme.",
"pdf_parse": {
"paper_id": "O08-6003",
"_pdf_hash": "",
"abstract": [
{
"text": "In recent years, the hierarchical taxonomy integration problem has obtained considerable attention in many research studies. Many types of implicit information embedded in the source taxonomy are explored to improve the integration performance. The semantic information embedded in the source taxonomy, however, has not been discussed in previous research. In this paper, an enhanced integration approach called SFE (Semantic Feature Expansion) is proposed to exploit the semantic information of the category-specific terms. From our experiments on two hierarchical Web taxonomies, the results show that the integration performance can be further improved with the SFE scheme.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "In many daily information processing tasks, merging two classified information sources to create a larger taxonomy with abundant information is in great demand. For example, an e-commerce service provider may merge various catalogs from other vendors into its local catalog to provide customers with versatile contents. A Web user may also want to integrate different blog catalogs from Web 2.0 portals to organize a personal information management library. In these examples, people may need an efficient automatic integration approach to process the huge amount of information.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1."
},
{
"text": "In recent years, the taxonomy integration problem has obtained much attention in many research studies (e.g. Agrawal & Srikan, 2001; Sarawagi, Chakrabarti, & Godbole, 2003; Zhang & Lee, 2004a; Zhang & Lee, 2004b; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2005; Wu, Tsai, & Hsu, 2005; Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007; Cheng & Wei, 2008; Wu, Tsai, Lee, & Hsu, 2008) . As pointed out in these studies, the integration work is more subtle than traditional classification work because the integration accuracy can be further improved with different kinds of implicit information embedded in the source or destination taxonomy. A taxonomy, or catalog, usually contains a set of objects divided into several categories according to some classified characteristics. In the taxonomy integration problem, the objects in a taxonomy, the source taxonomy S, are integrated into another taxonomy, the destination taxonomy D. As shown in earlier research, this problem is more than a traditional document classification problem because different kinds of implicit information in the source taxonomy are explored to greatly help integrate source documents into the destination taxonomy. For example, a Naive Bayes classification approach (Agrawal & Srikan, 2001 ) with the classification relationship information implicitly existing in the source catalog can achieve integration accuracy improvement. Several SVM (Support Vector Machines) approaches (Chen, Ho, & Yang, 2005) can also have similar improvement with other implicit source information.",
"cite_spans": [
{
"start": 109,
"end": 132,
"text": "Agrawal & Srikan, 2001;",
"ref_id": "BIBREF0"
},
{
"start": 133,
"end": 172,
"text": "Sarawagi, Chakrabarti, & Godbole, 2003;",
"ref_id": "BIBREF12"
},
{
"start": 173,
"end": 192,
"text": "Zhang & Lee, 2004a;",
"ref_id": "BIBREF19"
},
{
"start": 193,
"end": 212,
"text": "Zhang & Lee, 2004b;",
"ref_id": "BIBREF20"
},
{
"start": 213,
"end": 236,
"text": "Zhu, Yang, & Lam, 2004;",
"ref_id": "BIBREF21"
},
{
"start": 237,
"end": 260,
"text": "Chen, Ho, & Yang, 2005;",
"ref_id": "BIBREF3"
},
{
"start": 261,
"end": 283,
"text": "Wu, Tsai, & Hsu, 2005;",
"ref_id": "BIBREF14"
},
{
"start": 284,
"end": 307,
"text": "Ho, Chen, & Yang, 2006;",
"ref_id": "BIBREF8"
},
{
"start": 308,
"end": 331,
"text": "Chen, Ho, & Yang, 2007;",
"ref_id": "BIBREF4"
},
{
"start": 332,
"end": 350,
"text": "Cheng & Wei, 2008;",
"ref_id": "BIBREF5"
},
{
"start": 351,
"end": 378,
"text": "Wu, Tsai, Lee, & Hsu, 2008)",
"ref_id": "BIBREF15"
},
{
"start": 1237,
"end": 1260,
"text": "(Agrawal & Srikan, 2001",
"ref_id": "BIBREF0"
},
{
"start": 1449,
"end": 1473,
"text": "(Chen, Ho, & Yang, 2005)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1."
},
{
"text": "The implicit source information studied in previous enhanced approaches generally includes the following features: (1) co-occurrence relationships of source objects (Agrawal & Srikan, 2001; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2005) , (2) latent source-destination mappings (Sarawagi, Chakrabarti, & Godbole, 2003; Zhang & Lee, 2004b; Cheng & Wei, 2008) , (3) inter-category centroid information (Zhang & Lee, 2004a) , and (4) parent-children relationships in the source hierarchy (Wu, Tsai, & Hsu, 2005; Ho, Chen, & Yang, 2006; Wu, Tsai, Lee, & Hsu, 2008) . In our survey, however, the semantic information embedded in the source taxonomy has not been discussed. Since different applications have shown that the semantic information can benefit the task performance (Krikos, Stamou, Kokosis, Ntoulas, & Christodoulakis, 2005; Hsu, Tsai, & Chen, 2006) , such information should be able to achieve similar improvements for taxonomy integration. In addition, we further study the hierarchical taxonomy integration problem because many taxonomies, such as Web catalogs, existing in the real world are hierarchical.",
"cite_spans": [
{
"start": 165,
"end": 189,
"text": "(Agrawal & Srikan, 2001;",
"ref_id": "BIBREF0"
},
{
"start": 190,
"end": 213,
"text": "Zhu, Yang, & Lam, 2004;",
"ref_id": "BIBREF21"
},
{
"start": 214,
"end": 237,
"text": "Chen, Ho, & Yang, 2005)",
"ref_id": "BIBREF3"
},
{
"start": 279,
"end": 319,
"text": "(Sarawagi, Chakrabarti, & Godbole, 2003;",
"ref_id": "BIBREF12"
},
{
"start": 320,
"end": 339,
"text": "Zhang & Lee, 2004b;",
"ref_id": "BIBREF20"
},
{
"start": 340,
"end": 358,
"text": "Cheng & Wei, 2008)",
"ref_id": "BIBREF5"
},
{
"start": 401,
"end": 421,
"text": "(Zhang & Lee, 2004a)",
"ref_id": "BIBREF19"
},
{
"start": 486,
"end": 509,
"text": "(Wu, Tsai, & Hsu, 2005;",
"ref_id": "BIBREF14"
},
{
"start": 510,
"end": 533,
"text": "Ho, Chen, & Yang, 2006;",
"ref_id": "BIBREF8"
},
{
"start": 534,
"end": 561,
"text": "Wu, Tsai, Lee, & Hsu, 2008)",
"ref_id": "BIBREF15"
},
{
"start": 772,
"end": 831,
"text": "(Krikos, Stamou, Kokosis, Ntoulas, & Christodoulakis, 2005;",
"ref_id": "BIBREF10"
},
{
"start": 832,
"end": 856,
"text": "Hsu, Tsai, & Chen, 2006)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1."
},
{
"text": "In this paper, we propose an enhanced integration approach by exploiting the implicit semantic information in the source taxonomy with a semantic feature expansion (SFE) mechanism. The basic idea behind SFE is that some semantically related terms can be found to represent a source category, and these representative terms can be further viewed as the additional common category labels for all documents in the category. Augmented with these additional semantic category labels, the source documents should be more precisely integrated into the correct destination category. The semantic expanding scheme, however, needs to consider the polysemy situation to avoid introducing many topic-irrelevant features. Therefore,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1."
},
{
"text": "Semantic Feature Expansion on Category-Specific Terms SFE employs an efficient correlation coefficient method to select representative semantically-related terms.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hierarchical Taxonomy Integration Using 423",
"sec_num": null
},
{
"text": "To study the effectiveness of SFE, we implemented it based on a hierarchical taxonomy integration approach (EHCI) proposed in Ho et al. (2006) and Chen et al. (2007) with the Maximum Entropy (ME) model classifiers. We have conducted experiments with real-world Web catalogs from Yahoo! and Google, and measured the integration performance with precision, recall, and F 1 measures. The results show that the SFE mechanism consistently can improve the integration performance of the EHCI approach.",
"cite_spans": [
{
"start": 126,
"end": 142,
"text": "Ho et al. (2006)",
"ref_id": "BIBREF8"
},
{
"start": 147,
"end": 165,
"text": "Chen et al. (2007)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hierarchical Taxonomy Integration Using 423",
"sec_num": null
},
{
"text": "The rest of the paper is organized as follows. Section 2 describes the problem definition and Section 3 reviews previous related research. Section 4 elaborates the proposed semantic feature expansion approach and the hierarchical integration process. Section 5 presents the experimental results, and discusses the factors that influence the experiments. Section 6 concludes the paper and discusses some future directions of our work.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hierarchical Taxonomy Integration Using 423",
"sec_num": null
},
{
"text": "Following the definitions in Ho et al. (2006) , we assume that two homogeneous hierarchical taxonomies, the source taxonomy S and the destination taxonomy D, participate in the integration process. The taxonomies are said to be homogeneous if the topics of the two taxonomies are similar. In addition, the taxonomies under consideration are required to overlap with a significant number of common documents. For example, in our experimental data sets, 20.6% of the total documents (436/2117) in the Autos directory of Yahoo! also appear in the corresponding Google directory.",
"cite_spans": [
{
"start": 29,
"end": 45,
"text": "Ho et al. (2006)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Problem Statement",
"sec_num": "2."
},
{
"text": "The source taxonomy S has a set of m categories, or directories, S 1 , S 2 , \u2026, S m . These categories may have subcategories, such as S 1,1 and S 2,1 . Similarly, the destination catalog D has a set of n categories. The integration process is to directly decide the destination category",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Problem Statement",
"sec_num": "2."
},
{
"text": "S 1 S 1,1 S \u2026 S m D 1 D 1,1 D \u2026 D n D 2 D 2,2 D 2,1 Source Taxonomy Destination Taxonomy S 1,2 1 x d S 1 S 1,1 S \u2026 S m D 1 D 1,1 D \u2026 D n D 2 D 2,2 D 2,1 Source Taxonomy Destination Taxonomy S 1,2 1 x d",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Problem Statement",
"sec_num": "2."
},
{
"text": "in D for each document d x in S. In this study, we allow that d x can be integrated into multiple destination categories because a document commonly appears in several different directories in a real-world taxonomy. Figure 1 depicts a typical scenario of the integration process on two hierarchical taxonomies. For illustration, we assume that the source category S 1,1 has a significant number of overlapped documents with the destination categories D 1,1 and D 2,2 . This means that the documents appearing in S 1,1 should have similar descriptive information as the documents in D 1,1 and D 2,2 . Therefore, a non-overlapped document 1",
"cite_spans": [],
"ref_spans": [
{
"start": 216,
"end": 224,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Figure 1. A typical integration scenario for two hierarchical taxonomies.",
"sec_num": null
},
{
"text": "x d in category S 1,1 should be intensively integrated into both two destination categories D 1,1 and D 2,2 .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Figure 1. A typical integration scenario for two hierarchical taxonomies.",
"sec_num": null
},
{
"text": "In previous studies, different sorts of implicit information embedded in the source taxonomy are explored to help the integration process. These implicit source features can be mainly categorized into four types: (1) co-occurrence relationships of source objects, (2) latent source-destination mappings, (3) inter-category centroid information, and (4) parent-children relationships in the source hierarchy. The co-occurrence relationships of source objects are first studied to enhance a Naive Bayes classifier based on the concept that if two documents are in the same source category, they are more likely to be in the same destination category (Agrawal & Srikan, 2001 ). The enhanced Na\u00efve Bayes classifier (ENB) is shown to have more than 14% accuracy improvement on average. The work in Chen et al. (2005) also has the similar concept in its iterative pseudo relevance feedback approach. As reported in Chen et al. (2005) , the enhanced SVM classifiers consistently achieve improvement.",
"cite_spans": [
{
"start": 648,
"end": 671,
"text": "(Agrawal & Srikan, 2001",
"ref_id": "BIBREF0"
},
{
"start": 793,
"end": 811,
"text": "Chen et al. (2005)",
"ref_id": "BIBREF3"
},
{
"start": 909,
"end": 927,
"text": "Chen et al. (2005)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Integration Techniques",
"sec_num": "3.1"
},
{
"text": "Latent source-destination mappings are explored in Sarawagi et al. (2003) and Zhang and Lee (2004b) . The cross-training (CT) approach (Sarawagi, Chakrabarti, & Godbole, 2003) extracts the mappings from the first semi-supervised classification phase using the source documents as the training sets. Then, the destination documents are augmented with the latent mappings for the second semi-supervised classification phase to complete the integration. The co-bootstrapping (CB) approach (Zhang & Lee, 2004b ) exploits the predicted source-destination mappings to repeatedly refine the classifiers. The experimental results show that both CT and CB outperform ENB (Sarawagi, Chakrabarti, & Godbole, 2003; Zhang & Lee, 2004b) .",
"cite_spans": [
{
"start": 51,
"end": 73,
"text": "Sarawagi et al. (2003)",
"ref_id": "BIBREF12"
},
{
"start": 78,
"end": 99,
"text": "Zhang and Lee (2004b)",
"ref_id": "BIBREF20"
},
{
"start": 135,
"end": 175,
"text": "(Sarawagi, Chakrabarti, & Godbole, 2003)",
"ref_id": "BIBREF12"
},
{
"start": 486,
"end": 505,
"text": "(Zhang & Lee, 2004b",
"ref_id": "BIBREF20"
},
{
"start": 662,
"end": 702,
"text": "(Sarawagi, Chakrabarti, & Godbole, 2003;",
"ref_id": "BIBREF12"
},
{
"start": 703,
"end": 722,
"text": "Zhang & Lee, 2004b)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Integration Techniques",
"sec_num": "3.1"
},
{
"text": "In Zhang and Lee (2004a) , a cluster shrinkage (CS) approach, in which the feature weights of all objects in a document category are shrunk toward the category centroid, is proposed. Therefore, the cluster-binding relationships among all documents of a category are strengthened. In Wu et al. (2005) and Ho et al. (2006) , the parent-children information embedded in hierarchical taxonomies is intentionally extracted. Based on the hierarchical characteristics, Wu et al. extend the CS and CB approach to improve the integration performance. In Ho et al. (2006) , an enhanced approach called EHCI is proposed to further extract the hierarchical relationships as a conceptual thesaurus. Their results show that the implicit hierarchical information can be effectively used to boost the accuracy performance.",
"cite_spans": [
{
"start": 3,
"end": 24,
"text": "Zhang and Lee (2004a)",
"ref_id": "BIBREF19"
},
{
"start": 283,
"end": 299,
"text": "Wu et al. (2005)",
"ref_id": "BIBREF14"
},
{
"start": 304,
"end": 320,
"text": "Ho et al. (2006)",
"ref_id": "BIBREF8"
},
{
"start": 545,
"end": 561,
"text": "Ho et al. (2006)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Integration Techniques",
"sec_num": "3.1"
},
{
"text": "The semantic information embedded in the source taxonomy has not been discussed in past studies. This observation motivates us to study the embedded taxonomical semantic information and its effectiveness.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Integration Techniques",
"sec_num": "3.1"
},
{
"text": "In our proposed SFE scheme, we use the Maximum Entropy (ME) model classifiers to perform the main integration task. Here, we provide a brief overview of the ME model as the background of our work. More details can be found in Berger et al. (1996) . In ME, the entropy ( ) H p for a conditional distribution ( | ) p y x is used to measure the uniformity of ( | ) p y x , where y is an instance of all outcomes Y in a random process and x denotes a contextual environment of the contextual space X, or the history space. To express the relationship between x and y, we can have an indicator function ( , ) f x y (usually known as feature function) defined as:",
"cite_spans": [
{
"start": 226,
"end": 246,
"text": "Berger et al. (1996)",
"ref_id": "BIBREF1"
},
{
"start": 598,
"end": 603,
"text": "( , )",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "1 if ( ) has the defined relationship ( , ) 0 else x, y f x y \u23a7 = \u23a8 \u23a9",
"eq_num": "(1)"
}
],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "The entropy ( ) H p is defined by:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "( ) ( | )log ( | ) x X H p p y x p y x \u2208 = \u2212 \u2211",
"eq_num": "(2)"
}
],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "The Maximum Entropy Principle is to find a probability model * p C \u2208 such that:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "* arg max ( ) p C p H p \u2208 = (3)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "where C is a set of allowed conditional probabilities. There are, however, two constraints: ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "{ } { } p p E f E f = (4) and ( | ) 1 y Y p y x \u2208 = \u2211",
"eq_num": "(5)"
}
],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "{ } ( , ) ( , ) p x y E f p x y f x y \u2261 \u2211 (6) , { } ( ) ( | ) ( , ) p x y E f p x p y x f x y \u2261 \u2211",
"eq_num": "(7)"
}
],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "As indicated in [10] , the conditional probability ( | ) p y x can be computed by:",
"cite_spans": [
{
"start": 16,
"end": 20,
"text": "[10]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "1 ( | ) exp ( , ) ( ) i i i p y x f x y z x \u03bb \u239b \u239e = \u239c \u239f \u239d \u23a0 \u2211",
"eq_num": "(8)"
}
],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "where i \u03bb is the Lagrange multiplier for feature i f , and ( ) z x is defined as",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "( ) exp ( , ) i i y i z x f x y \u03bb \u239b \u239e = \u239c \u239f \u239d \u23a0 \u2211 \u2211",
"eq_num": "(9)"
}
],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "With the improved iterative scaling (IIS) algorithm (Darroch & Ratcliff, 1972; Berger, Pietra, & Pietra, 1996) , the i \u03bb values can be estimated. Then, the classifiers are built according to the ME model and the training data.",
"cite_spans": [
{
"start": 52,
"end": 78,
"text": "(Darroch & Ratcliff, 1972;",
"ref_id": "BIBREF6"
},
{
"start": 79,
"end": 110,
"text": "Berger, Pietra, & Pietra, 1996)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Overview of the Maximum Entropy Model Classifiers",
"sec_num": "3.2"
},
{
"text": "Previous integration research for hierarchal taxonomy integration mainly can be classified into two categories: clustering-based (Cheng & Wei, 2008) and classification-based (Ho, Chen, & Yang, 2006; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2007) . The clustering-based approach has the advantage in handling manifold taxonomies which may even have small overlaps and in performing integration without a priori training work. Therefore, the application of the clustering-based approach is much more general. The effectiveness of the clustering-based approach, however, depends on the clustering parameters. For inexperienced users, finding optimal clustering parameters will be very challenging.",
"cite_spans": [
{
"start": 129,
"end": 148,
"text": "(Cheng & Wei, 2008)",
"ref_id": "BIBREF5"
},
{
"start": 174,
"end": 198,
"text": "(Ho, Chen, & Yang, 2006;",
"ref_id": "BIBREF8"
},
{
"start": 199,
"end": 222,
"text": "Zhu, Yang, & Lam, 2004;",
"ref_id": "BIBREF21"
},
{
"start": 223,
"end": 246,
"text": "Chen, Ho, & Yang, 2007)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hierarchical Taxonomy Integration",
"sec_num": "3.3"
},
{
"text": "Although the classification-based approach is more appropriate for handling taxonomies which have significant overlaps, it cannot handle the subtle relationships embedded in categories. For example, CatRelate uses five types of hierarchical relationships in a taxonomy to help catalog integration (Zhu, Yang, & Lam, 2004) , and an integration scheme called EHCI uses a hierarchical weighting mechanism to strengthen the integration effectiveness (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007) . Nonetheless, CatRelate only discusses the hierarchical relationships on a category basis with a set of simple rules. It may suffer from complicated hierarchical relationships when handling large taxonomies. In contrast, EHCI's hierarchical weighting mechanism considers the influences of category labels of more comprehensive neighboring levels on a document basis. The experimental results reported in Ho et al. (2006) and Chen et al. (2007) also show that EHCI is effective for handling large taxonomies. Therefore, we use EHCI as our baseline to study the effectiveness of the proposed SFE approach. The following gives a brief overview for EHCI.",
"cite_spans": [
{
"start": 297,
"end": 321,
"text": "(Zhu, Yang, & Lam, 2004)",
"ref_id": "BIBREF21"
},
{
"start": 446,
"end": 470,
"text": "(Ho, Chen, & Yang, 2006;",
"ref_id": "BIBREF8"
},
{
"start": 471,
"end": 494,
"text": "Chen, Ho, & Yang, 2007)",
"ref_id": "BIBREF4"
},
{
"start": 900,
"end": 916,
"text": "Ho et al. (2006)",
"ref_id": "BIBREF8"
},
{
"start": 921,
"end": 939,
"text": "Chen et al. (2007)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hierarchical Taxonomy Integration",
"sec_num": "3.3"
},
{
"text": "In EHCI, the conceptual relationships (category labels) are first extracted from the hierarchical taxonomy structure as a thesaurus (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007) . Then, the features of each document are extended with the thesaurus by adding the weighted label features. A weighting formula is designed to control the impact of the semantic concepts of each hierarchical level. Equation 10 calculates the EHCI feature weight",
"cite_spans": [
{
"start": 132,
"end": 156,
"text": "(Ho, Chen, & Yang, 2006;",
"ref_id": "BIBREF8"
},
{
"start": 157,
"end": 180,
"text": "Chen, Ho, & Yang, 2007)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hierarchical Taxonomy Integration Using 427 Semantic Feature Expansion on Category-Specific Terms",
"sec_num": null
},
{
"text": ", e x d f of each term x in document d, where L i is the relevant label weight assigned as 1 2 i with an i-level depth, , x d",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hierarchical Taxonomy Integration Using 427 Semantic Feature Expansion on Category-Specific Terms",
"sec_num": null
},
{
"text": "f is the original weight, and \u03bb is used to control the magnitude relation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hierarchical Taxonomy Integration Using 427 Semantic Feature Expansion on Category-Specific Terms",
"sec_num": null
},
{
"text": ", x d f is assigned by x i TF TF \u2211",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The weight",
"sec_num": null
},
{
"text": ", where",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The weight",
"sec_num": null
},
{
"text": "x TF is the term frequency of x, and i denotes the number of the stemmed terms in each document. The label weight L i of each thesaurus is exponentially decreased and accumulated based on the increased levels. , , 0",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The weight",
"sec_num": null
},
{
"text": "(1 ) Table 1 shows the label weights of different levels, where L 0 is the document level, L 1 is one level upper, and so on to L n for n levels upper. The label weighting scheme uses a power-law distribution to avoid over-emphasis on the least related hierarchical levels. To build the enhanced classifiers for destination categories, the same enhancement on hierarchical label information is also applied to the destination taxonomy to strengthen the discriminative power of the classifiers.",
"cite_spans": [],
"ref_spans": [
{
"start": 5,
"end": 12,
"text": "Table 1",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "The weight",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "e x x d x d n i i L f f L \u03bb \u03bb = = \u00d7 + \u2212 \u00d7 \u2211",
"eq_num": "(10)"
}
],
"section": "The weight",
"sec_num": null
},
{
"text": "Although the EHCI approach employs only the embedded hierarchical information with a simple power-law distribution, the integration accuracy performance can be effectively improved. As reported in Chen et al. (2007) , the EHCI approach outperforms a straightforward classification scheme that does not employ any embedded information to help hierarchical taxonomy integration. ",
"cite_spans": [
{
"start": 197,
"end": 215,
"text": "Chen et al. (2007)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The weight",
"sec_num": null
},
{
"text": "Hierarchical Level Label Weight Document Level (L 0 ) 1/2 0 One Level Upper (L 1 ) 1/2 1 Two Levels Upper (L 2 ) 1/2 2 \u2026 \u2026 n Levels Upper (L n ) 1/2 n",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The weight",
"sec_num": null
},
{
"text": "The proposed semantic feature expansion (SFE) approach is to use extracted representative terms of a category as the implicit semantic information to help the corresponding integration process. In the following, the overall processing flow of SFE is presented first. Related approaches incorporated in the integration process are then described. Finally, the SFE approach is elaborated.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hierarchical Taxonomy Integration with Semantic Feature Expansion",
"sec_num": "4."
},
{
"text": "To apply SFE to hierarchical taxonomies, a hierarchical taxonomy integration approach (EHCI) (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007) is considered as the baseline. Currently, classifiers based on the Maximum Entropy (ME) model are used because of its prominent performance in many tasks, such as natural language processing (Berger, Pietra, & Pietra, 1996) and flattened taxonomy integration (Wu, Tsai, & Hsu, 2005) . Figure 2 shows the entire integration process flow of the SFE approach. ",
"cite_spans": [
{
"start": 93,
"end": 117,
"text": "(Ho, Chen, & Yang, 2006;",
"ref_id": "BIBREF8"
},
{
"start": 118,
"end": 141,
"text": "Chen, Ho, & Yang, 2007)",
"ref_id": "BIBREF4"
},
{
"start": 333,
"end": 365,
"text": "(Berger, Pietra, & Pietra, 1996)",
"ref_id": "BIBREF1"
},
{
"start": 401,
"end": 424,
"text": "(Wu, Tsai, & Hsu, 2005)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [
{
"start": 427,
"end": 435,
"text": "Figure 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Integration Process",
"sec_num": "4.1"
},
{
"text": "To further improve the integration performance, the semantic information of inter-taxonomy documents is explored in the proposed approach to perform semantic feature expansion (SFE). The main idea is to augment the feature space of each document with representative topic words. As noted in Tseng et al. (2006) , the hypernyms of documents can be considered as the candidates of the representative topic words for the documents. Hereby, SFE adopts a similar approach to Tseng et al. (2006) to first select important term features from the documents and then decide the representative topic terms from hypernyms.",
"cite_spans": [
{
"start": 291,
"end": 310,
"text": "Tseng et al. (2006)",
"ref_id": "BIBREF13"
},
{
"start": 470,
"end": 489,
"text": "Tseng et al. (2006)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "Since feature expansion with hypernyms intends to introduce features that are not related to the document topic, these irrelevant features need to be filtered out before the final integration work. From the aspect of improving integration accuracy, the expanded features that have little discriminative power among categories are considered to be removed. According to previous studies (Ng, Goh, & Low, 1997; Yang & Pedersen, 1997; Tseng, Lin, Chen, & Lin, 2006) , although the 2 \u03c7 -test (chi-square) method is very effective in feature selection for text classification, it cannot differentiate negatively related terms from positively related ones. For a term t and a category c, their 2 \u03c7 measure is defined as:",
"cite_spans": [
{
"start": 386,
"end": 408,
"text": "(Ng, Goh, & Low, 1997;",
"ref_id": "BIBREF11"
},
{
"start": 409,
"end": 431,
"text": "Yang & Pedersen, 1997;",
"ref_id": "BIBREF18"
},
{
"start": 432,
"end": 462,
"text": "Tseng, Lin, Chen, & Lin, 2006)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "( )( )( )( ) 2 2 ( ) ( , ) T T F F T F F T T F F T N N N N N t c N N N N N N N N \u03c7 + \u2212 + \u2212 + \u2212 + \u2212 + + \u2212 \u2212 \u00d7 \u00d7 \u2212 \u00d7 = + + + + (11)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "where N is the total number of the documents, T N + ( F N + ) is the number of the documents of category c (other categories) containing the term t, and T N \u2212 ( F N \u2212 ) is the number of the documents of category c (other categories) not containing the term t.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "Therefore, the correlation coefficient (CC) method is suggested to filter out the negatively related terms (Ng, Goh, & Low, 1997; Tseng, Lin, Chen, & Lin, 2006) . Since N is the same for each term, we can omit it and get the following equation to calculate the CC value for each term:",
"cite_spans": [
{
"start": 107,
"end": 129,
"text": "(Ng, Goh, & Low, 1997;",
"ref_id": "BIBREF11"
},
{
"start": 130,
"end": 160,
"text": "Tseng, Lin, Chen, & Lin, 2006)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "( )( )( )( ) ( ) ( , ) T T F F T F F T T F F T N N N N CC t c N N N N N N N N + \u2212 + \u2212 + \u2212 + \u2212 + + \u2212 \u2212 \u00d7 \u2212 \u00d7 = + + + +",
"eq_num": "(12)"
}
],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "Since the categories in a taxonomy are in a hierarchical relationship, SFE only considers the categories of the same parent in the CC method.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "Then, the five terms with the highest CC values are selected to perform semantic feature expansion. As indicated by (Ng, Goh, & Low, 1997; Tseng, Lin, Chen, & Lin, 2006) , the terms selected with CC are highly representative for a category. The category-specific terms of a source category, however, may not be topic-genetic to the corresponding destination category. Therefore, SFE uses them as the basis to find more topic-indicative terms for each category.",
"cite_spans": [
{
"start": 116,
"end": 138,
"text": "(Ng, Goh, & Low, 1997;",
"ref_id": "BIBREF11"
},
{
"start": 139,
"end": 169,
"text": "Tseng, Lin, Chen, & Lin, 2006)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "Some lexical dictionaries, such as InfoMap (http://infomap.stanford.edu/) and WordNet (http://wordnet.princeton.edu/), can be used to extract the hypernyms of the category-specific terms to get the topic indicative features of a category. For example, if a category has the following five category-specific terms: output, signal, circuit, input, and frequency, SFE gets the following hypernyms from InfoMap: signal, signaling, sign, communication, abstraction, relation, etc . These hypernyms are more topic-generic than the category specific terms. Then, SFE calculates the weight ",
"cite_spans": [
{
"start": 399,
"end": 474,
"text": "InfoMap: signal, signaling, sign, communication, abstraction, relation, etc",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "where",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "x HF is the term frequency of x, and i denotes the number of the hypernyms in each category.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "For each document k d , its SFE feature vector k sf is changed by extending Equation 10 as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "[ ] (1 ) (1 ) k k k k \u03bb \u03bb \u03b1 \u03b1 = \u00d7 + \u2212 \u00d7 \u00d7 + \u2212 \u00d7 sf l h f",
"eq_num": "(14)"
}
],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "where k l denotes the feature vector of the hierarchical thesaurus information computed from the left term of Equation 10, k h denotes the feature vector of the topic-generic terms of the category computed from Equation 13, and k f denotes the original feature vector of the document derived from the right term of Equation 10.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Feature Expansion",
"sec_num": "4.2"
},
{
"text": "We have conducted experiments with real-world catalogs from Yahoo! and Google to study the performance of the SFE scheme with a Maximum Entropy classification tool from Edinburgh University (ver. 20041229) (Zhang, 2004) . Two integration procedures were implemented. The baseline is ME with EHCI (EHCI-ME), and the other is ME with EHCI and SFE (SFE-ME). We measured three scores with different \u03bb and \u03b1 values: precision, recall, and F 1 measures. Both integration directions were evaluated: from Google to Yahoo! and from Yahoo! to Google. The experimental results show that SFE-ME can effectively improve the integration performance. For recall measures, SFE-ME outperforms EHCI-ME in more than 60% of all cases. For precision measures, SFE-ME outperforms EHCI-ME in more than 90% of all cases. SFE-ME can also achieve the best recall and precision performance. For F 1 measures, SFE-ME outperforms EHCI-ME in nearly 95% of all the cases. The experimental results are detailed in the following.",
"cite_spans": [
{
"start": 206,
"end": 219,
"text": "(Zhang, 2004)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Analysis",
"sec_num": "5."
},
{
"text": "Semantic Feature Expansion on Category-Specific Terms",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hierarchical Taxonomy Integration Using 431",
"sec_num": null
},
{
"text": "In the experiments, five directories from Yahoo! and Google were extracted to form two experimental taxonomies (Y and G). Table 2 shows these directories and the number of the extracted documents after ignoring the documents that could not be retrieved. As in previous studies (Agrawal & Srikan, 2001; Sarawagi, Chakrabarti, & Godbole, 2003; Ho, Chen, & Yang, 2006) , the documents appearing in only one category were used as the training data (|Y-G| and |G-Y|), and the common documents were used as the testing data (|Y Test| and |G Test|). Since some documents may appear in more than one category in a taxonomy, |Y Test| is slightly different from |G Test|. For simplicity consideration, the level of each hierarchy was controlled to be at most three in the experiments. If the number of the documents of a certain subcategory was less than 10, the subcategory would be merged upward to its parent category. Before the integration, we used the stopword list in Frakes and Baeza-Yates (1992) to remove the stopwords, and the Porter algorithm (Porter, 1980) for stemming. In the integration process, we allow that each source document x d can be integrated into multiple destination categories (one-to-many) as we find in real-world taxonomies. Different \u03bb values from 0.1 to 1.0 were applied to the source taxonomy ( s \u03bb ) and the destination taxonomy ( d \u03bb ). To both taxonomies, the same \u03b1 value ranging from 0.1 to 1.0 was applied for semantic feature expansion. The lexical dictionary used in the experiments was InfoMap to get hypernyms. As reported in Tseng et al. (2006) , we believe that WordNet will result in similar hypernym performance.",
"cite_spans": [
{
"start": 277,
"end": 301,
"text": "(Agrawal & Srikan, 2001;",
"ref_id": "BIBREF0"
},
{
"start": 302,
"end": 341,
"text": "Sarawagi, Chakrabarti, & Godbole, 2003;",
"ref_id": "BIBREF12"
},
{
"start": 342,
"end": 365,
"text": "Ho, Chen, & Yang, 2006)",
"ref_id": "BIBREF8"
},
{
"start": 965,
"end": 994,
"text": "Frakes and Baeza-Yates (1992)",
"ref_id": "BIBREF7"
},
{
"start": 1045,
"end": 1059,
"text": "(Porter, 1980)",
"ref_id": null
},
{
"start": 1561,
"end": 1580,
"text": "Tseng et al. (2006)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [
{
"start": 122,
"end": 129,
"text": "Table 2",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Data Sets",
"sec_num": "5.1"
},
{
"text": "In the experiments, we measured the integration performance of EHCI-ME and SFE-ME in six scores: macro-averaged recall (MaR), micro-averaged recall (MiR), macro-averaged precision (MaP), micro-averaged precision (MiP), macro-averaged F 1 measure (MaF), and micro-averaged F 1 measure (MiF). The standard F 1 measure is defined as the harmonic mean of recall and precision: 1 2 F rp r p = + , where recall is computed as correctly integrated documents all test documents r = and precision is computed as correctly integrated documents all predicted positive documents p =",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Sets",
"sec_num": "5.1"
},
{
"text": ". The micro-averaged scores were measured by computing the scores globally over all categories in five directories. The macro-averaged scores were measured by first computing the scores for each individual category, then averaging these scores. The recall measures are used to reflect the traditional performance measurements on integration accuracy. The precision measures show the degrees of false integration. The standard F 1 measures show the compromised scores between recall and precision.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Sets",
"sec_num": "5.1"
},
{
"text": "Although we have measured the integration performance with different \u03bb values, this paper only lists part of the results in five different d \u03bb values, which are 0.1, 0.3, 0.5, 0.7, and 0.9.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Results and Discussion",
"sec_num": "5.2"
},
{
"text": "Considering \u03b1, we have also measured the integration performance with different values ranging from 0.1 to 1.0. When \u03b1 is between 0.1 and 0.4, SFE-ME is superior to EHCI-ME. For different integration directions, we found that the optimal \u03b1 value may be also different. Here, we only report two cases, \u03b1 = 0.4 for integrating documents from Google to Yahoo! and \u03b1 = 0.1 for integrating documents from Yahoo! to Google, in which the SFE approach can show its effectiveness. Table 3 and Table 4 show the macro-averaged and micro-averaged recall results of EHCI-ME and SFE-ME. The macro-averaged and micro-averaged precision results of EHCI-ME and SFE-ME are listed in Table 5 and Table 6 . In Table 7 and Table 8 , the macro-averaged and micro-averaged F 1 measure results of EHCI-ME and SFE-ME are listed, respectively.",
"cite_spans": [],
"ref_spans": [
{
"start": 472,
"end": 479,
"text": "Table 3",
"ref_id": null
},
{
"start": 484,
"end": 491,
"text": "Table 4",
"ref_id": null
},
{
"start": 665,
"end": 684,
"text": "Table 5 and Table 6",
"ref_id": "TABREF5"
},
{
"start": 690,
"end": 709,
"text": "Table 7 and Table 8",
"ref_id": "TABREF7"
}
],
"eq_spans": [],
"section": "Experimental Results and Discussion",
"sec_num": "5.2"
},
{
"text": "From Table 3 (a), we can notice that SFE-ME is superior to EHCI-ME in more than 75% of all MaR scores for the integrations from Google to Yahoo!. Although Table 3 (b) shows that SFE-ME can only achieve nearly 40% improvements for the integration from Yahoo! to Google, SFE-ME has consistent MaR performance. Two reasons cause this lower-than-average MaR performance. First, the recall performance of SFE-ME is not as good as EHCI-ME for categories with few positive examples in the Y\u2192G integration process. This can be justified from the superior MiR performance of SFE-ME. Second, the d \u03bb weight increasingly mitigates the improvements of SFE in the MaR measures of SFE-ME in a consistent way in the Y\u2192G integration process. The MiR performance of SFE-ME also has the similar mitigation.",
"cite_spans": [],
"ref_spans": [
{
"start": 5,
"end": 12,
"text": "Table 3",
"ref_id": null
},
{
"start": 155,
"end": 162,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Experimental Results and Discussion",
"sec_num": "5.2"
},
{
"text": "From Table 3 , we can also notice that SFE-ME achieves the best MaR of 0.8935 when From table 4, we can notice that SFE-ME is superior to EHCI-ME in more than 60% of all MiR scores for the G\u2192Y integration process and in nearly 75% of all MiR scores for the Y\u2192G integration process. Among these cases, SFE-ME can achieve the best G\u2192Y MiR of Table 3 (b), the experimental results suggest that over-emphasizing the weight of Google's hierarchical thesaurus information will impair the effectiveness of SFE. From Table 5 , we can notice that SFE-ME is superior to EHCI-ME in more than 80% of all MaP for the G\u2192Y integration process, and in all cases for the Y\u2192G integration process. In addition, SFE-ME achieves the best G\u2192Y MaP of 0.6662 when s \u03bb = 1.0 and d \u03bb = 0.1, and the best Y\u2192G MaP of 0.4663 when s \u03bb = 0.7 and d \u03bb = 0.9. Table 6 , SFE-ME achieves the best G\u2192Y MiP of 0.6078 when s \u03bb = 0.9 and d \u03bb = 0.1, and the best Y\u2192G MiP of 0.2988 when s \u03bb = 0.7 and d \u03bb = 0.9. In addition, SFE-ME achieves MiP improvements in 90% of all cases for the G\u2192Y integration process and in all cases for the Y\u2192G integration process. These results show that the number of incorrectly integrated documents in SFE-ME is much lower. With high precision performance, SFE-ME may reduce a lot of time for users in manually verifying the integration correctness. For many applications, a compromised performance may be required with a high F 1 score. From Table 7 and Table 8 , we can notice that SFE-ME is superior to EHCI-ME in nearly 90% of all MaF and MiF scores for the G\u2192Y integration process, and it has consistent improvements in all cases for the Y\u2192G integration process. In our experiments with \u03b1 = 0.4, SFE-ME achieves the highest MaF (0.6839) Cheng-Zen Yang et al. We have also measured these six scores for the s \u03bb = 0.0, d \u03bb = 0.0, and \u03b1 = 0.0 cases, which means that the integration is performed by only ME without EHCI and SFE enhancements. In this configuration, for the G\u2192Y integration process, ME can achieve very prominent recall performance in MaR (0.9578) and MiR (0.9616) but with poor precision performance in MaP (0.0111) and MiP (0.0111). Its MaF and MiF are 0.022 and 0.0219, respectively. For the Y\u2192G integration process, ME has similar performance. Although ME can attain the best recall performance, these results show that it allows many documents of other categories to be incorrectly integrated. The experimental results show that SFE-ME can get more improved integration performance with the SFE scheme. Compared with EHCI-ME, SFE-ME shows that the semantic information of the hypernyms of the category-specific terms can be used to facilitate the integration process between two hierarchical taxonomies.",
"cite_spans": [
{
"start": 1719,
"end": 1731,
"text": "MaF (0.6839)",
"ref_id": null
},
{
"start": 1732,
"end": 1753,
"text": "Cheng-Zen Yang et al.",
"ref_id": null
}
],
"ref_spans": [
{
"start": 5,
"end": 12,
"text": "Table 3",
"ref_id": null
},
{
"start": 340,
"end": 347,
"text": "Table 3",
"ref_id": null
},
{
"start": 509,
"end": 516,
"text": "Table 5",
"ref_id": "TABREF5"
},
{
"start": 826,
"end": 833,
"text": "Table 6",
"ref_id": "TABREF6"
},
{
"start": 1433,
"end": 1452,
"text": "Table 7 and Table 8",
"ref_id": "TABREF7"
}
],
"eq_spans": [],
"section": "Experimental Results and Discussion",
"sec_num": "5.2"
},
{
"text": "In recent years, the taxonomy integration problem has been progressively studied for integrating two homogeneous hierarchical taxonomies. Many types of implicit information embedded in the source taxonomy are explored to improve the integration performance. The semantic information embedded in the source taxonomy, however, has not been discussed in previous research.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6."
},
{
"text": "In this paper, an enhanced integration approach (SFE) is proposed to exploit the semantic information of the hypernyms of the category-specific terms. Augmented with these additional semantic category features, the source documents can be more precisely integrated into the correct destination category in the experiments. The experimental results show that SFE-ME can achieve the best macro-averaged F 1 score and the best micro-averaged F 1 score. The results also show that the SFE scheme can get precision and recall enhancements in a significant portion of all cases.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6."
},
{
"text": "There are still some issues left for future study. For example, the effectiveness of SFE on other classification schemes, such as SVM and NB, may need to be investigated to decide which one has the best integration performance. In addition, deciding the optimal parameter configuration is a classical classification problem which is also important to the taxonomy integration problem. Although mining more valuable implicit information can be a tough challenge, we believe that the integration performance can be further improved with appropriate assistance of more effective auxiliary information and advanced classifiers.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6."
}
],
"back_matter": [
{
"text": "This work was supported in part by National Science Council of R.O.C. under grant NSC 96-2422-H-006-002 and NSC 96-2221-E-155-067. The authors would also like to express their gratitude to the anonymous reviewers for their precious comments.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgement",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "On Integrating Catalogs",
"authors": [
{
"first": "R",
"middle": [],
"last": "Agrawal",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Srikan",
"suffix": ""
}
],
"year": 2001,
"venue": "Proceedings of the 10 th International Conference on World Wide Web",
"volume": "",
"issue": "",
"pages": "603--612",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Agrawal, R., & Srikan, R. (2001). On Integrating Catalogs. in Proceedings of the 10 th International Conference on World Wide Web, 603-612.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "A Maximum Entropy Approach to Natural Language Processing",
"authors": [
{
"first": "A",
"middle": [
"L"
],
"last": "Berger",
"suffix": ""
},
{
"first": "V",
"middle": [
"J D"
],
"last": "Pietra",
"suffix": ""
},
{
"first": "S",
"middle": [
"A D"
],
"last": "Pietra",
"suffix": ""
}
],
"year": 1996,
"venue": "Computational Linguistics",
"volume": "",
"issue": "",
"pages": "39--71",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996). A Maximum Entropy Approach to Natural Language Processing. Computational Linguistics, 39-71.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "An Iterative Approach for Web Catalog Integration with Support Vector Machines",
"authors": [
{
"first": "I.-X",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "J.-C",
"middle": [],
"last": "Ho",
"suffix": ""
},
{
"first": "C.-Z",
"middle": [],
"last": "Yang",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of the 2 nd Asia Information Retrieval Symposium (AIRS 2005)",
"volume": "",
"issue": "",
"pages": "703--708",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chen, I.-X., Ho, J.-C., & Yang, C.-Z. (2005). An Iterative Approach for Web Catalog Integration with Support Vector Machines. in Proceedings of the 2 nd Asia Information Retrieval Symposium (AIRS 2005), 703-708.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Hierarchical Web Catalog Integration with Conceptual Relationships in a Thesaurus",
"authors": [
{
"first": "I.-X",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "J.-C",
"middle": [],
"last": "Ho",
"suffix": ""
},
{
"first": "C.-Z",
"middle": [],
"last": "Yang",
"suffix": ""
}
],
"year": 2007,
"venue": "International Journal of Computational Linguistics and Chinese Language Processing",
"volume": "12",
"issue": "2",
"pages": "155--174",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chen, I.-X., Ho, J.-C., & Yang, C.-Z. (2007). Hierarchical Web Catalog Integration with Conceptual Relationships in a Thesaurus. International Journal of Computational Linguistics and Chinese Language Processing, 12(2), 155-174.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "A Clustering-based Approach for Integrating Document-Category Hierarchies",
"authors": [
{
"first": "T.-H",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "C.-P",
"middle": [],
"last": "Wei",
"suffix": ""
}
],
"year": 2008,
"venue": "IEEE Transactions on Systems, Man, and Cybernetics -Part A: Systems and Humans",
"volume": "38",
"issue": "",
"pages": "410--424",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Cheng, T.-H., & Wei, C.-P. (2008). A Clustering-based Approach for Integrating Document-Category Hierarchies. IEEE Transactions on Systems, Man, and Cybernetics -Part A: Systems and Humans, 38(2), 410-424.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Generalized Iterative Scaling for Log-linear Models",
"authors": [
{
"first": "J",
"middle": [
"N"
],
"last": "Darroch",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Ratcliff",
"suffix": ""
}
],
"year": 1972,
"venue": "Annals of Mathematical Statistics",
"volume": "43",
"issue": "",
"pages": "1470--1480",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Darroch, J. N., & Ratcliff, D. (1972). Generalized Iterative Scaling for Log-linear Models. Annals of Mathematical Statistics, 43, 1470-1480.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Information Retrieval: Data Structures and Algorithms",
"authors": [
{
"first": "W",
"middle": [],
"last": "Frakes",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Baeza-Yates",
"suffix": ""
}
],
"year": 1992,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Frakes, W., & Baeza-Yates, R. (1992). Information Retrieval: Data Structures and Algorithms, 1st edition, Prentice Hall, PTR.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Learning to Integrate Web Catalogs with Conceptual Relationships in Hierarchical Thesaurus",
"authors": [
{
"first": "J.-C",
"middle": [],
"last": "Ho",
"suffix": ""
},
{
"first": "I.-X",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "C.-Z",
"middle": [],
"last": "Yang",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the 3 rd Asia Information Retrieval Symposium",
"volume": "",
"issue": "",
"pages": "217--229",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ho, J.-C., Chen, I.-X., & Yang, C.-Z. (2006). Learning to Integrate Web Catalogs with Conceptual Relationships in Hierarchical Thesaurus. in Proceedings of the 3 rd Asia Information Retrieval Symposium (AIRS 2006), 217-229.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Query Expansion with ConceptNet and WordNet: an Intrinsic Comparison",
"authors": [
{
"first": "M.-H",
"middle": [],
"last": "Hsu",
"suffix": ""
},
{
"first": "M.-F",
"middle": [],
"last": "Tsai",
"suffix": ""
},
{
"first": "H.-H",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the 3 rd Asia Information Retrieval Symposium",
"volume": "",
"issue": "",
"pages": "1--13",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hsu, M.-H., Tsai, M.-F., & Chen, H.-H. (2006). Query Expansion with ConceptNet and WordNet: an Intrinsic Comparison. in Proceedings of the 3 rd Asia Information Retrieval Symposium (AIRS 2006), 1-13.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "DirectoryRank: Ordering Pages in Web Directories",
"authors": [
{
"first": "V",
"middle": [],
"last": "Krikos",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Stamou",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Kokosis",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Ntoulas",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Christodoulakis",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of the 7 th ACM International Workshop on Web Information and Data Management",
"volume": "",
"issue": "",
"pages": "17--22",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Krikos, V., Stamou, S., Kokosis, P., Ntoulas, A., & Christodoulakis, D. (2005). DirectoryRank: Ordering Pages in Web Directories. in Proceedings of the 7 th ACM International Workshop on Web Information and Data Management (WIDM 2005), 17-22.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Feature selection, Perception Learning, and a Usability Case Study for Text Categorization",
"authors": [
{
"first": "H.-T",
"middle": [],
"last": "Ng",
"suffix": ""
},
{
"first": "W.-B",
"middle": [],
"last": "Goh",
"suffix": ""
},
{
"first": "K.-L",
"middle": [],
"last": "Low",
"suffix": ""
}
],
"year": 1997,
"venue": "Proceedings of the 20 th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval",
"volume": "",
"issue": "",
"pages": "67--73",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ng, H.-T., Goh, W.-B., & Low, K.-L. (1997). Feature selection, Perception Learning, and a Usability Case Study for Text Categorization. in Proceedings of the 20 th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 67-73.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Cross-training: Learning Probabilistic Mappings between Topics",
"authors": [
{
"first": "S",
"middle": [],
"last": "Sarawagi",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Chakrabarti",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Godbole",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of the 9 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining",
"volume": "",
"issue": "",
"pages": "177--186",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sarawagi, S., Chakrabarti, S., & Godbole, S. (2003). Cross-training: Learning Probabilistic Mappings between Topics. in Proceedings of the 9 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 177-186.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Toward Generic Title Generation for Clustered Documents",
"authors": [
{
"first": "Y.-H",
"middle": [],
"last": "Tseng",
"suffix": ""
},
{
"first": "C.-J",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "H.-H",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Y.-I",
"middle": [],
"last": "Lin",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the 3 rd Asia Information Retrieval Symposium",
"volume": "",
"issue": "",
"pages": "145--157",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tseng, Y.-H., Lin, C.-J., Chen, H.-H., & Lin, Y.-I. (2006). Toward Generic Title Generation for Clustered Documents. in Proceedings of the 3 rd Asia Information Retrieval Symposium (AIRS 2006), 145-157.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Learning to Integrate Web Taxonomies with Fine-Grained Relations: A Case Study Using Maximum Entropy Model",
"authors": [
{
"first": "C.-W",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "T.-H",
"middle": [],
"last": "Tsai",
"suffix": ""
},
{
"first": "W.-L",
"middle": [],
"last": "Hsu",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of the 2 nd Asia Information Retrieval Symposium (AIRS 2005)",
"volume": "",
"issue": "",
"pages": "190--205",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wu, C.-W., Tsai, T.-H., & Hsu, W.-L. (2005). Learning to Integrate Web Taxonomies with Fine-Grained Relations: A Case Study Using Maximum Entropy Model. in Proceedings of the 2 nd Asia Information Retrieval Symposium (AIRS 2005), 190-205.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Web Taxonomy Integration with Hierarchical Shrinkage algorithm and Fine-Grained Relations",
"authors": [
{
"first": "C.-W",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "T.-H",
"middle": [],
"last": "Tsai",
"suffix": ""
},
{
"first": "C.-W",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "W.-L",
"middle": [],
"last": "Hsu",
"suffix": ""
}
],
"year": 2008,
"venue": "Expert Systems with Applications",
"volume": "35",
"issue": "4",
"pages": "2123--2131",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wu, C.-W., Tsai, T.-H., Lee, C.-W., & Hsu, W.-L. (2008). Web Taxonomy Integration with Hierarchical Shrinkage algorithm and Fine-Grained Relations. Expert Systems with Applications, 35(4), 2123-2131.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Semantic Feature Expansion on Category-Specific Terms",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Semantic Feature Expansion on Category-Specific Terms",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "A Comparative Study on Feature Selection in Text Categorization",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "J",
"middle": [
"O"
],
"last": "Pedersen",
"suffix": ""
}
],
"year": 1997,
"venue": "Proceedings of the 14 th International Conference on Machine Learning (ICML'97",
"volume": "",
"issue": "",
"pages": "412--420",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yang, Y., & Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text Categorization. in Proceedings of the 14 th International Conference on Machine Learning (ICML'97), 412-420.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Web Taxonomy Integration using Support Vector Machines",
"authors": [
{
"first": "D",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "W.-S",
"middle": [],
"last": "Lee",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the 13 th International Conference on World Wide Web",
"volume": "",
"issue": "",
"pages": "472--481",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhang, D., & Lee, W.-S. (2004a). Web Taxonomy Integration using Support Vector Machines. in Proceedings of the 13 th International Conference on World Wide Web, 472-481.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Web Taxonomy Integration Through Co-Bootstrapping",
"authors": [
{
"first": "D",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "W.-S",
"middle": [],
"last": "Lee",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the 27 th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval",
"volume": "",
"issue": "",
"pages": "410--417",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhang, D., & Lee, W.-S. (2004b). Web Taxonomy Integration Through Co-Bootstrapping. in Proceedings of the 27 th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 410-417.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "CatRelate: A New Hierarchical Document Category Integration Algorithm by learning Category Relationships",
"authors": [
{
"first": "S",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "C",
"middle": [
"C"
],
"last": "Yang",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Lam",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the 7 th International Conference on Asian Digital Libraries (ICADL 2004)",
"volume": "",
"issue": "",
"pages": "280--289",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhu, S., Yang, C. C., & Lam, W. (2004). CatRelate: A New Hierarchical Document Category Integration Algorithm by learning Category Relationships. in Proceedings of the 7 th International Conference on Asian Digital Libraries (ICADL 2004), Shanghai, China, 280-289.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Online Resources Information Mapping Project",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Online Resources Information Mapping Project, Computational Semantics Laboratory, Stanford University. http://infomap.stanford.edu/.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "A lexical database for the English language",
"authors": [
{
"first": "",
"middle": [],
"last": "Wordnet",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "WordNet, A lexical database for the English language: Cognitive Science Laboratory, Princeton University, http://wordnet.princeton.edu/.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Maximum Entropy Modeling Toolkit for Python and C++",
"authors": [
{
"first": "L",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhang, L., \"Maximum Entropy Modeling Toolkit for Python and C++,\" http://homepages.inf.ed.ac.uk/s0450736/maxent.html.",
"links": null
}
},
"ref_entries": {
"FIGREF1": {
"type_str": "figure",
"text": "= 0.1 and d \u03bb = 0.1 for the G\u2192Y integration process. Although Table 3 (b) shows that EHCI-ME achieves the best MaR for the Y\u2192G integration process, SFE-ME indeed achieves higher MaR of 0.9501 in our experiment while s \u03bb = 0.1, d \u03bb = 0.1, and \u03b1 = 0.4. 0.7317 0.7261 0.7262 0.7292 0.7207 0.7081 0.7284 0.7338 0.7338 0.7338 0.70 0.7262 0.7242 0.7233 0.7263 0.7191 0.6941 0.7227 0.7333 0.7338 0.7338 0.80 0.7231 0.7205 0.7232 0.7253 0.7235 0.6922 0.7208 0.7277 0.7304 0results of the integration from Yahoo! to Google",
"num": null,
"uris": null
},
"FIGREF2": {
"type_str": "figure",
"text": "0.9301 and the best Y\u2192G MiR of 0.9055 when s \u03bb = 0.1 and d \u03bb = 0.1. When d \u03bb = EHCI-ME outperforms SFE-ME for both MaR and MiR in the G\u2192Y integration process. Considering the d \u03bb influences of Google's hierarchical thesaurus information shown in",
"num": null,
"uris": null
},
"FIGREF3": {
"type_str": "figure",
"text": "The micro-averaged recall (MiR) measures of EHCI-ME and SFE-ME. 0.8562 0.8624 0.8627 0.8620 0.8552 0.8545 0.8463 0.8425 0.8418 (b) The results of the integration from Yahoo! to Google Hierarchical Taxonomy Integration Using 435 Semantic Feature Expansion on Category-Specific Terms",
"num": null,
"uris": null
},
"FIGREF4": {
"type_str": "figure",
"text": "0.1012 0.1024 0.1019 0.1017 0.1661 0.1797 0.1847 0.1876 0.1881 (b) The results of the integration from Yahoo! to GoogleFrom",
"num": null,
"uris": null
},
"FIGREF5": {
"type_str": "figure",
"text": "and the highest MiF (0.6764) when s \u03bb = 0.6 and d \u03bb = 0.1 for the G\u2192Y integration process. For the Y\u2192G integration process, SFE-ME achieves the highest MaF (0.5919) and the highest MiF (0.4413) when \u03b1 = 0.1, s \u03bb = 0.7, and d \u03bb = 0.9. These two tables show that the SFE scheme can mostly get more balanced improvements in both recall and precision considerations.",
"num": null,
"uris": null
},
"FIGREF6": {
"type_str": "figure",
"text": "The macro-averaged F 1 (MaF) measures of EHCI-ME and SFE-ME. 0.2355 0.3223 0.3346 0.3345 0.3426 0.3574 0.5225 0.5459 0.5829 0.5904 0.70 0.2354 0.3234 0.3379 0.3352 0.3411 0.3629 0.5251 0.5472 0.5834 0.5919 0.80 0.2358 0.3247 0.3388 0.3356 0.3405 0.3672 0.5251 0.5484 0.5839 0The results of the integration from Yahoo! to Google",
"num": null,
"uris": null
},
"FIGREF7": {
"type_str": "figure",
"text": "438",
"num": null,
"uris": null
},
"FIGREF8": {
"type_str": "figure",
"text": "0.2021 0.1991 0.1982 0.1978 0.1975 0.2508 0.3413 0.3623 0.3973 0.4413 0.80 0.2025 0.2000 0.1980 0.1976 0.1974 0.2558 0.3439 0.3633 0.3964 0.4408 0.90 0.2027 0.1989 0.1972 0.1975 0.1964 0.2584 0.3441 0.3667 0.3952 0",
"num": null,
"uris": null
},
"TABREF0": {
"text": "The experimental results show that the CS-enhanced Transductive SVMs give",
"num": null,
"type_str": "table",
"content": "<table><tr><td>Hierarchical Taxonomy Integration Using</td><td>425</td></tr><tr><td>Semantic Feature Expansion on Category-Specific Terms</td><td/></tr><tr><td>significant improvement to the original T-SVMs and consistently outperform ENB.</td><td/></tr></table>",
"html": null
},
"TABREF2": {
"text": "",
"num": null,
"type_str": "table",
"content": "<table/>",
"html": null
},
"TABREF4": {
"text": "",
"num": null,
"type_str": "table",
"content": "<table><tr><td>Category</td><td>Google</td><td colspan=\"3\">|G-Y| |G Class| |G Test|</td><td>Yahoo!</td><td colspan=\"2\">|Y-G| |Y Class| |Y Test|</td></tr><tr><td>Autos</td><td>/autos/\u2026</td><td>1096</td><td>12</td><td colspan=\"3\">427 /automotive/\u2026 1681</td><td>24</td><td>436</td></tr><tr><td colspan=\"2\">Movies /movies/\u2026</td><td>5188</td><td>26</td><td colspan=\"3\">1422 /movies_Film/\u2026 7255</td><td>27</td><td>1344</td></tr><tr><td colspan=\"2\">Outdoors /outdoors/\u2026</td><td>2396</td><td>16</td><td colspan=\"2\">208 /outdoors/\u2026</td><td>1579</td><td>19</td><td>210</td></tr><tr><td>Photo</td><td colspan=\"2\">/photography/\u2026 615</td><td>9</td><td colspan=\"3\">235 /photography/\u2026 1304</td><td>23</td><td>218</td></tr><tr><td colspan=\"2\">Software /software/\u2026</td><td>5829</td><td>27</td><td colspan=\"2\">641 /software/\u2026</td><td>1876</td><td>25</td><td>691</td></tr><tr><td>Total</td><td/><td>15124</td><td>90</td><td>2932</td><td/><td colspan=\"2\">13695 108</td><td>2918</td></tr></table>",
"html": null
},
"TABREF5": {
"text": "",
"num": null,
"type_str": "table",
"content": "<table><tr><td/><td/><td colspan=\"10\">. The macro-averaged precision (MaP) measures of EHCI-ME and SFE-ME.</td></tr><tr><td/><td/><td/><td/><td>EHCI-ME</td><td/><td/><td/><td colspan=\"3\">SFE-ME (\u03b1 = 0.4)</td><td/></tr><tr><td>\u03bb s</td><td>\u03bb d</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td></tr><tr><td colspan=\"2\">0.10</td><td colspan=\"10\">0.1936 0.3273 0.3356 0.3426 0.3425 0.2122 0.2980 0.3139 0.3158 0.3557</td></tr><tr><td colspan=\"2\">0.20</td><td colspan=\"10\">0.3491 0.3482 0.3475 0.3459 0.3559 0.3664 0.3696 0.3572 0.3477 0.3510</td></tr><tr><td colspan=\"2\">0.30</td><td colspan=\"10\">0.3890 0.3537 0.3486 0.3460 0.3547 0.4707 0.3960 0.3793 0.3523 0.3486</td></tr><tr><td colspan=\"2\">0.40</td><td colspan=\"10\">0.4090 0.3613 0.3497 0.3482 0.3543 0.5794 0.4137 0.3797 0.3723 0.3531</td></tr><tr><td colspan=\"2\">0.50</td><td colspan=\"10\">0.4253 0.3657 0.3515 0.3521 0.3560 0.6279 0.4649 0.3971 0.3778 0.3552</td></tr><tr><td colspan=\"2\">0.60</td><td colspan=\"10\">0.4373 0.3734 0.3565 0.3588 0.3603 0.6613 0.4918 0.4192 0.3556 0.3624</td></tr><tr><td colspan=\"2\">0.70</td><td colspan=\"10\">0.4455 0.3811 0.3611 0.3681 0.3655 0.6600 0.5592 0.4397 0.3663 0.3916</td></tr><tr><td colspan=\"2\">0.80</td><td colspan=\"10\">0.4532 0.3876 0.3686 0.3735 0.3559 0.6607 0.6403 0.4872 0.3876 0.3333</td></tr><tr><td colspan=\"2\">0.90</td><td colspan=\"10\">0.4548 0.3904 0.3747 0.3853 0.3607 0.6636 0.6543 0.5738 0.4321 0.3548</td></tr><tr><td colspan=\"2\">1.00</td><td colspan=\"10\">0.4565 0.4125 0.3862 0.4070 0.3625 0.6662 0.6575 0.5955 0.5043 0.4304</td></tr></table>",
"html": null
},
"TABREF6": {
"text": "",
"num": null,
"type_str": "table",
"content": "<table><tr><td/><td colspan=\"11\">. The micro-averaged precision (MiP) measures of EHCI-ME and SFE-ME.</td></tr><tr><td/><td/><td/><td/><td>EHCI-ME</td><td/><td/><td/><td colspan=\"3\">SFE-ME (\u03b1 = 0.4)</td><td/></tr><tr><td>\u03bb s</td><td>\u03bb d</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td></tr><tr><td colspan=\"2\">0.10</td><td colspan=\"10\">0.1156 0.2504 0.2715 0.2740 0.2817 0.1205 0.2835 0.3099 0.2782 0.3687</td></tr><tr><td colspan=\"2\">0.20</td><td colspan=\"10\">0.2253 0.3018 0.2947 0.2822 0.3080 0.1569 0.3661 0.3570 0.3504 0.3629</td></tr><tr><td colspan=\"2\">0.30</td><td colspan=\"10\">0.2741 0.3170 0.2984 0.2858 0.3107 0.2737 0.3777 0.3946 0.3515 0.3642</td></tr><tr><td colspan=\"2\">0.40</td><td colspan=\"10\">0.3136 0.3329 0.3002 0.2897 0.3115 0.4721 0.3834 0.3776 0.3866 0.3688</td></tr><tr><td colspan=\"2\">0.50</td><td colspan=\"10\">0.3494 0.3390 0.3033 0.2695 0.3135 0.5581 0.4556 0.3862 0.3879 0.3666</td></tr><tr><td colspan=\"2\">0.60</td><td colspan=\"10\">0.3763 0.3475 0.3101 0.3101 0.3199 0.6061 0.4663 0.4032 0.3147 0.3700</td></tr><tr><td colspan=\"2\">0.70</td><td colspan=\"10\">0.3906 0.3583 0.3192 0.3336 0.3317 0.6041 0.4924 0.3952 0.3180 0.4151</td></tr><tr><td colspan=\"2\">0.80</td><td colspan=\"10\">0.3966 0.3759 0.3334 0.3485 0.3414 0.6016 0.5824 0.4335 0.3229 0.3452</td></tr><tr><td colspan=\"2\">0.90</td><td colspan=\"10\">0.3987 0.3826 0.3402 0.3734 0.3540 0.6078 0.5871 0.4726 0.3509 0.3800</td></tr><tr><td colspan=\"2\">1.00</td><td colspan=\"10\">0.3992 0.4332 0.3772 0.4198 0.3568 0.5999 0.5894 0.4937 0.3879 0.3974</td></tr><tr><td/><td/><td/><td colspan=\"7\">(a) The results of the integration from Google to Yahoo!</td><td/><td/></tr><tr><td/><td/><td/><td/><td>EHCI-ME</td><td/><td/><td/><td colspan=\"3\">SFE-ME (\u03b1 = 0.1)</td><td/></tr><tr><td>\u03bb s</td><td>\u03bb d</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td><td>0.10</td><td>0.30</td><td>0.50</td><td>0.70</td><td>0.90</td></tr><tr><td colspan=\"2\">0.10</td><td colspan=\"10\">0.0677 0.1269 0.1172 0.1118 0.1111 0.0943 0.1818 0.2089 0.2344 0.2686</td></tr><tr><td colspan=\"2\">0.20</td><td colspan=\"10\">0.0999 0.1226 0.1145 0.1121 0.1120 0.1183 0.1903 0.2184 0.2485 0.2829</td></tr><tr><td colspan=\"2\">0.30</td><td colspan=\"10\">0.1087 0.1186 0.1137 0.1123 0.1122 0.1269 0.1929 0.2278 0.2534 0.2860</td></tr><tr><td colspan=\"2\">0.40</td><td colspan=\"10\">0.1125 0.1158 0.1131 0.1124 0.1119 0.1318 0.1948 0.2299 0.2585 0.2909</td></tr><tr><td colspan=\"2\">0.50</td><td colspan=\"10\">0.1142 0.1152 0.1127 0.1122 0.1121 0.1365 0.1984 0.2303 0.2606 0.2943</td></tr><tr><td colspan=\"2\">0.60</td><td colspan=\"10\">0.1147 0.1131 0.1123 0.1121 0.1118 0.1418 0.2042 0.2304 0.2612 0.2983</td></tr><tr><td colspan=\"2\">0.70</td><td colspan=\"10\">0.1147 0.1128 0.1122 0.1119 0.1117 0.1469 0.2131 0.2301 0.2597 0.2988</td></tr><tr><td colspan=\"2\">0.80</td><td colspan=\"10\">0.1150 0.1134 0.1121 0.1118 0.1116 0.1503 0.2152 0.2312 0.2591 0.2985</td></tr><tr><td colspan=\"2\">0.90</td><td colspan=\"10\">0.1151 0.1127 0.1116 0.1117 0.1110 0.1522 0.2154 0.2340 0.2581 0.2988</td></tr><tr><td colspan=\"2\">1.00</td><td colspan=\"10\">0.0979 0.0867 0.0865 0.0870 0.0865 0.1190 0.1388 0.1417 0.1468 0.1573</td></tr><tr><td/><td/><td/><td colspan=\"7\">(b) The results of the integration from Yahoo! to Google</td><td/><td/></tr></table>",
"html": null
},
"TABREF7": {
"text": "",
"num": null,
"type_str": "table",
"content": "<table><tr><td>. The micro-averaged F 1 (MiF) measures of EHCI-ME and SFE-ME.</td></tr></table>",
"html": null
}
}
}
} |