File size: 30,253 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
{
"paper_id": "O12-1002",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:02:49.030300Z"
},
"title": "A Voice Conversion Method Mapping Segmented Frames with Linear Multivariate Regression",
"authors": [
{
"first": "Hung-Yan",
"middle": [],
"last": "Gu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan University of Science and Technology",
"location": {}
},
"email": ""
},
{
"first": "Jia-Wei",
"middle": [],
"last": "Chang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan University of Science and Technology",
"location": {}
},
"email": ""
},
{
"first": "Zan-Wei",
"middle": [],
"last": "Wang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan University of Science and Technology",
"location": {}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "",
"pdf_parse": {
"paper_id": "O12-1002",
"_pdf_hash": "",
"abstract": [],
"body_text": [
{
"text": "(voice conversion) (source speaker) (target speaker) : (VQ) (mapping) [1] (formant) [2, 3 ] (Gaussian mixture model, GMM) [4, 5] (artificial neural network, ANN) [6] (hidden Markov model, HMM) [7, 8] GMM Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012) GMM [4] (spectral envelope) ( cepstrum coefficients, DCC) [11, 12] c 0 , c 1 , c 2 , \u2026, c 40 41 c 1 , c 2 , \u2026, c 40 DCC DCC [11, 12] (harmonic plus noise model, HNM) [12, 13] ",
"cite_spans": [
{
"start": 70,
"end": 73,
"text": "[1]",
"ref_id": "BIBREF0"
},
{
"start": 84,
"end": 87,
"text": "[2,",
"ref_id": "BIBREF1"
},
{
"start": 88,
"end": 89,
"text": "3",
"ref_id": null
},
{
"start": 122,
"end": 125,
"text": "[4,",
"ref_id": "BIBREF2"
},
{
"start": 126,
"end": 128,
"text": "5]",
"ref_id": "BIBREF3"
},
{
"start": 162,
"end": 165,
"text": "[6]",
"ref_id": "BIBREF4"
},
{
"start": 193,
"end": 196,
"text": "[7,",
"ref_id": "BIBREF5"
},
{
"start": 197,
"end": 199,
"text": "8]",
"ref_id": "BIBREF6"
},
{
"start": 318,
"end": 321,
"text": "[4]",
"ref_id": "BIBREF2"
},
{
"start": 342,
"end": 343,
"text": "(",
"ref_id": null
},
{
"start": 372,
"end": 376,
"text": "[11,",
"ref_id": "BIBREF9"
},
{
"start": 377,
"end": 380,
"text": "12]",
"ref_id": "BIBREF10"
},
{
"start": 438,
"end": 442,
"text": "[11,",
"ref_id": "BIBREF9"
},
{
"start": 443,
"end": 446,
"text": "12]",
"ref_id": "BIBREF10"
},
{
"start": 480,
"end": 484,
"text": "[12,",
"ref_id": "BIBREF10"
},
{
"start": 485,
"end": 488,
"text": "13]",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "[12, 13] LMR DCC (DTW) ( ) ( ) N : S 1 , S 2 , , S N N : T 1 , T 2 , , T N d\u00d71 DCC T k DTW DCC S k S = [S 1 , S 2 , , S N ] T = [T 1 , T 2 , , T N ] S T d\u00d7N d\u00d7d LMR M M S = T . (1) N d M E d\u00d7N E = M S T . (2) M E E d\u00d7N M d\u00d7d LMS \u03b5 : t t = ( )( ) , t: transpose. E E M S T M S T \u03b5 \u22c5 = \u22c5 \u2212 \u22c5 \u2212 (3) \u03b5 (trace) 1,1 2,2 , tr( ) ... d d \u03b5 \u03b5 \u03b5 \u03b5 = + + + M 0 [11, 12] ( ) t tr( ) 2( ) 0 , M S T S M \u03b5 \u2202 = \u22c5 \u2212 \u22c5 = \u2202 (4) ( ) tr( ) / M \u03b5 \u2202 \u2202 ( ) , tr( ) / i j M \u03b5 \u2202 \u2202 j=1, 2, \u2026, d i=1, 2, \u2026, d M i j , i j M tr( ) \u03b5 (4) M t t = , M S S T S \u22c5 \u22c5 \u22c5 (5) t t 1 ( ) . M T S S S \u2212 = \u22c5 \u22c5 \u22c5 (6) (6) LMS M (a)",
"eq_num": "(1)"
}
],
"section": "",
"sec_num": null
},
{
"text": "(b) (c) (a) (b) (6) S 1 , S 2 , , S N S m S k S m S k T 1 , T 2 , , T N T m S m T m x y y=mx x y y=mx (a) y = m \u2022 x (b) y = m \u2022 x x y y=mx+c (c) y = m \u2022 x + c (a) (c) (1) M S T 1, 1 2, 1 , 1 1 2 1, 1, 1 : 1 2 1, 1, 1 0, 0, ..., 0, 1 ... , ... , ... , ... d d d d M N M M N S S S T T T S T M M + + + \u00aa \u00ba \u00aa \u00ba = \u00ab \u00bb \u00ab \u00bb \u00ac \u00bc \u00ab \u00bb \u00ab \u00bb = \u00ab \u00bb \u00aa \u00ba \u00ab \u00bb = \u00ab \u00bb \u00ab \u00bb \u00ac \u00bc \u00ac \u00bc (7) M (d+1)\u00d7(d+1) M M (d+1) (d+1) (7) S (d+1) 1 S (d+1)\u00d7N T T M S T (6) M M (1) -- M_1 M_2 F_1 F_2 375 ( 2,926 ) 22,050Hz (a)M_1 M_2 (b)M_1 F_1 (c)F_1 M_1 (d)F_1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "DTW (S k , T w(k) ) k=1, 2, , K n K n n LMR (1) S T (6) LMR M (7) S T S T",
"eq_num": "(6)"
}
],
"section": "",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "R = R 1 , R 2 , , R N DCC T = T 1 , T 2 , , T N R DCC , 1 1 ( , ) , avg k k N k N D d i s tR T \u2264 \u2264 = \u00a6",
"eq_num": "(9)"
}
],
"section": "",
"sec_num": null
},
{
"text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": " A B A B B A Y1 Z1 A B X2 Y2 A B Y2 Z2 A B 15 2 ",
"cite_spans": [],
"ref_spans": [
{
"start": 1,
"end": 62,
"text": "A B A B B A Y1 Z1 A B X2 Y2 A B Y2 Z2 A B 15 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "X1 Y1",
"sec_num": "6"
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Voice Conversion through Vector Quantization",
"authors": [
{
"first": "M",
"middle": [],
"last": "Abe",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Nakamura",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Shikano",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Kuwabara",
"suffix": ""
}
],
"year": 1988,
"venue": "Int. Conf. Acoustics, Speech, and Signal Processing",
"volume": "1",
"issue": "",
"pages": "655--658",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, \"Voice Conversion through Vector Quantization,\" Int. Conf. Acoustics, Speech, and Signal Processing, New York, Vol. 1, pp. 655-658, 1988.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Voice Conversion Algorithm Based on Piecewise Linear Conversion Rules of Formant Frequency and Spectrum Tilt",
"authors": [
{
"first": "H",
"middle": [],
"last": "Mizuno",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Abe",
"suffix": ""
}
],
"year": 1995,
"venue": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing",
"volume": "16",
"issue": "",
"pages": "153--164",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Mizuno and M. Abe, \"Voice Conversion Algorithm Based on Piecewise Linear Conversion Rules of Formant Frequency and Spectrum Tilt,\" Speech Communication, Vol. 16, No. 2, pp. 153-164, 1995. Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Continuous Probabilistic Transform for Voice Conversion",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Stylianou",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Cappe",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Moulines",
"suffix": ""
}
],
"year": 1998,
"venue": "IEEE Trans. Speech and Audio Processing",
"volume": "6",
"issue": "2",
"pages": "131--142",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y. Stylianou, O. Cappe, and E. Moulines, \"Continuous Probabilistic Transform for Voice Conversion,\" IEEE Trans. Speech and Audio Processing, Vol. 6, No. 2, pp.131-142, 1998.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "An Improved Voice Conversion Method Using Segmental GMMs and Automatic GMM Selection",
"authors": [
{
"first": "H",
"middle": [
"Y"
],
"last": "Gu",
"suffix": ""
},
{
"first": "S",
"middle": [
"F"
],
"last": "Tsai",
"suffix": ""
}
],
"year": 2011,
"venue": "Int. Congress on Image and Signal Processing",
"volume": "",
"issue": "",
"pages": "2395--2399",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Y. Gu and S. F. Tsai, \"An Improved Voice Conversion Method Using Segmental GMMs and Automatic GMM Selection\", Int. Congress on Image and Signal Processing, pp. 2395-2399, Shanghai, China, 2011.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Voice Conversion Using Artificial Neural Networks",
"authors": [
{
"first": "S",
"middle": [],
"last": "Desaiy",
"suffix": ""
},
{
"first": "E",
"middle": [
"V"
],
"last": "Raghavendray",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Yegnanarayanay",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Blackz",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Prahallad",
"suffix": ""
}
],
"year": 2009,
"venue": "Int. Conf. Acoustics, Speech, and Signal Processing",
"volume": "",
"issue": "",
"pages": "3893--3896",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Desaiy, E. V. Raghavendray, B. Yegnanarayanay, A. W Blackz, and K. Prahallad, \"Voice Conversion Using Artificial Neural Networks,\" Int. Conf. Acoustics, Speech, and Signal Processing, Taipei, Taiwan, pp. 3893-3896, 2009.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Hidden Markov Model Based Voice Conversion Using Dynamic Characteristics of Speaker",
"authors": [
{
"first": "E",
"middle": [
"K"
],
"last": "Kim",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Y",
"middle": [
"H"
],
"last": "Oh",
"suffix": ""
}
],
"year": 1997,
"venue": "Proc. EuroSpeech",
"volume": "5",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "E. K. Kim, S. Lee, and Y. H. Oh, \"Hidden Markov Model Based Voice Conversion Using Dynamic Characteristics of Speaker,\" Proc. EuroSpeech, Rhodes, Greece, Vol. 5, 1997.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Voice Conversion Using Duration-Embedded Bi-HMMs for Expressive Speech Synthesis",
"authors": [
{
"first": "C",
"middle": [
"H"
],
"last": "Wu",
"suffix": ""
},
{
"first": "C",
"middle": [
"C"
],
"last": "Hsia",
"suffix": ""
},
{
"first": "T",
"middle": [
"H"
],
"last": "Liu",
"suffix": ""
},
{
"first": "J",
"middle": [
"F"
],
"last": "Wang",
"suffix": ""
}
],
"year": 2006,
"venue": "IEEE Trans. Audio, Speech, and Language Processing",
"volume": "14",
"issue": "4",
"pages": "1109--1116",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C. H. Wu, C. C. Hsia, T. H. Liu, and J. F. Wang, \"Voice Conversion Using Duration-Embedded Bi-HMMs for Expressive Speech Synthesis,\" IEEE Trans. Audio, Speech, and Language Processing, Vol. 14, No. 4, pp. 1109-1116, 2006.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Voice Transformation Using PSOLA Technique",
"authors": [
{
"first": "H",
"middle": [],
"last": "Valbret",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Moulines",
"suffix": ""
},
{
"first": "J",
"middle": [
"P"
],
"last": "Tubach",
"suffix": ""
}
],
"year": 1992,
"venue": "Speech Communication",
"volume": "11",
"issue": "2-3",
"pages": "175--187",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Valbret, E. Moulines, J. P. Tubach, \"Voice Transformation Using PSOLA Technique,\" Speech Communication, Vol. 11, No. 2-3, pp. 175-187, 1992.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Alleviating the One-to-many Mapping Problem in Voice Conversion with Context-dependent Modeling",
"authors": [
{
"first": "E",
"middle": [],
"last": "Godoy",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Rosec",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Chonavel",
"suffix": ""
}
],
"year": 2009,
"venue": "Proc. INTERSPEECH",
"volume": "",
"issue": "",
"pages": "1627--1630",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "E. Godoy, O. Rosec, and T. Chonavel, \"Alleviating the One-to-many Mapping Problem in Voice Conversion with Context-dependent Modeling\", Proc. INTERSPEECH, pp. 1627-1630, Brighton, UK, 2009.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Regularization Techniques for Discrete Cepstrum Estimation",
"authors": [
{
"first": "O",
"middle": [],
"last": "Capp\u00e9",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Moulines",
"suffix": ""
}
],
"year": 1996,
"venue": "IEEE Signal Processing Letters",
"volume": "3",
"issue": "4",
"pages": "100--102",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "O. Capp\u00e9 and E. Moulines, \"Regularization Techniques for Discrete Cepstrum Estimation,\" IEEE Signal Processing Letters, Vol. 3, No. 4, pp. 100-102, 1996.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "A Discrete-cepstrum Based Spectrum-envelope Estimation Scheme and Its Example Application of Voice Transformation",
"authors": [
{
"first": "H",
"middle": [
"Y"
],
"last": "Gu",
"suffix": ""
},
{
"first": "S",
"middle": [
"F"
],
"last": "Tsai",
"suffix": ""
}
],
"year": 2009,
"venue": "International Journal of Computational Linguistics and Chinese Language Processing",
"volume": "14",
"issue": "4",
"pages": "363--382",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Y. Gu and S. F. Tsai, \"A Discrete-cepstrum Based Spectrum-envelope Estimation Scheme and Its Example Application of Voice Transformation,\" International Journal of Computational Linguistics and Chinese Language Processing, Vol. 14, No. 4, pp. 363-382, 2009.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Harmonic plus noise models for speech, combined with statistical methods, for speech and speaker modification",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Stylianou",
"suffix": ""
}
],
"year": 1996,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y. Stylianou, Harmonic plus noise models for speech, combined with statistical methods, for speech and speaker modification, Ph.D. thesis, Ecole Nationale Sup\u00e8rieure des T\u00e9l\u00e9communications, Paris, France, 1996.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Pitch detection with average magnitude difference function using adaptive threshold algorithm for estimating shimmer and jitter",
"authors": [
{
"first": "H",
"middle": [
"Y"
],
"last": "Kim",
"suffix": ""
}
],
"year": 1998,
"venue": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Y. Kim, et al., \"Pitch detection with average magnitude difference function using adaptive threshold algorithm for estimating shimmer and jitter,\" 20-th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China, 1998. Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)",
"links": null
}
},
"ref_entries": {
"TABREF4": {
"num": null,
"html": null,
"text": "//guhy.csie.ntust.edu.tw/VCLMR/LMR.html Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)",
"type_str": "table",
"content": "<table><tr><td colspan=\"5\">Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)</td></tr><tr><td>LMR [3]</td><td>(LMR_F)</td><td>\"</td><td/><td>LMR_F</td></tr><tr><td/><td>\"</td><td/><td/><td>LMR_F</td><td>(ROCLING 2009)</td><td>319-332</td></tr><tr><td>7.1%(</td><td colspan=\"2\">GMM ) 2009</td><td>4.5%(</td><td>GMM )</td></tr><tr><td/><td>1.5%</td><td>0.7%</td><td/><td>LMR</td></tr><tr><td/><td/><td/><td/><td>LMR</td></tr><tr><td/><td/><td/><td/><td>LMR_B</td><td>LMR_F</td><td>LMR_FC</td></tr><tr><td/><td colspan=\"3\">M_1=> M_2</td><td>0.4890</td><td>0.4794</td><td>0.4475</td></tr><tr><td/><td colspan=\"2\">M_1=> F_1</td><td/><td>0.4782</td><td>0.4705</td><td>0.4451</td></tr><tr><td colspan=\"5\">(9) dist( ) (LMR_B) LMR_FC 0.5038 0.5 GMM (Segmental GMM) [5] 1.6% 1.7%) 5.7% 2.1% (LMR_FC) (LMR_F) ( 0.4672 LMR_B GMM DCC GMM GMM 8 GMM GMM GMM VQ 0.5382 LMR LMR 0.4956 0.5493 0.4672 0.5 LMR_B [4] 128 F_1 => M_1 0.4967 0.4881 0.4612 F_1 => F_2 0.5514 0.5443 0.5149 0.5038 0.4956 0.4672 M_1=> M_2 0.5467 0.5331 0.5398 M_1=> F_1 0.5174 0.5106 0.5188 F_1 => M_1 0.5388 0.5307 0.5413 F_1 => F_2 0.5867 0.5782 0.5973 0.5474 0.5382 0.5493 GMM GMM (128 mix.) Segmental GMM (8 mix.) M_1=> M_2 0.5058 0.5096 M_1=> F_1 0.5012 0.4910 F_1 => M_1 0.5412 0.5095 F_1 => F_2 0.5853 0.5673 0.5334 0.5194 M_1=> M_2 0.5346 0.5403 M_1=> F_1 0.5147 0.5146 F_1 => M_1 0.5551 0.5361 F_1 => F_2 0.5806 0.5766 0.5463 0.5419 5.2 6 X1 X2 Y1 Y2 Z1 Z2 X1 X2 GMM [4] Y1 Y2 LMR_F Z1 Z2 LMR_FC X1 Y1 Z1 1 M_1 M_2 X2 Y2 Z2 2 M_1 F_1 6 /jie-3 jyei-2 fang-1 an-4/(\" \") (LMR) LMR DCC LMR_F GMM GMM 7.1% GMM 1.5% LMR_F GMM LMR_F GMM LMR_FC LMR_FC LMR_FC LMR_FC LMR_F LMR_F : http:(b) LMR_FC LMR_FC</td></tr><tr><td/><td/><td/><td/><td>GMM</td></tr></table>"
}
}
}
} |