File size: 32,092 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
{
    "paper_id": "O12-1023",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:03:17.588391Z"
    },
    "title": "Study on Keyword Spotting using Prosodic Attribute Detection for Conversational Speech",
    "authors": [
        {
            "first": "Yu-Jui",
            "middle": [],
            "last": "Huang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Information Engineering National Chia-Yi University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Yin-Wei",
            "middle": [],
            "last": "Chung",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Jui-Feng",
            "middle": [],
            "last": "Yeh",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "It is one of most essential issues to extract the keywords from conversational speech for understanding the utterances from speakers. This thesis aims at keyword spotting from spontaneous speech for keyword detecting. We proposed prosodic features that are used for keyword detection. The prosody words are segmented from speaker's utterance according to the pre-training decision tree. The supported vector machine is further used as the classifier to judge the prosody word is keyword or not. The prosody word boundary segmentation algorithm based on decision tree is illustrated. Besides the data driven feature, the knowledge obtained from the corpus observation is integrated in the decision tree. Finally, the keyword",
    "pdf_parse": {
        "paper_id": "O12-1023",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "It is one of most essential issues to extract the keywords from conversational speech for understanding the utterances from speakers. This thesis aims at keyword spotting from spontaneous speech for keyword detecting. We proposed prosodic features that are used for keyword detection. The prosody words are segmented from speaker's utterance according to the pre-training decision tree. The supported vector machine is further used as the classifier to judge the prosody word is keyword or not. The prosody word boundary segmentation algorithm based on decision tree is illustrated. Besides the data driven feature, the knowledge obtained from the corpus observation is integrated in the decision tree. Finally, the keyword",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "in the focus part are extracted using prosody features by sported vector machine (SVM). According to the experimental results, we can find the proposed method outperform the phone verification approach especially in recall and accuracy. This shows the proposed approach is operative for keyword detecting.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Keywords: Keyword spotting, prosodic feature, prosody word, spoken language. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "( ) i i i P t t D E",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "( 1) ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Pi(t) i t i i bi ei i 2 2 ( )( ( ) ) , [ , ] ( ) i i i i e i i t b i i i e t b t t P t P t b e t t E \u00a6 \u00a6 ( 2) t 3 i P i 4 n 1 ( ) 2 i i t e b",
                        "eq_num": "( 3)"
                    }
                ],
                "section": "",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "SVM (predict) +1 -1 5 1, 1, i i if T is semantic object T otherwise \u00ae ( 5) SVM (1) 01-10 i n i ij P i j 1 2 { , ,... } i i in i P P P PW Dur ij P i j Bi Ei _ i Syl N i _ ij Syl b i j _ ij Syl e i j",
                        "eq_num": "(2)"
                    }
                ],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "[30] .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "annex",
                "sec_num": null
            },
            {
                "text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "280-312. , , 2008",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A Study on Knowledge Source Integration for Candidate Rescoring in Automatic Speech Recognition",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Tsao",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "H"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "ICASSP, IEEE International Conference",
                "volume": "1",
                "issue": "",
                "pages": "183--218",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Li, Y. Tsao and C.H. Lee, \"A Study on Knowledge Source Integration for Candidate Rescoring in Automatic Speech Recognition,\" ICASSP, IEEE International Conference, vol 1, pp837-840, 2005. [4] , , 11(2):183-218, 2010.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Combining stochastic and linguistic language models for recognition of spontaneous speech",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Wieland",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Gallwitz",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Niemann",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing",
                "volume": "1",
                "issue": "",
                "pages": "423--426",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "E. Wieland, F. Gallwitz, and H. Niemann. \"Combining stochastic and linguistic language models for recognition of spontaneous speech.\" In Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing, vol.1, Atlanta, May, pp 423-426, 1996.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Knowledge-based Parameters for HMM Speech Recognition",
                "authors": [
                    {
                        "first": "N",
                        "middle": [
                            "N"
                        ],
                        "last": "Bitar",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "Y"
                        ],
                        "last": "Espy-Wilson",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "ICASSP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. N. Bitar and C. Y. Espy-Wilson , \"Knowledge-based Parameters for HMM Speech Recognition,\" ICASSP 1996.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A tutorial on hidden markov models and selected application in speech recognition",
                "authors": [
                    {
                        "first": "L",
                        "middle": [
                            "R"
                        ],
                        "last": "Rabiner",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Proceedings of the IEEE",
                "volume": "77",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. R. Rabiner, \"A tutorial on hidden markov models and selected application in speech recognition,\" Proceedings of the IEEE, vol.77, no. 2, Feb. 1989.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Flexible Speech Understanding Based on Combined Key-Phrase Detection and Verification",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Kawahara",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "H"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "H"
                        ],
                        "last": "Juang",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING",
                "volume": "6",
                "issue": "6",
                "pages": "558--568",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Kawahara, C.H. Lee, and B.H. Juang, \"Flexible Speech Understanding Based on Combined Key-Phrase Detection and Verification\", IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, vol.6, NO. 6, pp.558-568, 1998.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A Hidden Markov Model Based Keyword Recognition System",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "C"
                        ],
                        "last": "Rose",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "B"
                        ],
                        "last": "Paul",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Acoustics, Speech, and Signal Processing",
                "volume": "1",
                "issue": "",
                "pages": "129--132",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. C. Rose, D. B. Paul, \"A Hidden Markov Model Based Keyword Recognition System\" Acoustics, Speech, and Signal Processing, ICASSP, vol.1, Page(s): 129 -132, 1990.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A New Keyword Spotting Approach for Spontaneous Mandarin Speech",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Shao",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "8th International Conference on",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Zhang, J. Han, J. Shao, Y. Yan, \"A New Keyword Spotting Approach for Spontaneous Mandarin Speech\" Signal Processing, 8th International Conference on vol.1, 2006.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "A New Keyword Spotting Approach\" Multimedia Computing and Systems, ICMCS, International Conference",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bahi",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Benati",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "77--80",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Bahi, N. Benati, \"A New Keyword Spotting Approach\" Multimedia Computing and Systems, ICMCS, International Conference , pp.77-80, 2009.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Modeling out-of-vocabulary words for robust speech recognition",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Bazzi",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Glass",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. ICSLP, Beijing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Bazzi and J. Glass, \"Modeling out-of-vocabulary words for robust speech recognition,\" Proc. ICSLP, Beijing, 2000.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A new approach to utterance verification based on neighborhood information in model space",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "H"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "IEEE Trans. Speech Audio Process",
                "volume": "11",
                "issue": "5",
                "pages": "425--434",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Jiang, C.H. Lee, \"A new approach to utterance verification based on neighborhood information in model space\", IEEE Trans. Speech Audio Process. 11(5), pp. 425-434, 2003.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Bayesian Fusion of Confidence Measures for Speech Recognition",
                "authors": [
                    {
                        "first": "T.-Y",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ko",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "IEEE SIGNAL PROCESSING LETTERS",
                "volume": "12",
                "issue": "12",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T.-Y. Kim and H. Ko, \"Bayesian Fusion of Confidence Measures for Speech Recognition\", IEEE SIGNAL PROCESSING LETTERS, vol.12, NO. 12, Dec 2005.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Improving the Performance of a Keyword Spotting System by Using Support Vector Machines",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Benayed",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Fohr",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Haton",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Chollet",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "IEEE Auto Speech Recogniton and Understanding Workshop ASRU",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. BenAyed, D. Fohr, J. P. Haton, G. Chollet, \"Improving the Performance of a Keyword Spotting System by Using Support Vector Machines\", in IEEE Auto Speech Recogniton and Understanding Workshop ASRU, St, Thomas, U.S. Virgin islands, Dec 2003.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Confidence measures for the Switchboard database",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Rose",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proc. of International Conference on Acoustics, Speech and Signal Processing",
                "volume": "",
                "issue": "",
                "pages": "511--514",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Rose, \"Confidence measures for the Switchboard database\", Proc. of International Conference on Acoustics, Speech and Signal Processing, pp.511-514, 1996.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "A Vector Space Modeling Approach to Spoken Language Identification",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "H"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Audio, Speech, and Language Processing",
                "volume": "15",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Li, B. Ma, and C.H. Lee. \"A Vector Space Modeling Approach to Spoken Language Identification\", Audio, Speech, and Language Processing, IEEE Transactions on vol. 15,",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)",
                "num": null,
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td colspan=\"8\">Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)</td></tr><tr><td colspan=\"2\">Lee Case 5</td><td colspan=\"2\">Key-Phrase Detection [27] SVM</td><td colspan=\"3\">Verification</td><td>[8] Tatsuya Kawahara</td><td>Chin-Hui SVM [4][5]</td></tr><tr><td colspan=\"2\">Case 6</td><td colspan=\"5\">[9] Fujisaki Model (Keyword Detector) 3</td><td>HPG (Prosodic Word Detection)</td><td>9</td></tr><tr><td colspan=\"4\">(Keyword Detection) Case 7</td><td/><td/><td/></tr><tr><td colspan=\"3\">[4][5][28][29][30]</td><td>HPG</td><td/><td/><td/></tr><tr><td colspan=\"2\">Case 8</td><td colspan=\"2\">&gt; (Pitch reset)</td><td colspan=\"2\">Rose[10]</td><td colspan=\"2\">HMM</td></tr><tr><td colspan=\"2\">Case 9</td><td/><td/><td/><td/><td/></tr><tr><td>(filler)</td><td/><td colspan=\"3\">(Keyword spotting)</td><td/><td/><td>Zhang[11]</td></tr><tr><td>Case 1</td><td/><td/><td/><td/><td/><td colspan=\"2\">(syllable)</td><td>(prosodic word)</td></tr><tr><td colspan=\"5\">( (Dialogue system) (intonation phrase) (Pause) (1) 1 =0.04 Grouping, HPG)[4][5] Case 2</td><td colspan=\"2\">0.03</td><td>HMM 0.05</td><td>Bahi[12] (Hierarchical Prosodic Phrase ) (Spontaneous speech) (Speaking style) Bazzi 0.04</td></tr><tr><td>(2)</td><td colspan=\"3\">(Grammar) (Real time) HMM</td><td/><td/><td/><td>[13]</td><td>(syllable, Syl)</td></tr><tr><td colspan=\"8\">Kawahara (prosodic phrase, PPh) ( 1) Kim[15] (prosodic phrase group, PG) (Verification) (prosodic word, PW) Lee C.H.[14] Case 3 (slope) i</td><td>(Keyword extraction) (breath-group)</td></tr><tr><td colspan=\"5\">(Key-phrase detection) B1 B2 B3 B4</td><td colspan=\"3\">(Key-phrase verification) B5</td><td>(Sentence parsing) [16][17]</td></tr><tr><td colspan=\"6\">(sentence verification) (Incremental understanding) Haizhou Li, Bin Ma, and Chin-Hui Lee Case 4 Case 5 (Pitch Reset)</td><td colspan=\"2\">B5 B1 Case 6</td><td>[1] Case 7</td><td>Case 8 [18] (Pitch Reset)</td><td>Case 9</td></tr><tr><td/><td colspan=\"2\">Charpter</td><td/><td colspan=\"2\">3 HPG</td><td/><td>[2]</td></tr><tr><td/><td/><td>B2</td><td/><td/><td/><td/></tr><tr><td/><td/><td/><td colspan=\"5\">(Spoken Language Understanding, SLU)</td></tr><tr><td/><td/><td/><td/><td>2</td><td/><td>9</td><td>B</td></tr><tr><td colspan=\"2\">AuToBi</td><td colspan=\"3\">Conkie (Prosodic attribute)</td><td>[20]</td><td/><td>(Knowledge based) [19] (Pitch reset) POS</td><td>[3]</td><td>1</td><td>HMM</td></tr><tr><td>delta</td><td/><td colspan=\"2\">HMM</td><td/><td/><td/></tr><tr><td>[4][5]</td><td/><td/><td colspan=\"5\">(Hierarchical Prosodic Phrase Grouping, HPG) (Prosodic word) Sridhar[21] HMM HMM 1 HPG</td></tr><tr><td/><td/><td/><td/><td/><td colspan=\"3\">Erteschik-shir</td><td>[22]</td></tr><tr><td colspan=\"2\">Case 1</td><td>Ali</td><td/><td/><td>1:</td><td colspan=\"2\">[1] Wieland</td><td>[23]</td><td>&gt;</td></tr><tr><td colspan=\"2\">Case 2</td><td/><td/><td colspan=\"2\">Bi-gram</td><td/><td>Beam-search Viterbi</td></tr><tr><td/><td/><td colspan=\"2\">[24]</td><td/><td/><td/><td>[6] Bitar</td></tr><tr><td colspan=\"2\">Case 3</td><td/><td>[25]</td><td/><td/><td/><td>HMM (Prosodic Attributes Extraction)</td></tr><tr><td colspan=\"3\">(Pitch)</td><td>(Intensity)</td><td colspan=\"3\">[7] Rabiner (Duration)</td><td>1989</td></tr><tr><td colspan=\"4\">(HPG) (Prosodic Word Boundary) 2 Case 4 (Pitch reset)</td><td/><td colspan=\"3\">(Boundary Decision Tree) (Prosody word)</td><td>[26]</td><td>MFCC</td></tr></table>"
            },
            "TABREF1": {
                "text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)",
                "num": null,
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>i</td><td/><td/><td/><td>upper bound</td><td>lower bound</td></tr><tr><td>i</td><td colspan=\"2\">upper bound</td><td/><td>i</td><td>lower bound</td></tr><tr><td colspan=\"2\">upper bound</td><td>i</td><td colspan=\"2\">lower bound</td></tr><tr><td/><td/><td/><td colspan=\"2\">case 4</td><td>pitch reset</td><td>case 8 pitch reset</td></tr><tr><td/><td>i P</td><td colspan=\"2\">1 n \u00a6 e i i t b</td><td>( ) P t i</td><td>( 4)</td></tr></table>"
            },
            "TABREF2": {
                "text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)",
                "num": null,
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td/><td colspan=\"2\">(False Positive, FP) 4 5 12 13 (c=10 g=16)</td><td colspan=\"5\">(Keyword spotting) (True Negative, TN) (Semantic slot) (Speech act) 6 74.10% 52.90% [14] HTK forced alignment 69.19% HMM</td></tr><tr><td>01 02 03 04</td><td colspan=\"3\">(Pragmatics) 4 4 5 11 12 13 4 5 5 (filler) (c=1 g=8) 4 5 11 12 13 ( ) Num i P PW i 15% (c=10 g=16) 3 5 6-9 12 (c=1 g=8) ( ) Dur i P PW i 3 5 6-9 12 (c=10 g=16) 4 5 6-8 12 Reference _ ( ) Dur Max i P PW i (c=1 g=8) 4 5 6-8 12 (c=10 g=16) Label + SVM _ ( ) Dur Min i P PW i</td><td>(Topic) 6 77.42% 74.10% 75.83% 4 73.04% 74.90% accuracy 68% 71.58% 77.42%</td><td colspan=\"2\">DA pair [23] 69.19% i n 68.45% 80.0% 1 i n Dur ij P \u00a6 j 77.73% recall 2 , ,..., Dur 1 Dur i i Max P P Erteschik-shir (Focus) 58.17% 4 52.94% 54.69% 51.25% 54.01% precision 70.22% { 68.45% 70.14% 49.5% 70.62% 58.17% 80% 1 2 { , ,..., Dur Dur i i Min P P</td><td>} } Dur Dur i n P i n P</td></tr><tr><td>05</td><td colspan=\"2\">Decision Tree + SVM ( ) i Dur PW</td><td>i</td><td>83.51%</td><td>70.95%</td><td colspan=\"2\">85.15% ( B E Pause PW i i i</td><td>)</td></tr><tr><td/><td>(2)</td><td/><td/><td>SVM</td><td/><td/></tr><tr><td>06</td><td>( Syl PW i</td><td>)</td><td>i</td><td/><td/><td>SVM Syl N _ i</td></tr><tr><td/><td/><td/><td/><td/><td>3</td><td/></tr><tr><td>07 08 09 10 11</td><td colspan=\"7\">4: DA pairs 1 ( i Dur Syl 6 7 8 ) TP 2 ( ) i Dur Syl accuracy 100% i i TP FP TN FN 5: DA pairs (accuracy) 1 SVM TP TN 2 ( 6) TP precision TP FP 3: 3 ( ) i Dur Syl i 3 SVM SVM ( 7) Syl e Syl b 1 1 _ _ i i Syl e Syl b (precision) SVM 2 2 _ _ i i 3 3 _ _ i Syl e Syl b i accuracy precision recall 51%~58% 68%~80% 51%~59% 4 ( ) Dur Syl i 4 4 4 _ _ i i Syl e Syl b i (True TP recall TP FN ( 8) 4 5 12 13 (c=1 g=8) 83.38% 70.95% 75.33% Positive, TP) (recall) HPG 76%~83% 58%~71% 75%~85% ( ) i Pause PW i pause pause e b</td></tr><tr><td>12 13</td><td colspan=\"7\">bpause (False Negative, FN) 2498 (True Positive, TP) SVM accuracy 850 precision 77.16% 57.83% 76.65% 58.42% Edinburgh Working Papers in Cognitive Science, 11:1-22, 1995. epause 13 12-13 13 660 2: (c=1 g=8) 4 5 6-8 12 (c=10 g=16) [2] N. Chater, M. Pickering, and D. Milward. \"What is incremental interpretation? \" recall 68.25% 75.22% 4 5 12 13 (c=1 g=8) 80.47% 65.02% ISCAS 1998. 75.33% 4 5 6-8 12 Feature-Based System for Automatic Phoneme Recognition in Continuous Speech,\" (c=10 g=16) 80.61% 63.00% 84.00% [1] Ali, J. Van der Spiegel, P. Mueller, G. Haentjens ,and J. Berman, \"An Acoustic-Phonetic 3 5 6-9 12 211 (3) 173 1061 211 58% (c=1 g=8) 82.45% 66.33% 85.15% 3 5 6-9 12 850 11 52 247 568 73 (1) SVM SVM 2 3-5% 58% 4 5 12 13 (c=10 g=16) 81.40% 65.41% 78.03% 4 5 11 12 13 83.51% 70.83% ( ) i pos PW i B i E 75.56% (c=1 g=8) (NSC 80% 10 8 4 5 11 12 13 (c=10 g=16) 81.35% 64.91% 77.48% 99-2221-E-415-006-MY3) . ( ) N Speech N</td></tr></table>"
            }
        }
    }
}