File size: 32,092 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
{
"paper_id": "O12-1023",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:03:17.588391Z"
},
"title": "Study on Keyword Spotting using Prosodic Attribute Detection for Conversational Speech",
"authors": [
{
"first": "Yu-Jui",
"middle": [],
"last": "Huang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Information Engineering National Chia-Yi University",
"location": {}
},
"email": ""
},
{
"first": "Yin-Wei",
"middle": [],
"last": "Chung",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Jui-Feng",
"middle": [],
"last": "Yeh",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "It is one of most essential issues to extract the keywords from conversational speech for understanding the utterances from speakers. This thesis aims at keyword spotting from spontaneous speech for keyword detecting. We proposed prosodic features that are used for keyword detection. The prosody words are segmented from speaker's utterance according to the pre-training decision tree. The supported vector machine is further used as the classifier to judge the prosody word is keyword or not. The prosody word boundary segmentation algorithm based on decision tree is illustrated. Besides the data driven feature, the knowledge obtained from the corpus observation is integrated in the decision tree. Finally, the keyword",
"pdf_parse": {
"paper_id": "O12-1023",
"_pdf_hash": "",
"abstract": [
{
"text": "It is one of most essential issues to extract the keywords from conversational speech for understanding the utterances from speakers. This thesis aims at keyword spotting from spontaneous speech for keyword detecting. We proposed prosodic features that are used for keyword detection. The prosody words are segmented from speaker's utterance according to the pre-training decision tree. The supported vector machine is further used as the classifier to judge the prosody word is keyword or not. The prosody word boundary segmentation algorithm based on decision tree is illustrated. Besides the data driven feature, the knowledge obtained from the corpus observation is integrated in the decision tree. Finally, the keyword",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "in the focus part are extracted using prosody features by sported vector machine (SVM). According to the experimental results, we can find the proposed method outperform the phone verification approach especially in recall and accuracy. This shows the proposed approach is operative for keyword detecting.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Keywords: Keyword spotting, prosodic feature, prosody word, spoken language. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "( ) i i i P t t D E",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "( 1) ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "Pi(t) i t i i bi ei i 2 2 ( )( ( ) ) , [ , ] ( ) i i i i e i i t b i i i e t b t t P t P t b e t t E \u00a6 \u00a6 ( 2) t 3 i P i 4 n 1 ( ) 2 i i t e b",
"eq_num": "( 3)"
}
],
"section": "",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "SVM (predict) +1 -1 5 1, 1, i i if T is semantic object T otherwise \u00ae ( 5) SVM (1) 01-10 i n i ij P i j 1 2 { , ,... } i i in i P P P PW Dur ij P i j Bi Ei _ i Syl N i _ ij Syl b i j _ ij Syl e i j",
"eq_num": "(2)"
}
],
"section": "",
"sec_num": null
},
{
"text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "[30] .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "annex",
"sec_num": null
},
{
"text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "280-312. , , 2008",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "A Study on Knowledge Source Integration for Candidate Rescoring in Automatic Speech Recognition",
"authors": [
{
"first": "J",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Tsao",
"suffix": ""
},
{
"first": "C",
"middle": [
"H"
],
"last": "Lee",
"suffix": ""
}
],
"year": 2005,
"venue": "ICASSP, IEEE International Conference",
"volume": "1",
"issue": "",
"pages": "183--218",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Li, Y. Tsao and C.H. Lee, \"A Study on Knowledge Source Integration for Candidate Rescoring in Automatic Speech Recognition,\" ICASSP, IEEE International Conference, vol 1, pp837-840, 2005. [4] , , 11(2):183-218, 2010.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Combining stochastic and linguistic language models for recognition of spontaneous speech",
"authors": [
{
"first": "E",
"middle": [],
"last": "Wieland",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Gallwitz",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Niemann",
"suffix": ""
}
],
"year": 1996,
"venue": "Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing",
"volume": "1",
"issue": "",
"pages": "423--426",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "E. Wieland, F. Gallwitz, and H. Niemann. \"Combining stochastic and linguistic language models for recognition of spontaneous speech.\" In Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing, vol.1, Atlanta, May, pp 423-426, 1996.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Knowledge-based Parameters for HMM Speech Recognition",
"authors": [
{
"first": "N",
"middle": [
"N"
],
"last": "Bitar",
"suffix": ""
},
{
"first": "C",
"middle": [
"Y"
],
"last": "Espy-Wilson",
"suffix": ""
}
],
"year": 1996,
"venue": "ICASSP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "N. N. Bitar and C. Y. Espy-Wilson , \"Knowledge-based Parameters for HMM Speech Recognition,\" ICASSP 1996.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "A tutorial on hidden markov models and selected application in speech recognition",
"authors": [
{
"first": "L",
"middle": [
"R"
],
"last": "Rabiner",
"suffix": ""
}
],
"year": 1989,
"venue": "Proceedings of the IEEE",
"volume": "77",
"issue": "2",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. R. Rabiner, \"A tutorial on hidden markov models and selected application in speech recognition,\" Proceedings of the IEEE, vol.77, no. 2, Feb. 1989.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Flexible Speech Understanding Based on Combined Key-Phrase Detection and Verification",
"authors": [
{
"first": "T",
"middle": [],
"last": "Kawahara",
"suffix": ""
},
{
"first": "C",
"middle": [
"H"
],
"last": "Lee",
"suffix": ""
},
{
"first": "B",
"middle": [
"H"
],
"last": "Juang",
"suffix": ""
}
],
"year": 1998,
"venue": "IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING",
"volume": "6",
"issue": "6",
"pages": "558--568",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "T. Kawahara, C.H. Lee, and B.H. Juang, \"Flexible Speech Understanding Based on Combined Key-Phrase Detection and Verification\", IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, vol.6, NO. 6, pp.558-568, 1998.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "A Hidden Markov Model Based Keyword Recognition System",
"authors": [
{
"first": "R",
"middle": [
"C"
],
"last": "Rose",
"suffix": ""
},
{
"first": "D",
"middle": [
"B"
],
"last": "Paul",
"suffix": ""
}
],
"year": 1990,
"venue": "Acoustics, Speech, and Signal Processing",
"volume": "1",
"issue": "",
"pages": "129--132",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. C. Rose, D. B. Paul, \"A Hidden Markov Model Based Keyword Recognition System\" Acoustics, Speech, and Signal Processing, ICASSP, vol.1, Page(s): 129 -132, 1990.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "A New Keyword Spotting Approach for Spontaneous Mandarin Speech",
"authors": [
{
"first": "P",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Han",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Shao",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Yan",
"suffix": ""
}
],
"year": 2006,
"venue": "8th International Conference on",
"volume": "1",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. Zhang, J. Han, J. Shao, Y. Yan, \"A New Keyword Spotting Approach for Spontaneous Mandarin Speech\" Signal Processing, 8th International Conference on vol.1, 2006.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "A New Keyword Spotting Approach\" Multimedia Computing and Systems, ICMCS, International Conference",
"authors": [
{
"first": "H",
"middle": [],
"last": "Bahi",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Benati",
"suffix": ""
}
],
"year": 2009,
"venue": "",
"volume": "",
"issue": "",
"pages": "77--80",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Bahi, N. Benati, \"A New Keyword Spotting Approach\" Multimedia Computing and Systems, ICMCS, International Conference , pp.77-80, 2009.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Modeling out-of-vocabulary words for robust speech recognition",
"authors": [
{
"first": "I",
"middle": [],
"last": "Bazzi",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Glass",
"suffix": ""
}
],
"year": 2000,
"venue": "Proc. ICSLP, Beijing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "I. Bazzi and J. Glass, \"Modeling out-of-vocabulary words for robust speech recognition,\" Proc. ICSLP, Beijing, 2000.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "A new approach to utterance verification based on neighborhood information in model space",
"authors": [
{
"first": "H",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "C",
"middle": [
"H"
],
"last": "Lee",
"suffix": ""
}
],
"year": 2003,
"venue": "IEEE Trans. Speech Audio Process",
"volume": "11",
"issue": "5",
"pages": "425--434",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Jiang, C.H. Lee, \"A new approach to utterance verification based on neighborhood information in model space\", IEEE Trans. Speech Audio Process. 11(5), pp. 425-434, 2003.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Bayesian Fusion of Confidence Measures for Speech Recognition",
"authors": [
{
"first": "T.-Y",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ko",
"suffix": ""
}
],
"year": 2005,
"venue": "IEEE SIGNAL PROCESSING LETTERS",
"volume": "12",
"issue": "12",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "T.-Y. Kim and H. Ko, \"Bayesian Fusion of Confidence Measures for Speech Recognition\", IEEE SIGNAL PROCESSING LETTERS, vol.12, NO. 12, Dec 2005.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Improving the Performance of a Keyword Spotting System by Using Support Vector Machines",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Benayed",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Fohr",
"suffix": ""
},
{
"first": "J",
"middle": [
"P"
],
"last": "Haton",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Chollet",
"suffix": ""
}
],
"year": 2003,
"venue": "IEEE Auto Speech Recogniton and Understanding Workshop ASRU",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y. BenAyed, D. Fohr, J. P. Haton, G. Chollet, \"Improving the Performance of a Keyword Spotting System by Using Support Vector Machines\", in IEEE Auto Speech Recogniton and Understanding Workshop ASRU, St, Thomas, U.S. Virgin islands, Dec 2003.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Confidence measures for the Switchboard database",
"authors": [
{
"first": "R",
"middle": [],
"last": "Rose",
"suffix": ""
}
],
"year": 1996,
"venue": "Proc. of International Conference on Acoustics, Speech and Signal Processing",
"volume": "",
"issue": "",
"pages": "511--514",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Rose, \"Confidence measures for the Switchboard database\", Proc. of International Conference on Acoustics, Speech and Signal Processing, pp.511-514, 1996.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "A Vector Space Modeling Approach to Spoken Language Identification",
"authors": [
{
"first": "H",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "C",
"middle": [
"H"
],
"last": "Lee",
"suffix": ""
}
],
"year": null,
"venue": "Audio, Speech, and Language Processing",
"volume": "15",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Li, B. Ma, and C.H. Lee. \"A Vector Space Modeling Approach to Spoken Language Identification\", Audio, Speech, and Language Processing, IEEE Transactions on vol. 15,",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)",
"num": null,
"html": null,
"type_str": "table",
"content": "<table><tr><td colspan=\"8\">Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)</td></tr><tr><td colspan=\"2\">Lee Case 5</td><td colspan=\"2\">Key-Phrase Detection [27] SVM</td><td colspan=\"3\">Verification</td><td>[8] Tatsuya Kawahara</td><td>Chin-Hui SVM [4][5]</td></tr><tr><td colspan=\"2\">Case 6</td><td colspan=\"5\">[9] Fujisaki Model (Keyword Detector) 3</td><td>HPG (Prosodic Word Detection)</td><td>9</td></tr><tr><td colspan=\"4\">(Keyword Detection) Case 7</td><td/><td/><td/></tr><tr><td colspan=\"3\">[4][5][28][29][30]</td><td>HPG</td><td/><td/><td/></tr><tr><td colspan=\"2\">Case 8</td><td colspan=\"2\">> (Pitch reset)</td><td colspan=\"2\">Rose[10]</td><td colspan=\"2\">HMM</td></tr><tr><td colspan=\"2\">Case 9</td><td/><td/><td/><td/><td/></tr><tr><td>(filler)</td><td/><td colspan=\"3\">(Keyword spotting)</td><td/><td/><td>Zhang[11]</td></tr><tr><td>Case 1</td><td/><td/><td/><td/><td/><td colspan=\"2\">(syllable)</td><td>(prosodic word)</td></tr><tr><td colspan=\"5\">( (Dialogue system) (intonation phrase) (Pause) (1) 1 =0.04 Grouping, HPG)[4][5] Case 2</td><td colspan=\"2\">0.03</td><td>HMM 0.05</td><td>Bahi[12] (Hierarchical Prosodic Phrase ) (Spontaneous speech) (Speaking style) Bazzi 0.04</td></tr><tr><td>(2)</td><td colspan=\"3\">(Grammar) (Real time) HMM</td><td/><td/><td/><td>[13]</td><td>(syllable, Syl)</td></tr><tr><td colspan=\"8\">Kawahara (prosodic phrase, PPh) ( 1) Kim[15] (prosodic phrase group, PG) (Verification) (prosodic word, PW) Lee C.H.[14] Case 3 (slope) i</td><td>(Keyword extraction) (breath-group)</td></tr><tr><td colspan=\"5\">(Key-phrase detection) B1 B2 B3 B4</td><td colspan=\"3\">(Key-phrase verification) B5</td><td>(Sentence parsing) [16][17]</td></tr><tr><td colspan=\"6\">(sentence verification) (Incremental understanding) Haizhou Li, Bin Ma, and Chin-Hui Lee Case 4 Case 5 (Pitch Reset)</td><td colspan=\"2\">B5 B1 Case 6</td><td>[1] Case 7</td><td>Case 8 [18] (Pitch Reset)</td><td>Case 9</td></tr><tr><td/><td colspan=\"2\">Charpter</td><td/><td colspan=\"2\">3 HPG</td><td/><td>[2]</td></tr><tr><td/><td/><td>B2</td><td/><td/><td/><td/></tr><tr><td/><td/><td/><td colspan=\"5\">(Spoken Language Understanding, SLU)</td></tr><tr><td/><td/><td/><td/><td>2</td><td/><td>9</td><td>B</td></tr><tr><td colspan=\"2\">AuToBi</td><td colspan=\"3\">Conkie (Prosodic attribute)</td><td>[20]</td><td/><td>(Knowledge based) [19] (Pitch reset) POS</td><td>[3]</td><td>1</td><td>HMM</td></tr><tr><td>delta</td><td/><td colspan=\"2\">HMM</td><td/><td/><td/></tr><tr><td>[4][5]</td><td/><td/><td colspan=\"5\">(Hierarchical Prosodic Phrase Grouping, HPG) (Prosodic word) Sridhar[21] HMM HMM 1 HPG</td></tr><tr><td/><td/><td/><td/><td/><td colspan=\"3\">Erteschik-shir</td><td>[22]</td></tr><tr><td colspan=\"2\">Case 1</td><td>Ali</td><td/><td/><td>1:</td><td colspan=\"2\">[1] Wieland</td><td>[23]</td><td>></td></tr><tr><td colspan=\"2\">Case 2</td><td/><td/><td colspan=\"2\">Bi-gram</td><td/><td>Beam-search Viterbi</td></tr><tr><td/><td/><td colspan=\"2\">[24]</td><td/><td/><td/><td>[6] Bitar</td></tr><tr><td colspan=\"2\">Case 3</td><td/><td>[25]</td><td/><td/><td/><td>HMM (Prosodic Attributes Extraction)</td></tr><tr><td colspan=\"3\">(Pitch)</td><td>(Intensity)</td><td colspan=\"3\">[7] Rabiner (Duration)</td><td>1989</td></tr><tr><td colspan=\"4\">(HPG) (Prosodic Word Boundary) 2 Case 4 (Pitch reset)</td><td/><td colspan=\"3\">(Boundary Decision Tree) (Prosody word)</td><td>[26]</td><td>MFCC</td></tr></table>"
},
"TABREF1": {
"text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)",
"num": null,
"html": null,
"type_str": "table",
"content": "<table><tr><td>i</td><td/><td/><td/><td>upper bound</td><td>lower bound</td></tr><tr><td>i</td><td colspan=\"2\">upper bound</td><td/><td>i</td><td>lower bound</td></tr><tr><td colspan=\"2\">upper bound</td><td>i</td><td colspan=\"2\">lower bound</td></tr><tr><td/><td/><td/><td colspan=\"2\">case 4</td><td>pitch reset</td><td>case 8 pitch reset</td></tr><tr><td/><td>i P</td><td colspan=\"2\">1 n \u00a6 e i i t b</td><td>( ) P t i</td><td>( 4)</td></tr></table>"
},
"TABREF2": {
"text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)",
"num": null,
"html": null,
"type_str": "table",
"content": "<table><tr><td/><td colspan=\"2\">(False Positive, FP) 4 5 12 13 (c=10 g=16)</td><td colspan=\"5\">(Keyword spotting) (True Negative, TN) (Semantic slot) (Speech act) 6 74.10% 52.90% [14] HTK forced alignment 69.19% HMM</td></tr><tr><td>01 02 03 04</td><td colspan=\"3\">(Pragmatics) 4 4 5 11 12 13 4 5 5 (filler) (c=1 g=8) 4 5 11 12 13 ( ) Num i P PW i 15% (c=10 g=16) 3 5 6-9 12 (c=1 g=8) ( ) Dur i P PW i 3 5 6-9 12 (c=10 g=16) 4 5 6-8 12 Reference _ ( ) Dur Max i P PW i (c=1 g=8) 4 5 6-8 12 (c=10 g=16) Label + SVM _ ( ) Dur Min i P PW i</td><td>(Topic) 6 77.42% 74.10% 75.83% 4 73.04% 74.90% accuracy 68% 71.58% 77.42%</td><td colspan=\"2\">DA pair [23] 69.19% i n 68.45% 80.0% 1 i n Dur ij P \u00a6 j 77.73% recall 2 , ,..., Dur 1 Dur i i Max P P Erteschik-shir (Focus) 58.17% 4 52.94% 54.69% 51.25% 54.01% precision 70.22% { 68.45% 70.14% 49.5% 70.62% 58.17% 80% 1 2 { , ,..., Dur Dur i i Min P P</td><td>} } Dur Dur i n P i n P</td></tr><tr><td>05</td><td colspan=\"2\">Decision Tree + SVM ( ) i Dur PW</td><td>i</td><td>83.51%</td><td>70.95%</td><td colspan=\"2\">85.15% ( B E Pause PW i i i</td><td>)</td></tr><tr><td/><td>(2)</td><td/><td/><td>SVM</td><td/><td/></tr><tr><td>06</td><td>( Syl PW i</td><td>)</td><td>i</td><td/><td/><td>SVM Syl N _ i</td></tr><tr><td/><td/><td/><td/><td/><td>3</td><td/></tr><tr><td>07 08 09 10 11</td><td colspan=\"7\">4: DA pairs 1 ( i Dur Syl 6 7 8 ) TP 2 ( ) i Dur Syl accuracy 100% i i TP FP TN FN 5: DA pairs (accuracy) 1 SVM TP TN 2 ( 6) TP precision TP FP 3: 3 ( ) i Dur Syl i 3 SVM SVM ( 7) Syl e Syl b 1 1 _ _ i i Syl e Syl b (precision) SVM 2 2 _ _ i i 3 3 _ _ i Syl e Syl b i accuracy precision recall 51%~58% 68%~80% 51%~59% 4 ( ) Dur Syl i 4 4 4 _ _ i i Syl e Syl b i (True TP recall TP FN ( 8) 4 5 12 13 (c=1 g=8) 83.38% 70.95% 75.33% Positive, TP) (recall) HPG 76%~83% 58%~71% 75%~85% ( ) i Pause PW i pause pause e b</td></tr><tr><td>12 13</td><td colspan=\"7\">bpause (False Negative, FN) 2498 (True Positive, TP) SVM accuracy 850 precision 77.16% 57.83% 76.65% 58.42% Edinburgh Working Papers in Cognitive Science, 11:1-22, 1995. epause 13 12-13 13 660 2: (c=1 g=8) 4 5 6-8 12 (c=10 g=16) [2] N. Chater, M. Pickering, and D. Milward. \"What is incremental interpretation? \" recall 68.25% 75.22% 4 5 12 13 (c=1 g=8) 80.47% 65.02% ISCAS 1998. 75.33% 4 5 6-8 12 Feature-Based System for Automatic Phoneme Recognition in Continuous Speech,\" (c=10 g=16) 80.61% 63.00% 84.00% [1] Ali, J. Van der Spiegel, P. Mueller, G. Haentjens ,and J. Berman, \"An Acoustic-Phonetic 3 5 6-9 12 211 (3) 173 1061 211 58% (c=1 g=8) 82.45% 66.33% 85.15% 3 5 6-9 12 850 11 52 247 568 73 (1) SVM SVM 2 3-5% 58% 4 5 12 13 (c=10 g=16) 81.40% 65.41% 78.03% 4 5 11 12 13 83.51% 70.83% ( ) i pos PW i B i E 75.56% (c=1 g=8) (NSC 80% 10 8 4 5 11 12 13 (c=10 g=16) 81.35% 64.91% 77.48% 99-2221-E-415-006-MY3) . ( ) N Speech N</td></tr></table>"
}
}
}
} |