File size: 17,904 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
{
    "paper_id": "O12-1014",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:02:59.961558Z"
    },
    "title": "Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars",
    "authors": [
        {
            "first": "Wei-Yun",
            "middle": [],
            "last": "Ma",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Columbia University",
                "location": {}
            },
            "email": "ma@cs.columbia.edu"
        },
        {
            "first": "Kathleen",
            "middle": [],
            "last": "Mckeown",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Columbia University",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Statistical machine translation has made tremendous progress over the past ten years. The output of even the best systems, however, is often ungrammatical because of the lack of sufficient linguistic knowledge. Even when systems incorporate syntax in the translation process, syntactic errors still result. To address this issue, we present a novel approach for detecting and correcting ungrammatical translations.",
    "pdf_parse": {
        "paper_id": "O12-1014",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Statistical machine translation has made tremendous progress over the past ten years. The output of even the best systems, however, is often ungrammatical because of the lack of sufficient linguistic knowledge. Even when systems incorporate syntax in the translation process, syntactic errors still result. To address this issue, we present a novel approach for detecting and correcting ungrammatical translations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "lexicalized tree adjoining grammars (FB-LTAG) [1] . In FB-LTAG, each lexical item is associated with a syntactic elementary tree, in which each node is associated with a set of feature-value pairs, called Attribute Value Matrices (AVMs). AVMs define the lexical item's syntactic usage. Our syntactic error detection works by checking the AVM values of all lexical items within a sentence using a unification framework. Thus, we use the feature structures in the AVMs to detect the error type and corresponding words. In order to simultaneously detect multiple error types and track their corresponding words, we propose a new unification method which allows the unification procedure to continue when unification fails and also to propagate the failure information to relevant words. We call the modified unification a fail propagation unification. Our approach features: 1) the use of XTAG grammar [2] , a rule-based English grammar developed by linguists using the FB-LTAG formalism, 2) the ability to simultaneously detect multiple ungrammatical types and their corresponding words by using FB-LTAG's feature unifications, and 3) the ability to simultaneously correct multiple ungrammatical types based on the detection information. dynamically reference the grammar. In our procedure for syntactic error detection, we first decomposes each sentence hypothesis parse tree into elementary trees, followed by associating each elementary tree with AVMs through look-up in the XTAG grammar, and finally reconstruct the original parse tree out of the elementary trees using substitution and adjunction operations along with AVM unifications with fail propagation ability. Once error types and their corresponding words are detected, one is able to correct errors based on a unified consideration of all related words under the same error types. In this paper, we present some simple mechanism to handle part of the detected situations. We use our approach to detect and correct translations of six single statistical machine translation systems.",
                "cite_spans": [
                    {
                        "start": 46,
                        "end": 49,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 899,
                        "end": 902,
                        "text": "[2]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The results show that most of the corrected translations are improved.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Feature structure based tree adjoining grammar",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Vijay-Shanker",
                        "suffix": ""
                    },
                    {
                        "first": "Aravind",
                        "middle": [
                            "K"
                        ],
                        "last": "Joshi",
                        "suffix": ""
                    }
                ],
                "year": 1988,
                "venue": "Proceedings of COLING-88",
                "volume": "",
                "issue": "",
                "pages": "714--719",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Vijay-Shanker and Aravind K. Joshi. 1988. Feature structure based tree adjoining grammar. In Proceedings of COLING-88, pp. 714-719",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A Lexicalized Tree Adjoining Grammar for English",
                "authors": [
                    {
                        "first": "Xtag-Group",
                        "middle": [],
                        "last": "The",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "The XTAG-Group. 2001. A Lexicalized Tree Adjoining Grammar for English. Technical Report IRCS 01-03, University of Pennsylvania.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Dealing with Ill-formed English Text. The Computational Analysis of English",
                "authors": [
                    {
                        "first": "Eric",
                        "middle": [
                            "S"
                        ],
                        "last": "Atwell",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Elliot",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eric S. Atwell and Stephen Elliot. 1987. Dealing with Ill-formed English Text. The Computational Analysis of English, Longman.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "N-gram based Statistical Grammar Checker for Bangla and English",
                "authors": [
                    {
                        "first": "",
                        "middle": [
                            "Jahangir"
                        ],
                        "last": "Md",
                        "suffix": ""
                    },
                    {
                        "first": "Naushad",
                        "middle": [],
                        "last": "Alam",
                        "suffix": ""
                    },
                    {
                        "first": "Mumit",
                        "middle": [],
                        "last": "Uzzaman",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Khan",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of ninth International Conference on Computer and Information Technology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Md. Jahangir Alam, Naushad UzZaman, Mumit Khan. 2006. N-gram based Statistical Grammar Checker for Bangla and English. In Proceedings of ninth International Conference on Computer and Information Technology (ICCIT 2006), Dhaka, Bangladesh.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "An Evaluation of Adopting Language Model as the Checker of Preposition Usage",
                "authors": [
                    {
                        "first": "Shih-Hung",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Chen-Yu",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Tian-Jian",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Wen-Lian",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of ROCLING",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shih-Hung Wu, Chen-Yu Su, Tian-Jian Jiang, Wen-Lian Hsu. 2006. An Evaluation of Adopting Language Model as the Checker of Preposition Usage. In Proceedings of ROCLING.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Identifying Correction Rules for Auto Editing",
                "authors": [
                    {
                        "first": "Anta",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Tsung-Ting",
                        "middle": [],
                        "last": "Kuo",
                        "suffix": ""
                    },
                    {
                        "first": "Ying-Chun",
                        "middle": [],
                        "last": "Lai",
                        "suffix": ""
                    },
                    {
                        "first": "Shou-De",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of ROCLING",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anta Huang, Tsung-Ting Kuo, Ying-Chun Lai, Shou-De Lin. 2010. Identifying Correction Rules for Auto Editing. In Proceedings of ROCLING.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A Rule-Based Style and Grammar Checker",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Naber",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Naber. 2003. A Rule-Based Style and Grammar Checker. Diploma Thesis. University of Bielefeld, Germany.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Intelligent writing assistance. A Handbook of Natural Language Processing: Techniques and Applications for the Processing of Language as Text",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "George",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Heidorn",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "181--207",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George E. Heidorn. 2000. Intelligent writing assistance. A Handbook of Natural Language Processing: Techniques and Applications for the Processing of Language as Text. Marcel Dekker, New York. pp. 181-207.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Using a Grammar Checker for Evaluation and Postprocessing of Statistical Machine Translation",
                "authors": [
                    {
                        "first": "Sara",
                        "middle": [],
                        "last": "Stymne",
                        "suffix": ""
                    },
                    {
                        "first": "Lars",
                        "middle": [],
                        "last": "Ahrenberg",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sara Stymne and Lars Ahrenberg. 2010. Using a Grammar Checker for Evaluation and Postprocessing of Statistical Machine Translation. In LREC.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Natural language processing: the PLNLP approach",
                "authors": [
                    {
                        "first": "Karen",
                        "middle": [],
                        "last": "Jensen",
                        "suffix": ""
                    },
                    {
                        "first": "George",
                        "middle": [
                            "E"
                        ],
                        "last": "Heidorn",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Karen Jensen, George E. Heidorn, Stpehen D. Richardson (Eds.). 1993. Natural language processing: the PLNLP approach. Kluwer Academic Publishers",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "Grammar checking methods are usually divided into three classes: statistic-based checking [3][4][5][6], rule-based checking [7][8][9] and syntax-based checking [10]. Our approach is a mix of rule-based checking and syntax-based checking: The XTAG English grammar is designed by linguists while the detecting procedure is based on syntactic operations which Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)",
                "num": null,
                "uris": null
            }
        }
    }
}