File size: 77,505 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
{
    "paper_id": "O12-3002",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:03:12.711970Z"
    },
    "title": "Predicting the Semantic Orientation of Terms in E-HowNet",
    "authors": [
        {
            "first": "",
            "middle": [],
            "last": "\uf9e1\u653f\u5112",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Taiwan University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Ru",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Taiwan University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Chi-Hsin",
            "middle": [],
            "last": "Yu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Taiwan University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Hsin-Hsi",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Taiwan University",
                "location": {}
            },
            "email": "hhchen@ntu.edu.tw"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The semantic orientation of terms is fundamental for sentiment analysis in sentence and document levels. Although some Chinese sentiment dictionaries are available, how to predict the orientation of terms automatically is still important. In this paper, we predict the semantic orientation of terms of E-HowNet. We extract many useful features from different sources to represent a Chinese term in E-HowNet, and use a supervised machine learning algorithm to predict its orientation. Our experimental results showed that the proposed approach can achieve 92.33% accuracy.",
    "pdf_parse": {
        "paper_id": "O12-3002",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The semantic orientation of terms is fundamental for sentiment analysis in sentence and document levels. Although some Chinese sentiment dictionaries are available, how to predict the orientation of terms automatically is still important. In this paper, we predict the semantic orientation of terms of E-HowNet. We extract many useful features from different sources to represent a Chinese term in E-HowNet, and use a supervised machine learning algorithm to predict its orientation. Our experimental results showed that the proposed approach can achieve 92.33% accuracy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "\u60c5\u7dd2\u5206\u6790(Sentiment Analysis)\u5728\u73fe\u4eca\u7684\u7db2\uf937\u4e16\u754c\u4e2d\uff0c\u6709\u8a31\u591a\u5be6\u969b\u4e14\u91cd\u8981\u7684\u904b\u7528\uff0c\uf9b5\u5982 \u5f9e\u7db2\uf937\u7684\u8a55\uf941\u6587\u7ae0\u4e2d\u5206\u6790\u6d88\u8cbb\u8005\u5c0d\u7522\u54c1\u7684\u8a55\u50f9\uff0c\u6216\u5206\u6790\u6d88\u8cbb\u8005\u5c0d\u7522\u54c1\u6027\u80fd\u7684\u95dc\u6ce8\u7126\u9ede\u7b49 \u7b49\u3002\uf967\u7ba1\u5c0d\uf906\u5b50\u6216\u6587\u4ef6\u5c64\u6b21\u7684\u60c5\u7dd2\u5206\u6790\uff0c\u610f\ufa0a\u8a5e\u8a5e\u5178\u90fd\u662f\u4e00\u500b\u91cd\u8981\u7684\u8cc7\u6e90\u3002\u901a\u5e38\u610f\ufa0a\u8a5e \u8a5e\u5178\u662f\u7528\u4eba\u5de5\uf92d\u6536\u96c6\u8a5e\u5f59\uff0c\u4e26\u7528\u4eba\u5de5\u6a19\u8a18\u8a5e\u5f59\u7684\u5404\u7a2e\u60c5\u7dd2\u5c6c\u6027\uff0c\u5305\u62ec\u4e3b\u5ba2\u89c0 (subjective or objective)\u3001\u6975\u6027(orientation/polarity)\u3001)\u53ca\u6975\u6027\u7684\u5f37\ufa01(strength) (Esuli & Sebastiani, 2005) \u3002\u9019\u4e9b\u60c5\u7dd2\u5c6c\u6027\u5c0d\uf967\u540c\u7684\u61c9\u7528\u6709\uf967\u540c\u7684\u91cd\u8981\u6027\uff0c\u6a19\u8a18\u96e3\ufa01\u4e5f\u5404\uf967\u76f8\u540c\uff0c\u901a\u5e38\u8a5e\u5f59\u7684 \u6975\u6027\u662f\u6700\u5bb9\uf9e0\u9032\ufa08\u6a19\u8a18\u7684\u5c6c\u6027\u3002 \u6a19\u8a18\u60c5\u7dd2\u5c6c\u6027\u6642\uff0c\u7814\u7a76\u8005\u53ef\u4ee5\u5f9e\uf9b2\u958b\u59cb\u6536\u96c6\u8a5e\u5f59\u4ee5\u5efa\uf9f7\u610f\ufa0a\u8a5e\u8a5e\u5178\uff0c\u5982\u53f0\u5927\u610f\ufa0a\u8a5e \u8a5e\u5178 NTUSD (Ku & Chen, 2007) \u3002\u5728\u53e6\u4e00\u65b9\u9762\uff0c\u4e5f\u6709\u7814\u7a76\u8005\u5617\u8a66\u70ba\u81ea\u7136\u8a9e\u8a00\u8655\uf9e4\u4e2d\u7684\u8a31 \u591a\u73fe\u5b58\u7684\u8cc7\u6e90\uff0c\u6dfb\u52a0\u60c5\u7dd2\u5c6c\u6027\uff0c\u5982 SentiWordNet (Esuli & Sebastiani, 2006a) (Esuli & Sebastiani, 2006b; Kamps, Marx, Mokken, & De Rijke, 2004; Turney & Littman, 2003) Yuen et al.(2004) (Han, Mo, Zuo, & Duan, 2010; Li, Ma, & Guo, 2009; Lu, Song, Zhang, & Tsou, 2010; Yao, Wu, Liu, & Zheng, 2006) (Dietterich, 1998) ",
                "cite_spans": [
                    {
                        "start": 230,
                        "end": 256,
                        "text": "(Esuli & Sebastiani, 2005)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 355,
                        "end": 372,
                        "text": "(Ku & Chen, 2007)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 427,
                        "end": 454,
                        "text": "(Esuli & Sebastiani, 2006a)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 455,
                        "end": 482,
                        "text": "(Esuli & Sebastiani, 2006b;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 483,
                        "end": 521,
                        "text": "Kamps, Marx, Mokken, & De Rijke, 2004;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 522,
                        "end": 545,
                        "text": "Turney & Littman, 2003)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 546,
                        "end": 563,
                        "text": "Yuen et al.(2004)",
                        "ref_id": null
                    },
                    {
                        "start": 564,
                        "end": 592,
                        "text": "(Han, Mo, Zuo, & Duan, 2010;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 593,
                        "end": 613,
                        "text": "Li, Ma, & Guo, 2009;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 614,
                        "end": 644,
                        "text": "Lu, Song, Zhang, & Tsou, 2010;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 645,
                        "end": 673,
                        "text": "Yao, Wu, Liu, & Zheng, 2006)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 674,
                        "end": 692,
                        "text": "(Dietterich, 1998)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u7dd2\uf941",
                "sec_num": "1."
            },
            {
                "text": "\uff0c\u6548\u80fd\u5f9e 67%\u5230 88%\uf967\u7b49\uff0c\u4f46\u56e0\u70ba\u9019\u4e9b\u6f14\u7b97\u6cd5\u6240\u7528\u7684\u8cc7\uf9be\u96c6\u4e26\uf967 \u76f8\u540c\uff0c\u5be6\u9a57\u904e\u7a0b\u53ca\u8a55\u4f30\u6a19\u6e96\u4e5f\uf967\u4e00\u6a23\uff0c(\u6709\u7528 Accuracy\u3001Precision\u3001\u6216 F-Measure)\uff0c\u6240 \u4ee5\u6548\u80fd\u6c92\u6709\u8fa6\u6cd5\u76f4\u63a5\u6bd4\u8f03\u3002 \u5716 1.\u300c\u6c7d\u6cb9\u300d\u7684\u5ee3\u7fa9\u77e5\u7db2\u5b9a\u7fa9\u5f0f \u5728 \u4e2d \u6587 \u7684 \u60c5 \u7dd2 \u5c6c \u6027 \u6a19 \u8a18 \u76f8 \u95dc \u7814 \u7a76 \uff0c",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u7dd2\uf941",
                "sec_num": "1."
            },
            {
                "text": "\uff0c\u6240\u5f97\u5230\u7684\u6548\u80fd\u5728\uf967\u540c\u7684\u6307\u6a19(Accuracy\u3001Precision\u3001\u6216 F-Measure)\u4e0b\uff0c \u5f9e 89%\u5230 96%\uf967\u7b49\u3002\u56e0\u70ba\u57fa\u6e96\uf967\u540c\uff0c\u9019\u4e9b\u6548\u80fd\u4e00\u6a23\u6c92\u6709\u8fa6\u6cd5\u76f4\u63a5\u6bd4\u8f03\uff0c\u4f46\u76f8\u8f03\u65bc\u82f1\u6587\uff0c \u6210\u7e3e\u5247\u660e\u986f\u63d0\u9ad8\u3002 3. \u7279\u5fb5\u62bd\u53d6\u53ca\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5 \u7531\u65bc\u6211\u5011\u904b\u7528\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\uf92d\u8a13\uf996\u4e8c\u5143\u5206\uf9d0\u5668(binary classifier)\uff0c\u6700\u91cd\u8981\u7684 \u554f\u984c\u662f\u70ba\u8a5e\u5f59\u62bd\u53d6\u51fa\u6709\u7528\u7684\u7279\u5fb5\u3002\u5728\u6b64\uf941\u6587\u4e2d\uff0c\u6211\u5011\u5206\u5225\u5f9e E-HowNet \u53ca Google Chinese Web 5-gram \u9019\uf978\u500b\uf92d\u6e90\u62bd\u53d6\uf978\u5927\uf9d0\u7684\u7279\u5fb5\uff0c\u63a5\u8457\u5c07\u9019\uf978\u500b\uf92d\u6e90\u7684\u7279\u5fb5\u7d44\u5408\u8a13\uf996\u5206\uf9d0\u5668\u3002 \u6b64\u5916\uff0c\u6211\u5011\u4e5f\u5617\u8a66\u4f7f\u7528\u7d44\u5408\u5f0f\u7684\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5(ensemble approach)\uff0c\uf92d\uf901\u9032 \u4e00\u6b65\u5f97\u5230\uf901\u9ad8\u7684\u6548\u80fd\uff0c\u4ee5\u4e0b\u6211\u5011\u5206\u5225\u8a73\u7d30\u4ecb\u7d39\u3002 \uf9e1\u653f\u5112 \u7b49 3.1 \u57fa\u790e\u7fa9\u539f\u7279\u5fb5 \u5f9e E-HowNet \u62bd\u53d6\u7684\u7279\u5fb5\u7a31\u4e4b\u70ba\u57fa\u790e\u7fa9\u539f\u7279\u5fb5\uff0c\u4e5f\u5c31\u662f\u5c0d\u6bcf\u4e00\u500b E-HowNet \u7684\u8a5e\u5f59 i\uff0c\u7528 \u4e00\u5411\uf97e V i = (w i,j ) = (w i,1 , w i,2 , \u2026, w i,n ) \u8868\u793a\uff0c\u5176\u4e2d n \u70ba\u5411\uf97e\u7684\u7dad\ufa01\u3002 \u7531\u65bc\u6bcf\u4e00\u8a5e\u5f59\u7684\u6bcf\u4e00\u500b\u8a9e\u610f(sense)\u90fd\u6709\u4e00\u500b\u7d50\u69cb\u5316\u7684\u5b9a\u7fa9\u5f0f\uff0c\u800c\u4e14\u5b9a\u7fa9\u5f0f\u4e2d\u90fd\u7528 \u7fa9\u539f\uf92d\u9032\ufa08\u5b9a\u7fa9\uff0c\u516c\u5f0f (1) \u5b9a\u7fa9 V i \u4e2d\u6bcf\u500b\u7279\u5fb5\u7684\u6b0a\u91cd\uff1a \u23a9 \u23a8 \u23a7 = j \u7fa9\u539f , 0 j \u7fa9\u539f \u4e2d i \u5b9a\u7fa9\u5f0f , 1 , \uf967\u51fa\u73fe \u51fa\u73fe \u5982\u679c j i w (1) \u4ee5\u5716 1\u300c\u6c7d\u6cb9\u300d\u9019\u500b\u8a5e\u5f59\u70ba\uf9b5\uff0c\u5176\u5b9a\u7fa9\u5f0f\u4e2d\u51fa\u73fe\uf9ba\u7fa9\u539f material\uff0c\u6240\u4ee5\u5b83\u7684\u503c w \u6c7d\u6cb9 , material \u5c31\u6703\u662f 1\uff0c\u5176\u4ed6\u6c92\u51fa\u73fe\u7684\u7fa9\u539f\uff0c\u503c\u5c31\u6703\u662f 0\u3002\u6211\u5011\u5171\u4f7f\u7528\uf9ba 2567 \u500b\u7fa9\u539f\uf92d\u7576\u7279\u5fb5\u3002 \u5ee3\u7fa9\u77e5\u7db2\u7684\u8a5e\u5f59\u6709\u6b67\uf962\u6027\uff0c\u4e5f\u5c31\u662f\u6bcf\u500b\u8a5e\u5f59\u53ef\u80fd\u6709\u8a31\u591a\u8a9e\u610f\u3002\u800c\u8a5e\u5f59\u7684\u7b2c\u4e00\u500b\u8a9e\u610f\uff0c \u662f\u51fa\u73fe\u983b\uf961\u6700\u9ad8\u7684\u8a9e\u610f(\u9664\uf9ba\u56db\u500b\u8a5e\u5f59\uf9b5\u5916)\uff0c\u6240\u4ee5\u6211\u5011\u7528\u8a5e\u5f59\u7684\u7b2c\u4e00\u500b\u8a9e\u610f\uf92d\u62bd\u53d6\u7279 \u5fb5\u3002\u53ea\u5f9e\u8a5e\u5f59\u7684\u4e00\u500b\u8a9e\u610f\u62bd\u53d6\u7279\u5fb5\uff0c\u800c\uf967\u628a\u8a72\u8a5e\u5f59\u6240\u6709\u7684\u8a9e\u610f\u653e\u5728\u4e00\u8d77\uff0c\u4ee3\u8868\u9019\u7a2e\u65b9\u6cd5 \u53ef\u70ba\uf967\u540c\u7684\u8a9e\u610f\u7d66\u51fa\uf967\u540c\u7684\u6975\u6027\u9810\u6e2c\u3002\u53ea\u662f\u7531\u65bc\u76ee\u524d NTUSD \u6975\u6027\u6a19\u8a18\u53ea\u5230\u8a5e\u5f59\u7684\u5c64\u7d1a\uff0c \u6240\u4ee5\u7121\u6cd5\u5c0d\u8a9e\u610f\u7684\u5c64\u7d1a\u9032\ufa08\u6975\u6027\u9810\u6e2c\u3002\u4f46\u53ea\u8981\u6709\u8a9e\u610f\u5c64\u7d1a\u7684\u6975\u6027\u6a19\u8a18\uff0c\u6211\u5011\u9019\u7a2e\u505a\u6cd5\u53ef \u99ac\u4e0a\u5957\u7528\u3002 3.1.1 \u57fa\u790e\u7fa9\u539f\u7279\u5fb5\u52a0\u6b0a\u503c \u9664\uf9ba\u516c\u5f0f (1) \u7684\u65b9\u5f0f\u5916\uff0c\u6211\u5011\u53ef\u4ee5\uf9dd\u7528\uf901\u591a E-HowNet \u7684\u7279\u6027\uff0c\uf92d\u62bd\u53d6\u51fa\u6709\u7528\u7684\u8cc7\u8a0a\u3002 \u4e00\u500b\u53ef\u80fd\u7684\u65b9\u5f0f\u662f\u5b9a\u7fa9\u5f0f\u4e2d\u7684\u7d50\u69cb\uff0c\u5982\u679c\u628a\u5b9a\u7fa9\u5f0f\u5c55\u958b\uff0c\u6703\u5f97\u5230\u5982\u5716 2 \u7684\u6a39\uf9fa\u7d50\u69cb\u3002\u5728 \u9019\u6a39\uf9fa\u7d50\u69cb\u4e2d\uff0c\u7fa9\u539f\u6240\u5728\u7684\u6df1\ufa01\u662f\u4e00\u500b\u6709\u7528\u7684\u8cc7\u8a0a\uff0c\u56e0\u6b64\u6211\u5011\u4eff\u7167\uf9c7\u7fa4&\uf9e1\u7d20\u5efa(\u5218 & \uf9e1, 2002)\u7684\u516c\u5f0f\uff0c\u5c07\u6df1\ufa01\u7684\u8cc7\u8a0a\u7576\u4f5c\u6b0a\u91cd\u5f15\u5165\u516c\u5f0f (1)\uff0c\u5f97\u5230\u516c\u5f0f (2)\u3002 \u5716 2.\u300c\u5929\uf9d4\u4e4b\uf914\u300d\u5b9a\u7fa9\u5f0f\u7684\u6a39\uf9fa\u8868\u793a \u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u610f\ufa0a\u6975\u6027\u7684\u9810\u6e2c 25 \u23aa \u23a9 \u23aa \u23a8 \u23a7 \u00d7 + = j \u7fa9\u539f , 0 j \u7fa9\u539f \u4e2d i \u5b9a\u7fa9\u5f0f , 1 1 , , \uf967\u51fa\u73fe \u51fa\u73fe \u5982\u679c j i j i d w \u03b1 (2) \u516c\u5f0f (2) \u4e2d\uff0c\u03b1 \u662f\u53ef\u8abf\u7684\uf96b\uf969\uff0c j i d , \u662f\u8a5e\u5f59 i \u8ddf\u7fa9\u539f j \u7684\u8ddd\uf9ea\uff0c\u9019\u53ef\u7528\u7fa9\u539f j \u7684\u6df1\ufa01\u8868 \u793a\u3002\u8abf\u6574\u516c\u5f0f (2) \u4e2d\u7684 \u03b1 \uff0c\u8b93\u6211\u5011\u53ef\u4ee5\u5be6\u9a57\u90a3\u4e00\u7a2e\u65b9\u5f0f\uff0c\u624d\u61c9\u7d66\u8f03\u9ad8\u7684\u6b0a\u91cd\uff1a (\u53ef\u80fd\u4e00) \u03b1 < 0 : \u6df1\ufa01\u8d8a\u6df1\uff0c\u8868\u793a\u8a72\u7fa9\u539f\u6709\u8f03\u591a\u8cc7\u8a0a\uff0c\u61c9\u7d66\u8f03\u9ad8\u6b0a\u91cd\u3002 (\u53ef\u80fd\u4e8c) \u03b1 > 0 : \u6df1\ufa01\u8d8a\u6df1\uff0c\u8868\u793a\u8a72\u7fa9\u539f\u6709\u8f03\u5c11\u8cc7\u8a0a\uff0c\u61c9\u7d66\u8f03\u5c11\u6b0a\u91cd\u3002 \u7531\u65bc \u03b1 < 0 \u6642\uff0cw i,j \u53ef\u80fd\u8b8a\u70ba\u8ca0\u503c\uff0c\u6240\u4ee5\u6700\u5c0f\u7684 \u03b1 \u8a2d\u70ba \u22120.05\u3002\u53e6\u5916\uff0c\u7576 \u03b1 = 0\uff0c\u516c\u5f0f (2) \u6703\u7b49\u65bc\u516c\u5f0f (1)\uff0c\u6240\u4ee5\u6211\u5011\u5728\u505a\u5be6\u9a57\u6642\uff0c\u53ea\u8981\u4f7f\u7528\u516c\u5f0f (2) \u5373\u53ef\u3002 3.1.2 \u52a0\u5165\u5426\u5b9a\u95dc\u4fc2\u8abf\u6574\u7279\u5fb5\u7684\u52a0\u6b0a\u503c \u5728\u8a08\u7b97\u7fa9\u539f\u6df1\ufa01\u6642\uff0c\u53ef\u80fd\u6703\u7d93\u904e\u5e36\u6709\u5426\u5b9a\u610f\u7fa9\u7684\u95dc\u4fc2\uff0c\uf9b5\u5982\u300c\u4e00\u4e8b\u7121\u6210\u300d\u5b9a\u7fa9\u5f0f\u4e2d\u6709 \u300c{not({succeed|\u6210\u529f})}\u300d\uff0c\u53ef\u4ee5\u767c\u73fe succeed \u88ab not \u6240\u4fee\u98fe\u3002\u9019\u6642\uff0c\u7fa9\u539f succeed \u7684\u6b0a\u91cd \u7528\u8ca0\u503c\uf92d\u8868\u793a\u53ef\u80fd\u6703\uf901\u597d\uff0c\u56e0\u6b64\u6211\u5011\u5c07\u5426\u5b9a\u7684\u6982\uf9a3\u5f15\u5165\u516c\u5f0f (3) \u5982\u4e0b\uff1a \u23aa \u23a9 \u23aa \u23a8 \u23a7 \u00d7 + = j \u7fa9\u539f , 0 j \u7fa9\u539f \u4e2d i \u5b9a\u7fa9\u5f0f , 1 , , , \uf967\u51fa\u73fe \u51fa\u73fe \u5982\u679c j i j i j i d Neg w \u03b1 (3) \u5176\u4e2d\uff0c j i Neg , \u8868\u793a\u7fa9\u539f j \u662f\u5426\u6709\u88ab\u5426\u5b9a\u610f\u7fa9\u7684\u95dc\u4fc2\u6240\u4fee\u98fe\uff0c\uf974\u6709\u5247 j i Neg , \u70ba \u2212 1\uff0c \uf974\u7121\u5247 j i Neg , \u70ba",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u7dd2\uf941",
                "sec_num": "1."
            },
            {
                "text": "V i = (c i,j ) = (c i,1 , c i,2 ,\u2026, c i,m )\u3002\u5176\u4e2d\uff0cm \u662f\u7279\u5fb5\u96c6\u5408\u7684 \u5927\u5c0f\uff0cc i,j \u662f\u300c\u8a5e\u5f59",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u7dd2\uf941",
                "sec_num": "1."
            },
            {
                "text": "\u7528 V i = (c i,1 , c i,2 ,\u2026, c i,m ) \u7684\u65b9\u5f0f\uf92d\u8868\u793a\u7684\u7f3a\u9ede\uff0c\u662f c i,j \u7684\u503c\u8b8a\u5316\u7684\u7bc4\u570d\u6703\u975e\u5e38\u5927\uff0c\u6700\u5c0f\u70ba 40\uff0c\u6700\u5927\u6703\u5230\u4e0a\u5343\u842c\u3002\u9019\u5728\u6a5f\u5668\u5b78\u7fd2\u4e2d\uff0c\u901a\u5e38\u9700\u8981\u505a\u9032\u4e00\u6b65\u7684\u8655\uf9e4\u624d\u6703\u6709\u6bd4\u8f03\u597d\u7684\u7d50\u679c\u3002 \u6211 \u5011 \u5be6 \u9a57 \uf9ba \uf978 \u500b \uf967 \u540c \u7684 \u65b9 \u6cd5 \uf92d \u8655 \uf9e4 \u9019 \u4e00 \u554f \u984c \uff1a \u7b2c \u4e00 \u7a2e \u662f \u4e00 \u822c \u7684 \u9918 \u5f26 \u6a19 \u6e96 \u5316 (cosine-normalization)\uff0c\u5c07\u539f\u672c\u7684\u5411\uf97e V i \u7528\u516c\u5f0f (4) \u8655\uf9e4\uff1b\u7b2c\u4e8c\u7a2e\u662f Esuli & Sebastiani (2005) \u6240\u63d0\u7684\u9918\u5f26\u6a19\u6e96\u5316 TFIDF (cosine-normalized TF-IDF)\uff0c\u4ed6\u5011\u7528\u8a72\u65b9\u6cd5\uf92d\u8655\uf9e4 WordNet \u4e2d\u7684\u8a5e\u5f59\u7684\u6b0a\u91cd\uff0c\u5982\u516c\u5f0f (5) \u6240\u8ff0\u3002 m m k k i i i c V V CosNorm \u211c \u2208 = \u2211 \u2264 \u2264 1 2 , ) ( (4) m m k k i i i tfidf TFIDF TFIDF CosNorm \u211c \u2208 = \u2211 \u2264 \u2264 1 2 , ) ( ) ,..., , ( , 2 , 1 , m i i i i tfidf tfidf tfidf TFIDF = j j i j i idf tf tfidf * , , = \u2211 \u2208 = = D k j k j i j i j i c c j c tf , , , , \u7e3d\u51fa\u73fe\u6b21\uf969 \u7279\u5fb5 } , 0 : { log ) log( , 1 D i c i D df idf j i j j \u2208 \u2200 > = = \u2212 (5) \u516c\u5f0f (5)\u4e2d D \u8868\u793a\u6587\u4ef6\u7684\u96c6\u5408\uff0c\u6b64\u8655\u628a\u8a5e\u5f59 i \u7576\u6210\u6587\u4ef6\uff0c\u7279\u5fb5 j \u7576\u6210 term\u3002 \u516c\u5f0f (4) \u7684\u6a19\u6e96\u5316\u53ef\u4ee5\u8b93\u6240\u6709\u8a5e\u5f59\u7684\u5411\uf97e\u7b49\u9577\uff0c\u6d88\u6389\u6b21\uf969\u8b8a\u5316\u904e\u5927\u7684\u7f3a\u9ede\u3002\u516c\u5f0f (5) \u7684\u60f3\u6cd5\u5247\u8a8d\u70ba\u7279\u5fb5 j \u7684\u6b0a\u91cd\uff0c\u61c9\u8a72\u5148\u8de8\u8a5e\u5f59\u9032\ufa08\u6a19\u6e96\u5316(normalization)\uff0c\u6240\u4ee5 tf i , j \u6703 \u9664\u4ee5\u7279\u5fb5 j \u7684\u7e3d\u51fa\u73fe\u6b21\uf969\uff0c\u53e6\u5916\u518d\u8003\u616e\u7279\u5fb5 j \u7684\u7a00\u6709\ufa01\uff0c\u6240\u4ee5\u4e58\u4e0a idf j \uff0c\u6700\u5f8c\u518d\u8b93\u6240 \u6709\u8a5e\u5f59\u7684\u5411\uf97e\u7b49\u9577\u3002\u6211\u5011\u6703\u5728\u5f8c\u9762\u7684\u5be6\u9a57\u4e2d\uff0c\u6bd4\u8f03\u9019\uf978\u7a2e\uf967\u540c\u6b0a\u91cd\u8655\uf9e4\u65b9\u5f0f\u7684\u6548\u80fd\u3002 3.3 \uf967\u540c\u7279\u5fb5\u7684\u7d44\u5408 \u6211\u5011\u7528\uf9ba\u57fa\u790e\u7fa9\u539f\u7279\u5fb5 (w i,1 , w i,2 ,\u2026, w i,n ) = (w i,j ) \uff0c\u53ca\u8a9e\u7bc7\u7279\u5fb5 (c i,1 , c i,2 ,\u2026, c i,m ) = (c i,j ) \uf92d \u8868\u793a\u8a5e\u5f59 i\u3002\u5982\u679c\u60f3\u540c\u6642\u4f7f\u7528\u9019\uf978\u7a2e\u7279\u5fb5\u4e2d\u7684\u8cc7\u8a0a\uff0c\u4e00\u7a2e\u76f4\u89c0\u7684\u65b9\u5f0f\uff0c\u662f\u5c07\uf978\u7a2e\u7279\u5fb5\u8868 \u793a\u65b9\u5f0f\u6df7\u5408\uff0c\u7528 V i = (w i,1 , w i,2 ,\u2026, w i,n ,c i,1 , c i,2 ,\u2026, c i,m ) \uf92d\u8868\u793a\u3002\u7531\u65bc\u57fa\u790e\u7fa9\u539f\u7279\u5fb5\u53ca\u8a9e\u7bc7 \u7279\u5fb5\u90fd\u6709\u8a31\u591a\uf967\u540c\u7684\u8b8a\u5f62\uff0c\u6211\u5011\u7121\u6cd5\u4e00\u4e00\u5617\u8a66\u6240\u6709\u53ef\u80fd\u7684\u7d44\u5408\uff0c\u6240\u4ee5\u6703\u5148\u5206\u5225\u7528\u5be6\u9a57\u627e \u51fa\u6700\u597d\u7684\u57fa\u790e\u7fa9\u539f\u7279\u5fb5 (w i,j ) \u53ca\u8a9e\u7bc7\u7279\u5fb5 (c i,j )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u7dd2\uf941",
                "sec_num": "1."
            },
            {
                "text": "\uf92d\u6e2c\u8a66\u5206\uf9d0\u5668\u7684\u6548\u80fd\u5dee\u8ddd\u662f\u5426\u70ba\u986f\u8457\uff0c\u986f\u8457\u6c34 \u6e96\u8a2d\u5b9a\u70ba 0.95\u3002 McNemar \u6aa2\u5b9a\u5c07\u6e2c\u8a66\u8cc7\uf9be\u4f9d\u7167\uf978\u500b\u5206\uf9d0\u5668 (\u4ee5\u4e0b\u7a31\u70ba\u5206\uf9d0\u5668 A \u8207\u5206\uf9d0\u5668 B) \u7684\u6a19\u8a18\uff0c \u5206\u6210\u56db\u7d44\u4e26\u8a08\uf969\u3002\u5176\u4e2d\u6e2c\u8a66\u6a23\u672c\uf969\u5373\u70ba\u4e0b\u9762 n 1,1 \u3001n 0,1 \u3001n 1,0 \u3001n 0,0 \u56db\u500b\uf969\u5b57\u7684\u7e3d\u5408\uff0c\u5728\u865b \u7121\u5047\u8a2d(null hypothesis)\u4e2d\uff0c\uf978\u500b\u5206\uf9d0\u5668\u61c9\u5177\u6709\u76f8\u540c\u7684\u932f\u8aa4\uf961\uff0c\u4e5f\u5c31\u662f n 0,1 =n 1,0 \u3002 n 1,1 \uff1a \u5206\uf9d0\u5668 A \u8207\u5206\uf9d0\u5668 B \u7686\u6b63\u78ba\u6a19\u8a18 \u7684\u6a23\u672c\uf969 n 0,1 \uff1a \u5206\uf9d0\u5668 A \u6a19\u8a18\u932f\u8aa4\uff0c\u4f46\u5206\uf9d0\u5668 B \u6a19\u8a18\u6b63\u78ba\u7684\u6a23\u672c\uf969 n 1,0 \uff1a \u5206\uf9d0\u5668 B \u6a19\u8a18\u932f\u8aa4\uff0c\u4f46\u5206\uf9d0\u5668 A \u6a19\u8a18\u6b63\u78ba\u7684\u6a23\u672c\uf969 n 0,0 \uff1a \u5206\uf9d0\u5668 A \u8207\u5206\uf9d0\u5668 B \u7686\u932f\u8aa4\u6a19\u8a18",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u7dd2\uf941",
                "sec_num": "1."
            },
            {
                "text": "http://ehownet.iis.sinica.edu.tw/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Creating robust supervised classifiers via web-scale N-gram data",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Bergsma",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Pitler",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "865--874",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bergsma, S., Pitler, E., & Lin, D. (2010). Creating robust supervised classifiers via web-scale N-gram data. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, 865-874.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "LIBSVM: a library for support vector machines",
                "authors": [
                    {
                        "first": "C.-C",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "C.-J",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for support vector machines.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Approximate statistical tests for comparing supervised classification learning algorithms",
                "authors": [
                    {
                        "first": "T",
                        "middle": [
                            "G"
                        ],
                        "last": "Dietterich",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Neural computation",
                "volume": "10",
                "issue": "",
                "pages": "1895--1923",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. In Neural computation, 10(7), 1895-1923.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "HowNet and the Computation of Meaning",
                "authors": [
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dong, Z., & Dong, Q. (2006). HowNet and the Computation of Meaning. World Scientific.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Determining the semantic orientation of terms through gloss classification",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Esuli",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Sebastiani",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of CIKM-05",
                "volume": "",
                "issue": "",
                "pages": "617--624",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Esuli, A., & Sebastiani, F. (2005). Determining the semantic orientation of terms through gloss classification, In Proceedings of CIKM-05, 617-624.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "SentiWordNet: A publicly available lexical resource for opinion mining",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Esuli",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Sebastiani",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 5th Conference on Language Resources and Evaluation (LREC 06",
                "volume": "",
                "issue": "",
                "pages": "417--422",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Esuli, A., & Sebastiani, F. (2006a). SentiWordNet: A publicly available lexical resource for opinion mining. In Proceedings of the 5th Conference on Language Resources and Evaluation (LREC 06) , 417-422.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Determining term subjectivity and term orientation for opinion mining",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Esuli",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Sebastiani",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "193--200",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Esuli, A., & Sebastiani, F. (2006b). Determining term subjectivity and term orientation for opinion mining. In Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics, 193-200.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Efficiently identifying semantic orientation algorithm for Chinese words",
                "authors": [
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Mo",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Zuo",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Duan",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "International Conference on Computer Application and System Modeling",
                "volume": "2",
                "issue": "",
                "pages": "260--264",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Han, Z., Mo, Q., Zuo, M., & Duan, D. (2010). Efficiently identifying semantic orientation algorithm for Chinese words. In International Conference on Computer Application and System Modeling, Vol. 2, 260-264.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Predicting the semantic orientation of adjectives",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Hatzivassiloglou",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "R"
                        ],
                        "last": "Mckeown",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proceedings of ACL-97",
                "volume": "",
                "issue": "",
                "pages": "174--181",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hatzivassiloglou, V., & McKeown, K. R. (1997). Predicting the semantic orientation of adjectives. In Proceedings of ACL-97, 174-181.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Using WordNet to measure semantic orientation of adjectives",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kamps",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Marx",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "J"
                        ],
                        "last": "Mokken",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "De Rijke",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC'04)",
                "volume": "IV",
                "issue": "",
                "pages": "1115--1118",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kamps, J., Marx, M., Mokken, R. J., & De Rijke, M. (2004). Using WordNet to measure semantic orientation of adjectives. In Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC'04), Vol. IV, 1115-1118.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Mining opinions from the Web: Beyond relevance retrieval",
                "authors": [
                    {
                        "first": "L.-W",
                        "middle": [],
                        "last": "Ku",
                        "suffix": ""
                    },
                    {
                        "first": "H.-H",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "In Journal of the American Society for Information Science and Technology",
                "volume": "58",
                "issue": "12",
                "pages": "1838--1850",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ku, L.-W., & Chen, H.-H. (2007). Mining opinions from the Web: Beyond relevance retrieval. In Journal of the American Society for Information Science and Technology, 58(12), 1838-1850.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Words semantic orientation classification based on HowNet",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Y.-Tao",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "J.-Li",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "The Journal of China Universities of Posts and Telecommunications",
                "volume": "16",
                "issue": "",
                "pages": "106--110",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Li, D., Ma, Y.-tao, & Guo, J.-li. (2009). Words semantic orientation classification based on HowNet. In The Journal of China Universities of Posts and Telecommunications, 16(1), 106-110.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Chinese Web 5-gram Version 1. Linguistic Data Consortium",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liu, F., Yang, M., & Lin, D. (2010). Chinese Web 5-gram Version 1. Linguistic Data Consortium, Philadelphia.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Learning Chinese polarity lexicons by integration of graph models and morphological features",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Tsou",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Information Retrieval Technology: 6th Asia Information Retrieval Societies Conference",
                "volume": "2010",
                "issue": "",
                "pages": "466--477",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lu, B., Song, Y., Zhang, X., & Tsou, B. (2010). Learning Chinese polarity lexicons by integration of graph models and morphological features. In Information Retrieval Technology: 6th Asia Information Retrieval Societies Conference, AIRS 2010, 466-477.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Measuring praise and criticism: Inference of semantic orientation from association",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "D"
                        ],
                        "last": "Turney",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "L"
                        ],
                        "last": "Littman",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "In ACM Transactions on Information Systems",
                "volume": "21",
                "issue": "",
                "pages": "315--346",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Turney, P. D., & Littman, M. L. (2003). Measuring praise and criticism: Inference of semantic orientation from association. In ACM Transactions on Information Systems, 21, 315-346.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Using bilingual lexicon to judge sentiment orientation of Chinese words",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Sixth IEEE International Conference on Computer and Information Technology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yao, J., Wu, G., Liu, J., & Zheng, Y. (2006). Using bilingual lexicon to judge sentiment orientation of Chinese words, In Proceedings of the Sixth IEEE International Conference on Computer and Information Technology, p. 38.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Morpheme-based derivation of bipolar semantic orientation of Chinese words",
                "authors": [],
                "year": null,
                "venue": "Proceedings of the 20th international conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1008--1014",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Morpheme-based derivation of bipolar semantic orientation of Chinese words, In Proceedings of the 20th international conference on Computational Linguistics, 1008-1014.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "",
                "num": null,
                "uris": null
            },
            "TABREF0": {
                "content": "<table><tr><td>(Extended-HowNet Ontology)\uff0c\u4e26\u7528\u9019\u4e9b\u65b0\u7684\u8a9e\u7fa9\u7fa9\u539f\uff0c\u4ee5\u7d50\u69cb\u5316\u7684\u5f62\u5f0f\uf92d\u5b9a\u7fa9\u8a5e\u689d\uff0c</td></tr><tr><td>\u8a5e\u689d\u5b9a\u7fa9\u5f0f\u7684\uf9b5\u5b50\u5982\u5716 1\u3002</td></tr><tr><td>\u6709\u95dc\u60c5\u7dd2\u5c6c\u6027\u6a19\u8a18\u7684\u7814\u7a76\uff0c\u6211\u5011\u5206\u70ba\u82f1\u6587\u53ca\u4e2d\u6587\uf92d\u8a0e\uf941\u3002\u5728\u82f1\u6587\u65b9\u9762\uff0c\u6700\u65e9\u662f\u7531</td></tr><tr><td>Hatzivassiloglou &amp; McKeown(1997) \u5728 1997 \uf98e\u91dd\u5c0d\u5f62\u5bb9\u8a5e\u6240\u505a\u7684\u7814\u7a76\uff0c\u4ed6\u5011\u6240\u7528\u7684\u5f62\u5bb9</td></tr><tr><td>\u8a5e\u5206\u5225\u6709\u6b63\u9762\u8a5e 657 \u500b\u53ca\u8ca0\u9762\u8a5e 679 \u500b\uff0c\u8a72\uf941\u6587\u4f9d\u64da\uf967\u540c\u7684\u5be6\u9a57\u8a2d\u5b9a\uff0c\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2</td></tr><tr><td>\u7684\u6e96\u78ba\uf961(Accuracy)\u7531 82% \u5230 90%\u3002\u4e4b\u5f8c\uf9d3\u7e8c\u6709\uf967\u540c\u7684\u7814\u7a76\uff0c\u6240\u7528\u591a\u70ba\u534a\u76e3\u7763\u5f0f\u6a5f</td></tr><tr><td>\u5668\u5b78\u7fd2\u7684\u6f14\u7b97\u6cd5</td></tr><tr><td>\u8981\u5168\u90e8\u7528\u4eba\u5de5\u9032\ufa08\u6a19\u8a18\u4e4b\u6210\u672c\u592a\u9ad8\u3002\u56e0\u6b64\uff0c\u901a\u5e38\u7684\u4f5c\u6cd5\u662f\u5c11\uf97e\u6a19\u8a18\u4e00\u4e9b\u8a5e\u5f59\uff0c\u518d\u7528\u6a5f\u5668</td></tr><tr><td>\u5b78\u7fd2\u65b9\u6cd5\uff0c\u70ba\u5269\u4e0b\u7684\u8a5e\u5f59\u9032\ufa08\u81ea\u52d5\u6a19\u8a18\uff0c\u96d6\u7136\u81ea\u52d5\u6a19\u8a18\u7684\u6e96\u78ba\uf961\uf967\u5982\u4eba\u5de5\u6a19\u8a18\uff0c\u4f46\u5c0d\u4e00</td></tr><tr><td>\u822c\u61c9\u7528\u6709\u67d0\u7a2e\u7a0b\ufa01\u7684\u5e6b\u52a9\u3002</td></tr><tr><td>\u5728\u4e2d\u6587\u81ea\u7136\u8a9e\u8a00\u8655\uf9e4\uff0cNTUSD \u662f\u4e00\u90e8\u91cd\u8981\u7684\u610f\ufa0a\u8a5e\u8a5e\u5178\uff0c\u4f46\u6b64\u8a5e\u5178\u53ea\u5305\u62ec\u8a5e\u5f59\u53ca</td></tr><tr><td>\u6975\u6027\u7684\u8cc7\u8a0a\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u8463\u632f\u6771\u5148\u751f\u548c\u9673\u514b\u5065\u6559\u6388\u6240\u5efa\uf9f7\u7684\u77e5\u7db2\u548c\u5ee3\u7fa9\u77e5\u7db2(Z. Dong &amp;</td></tr><tr><td>Dong, 2006; \u9673\u514b\u5065, \u9ec3, \u65bd, &amp; \u9673, 2004)\uff0c\u662f\u91cd\u8981\u7684\u8a9e\u610f\u8cc7\u6e90\u3002\u5c0d\u65bc\u6bcf\u500b\u8a5e\u5f59\uff0c\u90fd\u7528\u6709</td></tr><tr><td>\u9650\u7684\u7fa9\u539f\u7d66\u4e88\u7cbe\u78ba\u7684\u5b9a\u7fa9\uff0c\u4f46\u9019\u4e9b\u5b9a\u7fa9\u537b\u7f3a\u4e4f\u60c5\u7dd2\u7684\u8a9e\u610f\u6a19\u8a18\u3002\u56e0\u6b64\uff0c\u5982\u4f55\u81ea\u52d5\u70ba\u5ee3\u7fa9</td></tr><tr><td>\u77e5\u7db2\u52a0\u4e0a\u60c5\u7dd2\u6a19\u8a18\uff0c\u6210\u70ba\u4e00\u500b\u91cd\u8981\u7684\u8ab2\u984c\uff0c\u4e5f\u662f\u672c\u7814\u7a76\u7684\u76ee\u7684\u3002</td></tr><tr><td>\u672c\u7814\u7a76\u63d0\u51fa\u70ba\u5ee3\u7fa9\u77e5\u7db2\u52a0\u4e0a\u60c5\u7dd2\u6a19\u8a18\u7684\u65b9\u6cd5\uff0c\u9996\u5148\uf9dd\u7528 NTUSD \u8ddf\u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u7684</td></tr><tr><td>\u4ea4\u96c6\u5efa\uf9f7\u6a19\u6e96\u7b54\u6848\u96c6\uff0c\u518d\u7531\u6a19\u6e96\u7b54\u6848\u96c6\u8a13\uf996\u51fa\u5206\uf9d0\u5668\uff0c\u70ba\u5176\u4ed6\u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u9032\ufa08\u6a19\u8a18\u3002</td></tr><tr><td>\u5982\u4f55\u6709\u6548\u7684\u904b\u7528\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\uff0c\u5982\u4f55\u70ba\u8a5e\u5f59\u62bd\u53d6\u51fa\u6709\u7528\u7684\u7279\u5fb5\uff0c\u662f\u4e3b\u8981\u7684\u6311\u6230</td></tr><tr><td>\u8b70\u984c\u3002\u5728\u6b64\u7814\u7a76\u4e2d\uff0c\u6211\u5011\u6709\u7cfb\u7d71\u7684\u5617\u8a66\u62bd\u53d6\u5404\u7a2e\uf967\u540c\u7684\u8a5e\u5f59\u7279\u5fb5\uff0c\u6700\u5f8c\u5f97\u5230\u9ad8\u6e96\u78ba\uf961\u7684</td></tr><tr><td>\u4e8c\u5143\u5206\uf9d0\u5668(binary classifiers)\u7528\u4ee5\u81ea\u52d5\u6a19\u8a18\u6b63\u8ca0\u9762\u60c5\u7dd2\u6a19\u8a18\u3002</td></tr><tr><td>\u7b2c\u4e8c\u7bc0\u4ecb\u7d39\u5ee3\u7fa9\u77e5\u7db2\u3001\u53ca\u82f1\u6587\u548c\u4e2d\u6587\u76f8\u95dc\u7684\u60c5\u7dd2\u5c6c\u6027\u6a19\u8a18\u7814\u7a76\uff0c\u7b2c\u4e09\u7bc0\u4ecb\u7d39\u5f9e</td></tr><tr><td>E-HowNet \u53ca \u8ddf\u77e5\u7db2\uf99a\u7d50\uff0c\u4e26\u4f5c\uf9ba\u4e00\u4e9b\u4fee\u6539\uff0c\u6700\u5f8c\u5f62\u6210\u5ee3\u7fa9\u77e5\u7db2(Extended-HowNet, E-HowNet 1 )\u3002</td></tr><tr><td>\u8a5e\u5eab\u5c0f\u7d44\u4fee\u6539\u4e26\u64f4\u5c55\u77e5\u7db2\u539f\u5148\u7684\u8a9e\u7fa9\u7fa9\u539f\u89d2\u8272\u77e5\uf9fc\u672c\u9ad4\uff0c\u5efa\u69cb\u51fa\u5ee3\u7fa9\u77e5\u7db2\u77e5\uf9fc\u672c\u9ad4</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "\u3002\u4f46\u73fe\u6709\u8cc7\u6e90 \u7684\u8a9e\u5f59\uf97e\u901a\u5e38\u5f88\u5927\uff0c\u5982 WordNet 3.0 \u5c31\u5305\u62ec 206,941 \u500b\uf967\u540c\u7684\u82f1\u6587\u5b57\u7fa9 (word-sense pair) \uff0c Google Chinese Web 5-gram \u62bd\u53d6\u7279\u5fb5\u7684\u65b9\u6cd5\uff0c\u7b2c\u56db\u7bc0\u5448\u73fe\u5404\u7a2e\u5be6\u9a57\u7684\u7d50\u679c \u53ca\u5206\u6790\uff0c\u5305\u62ec\u8ddf NTUSD \u4eba\u5de5\u6a19\u8a18\u7684\u6bd4\u8f03\uff0c\u6700\u5f8c\u7e3d\u7d50\uf941\u6587\u7684\u6210\u679c\u3002 2. \u76f8\u95dc\u7814\u7a76 \u8463\u632f\u6771\u5148\u751f\u65bc 1998 \uf98e\u5275\u5efa\u77e5\u7db2(HowNet)\uff0c\u4e26\u5728 2003 \uf98e\uff0c\u8ddf\u4e2d\u592e\u7814\u7a76\u9662\u8cc7\u8a0a\u6240\u8a5e\u5eab\u5c0f \u7d44\u5728 2003 \uf98e\uff0c\u5c07\u4e2d\u7814\u9662\u8a5e\u5eab\u5c0f\u7d44\u8a5e\u5178(CKIP Chinese Lexical Knowledge Base)\u7684\u8a5e\u689d",
                "html": null
            },
            "TABREF1": {
                "content": "<table><tr><td>2004 \uf98e \uf9dd \u7528 Turney &amp;</td></tr><tr><td>Littman(2003)</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "\u7684\u534a\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\uff0c\u5728\u6b63\u9762\u8a5e 604 \u500b\u53ca\u8ca0\u9762\u8a5e 645 \u500b\u7684\u8cc7\uf9be\u96c6\u4e0a \u505a\u5be6\u9a57\uff0c\u5f97\u5230\u6700\u9ad8\u7684\u6210\u7e3e\u662f 80.23%\u7684\u7cbe\u78ba\ufa01\u53ca 85.03%\u7684\u53ec\u56de\uf961\u3002\u4e4b\u5f8c\u5f9e 2006 \u5230 2010 \uf98e\uff0c\uf9d3\u7e8c\u7684\u7814\u7a76\u4f7f\u7528\uf967\u540c\u7684\u8cc7\uf9be\u96c6\uff0c\u7528\uf967\u540c\uf9d0\u578b\u7684\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\uf92d\u8655\uf9e4\u9019\u500b\u554f\u984c",
                "html": null
            },
            "TABREF2": {
                "content": "<table><tr><td>3.2.1 Google Web 5-gram\u7279\u5fb5\u62bd\u53d6</td></tr><tr><td>\u6211\u5011\u4f7f\u7528\u7279\u5fb5\u8ddf\u8a5e\u5f59\u7684\u540c\u51fa\u73fe(co-occurrence)\u6b21\uf969\u505a\u70ba\u7279\u5fb5\u503c\uff0c\u4ee5\u5716 3 \u70ba\uf9b5\uff0c\u5982\u679c\u8a5e</td></tr><tr><td>+1\u3002\u53e6\u5916\uff0c\u5982\u679c\u6a39\uf9fa\u7d50\u69cb\u4e0a\u9762\u7684\u7fa9\u539f\u88ab\u5426\u5b9a\u610f\u7fa9\u7684\u95dc\u4fc2\u6240\u4fee\u98fe\uff0c\u9019\u5426\u5b9a \u5f59\u662f\u300c\u6050\u5413\u300d\uff0c\u4ee5\u300c\u975e\u6cd5\u300d\u7576\u7279\u5fb5\u503c\uff0c\u5247\u540c\u51fa\u73fe\u6b21\uf969\u6703\u5c07\u6240\u6709\u300c\u6050\u5413\u300d\u53ca\u300c\u975e\u6cd5\u300d\u4e00\u540c</td></tr><tr><td>\u610f\u7fa9\u6703\u50b3\u905e\u5230\u4e0b\u9762\u7684\u7fa9\u539f\u3002 \u51fa\u73fe\u7684 5-gram \u6b21\uf969\u76f8\u52a0\u3002\u5728\u4e0a\u9762\u7684\uf9b5\u5b50\u4e2d\uff0c\u300c\u6050\u5413\u300d\u53ca\u300c\u975e\u6cd5\u300d\u7684\u540c\u51fa\u73fe\u6b21\uf969\u70ba</td></tr><tr><td>574+200+4463 + 705=5942 \u6b21\u3002 3.2 \u8a9e\u7bc7(context)\u7279\u5fb5 \u53e6\u5916\uff0c\u7531\u65bc\u5ee3\u7fa9\u77e5\u7db2\u8ddf Google Web 5-gram \u7684\u65b7\u8a5e\u6a19\u6e96\u4e26\uf967\u4e00\u81f4\uff0c\u6240\u4ee5\u5728\u8655\uf9e4\u6642\u628a</td></tr><tr><td>\u5ee3\u7fa9\u77e5\u7db2\u96d6\u7136\u6709\u56b4\u8b39\u7684\u5b9a\u7fa9\u5f0f\u53ef\u7528\u4ee5\u8868\u793a\u8a5e\u5f59\uff0c\u4f46\u662f\u6709\u56db\u500b\u7f3a\u9ede\uff0c\u9020\u6210\u53ea\u7528\u7fa9\u539f\u7576\u7279\u5fb5 Google Web 5-gram \u7684\u7a7a\u767d\u53bb\u6389\uff0c\u76f4\u63a5\u627e\u51fa\u300c\u8a5e\u5f59\u300d\u8ddf\u300c\u7279\u5fb5\u300d\u9019\uf978\u5b57\uf905\u662f\u5426\u540c\u6642\u51fa\u73fe\uff0c</td></tr><tr><td>\u7121\u6cd5\u6b63\u78ba\u7372\u5f97\u8a5e\u5f59\u7684\u6975\u6027\u3002 \uf92d\u8a08\u7b97\u6b21\uf969\uff0c\u9019\u6a23\u53ef\u4ee5\u907f\u514d\u65b7\u8a5e\u6a19\u6e96\uf967\u4e00\u6240\u7522\u751f\u7684\u554f\u984c\u3002\uf9b5\u5982 \u300c\u4e00\u4e8b\u7121\u6210\u300d\u5728 Google Web</td></tr><tr><td>\u7b2c\u4e00\u500b\u7f3a\u9ede\u662f\u8a5e\u5f59\u6240\u6a19\u7684\u7fa9\u539f\uf97e\u592a\u5c11\uff0c\u56e0\u70ba\u8a5e\u5f59\u662f\u7528\u4eba\u5de5\u6a19\u793a\u7fa9\u539f\uff0c\u6240\u4ee5\u7121\u6cd5\u7d66\u4e88 5-gram \u4e2d\u88ab\u65b7\u6210\u56db\u500b\u7368\uf9f7\u7684\u8a5e\uff0c\u5c07\u7a7a\u767d\u53bb\u6389\u5c31\u53ef\u4ee5\u6b63\u78ba\u6bd4\u5c0d\u5230\u3002</td></tr><tr><td>\u5f88\u591a\u6a19\u793a\u3002\u9019\u8868\u793a\u8a5e\u5f59\u64c1\u6709\u7684\u8cc7\u8a0a\uf97e\u6709\u9650\uff0c\u6703\u9020\u6210\u5206\uf9d0\u5668\u7121\u6cd5\u6709\u6548\u5b78\u7fd2\u3002\u7b2c\u4e8c\u500b\u7f3a\u9ede\u662f \u56e0\u70ba\u9019\uf9e8\u7684\u8a5e\u5f59\u96c6\u5408\u5c31\u662f\u7b49\u5f85\u6a19\u793a\u6975\u6027\u7684\u8a5e\uff0c\u6240\u4ee5\u6211\u5011\u53ea\u8981\u6307\u5b9a\u7279\u5fb5\u7684\u96c6\u5408\u5305\u62ec\u90a3</td></tr><tr><td>\u7fa9\u539f\uf969\uf97e\u592a\u5c11\uff0c\u9019\u6703\u9020\u6210\u8a9e\u7fa9\u7684\u5283\u5206\uf967\u5920\u7cbe\u78ba\uff0c\u7121\u6cd5\u986f\u793a\u51fa\u771f\u5be6\u7684\u8a9e\u7fa9\u5dee\u5225\uff0c\uf9b5\u5982\u300c\u660e \u4e9b\u8a5e\uff0c\u5c31\u53ef\u7b97\u51fa\u8868\u793a\u8a5e\u5f59 i \u7684\u5411\uf97e</td></tr><tr><td>\u54f2\u4fdd\u8eab\u300d\u8ddf\u300c\ufa0a\u98a8\u8f49\u8235\u300d\u7684\u5b9a\u7fa9\u5f0f\u90fd\u662f\u300c{sly|\u72e1}\u300d\uff0c\u4f46\u300c\u660e\u54f2\u4fdd\u8eab\u300d\u662f\u6b63\u9762\u610f\ufa0a\uff0c\u300c\ufa0a</td></tr><tr><td>\u98a8\u8f49\u8235\u300d\u537b\u662f\u8ca0\u9762\u610f\ufa0a\u3002\u7b2c\u4e09\u500b\u7f3a\u9ede\u662f\u5ee3\u7fa9\u77e5\u7db2\u5b9a\u7fa9\u6a19\u6e96\u7684\u5dee\uf962\uff0c\uf9b5\u5982\uff0c\u5c08\u6709\u540d\u8a5e\u5728\u5ee3</td></tr><tr><td>\u7fa9\u77e5\u7db2\u4e2d\u6703\u7528\u5ba2\u89c0\u7684\u7fa9\u539f\uf92d\u5b9a\u7fa9\uff0c\u4f46\u8a72\u5c08\u6709\u540d\u8a5e\u7d93\u904e\u4f7f\u7528\uff0c\u537b\u53ef\u80fd\u6703\u5f15\u8d77\u4eba\u7684\u6b63\u53cd\u60c5\u7dd2</td></tr><tr><td>(\u5982\u300c\u83ab\u672d\u7279\u300d\u662f\u5c08\u6709\u540d\u8a5e\uff0c\u4f46\u537b\u5e38\u7528\uf92d\u7576\u6b63\u9762\u610f\ufa0a)\uff0c\u9019\u7a2e\u5dee\uf962\u6703\u5f15\u5165\u7a0b\ufa01\uf967\u7b49\u7684\u96dc</td></tr><tr><td>\u8a0a\u5230\u5206\uf9d0\u5668\u4e2d\u3002\u7b2c\u56db\u500b\u7f3a\u9ede\u662f\u5ee3\u7fa9\u77e5\u7db2\u5c1a\u672a\u5c0d\u6240\u6709\u8a5e\u5f59\u6a19\u4e0a\u5b9a\u7fa9\u5f0f\uff0c\uf9b5\u5982\u300c\u4e7e\u6de8\u4fd0\uf918\u300d</td></tr><tr><td>\u5728\u5ee3\u7fa9\u77e5\u7db2\u53ca NTUSD \u4e2d\u90fd\u51fa\u73fe\uff0c\u4f46\u5ee3\u7fa9\u77e5\u7db2\u537b\u6c92\u6709\u6a19\u4e0a\u5b9a\u7fa9\u5f0f\u3002</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "\u6240\u5efa\uf9f7\u7684 Google Web \uf9e1\u653f\u5112 \u7b49 5-gram Version 1\uff0c\uf92d\u62bd\u53d6\u8a9e\u7bc7\u7279\u5fb5\u3002Google Web 5-gram \u662f Google \u5f9e\u7db2\uf937\u4e2d\u6536\u96c6\u5927\uf97e\u7684 \u7c21\u9ad4\u4e2d\u6587\u7db2\u9801\uff0c\u4e26\u7d93\u904e\u8655\uf9e4\u6240\u5efa\uf9f7\u7684\u8cc7\u6e90\u3002\u4ed6\u5011\u6536\u96c6\uf9ba 882,996,532,572 \u500b\u5b57\u7b26 (token) \uff0c \u5171 102,048,435,515 \u500b\uf906\u5b50\uff0c\u7d93\u904e\u65b7\u8a5e\u5f8c\u5efa\u6210 n-gram\u3002n-gram \u7684 n \u5f9e 1 \u5230 5\uff0c\u4e26\u4e14\u53ea \u4fdd\uf9cd\u983b\uf961\u5927\u65bc 40 \u7684 n-gram\u3002Google Web 5-gram \u7684\uf9b5\u5b50\u5982\u5716 3 \u6240\u793a\u3002",
                "html": null
            },
            "TABREF3": {
                "content": "<table><tr><td>\u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u610f\ufa0a\u6975\u6027\u7684\u9810\u6e2c</td><td>27</td></tr><tr><td>3.2</td><td/></tr><tr><td>NTUSD \u5b8c\u6574\u7248\u3002</td><td/></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "i\u300d\u8ddf\u300c\u7279\u5fb5 j\u300d\u9019\uf978\u5b57\uf905\u540c\u51fa\u73fe\u7684\u6b21\uf969\u3002\u5728\u6211\u5011\u7684\u5be6\u9a57\u4e2d\uff0c\u5171\u5617\u8a66\uf9ba \u5341\u7a2e\uf967\u540c\u7684\u7279\u5fb5\u96c6\u5408\uff0c\u5206\u5225\u662f\u5ee3\u7fa9\u77e5\u7db2\u7684\u540d\u8a5e\u3001\u5ee3\u7fa9\u77e5\u7db2\u7684\u52d5\u8a5e\u3001\u5ee3\u7fa9\u77e5\u7db2\u7684\u526f\u8a5e\u3001\u5ee3 \u7fa9\u77e5\u7db2\u7684\u5f62\u5bb9\u8a5e\u3001\u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59\u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe\u7684 5000 \u8a5e\u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe\u7684 5000 \u8a5e(\u4f46\u8a5e\u5f59\u9577\ufa01\u6700\u5c11\u70ba 2)\u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe \u7684 10000 \u8a5e\u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe\u7684 10000 \u8a5e(\u4f46\u8a5e\u5f59\u9577\ufa01\u6700\u5c11\u70ba 2)\u3001\u4ee5\u53ca",
                "html": null
            },
            "TABREF5": {
                "content": "<table><tr><td>\u7684\u6a23\u672c\uf969 McNemar \u6aa2\u5b9a\u5efa\u69cb\u5728\u5361\u65b9\u9069\u5408\ufa01\u6aa2\u5b9a(\u03c72 test goodness of fit)\u4e0a\uff0c\u6574\uf9e4\u800c\u5f97\u7684\u6aa2\u5b9a 0 , 1 1 , 0 2 0 , 1 1 , 0 ) 1 ( n n n n + \u2212 \u2212 \uff0c\u6b64\u6aa2\u5b9a\u503c\u5728 n 0,1 +n 1,0 \u5920\u5927\u7684\u6642\u5019\u6703\u8da8\u8fd1\u65bc\u81ea\u7531\ufa01\u70ba 1 \u7684\u5361\u65b9\u5206\u914d\uff0c \u56e0\u6b64\u5728\u986f\u8457\u6c34\u6e96(significant level)\u70ba 0.95 \u6642\uff0c\u6b64\u503c\uf974\u5927\u65bc \u503c\u70ba 8415 . 3 2 95 . 0 , 1 = \u03c7 \uff0c\u5247\u62d2\u7d55\u865b\u7121\u5047 \u8a2d\u3002\u6211\u5011\u7528 (McNemar \u6aa2\u5b9a\u7d50\u679c, p-value) \uf92d\u986f\u793a\u6211\u5011\u7684\u6aa2\u5b9a\u7d50\u679c\uff0c\uf9b5\u5982\u6aa2\u5b9a\u7d50\u679c (1.50, 0.22) \u8868\u793a\uff0cMcNemar \u6aa2\u5b9a\u7d50\u679c\u70ba 1.50 &lt; 3.84\uff0c\u6240\u4ee5\u6c92\u6709\u901a\u904e McNemar \u6aa2\u5b9a\uff0cp-value \u70ba 0.22\u3002 4.2 \u57fa\u790e\u7fa9\u539f\u7279\u5fb5\u7684\u6548\u80fd 89.4% 89.6% 89.8% 90.0% Accuracy PBF PBFN \u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u610f\ufa0a\u6975\u6027\u7684\u9810\u6e2c 31 \u6211\u5011\u4f7f\u7528\u4e09\u7a2e\uf967\u540c\u7684\u52a0\u6b0a\u65b9\u5f0f\u5f97\u5230\u7684\u9810\u6e2c\u6e96\u78ba\uf961\u5982\u5716 5\uff0c\u5716\u4e2d\u6211\u5011\u4e5f\u628a\u7279\u5fb5\u96c6\u7684\u7279 \u5fb5\uf969\u7531\u5de6\u81f3\u53f3\u7531\u5c0f\u5230\u5927\u6392\uf99c\u3002 \u5f9e\u5716 5 \u53ef\u4ee5\u770b\u51fa\uff0c\u6c92\u6709\u6a19\u6e96\u5316\u7684\u539f\u59cb\u983b\uf961\u7684\u6700\u4f73\u6e96\u78ba\uf961\u70ba 59.70%\uff0c\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u70ba \u300c\u5ee3\u7fa9\u77e5\u7db2\u540d\u8a5e\u300d\uff0c\u5176\u6548\u80fd\u6700\u5dee\u4e14\u5dee\u8ddd\u5f88\u5927\u3002\u9918\u5f26\u6a19\u6e96\u5316 TFIDF \u7684\u6548\u80fd\u6392\u5728\u4e2d\u9593\uff0c\u6700\u4f73 \u6e96\u78ba\uf961\u70ba 83.41%\uff0c\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u70ba\u300c\u6700\u5e38\u51fa\u73fe 10000 \u8a5e\u300d\u3002\u800c\u7d93\u904e\u9918\u5f26\u6a19\u6e96\u5316\u7684\u7279\u5fb5\u503c \u5247\u53ef\u4ee5\u5f97\u5230\u6700\u4f73\u6548\u80fd\uff0c\u5176\u6700\u4f73\u6e96\u78ba\uf961\u70ba 88.23%\uff0c\u6b64\u6642\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u70ba \u300c\u5ee3\u7fa9\u77e5\u7db2\u52d5\u8a5e\u300d \uff0c \uf9e1\u653f\u5112 \u7b49 \u63d0\u5347\uff0c\u63d0\u5347\u5f8c\u7684\u6700\u9ad8\u6e96\u78ba\uf961\u70ba 92. 3276%\uff0c\u4f7f\u7528\u300c\u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59 All+PBFN \u03b1 = \u22120.03 \u300d \u548c\u300c\u6700\u5e38\u51fa\u73fe 10000 \u8a5e(\u9577\ufa01\u22672) F10000-2+PBFN \u03b1 = \u22120.03 \u300d\u70ba\u7279\u5fb5\u96c6\u6642\u7686\u6709\u76f8\u540c\u7684\u6e96 \u78ba\uf961\u3002\u4e0a\u5716\u4e2d\uff0c\u300c\u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59 All\u300d\u6e96\u78ba\uf961\u5f9e 88.23%\u63d0\u5347\u81f3 92.33%\u6642\uff0c\u6b64\u5dee\u8ddd\u70ba \u986f\u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (32.14, 1.4*10 -8 )\u3002 95.0% \u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u610f\ufa0a\u6975\u6027\u7684\u9810\u6e2c 33 \u8868 4 \u4e2d\u7684\u7279\u5fb5\u96c6\u4ee3\u865f\u662f\u300c\u8a9e\u7bc7\u7279\u5fb5\u96c6\u4ee3\u78bc+PBFN \u03b1 = \u22120.03 \u300d\u7684\u7c21\u5beb\uff0c\u56e0\u70ba\u4f7f\u7528\u76f8\u540c\u7684 PBFN \u03b1 = \u22120.03 \uff0c\u6240\u4ee5\u5c07\u5176\u5ffd\uf976\u3002\u300c\u7e3d\u9ad4\u6548\u80fd\u300d\u662f\u6307\u5206\uf9d0\u5668\u8a13\uf996\u6642\u7684\u6574\u9ad4\u6548\u80fd\u3002\u8868\u4e2d\uff0c\u4e00\uf91d \u4e2d\u6700\u4f73\u7684\u6a19\u8a18\u6548\u80fd\u4ee5\u7c97\u9ad4\u5b57\u8868\u793a\u3002 \u8868 4 \u4e2d\u6211\u5011\u53ef\u4ee5\u767c\u73fe\uff0c\u8a13\uf996\u6642\uff0cF10000-2+PBFN \u03b1 = \u22120.03 \u6709\u6700\u9ad8\u7684\u7e3d\u9ad4\u6548\u80fd\uff0c\u5176\u5404\u8a5e \u6027\u6548\u80fd\u9664\uf9ba\u5f62\u5bb9\u8a5e\u5916\uff0c\u591a\u662f\u6700\u597d\uff1b\u8003\uf97e\u5230\u8cc7\uf9be\u96c6\u4e2d\u5f62\u5bb9\u8a5e\u7684\uf969\uf97e\u4e26\uf967\u591a\uff0c\u9019\u8868\u793a\u7d44\u5408\u591a \u500b\u5206\uf9d0\u5668\u5f8c\uff0c\u6548\u80fd\u7684\u63d0\u6607\u7a7a\u9593\u53ef\u80fd\u6709\u9650\u3002\u8868 4 \u4e2d\u53e6\u4e00\u500b\u503c\u5f97\u6ce8\u610f\u7684\u4e00\u9ede\u662f\u8a13\uf996\u8cc7\uf9be\u96c6\u7684 34 \uf9e1\u653f\u5112 \u7b49 4.6 \u76f8\u95dc\u7814\u7a76\u6548\u80fd\u6bd4\u8f03 \u6211\u5011\u7e3d\u7d50\u524d\u9762\u5404\u7a2e\uf967\u540c\u7684\u5be6\u9a57\u7d50\u679c\uff0c\u756b\u6210\u5716 7\uff0c\uf92d\u65b9\uf965\u6211\u5011\u6bd4\u8f03\u6548\u80fd\u3002\u5176\u4e2d\uff0cgloss \u8868\u57fa \u790e\u7fa9\u539f\u7279\u5fb5 PBFN \u03b1 = \u22120.03 \uff0c\u6700\u597d\u7684\u6548\u80fd\u5230 92.3276%\u3002 92.3276% 92.3276% 95.0% \u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u610f\ufa0a\u6975\u6027\u7684\u9810\u6e2c 35 5. \u7d50\uf941 \u672c\u7814\u7a76\u4f7f\u7528\uf9ba Google Web 5-gram Version 1 \uf92d\u62bd\u53d6\u8a9e\u7bc7\u7279\u5fb5\uff0c\u4e26\u52a0\u4e0a\uf92d\u81ea E-HowNet \u7684 \u57fa\u790e\u7fa9\u539f\u7279\u5fb5\uff0c\u7528\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u7684\u65b9\u6cd5\uff0c\uf92d\u9810\u6e2c E-HowNet \u8a5e\u5f59\u7684\u610f\ufa0a\u6975\u6027\u3002\u96d6\u7136\u55ae \u7368\u4f7f\u7528\uf967\u540c\u7684\u7279\u5fb5\u5df2\u7d93\u53ef\u4ee5\u63a5\u8fd1 90% \u7684\u6e96\u78ba\uf961\uff0c\u4f46\u5982\u679c\u628a\uf978\u7a2e\u7279\u5fb5\u90fd\u52a0\u4ee5\u4f7f\u7528\uff0c\u5206\uf9d0 \u5668\u7684\u6975\u6027\u9810\u6e2c\u7684\u6e96\u78ba\uf961\u53ef\u5230\u9054 92.33% \u7684\u9ad8\u6e96\u78ba\uf961\uff1b\u4ee5\u9019\u7a2e\u65b9\u5f0f\u5efa\uf9f7\u7684\u5206\uf9d0\u5668\uff0c\u53ef\u7528\uf92d \u81ea\u52d5\u6a19\u8a18 E-HowNet \u8a5e\u5f59\u7684\u610f\ufa0a\u6975\u6027\u3002 \u5716 4 \uf9e1\u653f\u5112 \u7b49 \u5716 4. \u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u65bc\uf967\u540c \u03b1 \u503c\u7684\u6548\u80fd\u6bd4\u8f03 \u6211\u5011\u5f9e\u5716 4 \u53ef\u4ee5\u770b\u51fa\uff0c\u63cf\u8ff0 PBFN \u7684\u6298\u7dda\u5728\u6240\u6709\u7684 \u03b1 \u503c\u4e0b\uff0c\u6e96\u78ba\uf961\u7686\uf976\u9ad8\u65bc PBF\uff0c \u4f46\u662f\uf978\u500b\u6700\u5927\u503c (\u03b1 = \u22120.02) \u7684\u5dee\u8ddd\u50c5 0.1724%\uff0c\u6b64\u5dee\u8ddd\u70ba\uf967\u986f\u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (1.50, 0.22)\u3002 \u7531\u65bc \u03b1 &lt; 0 \u6709\u6700\u4f73\u6548\u80fd\uff0c\u9019\u8868\u793a\u6df1\ufa01\u8f03\u6df1\u7d66\u8f03\u9ad8\u6b0a\u91cd\uff0c\u8a72\u7fa9\u539f\u6709\u8f03\u597d\u7684\u7279\u5fb5\uff0c\u53ef\u4ee5\u7d66\u5206 \uf9d0\u5668\u5b78\u7fd2\u3002 4.3 \u8a9e\u7bc7\u7279\u5fb5\u7684\u6548\u80fd \u8a9e\u7bc7\u7279\u5fb5\u4f7f\u7528\u5341\u7d44\u7279\u5fb5\u96c6\u7684\u540d\u7a31\uff0c\u4ee5\u53ca\u7279\u5fb5\uf969\uf97e\uff0c\u5982\u8868 3 \u6240\u793a\u3002\u5728\u8868\u4e2d\uff0c\u6211\u5011\u4f7f\u7528\u7279\u5fb5 \u96c6\u4ee3\u865f\uf92d\u4ee3\u8868\u8a72\u7279\u5fb5\u96c6\u3002\u5341\u7d44\u7279\u5fb5\u96c6\u4e2d\uff0c\u6700\u5c11\u7684\u662f Adj \u7684\u7279\u5fb5\u96c6\uff0c\u53ea\u6709 948 \u500b\u8a5e\uff0c\u6700\u591a \u7684\u662f All \u7684\u7279\u5fb5\u96c6\uff0c\u6709 86,712 \u500b\u8a5e\u3002 \u8868 3. \u8a9e\u7bc7\u7279\u5fb5\u6240\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u8207\u5176\u7279\u5fb5\uf969 \u7279\u5fb5\u96c6 \u7279\u5fb5\u96c6\u4ee3\u865f \u7279\u5fb5\uf969 \u5ee3\u7fa9\u77e5\u7db2\u540d\u8a5e Noun 46,807 \u5ee3\u7fa9\u77e5\u7db2\u52d5\u8a5e Verb 37,109 \u5ee3\u7fa9\u77e5\u7db2\u526f\u8a5e Adv. 2,364 \u5ee3\u7fa9\u77e5\u7db2\u5f62\u5bb9\u8a5e Adj. 948 All 86,712 \u7d44\u5408\u7279\u5fb5\u6642\uff0c\u56e0\u70ba\u9918\u5f26\u6a19\u6e96\u5316\u6709\u6700\u597d\u7684\u6548\u80fd\uff0c\u6240\u4ee5\u8a9e\u7bc7\u7279\u5fb5\u9078\u64c7\u9918\u5f26\u6a19\u6e96\u5316\u5f8c\u7684\u5341\u7d44\u7279 F5000-2 97.2635% 98.0392% 97.1705% 96.0912% 94.9153% 94.8718% \u7684\uf969\uf97e\u3002 \u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59 89.0% 89.2% -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 Alpha \u6b64\u6548\u80fd\u8ddf\u5176\u4ed6\uf978\u8005\u7684\u5dee\u8ddd\u70ba\u986f\u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (4.61, 0.03)\u3002 \u5716 5. \u4f7f\u7528\u8a9e\u7bc7\u7279\u5fb5\u6642\u7684\u9810\u6e2c\u6548\u80fd \u5716 5 \u4e2d\u7279\u5fb5\u96c6\u7684\u500b\uf969\uff0c\u4e26\u6c92\u6709\u7d55\u5c0d\u7684\u5f71\u97ff\uff0c\u4f46\uf974\u500b\uf969\u592a\u5c11\uff0c\u5982\u7279\u5fb5\u500b\uf969\u5c0f\u65bc 2364 \u500b\uff0c\u5247\u6548\u80fd\u6703\u660e\u986f\u8b8a\u5dee\u3002\u5716 4 \u4e2d\u7684\u6700\u4f73\u503c PBFN(\u03b1 = \u22120.02)\u70ba 89.61%\uff0c\u7279\u5fb5\u500b\uf969\u70ba 2,567 \u500b\uff0c\u9019\u500b\u503c\u6bd4\u5716 5 \u4e2d\u7684\u6700\u4f73\u503c 88.23%\u9084\u8981\u5927\uff0c\u9019\u8868\u793a\u5ee3\u7fa9\u77e5\u7db2\u4e2d\u7684\u7279\u5fb5\u6bd4\u8f03\u6e96\u78ba\uff0c\u4f46\u9019 \u5dee\u8ddd\u70ba\uf967\u986f\u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (2.49, 0.11)\u3002 4.4 \u7d44\u5408\uf967\u540c\u7279\u5fb5\u7684\u6548\u80fd 50.0% 60.0% 70.0% 80.0% 90.0% 100.0% Adj. (948) Adv. (2364) F5000-1 (5000) F5000-2 (5000) F10000-1 (10000) F10000-2 (10000) Verb (37109) NTUSD (42614) Noun (46807) All (86712) Accuracy Feature set Original Frequency Cos-Normalized Frequency Cos-Normalized TFIDF \u5716 6. \u5ee3\u7fa9\u77e5\u7db2\u3001\u8a9e\u7bc7\u7279\u5fb5\u3001\u8207\u7d44\u5408\u7279\u5fb5\u7684\u6e96\u78ba\uf961\u6bd4\u8f03 4.5 \u7d44\u5408\u5f0f\u7684\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\u6548\u80fd \u5728\u5716 6 \u4e2d\uff0c\u7d44\u5408\u51fa\u7684\u7279\u5fb5\u96c6\u6709\u5341\u500b\uff0c\u6240\u4ee5\u5171\u6709\u5341\u500b\u5206\uf9d0\u5668\uff0c\u6bcf\u500b\u5206\uf9d0\u5668\u5728\u8a13\uf996\u6642\uff0c\u5c0d\uf967 \u540c\u8a5e\u6027\u6709\uf967\u540c\u7684\u6548\u80fd\uff0c\u6211\u5011\u5c07\u9019\u5341\u500b\u5206\uf9d0\u5668\u5c0d\u65bc\u6bcf\u500b\u8a5e\u6027\u6a19\u8a18\u7684\u6548\u80fd(\u5167\u90e8\u6e2c\u8a66)\u6574\uf9e4 \u6210\u8868 4\u3002 \u8868 4. \u8a13\uf996\u8cc7\uf9be\u96c6\u4e2d\uff0c\u7d44\u5408\u7279\u5fb5\u5c0d\uf967\u540c\u8a5e\u6027\u7684\u6a19\u8a18\u6e96\u78ba\uf961 \u7279\u5fb5\u96c6\u4ee3\u865f \u7e3d\u9ad4\u6548\u80fd \u8a13\uf996\u8cc7\uf9be\u96c6\u4e2d\uff0c\u4f9d\u8a5e\u6027\u5206\u5225\u8a08\u7b97\u7684\u6e96\u78ba\uf961 \u540d\u8a5e \u52d5\u8a5e \u526f\u8a5e \u5f62\u5bb9\u8a5e \u5176\u4ed6 Adj. 94.3223% 95.9559% 94.2167% 89.9023% 93.2203% 82.0513% Adv. 95.3243% 96.5074% 95.2795% 92.1824% 91.5254% 84.6154% F5000-1 96.1000% 97.3039% 96.0110% 92.8339% 94.9153% 89.7436% 75.0% 80.0% 85.0% 90.0% Adj. (948) Adv. (2364) F5000-1 (5000) F5000-2 (5000) F10000-1 (10000) F10000-2 (10000) Verb (37109) NTUSD (42614) Noun (46807) All (86712) Accuracy Feature set Gloss Context Combine gloss and Context \u5167\u90e8\u6e2c\u8a66\u6548\u80fd(inside test)F10000-2+PBFN \u03b1 = \u22120.03 \u7684 97.5005% \u8ddf\u5be6\u969b\u6e2c\u8a66\u6548\u80fd 92. 3276%\u76f8\u6bd4\uff0c\ufa09\u4f4e\uf9ba 5.31%\uff0c\u9019\ufa09\u4f4e\u5e45\ufa01\u4e26\uf967\u5927\uff0c\u986f\u793a\u9019\u5206\uf9d0\u5668\u7684 generalization \u80fd\uf98a\uf967 \u932f\uff0c\u9019\u4e5f\u662f\u4f7f\u7528 Google Web 5-gram \u7684\u512a\u9ede\uff0c\u5b83\u53ef\u7522\u751f\u8f03\u5f37\u5065 (robust) \u7684\u5206\uf9d0\u5668(Bergsma, Pitler, &amp; Lin, 2010)\u3002 \u6211\u5011\u7528\u5167\u90e8\u6e2c\u8a66\u6548\u80fd\uf92d\u6311\u9078\u5206\uf9d0\u5668\uff0c\u4ee5\uf965\u7528\u5728\u7d44\u5408\u5f0f\u7684\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\u4e2d\u3002 \u6211\u5011\u5728\u8868 4 \u4e2d\u9078\uf967\u540c\u8a5e\u6027\u505a\u5f97\u6700\u597d\u7684\u5206\uf9d0\u5668\uf92d\u7d44\u5408\uff0c\u5982\u679c\u6548\u80fd\u76f8\u540c\uff0c\u5247\u9078\u7279\u5fb5\uf969\uf97e\u8f03\u5c11 \u7684\u90a3\u4e00\u500b\u5206\uf9d0\u5668\uff0c\u56e0\u70ba\u7279\u5fb5\uf969\u8f03\u5c11\u901a\u5e38\u5728\u672a\u770b\u904e\u7684\u8cc7\uf9be\u96c6\u6703\u505a\u5f97\u8f03\u597d\u3002\u7d44\u5408\u51fa\u7684\u5206\uf9d0\u5668 \u6211\u5011\u7a31\u70ba EnsembleClassifier\uff0c\u5176\u7d50\u679c\uf99c\u5728\u8868 5\uff0c\u5176\u4e2d F10000-2+PBFN \u03b1 = \u22120.03 \u65bc\u5404\u8a5e\u6027\u7684 \u6a19\u8a18\u6548\u80fd\u4e5f\uf99c\u51fa\uf92d\u6bd4\u8f03\u3002 \u8868 5. \u7d44\u5408\u5206\uf9d0\u5668\u65bc\u5404\u8a5e\u6027\u7684\u6a19\u8a18\u6548\u80fd\u53ca\u6bd4\u8f03 \u5206 \uf9d0 \u5668 \u8a5e\u6027 F10000-2+PBFN \u03b1 = \u22120.03 \u5206\uf9d0\u5668 \u65bc\u5404\u8a5e\u6027\u7684\u6a19\u8a18\u6548\u80fd \u7d44\u5408\u5206\uf9d0\u5668 EnsembleClassifier \u65bc\u5404\u8a5e\u6027\u7684\u6a19\u8a18\u6548\u80fd \u6b63\u78ba \u500b\uf969 \u932f\u8aa4 \u500b\uf969 \u6e96\u78ba\uf961 \u4f7f\u7528\u7684 \u5206\uf9d0\u5668 \u6b63\u78ba \u500b\uf969 \u589e\u6e1b \u932f\u8aa4 \u500b\uf969 \u6e96\u78ba\uf961 \u540d\u8a5e 371 37 90.9314% F10000-2 371 (+0) 37 90.9314% \u52d5\u8a5e 1,681 130 92.8216% F10000-2 1,681 (+0) 130 92.8216% \u526f\u8a5e 67 9 88.1579% F5000-2 69 (+2) 7 90.7895% \u5f62\u5bb9\u8a5e 14 1 93.3333% Noun 12 (-2) 3 80.0000% \u5176\u4ed6 9 1 90.0000% F5000-2 9 (+0) 1 90.0000% \u7e3d\uf969 2,142 178 92.3276% 2142 (+0) 178 92.3276% \u8868 5 \u4e2d\uff0c\u6211\u5011\u4e5f\uf99c\u51fa\u6bcf\u7a2e\u8a5e\u6027\u505a\u932f\u8207\u505a\u5c0d\u7684\u500b\uf969\uff0c\u4e26\u4ee5 F10000-2+PBFN \u03b1 = \u22120.03 \u5206\uf9d0 \u5668\u70ba\u57fa\u6e96\uff0c\u770b\u7d44\u5408\u5f8c\u7684\u5206\uf9d0\u5668\uff0c\u5728\u5404\u8a5e\u6027\u4e2d\u505a\u5c0d\u505a\u932f\u7684\u6b21\uf969\u7684\u589e\u6e1b\uff0c\u7528\u62ec\u865f\uf92d\u6a19\u51fa\u589e\u6e1b \u5716 7. \u56db\u7a2e\u65b9\u6cd5\u6548\u80fd\u6bd4\u8f03 \u7531\u65bc\u6211\u5011\u4f7f\u7528 NTUSD\uff0c\u6211\u5011\u60f3\u770b\u770b NTUSD \u4eba\uf9d0\u6a19\u8a18\u7684\u6548\u80fd\u8ddf\u6211\u5011\u5206\uf9d0\u5668\u7684\u6548\u80fd\u6709 \u4f55\u5dee\uf962\u3002\u5728 Ku &amp; Chen (2007)\u7684\u7814\u7a76\u4e2d\uff0c\u5c0d\u8a5e\u6709\u5206\u56db\uf9d0\u6a19\u8a18\uff0c\u5206\u5225\u662f\u6b63\u9762\u3001\u8ca0\u9762\u3001\u4e2d\uf9f7\u3001 \u53ca\u975e\u610f\ufa0a\u8a5e\uff0c\u4e26\u8058\u8acb\u6a19\u8a18\u8005\u5c0d NTUSD \u9032\ufa08\u6a19\u8a18\uff0c\u6211\u5011\u5c07\u8a72\u7814\u7a76\u4e2d\u6a19\u8a18\u8005\u7684\u6700\u4f73\u6a19\u8a18\u6548 \u80fd\u8207\u672c\u7814\u7a76\u7684\u6bd4\u8f03\u5982\u8868 6\u3002\u7531\u65bc\u4eba\uf9d0\u6a19\u8a18\u8005\u662f\u5c07\u8a5e\u5206\u6210\u56db\uf9d0\uff0c\u4f46\u6211\u5011\u7684\u7cfb\u7d71\u53ea\u5206\uf978\uf9d0\uff0c \u6240\u4ee5\u9019\uf969\u64da\u6c92\u6709\u8fa6\u6cd5\u8ddf\u6211\u5011\u7684\u7d50\u679c\u76f4\u63a5\u76f8\u6bd4\u8f03\uff1b\u4f46\u6211\u5011\u4ecd\u53ef\u5f9e\u8868 6 \u4e2d\u770b\u51fa\uff0c\u672c\u7814\u7a76\u6240\u7522 \u751f\u7684\u6b63\u8ca0\u9762\u8a5e\u5f59\u81ea\u52d5\u6a19\u8a18\u6f14\u7b97\u6cd5\uff0c\u5df2\u9054\u5230\uf9ba\u5f88\u9ad8\u7684\u6548\u80fd\u3002 \u8868 6. NTUSD \u6a19\u8a18\u8005\u8207\u672c\u7814\u7a76\u6a19\u8a18\u6548\u80fd\u6bd4\u8f03 \u5206\uf9d0\u5668 Recall Precision F-Measure F10000-2+PBFN \u03b1 = \u22120.03 92.36% 92.20% 92.27% \u4e09\u4eba\u4e2d\u6700\u4f73\u7684\u4eba\uf9d0\u6a19\u8a18\u8005 96.58% 88.87% 92.56% 88.2328% 90.0% Gloss Context Combine gloss and Context Ensemble classifier \u6211\u5011\u5e0c\u671b\u5728\u672a\uf92d\u80fd\u628a\u9019\u7a2e\u65b9\u5f0f\uff0c\u5f80\uf967\u540c\u7684\u65b9\u5411\u64f4\u5c55\uff0c\uf92d\u7d66\u4e88 E-HowNet \u8a5e\u5f59\uf901\u591a\u610f Accuracy \ufa0a\u7684\u5c6c\u6027\uff0c\u9019\u5305\u62ec\u5c0d\u8a5e\u5f59\u6a19\u8a18\u4e3b\u5ba2\u89c0\u7684\u5c6c\u6027\u53ca\u6b63\u8ca0\u9762\u50be\u5411\u7684\u5f37\ufa01\u7b49\u3002\u9664\u6b64\u4e4b\u5916\uff0c\u56e0\u70ba E-HowNet \u8a5e\u5f59\u6709\u8a31\u591a\uf967\u540c\u7684\u8a5e\u6027\uff0c\u6211\u5011\u4e5f\u5e0c\u671b\u80fd\u628a\u6211\u5011\u7684\u65b9\u6cd5\uff0c\u904b\u7528\u8a5e\u6027\u7684\u5c64\u6b21\uf92d\u9032\ufa08 \u6a19\u8a18\u3002\u85c9\u7531\u63d0\u4f9b\uf901\u7cbe\u78ba\u7684\u5b57\u5f59\u610f\ufa0a\u6a19\u8a18\u8cc7\u8a0a\uff0c\uf92d\u652f\u63f4\uf906\u5b50\u53ca\u6587\u4ef6\u5c64\u6b21\u7684\u610f\ufa0a\u5206\u6790\u3002 \u8868 6 89.6121% 85.0% \u81f4\u8b1d</td></tr><tr><td>\u6700\u5e38\u51fa\u73fe 5000 \u8a5e \u5fb5\u96c6\uff0c\u5206\u5225\u8207\u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u6548\u80fd\u6700\u597d\u7684 PBFN \u03b1 = \u22120.03 \u7d44\u5408\uff0c\uf92d\u8a13\uf996\u5206\uf9d0\u5668\uff0c\u5206\uf9d0\u5668\u9810\u6e2c\u6e96 F5000-1 5,000 F10000-1 96.2400% 97.3652% 96.1767% 92.8339% 94.9153% 89.7436% EnsembleClassifier \u6240\u5f97\u6210\u7e3e\u8ddf F10000-2+PBFN \u03b1 = \u22120.03 \u76f8\u540c\uff0c\u9019\u8868\u793a\u76ee\u524d\u7684\u5206\uf9d0\u5668\u7d44</td></tr><tr><td>\u6700\u5e38\u51fa\u73fe 5000 \u8a5e(\u9577\ufa01\u22672) \u78ba\uf961\u5982\u5716 6\u3002\u5176\u4e2d\u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u7684\u7279\u5fb5\u96c6\u6548\u80fd\u70ba\u56fa\u5b9a\uff0c\u56e0\u6b64\u4ee5\u6c34\u5e73\u76f4\u7dda\u8868\u793a(gloss \u90a3\u689d F5000-2 5,000 F10000-2 97.5005% 98.2843% 97.4189% 96.0912% 94.9153% 94.8718% \u5408\u65b9\u5f0f\uff0c\u7121\u6cd5\u63d0\u5347\u6548\u80fd\u3002</td></tr><tr><td>\u6700\u5e38\u51fa\u73fe 10000 \u8a5e \u6298\u7dda)\u3002\u7d44\u5408\u800c\u6210\u7684\u7279\u5fb5\u96c6\uff0c\u4ee5\u300c\u8a9e\u7bc7\u7279\u5fb5\u96c6\u4ee3\u78bc+PBFN \u03b1 = \u22120.03 \u300d\u52a0\u4ee5\u547d\u540d\uff0c\uf9b5\u5982 F10000-1 Verb 96.5632% 97.5490% 96.5079% 94.4625% 91.5254% 89.7436% 10,000 \u300cF10000-2+PBFN \u03b1 = \u22120.03 \u300d\u8868\u793a\u300c\u6700\u5e38\u51fa\u73fe 10000 \u8a5e(\u9577\ufa01\u22672)\u300d\u8ddf\u300cPBFN \u03b1 = \u22120.03 \u300d\uf978 NTUSD 96.8218% 97.3039% 96.8254% 95.1140% 93.2203% 94.8718% \u6700\u5e38\u51fa\u73fe 10000 \u8a5e(\u9577\ufa01\u22672) F10000-2 10,000 \u500b\u7279\u5fb5\u96c6\u7684\u7d44\u5408\u3002 Noun 96.8541% 98.1005% 96.6460% 96.0912% 96.6102% 89.7436%</td></tr><tr><td>NTUSD(\u5b8c\u6574\u7248) \u6211\u5011\u5f9e\u5716 6 \u53ef\u4ee5\u770b\u51fa\uff0c\u5c07\u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u8207\u5916\u90e8\u8a9e\uf9be\u7279\u5fb5\u7d44\u5408\u4e4b\u5f8c\uff0c\u6e96\u78ba\uf961\u90fd\u6709\u986f\u8457 NTUSD 42,614 All 96.4124% 97.4265% 96.3699% 93.1596% 94.9153% 89.7436%</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "\u70ba\u57fa\u790e\u7fa9\u539f\u65b9\u6cd5\u5728\uf967\u540c \u03b1 \u503c\u6240\u5f97\u5230\u7684\u9810\u6e2c\u6e96\u78ba\uf961\uff0c\u5176\u4e2d\u516c\u5f0f (2) \u7684\u7d50\u679c\u662f PBF (Prime-Based Feature)\u90a3\u689d\u6298\u7dda\uff0c\u6700\u4f73\u7684 \u03b1 \u503c\u70ba \u22120.02\uff0c\u6e96\u78ba\uf961\u70ba 89.4397%\u3002\u7576 PBF \u4e2d \u03b1 = 0\uff0c\u8a72\u7d50\u679c\u5373\u70ba\u516c\u5f0f (1) \u7684\u7d50\u679c\u3002\u516c\u5f0f (3) \u7684\u7d50\u679c\u662f PBFN(Prime-Based Feature with Negation)\u90a3\u689d\u6298\u7dda\uff0c\u6700\u4f73\u7684 \u03b1 \u503c\u70ba \u22120.02 \u53ca \u22120.03\uff0c\u6e96\u78ba\uf961\u70ba 89.6121%\u3002 \u4e2d\uff0c\u4eba\uf9d0\u6a19\u8a18\u8005\u7684 Recall \u53ca Precision \u53d6\u81ea Ku & Chen (2007)\u3002F10000-2+PBFN \u03b1 = \u22120.03 \u7684\u9810\u6e2c\u7d50\u679c\u70ba (True Positive, False Positive, True Negative, False Negative) = (TP, FP, TN, FN) = (968, 77, 1174, 101)\uff0c\u5176\u4e2d Positive \u8868\u6b63\u9762\u6975\u6027\u3002\u6211\u5011\u5206\u5225\u5c0d\u6b63\u8ca0\u9762\u6975\u6027\u8a08\u7b97 Recall\u3001Precision \u53ca F-Measure (R + \u3001P + \u3001F + \u3001R \u2212 \u3001P \u2212 \u3001F \u2212 )\uff0c\u5176\u4e2d\uff0cP + =TP/(TP+FP)\u3001 R + =TP/(TP+FN)\u3001F + = 2P + R + /(P + +R + )\u3001P \u2212 =TN/(TN+FN)\u3001R \u2212 =TN/(TN+FP)\u3001F \u2212 = 2P \u2212 R \u2212 /(P \u2212 +R \u2212 )\uff0c \u6700\u5f8c\u7cfb\u7d71\u7684 Recall=(R + +R \u2212 )/2\u3001Precision=(P + +P \u2212 )/2 \u53ca F-Measure = (F + +F \u2212 )/2 = (91.58% + 92.95%)/2 = 92.27%\u3002\u7531\u8a08\u7b97\u4e2d\u6211\u5011\u53ef\u4ee5\u770b\u5230\uff0c\u6211\u5011\u7684\u7cfb\u7d71\u5c0d\u8ca0\u9762\u6975\u6027\u505a\u5f97\u8f03\u597d\uff0c\u800c\u4e14\u56e0 \u8cc7\uf9be\u96c6\u6709\u8f03\u591a\u7684\u8ca0\u9762\u8a5e\u5f59\uff0c\u6240\u4ee5\u6700\u5f8c\u7684\u6e96\u78ba\uf961 92.33% \u6bd4 F + \u9ad8\u3002 Research of this paper was partially supported by National Science Council (Taiwan) under the contract NSC 98-2221-E-002-175-MY3.",
                "html": null
            }
        }
    }
}