File size: 170,162 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
{
    "paper_id": "O12-4003",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:02:45.858921Z"
    },
    "title": "Enhancement of Feature Engineering for Conditional Random Field Learning in Chinese Word Segmentation Using Unlabeled Data",
    "authors": [
        {
            "first": "Mike",
            "middle": [],
            "last": "Tian-Jian",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Jiang",
            "middle": [],
            "last": "\uff0a+",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Tsing Hua University",
                "location": {
                    "settlement": "Hsinchu",
                    "country": "Taiwan"
                }
            },
            "email": ""
        },
        {
            "first": "Cheng-Wei",
            "middle": [],
            "last": "Shih",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Tsing Hua University",
                "location": {
                    "settlement": "Hsinchu",
                    "country": "Taiwan"
                }
            },
            "email": ""
        },
        {
            "first": "Ting-Hao",
            "middle": [],
            "last": "Yang",
            "suffix": "",
            "affiliation": {},
            "email": "tinghaoyang@iis.sinica.edu.tw"
        },
        {
            "first": "Chan-Hung",
            "middle": [],
            "last": "Kuo",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Richard",
            "middle": [],
            "last": "Tzong",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Han",
            "middle": [],
            "last": "Tsai",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Yuan Ze University",
                "location": {
                    "settlement": "Taoyuan",
                    "country": "Taiwan"
                }
            },
            "email": "thtsai@saturn.yzu.edu.tw"
        },
        {
            "first": "Wen-Lian",
            "middle": [],
            "last": "Hsu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Tsing Hua University",
                "location": {
                    "settlement": "Hsinchu",
                    "country": "Taiwan"
                }
            },
            "email": "hsu@iis.sinica.edu.tw"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This work proposes a unified view of several features based on frequent strings extracted from unlabeled data that improve the conditional random fields (CRF) model for Chinese word segmentation (CWS). These features include character-based n-gram (CNG), accessor variety based string (AVS) and its variation of left-right co-existed feature (LRAVS), term-contributed frequency (TCF), and term-contributed boundary (TCB) with a specific manner of boundary overlapping. For the experiments, the baseline is the 6-tag, a state-of-the-art labeling scheme of CRF-based CWS, and the data set is acquired from the 2005 CWS Bakeoff of Special Interest Group on Chinese Language Processing (SIGHAN) of the Association for Computational Linguistics (ACL) and SIGHAN CWS Bakeoff 2010. The experimental results show that all of these features improve the performance of the baseline system in terms of recall, precision, and their harmonic average as F 1 measure score, on both accuracy (F) and out-of-vocabulary recognition (F OOV). In particular, this work presents compound features involving LRAVS/AVS and TCF/TCB that are competitive with other types of features for CRF-based CWS in terms of F and F OOV , respectively.",
    "pdf_parse": {
        "paper_id": "O12-4003",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This work proposes a unified view of several features based on frequent strings extracted from unlabeled data that improve the conditional random fields (CRF) model for Chinese word segmentation (CWS). These features include character-based n-gram (CNG), accessor variety based string (AVS) and its variation of left-right co-existed feature (LRAVS), term-contributed frequency (TCF), and term-contributed boundary (TCB) with a specific manner of boundary overlapping. For the experiments, the baseline is the 6-tag, a state-of-the-art labeling scheme of CRF-based CWS, and the data set is acquired from the 2005 CWS Bakeoff of Special Interest Group on Chinese Language Processing (SIGHAN) of the Association for Computational Linguistics (ACL) and SIGHAN CWS Bakeoff 2010. The experimental results show that all of these features improve the performance of the baseline system in terms of recall, precision, and their harmonic average as F 1 measure score, on both accuracy (F) and out-of-vocabulary recognition (F OOV). In particular, this work presents compound features involving LRAVS/AVS and TCF/TCB that are competitive with other types of features for CRF-based CWS in terms of F and F OOV , respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Many intelligent text processing tasks, such as information retrieval, text-to-speech, and machine translation assume the ready availability of a tokenization into words, which is relatively straightforward in languages with word delimiters (e.g., space) but is a little difficult for Asian languages, such as Chinese and Japanese.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction Background",
                "sec_num": "1."
            },
            {
                "text": "Chinese word segmentation (CWS) has been an active area of research in computational linguistics for two decades. SIGHAN, the Special Interest Group for Chinese Language Processing of the Association for Computational Linguistics, has conducted five word segmentation bakeoffs (Emerson, 2005; Jin & Chen, 2007; Levow, 2006; Sproat & Emerson, 2003; Zhao & Liu, 2010) . After years of intensive research, CWS has achieved high accuracy, but the issue of out-of-vocabulary (OOV) word recognition remains.",
                "cite_spans": [
                    {
                        "start": 277,
                        "end": 292,
                        "text": "(Emerson, 2005;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 293,
                        "end": 310,
                        "text": "Jin & Chen, 2007;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 311,
                        "end": 323,
                        "text": "Levow, 2006;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 324,
                        "end": 347,
                        "text": "Sproat & Emerson, 2003;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 348,
                        "end": 365,
                        "text": "Zhao & Liu, 2010)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction Background",
                "sec_num": "1."
            },
            {
                "text": "Traditional approaches for CWS adopt a dictionary and rules to segment unlabeled texts, such as the work of Ma and Chen (2003) . In recent years, there has been a potent trend of using statistical machine learning models, especially the conditional random fields (CRF) (Lafferty et al., 2001) , which displays moderate performance for the sequential labeling problem and achieves competitive results with character-position based methods (Zhao et al., 2010) .",
                "cite_spans": [
                    {
                        "start": 108,
                        "end": 126,
                        "text": "Ma and Chen (2003)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 269,
                        "end": 292,
                        "text": "(Lafferty et al., 2001)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 438,
                        "end": 457,
                        "text": "(Zhao et al., 2010)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The State of the Art of CWS",
                "sec_num": null
            },
            {
                "text": "In this work, unsupervised feature selection for CWS is based on frequent strings that are extracted automatically from unlabeled corpora. For convenience, these features are referred to as unsupervised features in the rest of this paper. Unsupervised features are suitable for closed training evaluation where external resources or extra information is not allowed, especially for cross-domain tasks, such as SIGHAN CWS bakeoff 2010 (Zhao & Liu, 2010) . Without proper knowledge, the closed training evaluation of word segmentation can be difficult with OOV words, where frequent strings collected from the test data may help. For incorporating unsupervised features into character-position based CRF for CWS, Zhao and Kit (2007) tried strings based on accessor variety (AV), which was developed by Feng et al. (2004) , and based on co-occurrence strings (COS). Jiang et al. (2010) applied a feature similar to COS, called term-contributed boundary (TCB).",
                "cite_spans": [
                    {
                        "start": 434,
                        "end": 452,
                        "text": "(Zhao & Liu, 2010)",
                        "ref_id": null
                    },
                    {
                        "start": 711,
                        "end": 730,
                        "text": "Zhao and Kit (2007)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 800,
                        "end": 818,
                        "text": "Feng et al. (2004)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 863,
                        "end": 882,
                        "text": "Jiang et al. (2010)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unsupervised Feature Selection for CWS",
                "sec_num": null
            },
            {
                "text": "According to Zhao and Kit (2007) , AV-based string (AVS) is one of the most effective unsupervised features for CWS by character-position based CRF. One motivation here is to seek deeper understanding of AVS's success. This work suspects that, since AVS is designed to keep overlapping substrings via the outer structure of a string while COS/TCB is usually selected via the inner structure of a string with its longest-first (i.e., non-overlapping) nature before integration into CRF, combining overlapping and outer information with",
                "cite_spans": [
                    {
                        "start": 13,
                        "end": 32,
                        "text": "Zhao and Kit (2007)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unsupervised Feature Selection for CWS",
                "sec_num": null
            },
            {
                "text": "Field Learning in Chinese Word Segmentation Using Unlabeled Data non-overlapping and inner information may enhance CRF-based CWS. Hence, a series of experiments is conducted to examine this hypothesis.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Enhancement of Feature Engineering for Conditional Random 47",
                "sec_num": null
            },
            {
                "text": "The remainder of the article is organized as follows. Section 2 briefly introduces CRF. Common unsupervised features based on the concept of frequent strings are explained in Section 3. Section 4 discusses related works. Section 5 describes the design of the labeling scheme and feature templates, along with a framework that is able to encode those overlapping features in a unified way. Details about the experiment are reported in Section 6. Finally, the conclusion is presented in Section 7.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Enhancement of Feature Engineering for Conditional Random 47",
                "sec_num": null
            },
            {
                "text": "Conditional random fields (CRF) are undirected graphical models trained to maximize a conditional probability of random variables X and Y, and the concept is well established for the sequential labeling problem (Lafferty et al., 2001) . Given an input sequence (or observation sequence) 1 ... T X x x = and a label sequence 1 ... T Y y y = , a conditional probability of linear-chain CRF with parameters 1 ... n \u03bb \u03bb \u039b = can be defined as:",
                "cite_spans": [
                    {
                        "start": 211,
                        "end": 234,
                        "text": "(Lafferty et al., 2001)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Random Fields",
                "sec_num": "2."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 1 X 1 ( | ) exp ( , , , ) T k k t t t k P Y X f y y X t Z \u03bb \u03bb \u2212 = \u239b \u239e = \u239c \u239f \u239d \u23a0 \u2211 \u2211 .",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Conditional Random Fields",
                "sec_num": "2."
            },
            {
                "text": "where Z X is the normalization constant that makes probability of all label sequences sum to one; 1 ( , , , )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Random Fields",
                "sec_num": "2."
            },
            {
                "text": "k t t f y y X t \u2212",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Random Fields",
                "sec_num": "2."
            },
            {
                "text": "is a feature function which is often binary valued, but can be real valued; and k \u03bb is a learned weight associated with feature k f .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Random Fields",
                "sec_num": "2."
            },
            {
                "text": "The feature functions can measure any aspect of state transition , and the entire observation sequence X is centered at the current position t.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Random Fields",
                "sec_num": "2."
            },
            {
                "text": "Given the model defined in (1), the most probable labeling sequence for an input sequence X is as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Random Fields",
                "sec_num": "2."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "* argmax ( | ) Y y P Y X \u039b = .",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Conditional Random Fields",
                "sec_num": "2."
            },
            {
                "text": "Equation (2) can be efficiently calculated by dynamic programming using the Viterbi algorithm. More details about the concepts of CRF and learning parameters could be found in Wallach (2004) . For sequential labeling tasks, like CWS, a linear-chain CRF is currently one of the most popular choices.",
                "cite_spans": [
                    {
                        "start": 176,
                        "end": 190,
                        "text": "Wallach (2004)",
                        "ref_id": "BIBREF34"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Random Fields",
                "sec_num": "2."
            },
            {
                "text": "The word boundary and the word frequency are the standard notions of frequency in corpus-based natural language processing. Word-based n-gram is an intuitive and effective solution of language modeling. For languages without explicit word boundaries, such as Chinese, character-based n-gram (CNG) is usually insufficient. For example, consider some sample texts in Chinese:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Character-based N-gram",
                "sec_num": "3.1"
            },
            {
                "text": "\"\u81ea\u7136\u79d1\u5b78\u7684\u91cd\u8981\u6027\" (the importance of natural science), and \"\u81ea\u7136\u79d1\u5b78\u7684\u7814\u7a76\u662f\u552f\u4e00\u7684\u9014\u5f91\" (natural science research is the only way), where many character-based n-grams can be extracted, but some of them are out of context, such as \"\u7136\u79d1\" (so; discipline) and \"\u5b78\u7684\" (study; of), even when they are relatively frequent. For the purpose of interpreting overlapping behavior of frequent strings, however, character-based n-grams could still be useful for baseline analysis and implementation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Character-based N-gram",
                "sec_num": "3.1"
            },
            {
                "text": "The lack of correct information about the actual boundary and frequency of a multi-character/word expression's occurrence has been researched in different languages. The distortion of phrase boundaries and frequencies was first observed in the Vodis Corpus, where the word-based bigram \"RAIL ENQUIRIES\" and word-based trigram \"BRITISH RAIL ENQUIRIES\" were estimated and reported by O'Boyle (1993) and Ha et al. (2005) . Both of them occur 73 times, which is a large number for such a small corpus. \"ENQUIRIES\" follows \"RAIL\" with a very high probability when \"BRITISH\" precedes it. When \"RAIL\" is preceded by words other than \"BRITISH,\" however, \"ENQUIRIES\" does not occur, but words like \"TICKET\" or \"JOURNEY\" may. Thus, the bigram \"RAIL ENQUIRIES\" gives a misleading probability that \"RAIL\" is followed by \"ENQUIRIES\" irrespective of what precedes it.",
                "cite_spans": [
                    {
                        "start": 390,
                        "end": 396,
                        "text": "(1993)",
                        "ref_id": null
                    },
                    {
                        "start": 401,
                        "end": 417,
                        "text": "Ha et al. (2005)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reduced N-gram",
                "sec_num": "3.2"
            },
            {
                "text": "A common solution to this problem is that, if some n-grams consist of others, then the frequencies of the shorter ones have to be discounted with the frequencies of the longer ones. For Chinese, Lin & Yu (2011) reported a similar problem and its corresponding solution in the sense of reduced n-gram of Chinese characters. By excluding n-grams with their numbers of appearance that fully depend on other superstrings, \"\u7136\u79d1\" and \"\u5b78\u7684\" from the sample texts in the previous sub-section are no longer candidates of the string. Zhao and Kit (2007) described the same concept briefly as co-occurrence string (COS). Sung et al. (2008) invented a specific data structure for suffix array algorithm to calculate exact boundaries of phrase-alike string and their frequencies called term-contributed boundaries (TCB) and term-contributed frequencies (TCF), respectively, to analogize similarities and differences",
                "cite_spans": [
                    {
                        "start": 522,
                        "end": 541,
                        "text": "Zhao and Kit (2007)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 608,
                        "end": 626,
                        "text": "Sung et al. (2008)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reduced N-gram",
                "sec_num": "3.2"
            },
            {
                "text": "Field Learning in Chinese Word Segmentation Using Unlabeled Data with the term frequencies. Since this work uses the program of TCB and TCF (namely YASA, yet another suffix array) for experiments, the family of reduced n-gram will be referred as TCB hereafter for convenience. Feng et al. (2004) proposed accessor variety (AV) to measure the likelihood a substring is a Chinese word. Another measurement, called boundary entropy or branching entropy (BE), exists in some works (Chang & Su, 1997; Cohen et al., 2007; Huang & Powers, 2003; Tanaka-Ishii, 2005; Tung & Lee, 1994) . The basic idea behind those measurements is closely related to one particular perspective of n-gram and information theory, cross-entropy or perplexity. According to Zhao and Kit (2007) , AV and BE both assume that the border of a potential Chinese word is located where the uncertainty of successive character increases. They believe that AV and BE are the discrete and continuous version, respectively, of a fundamental work of Harris (1970) , and they decided to adopt AVS as an unsupervised feature for CRF-based CWS. This work follows their choice in hope of producing a comparable study. AV of a string s is defined as:",
                "cite_spans": [
                    {
                        "start": 277,
                        "end": 295,
                        "text": "Feng et al. (2004)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 477,
                        "end": 495,
                        "text": "(Chang & Su, 1997;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 496,
                        "end": 515,
                        "text": "Cohen et al., 2007;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 516,
                        "end": 537,
                        "text": "Huang & Powers, 2003;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 538,
                        "end": 557,
                        "text": "Tanaka-Ishii, 2005;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 558,
                        "end": 575,
                        "text": "Tung & Lee, 1994)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 744,
                        "end": 763,
                        "text": "Zhao and Kit (2007)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 1008,
                        "end": 1021,
                        "text": "Harris (1970)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Enhancement of Feature Engineering for Conditional Random 49",
                "sec_num": null
            },
            {
                "text": "( ) min{ ( ), ( )} av av AV s L s R s = .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Uncertainty of Succeeding Character",
                "sec_num": "3.3"
            },
            {
                "text": "(3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Uncertainty of Succeeding Character",
                "sec_num": "3.3"
            },
            {
                "text": "In (3), L av (s) and R av (s) are defined as the number of distinct preceding and succeeding characters, respectively, except, when the adjacent character is absent because of a sentence boundary, the pseudo-character of sentence beginning or sentence ending will be accumulated. Feng et al. (2004) also developed more heuristic rules to remove strings that contain known words or adhesive characters. For the strict meaning of unsupervised feature and for the sake of simplicity, these additional rules are dropped in this study.",
                "cite_spans": [
                    {
                        "start": 280,
                        "end": 298,
                        "text": "Feng et al. (2004)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Uncertainty of Succeeding Character",
                "sec_num": "3.3"
            },
            {
                "text": "Since a recent work of Sun and Xu (2011) used both L av (s) and R av (s) as features of CRF, this work will apply a similar approach, which is denoted as LRAVS, to make a thorough comparison.",
                "cite_spans": [
                    {
                        "start": 23,
                        "end": 40,
                        "text": "Sun and Xu (2011)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Uncertainty of Succeeding Character",
                "sec_num": "3.3"
            },
            {
                "text": "Besides previous works of TCB and TCF extraction (Sung et al., 2008) , Chinese frequent strings (Lin & Yu, 2001) , and reduced n-gram (Ha et al., 2005) , which have already been mentioned, the article about a linear algorithm for frequency of substring with reduction (L\u00fc & Zhang, 2005 ) also falls into this category. Most of these projects focused on the computational complexity of algorithms. Broader algorithms for frequent string extraction are suffix array (Manber & Myers, 1993) and PAT-tree (Chien, 1997) .",
                "cite_spans": [
                    {
                        "start": 49,
                        "end": 68,
                        "text": "(Sung et al., 2008)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 96,
                        "end": 112,
                        "text": "(Lin & Yu, 2001)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 134,
                        "end": 151,
                        "text": "(Ha et al., 2005)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 268,
                        "end": 285,
                        "text": "(L\u00fc & Zhang, 2005",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 464,
                        "end": 486,
                        "text": "(Manber & Myers, 1993)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 500,
                        "end": 513,
                        "text": "(Chien, 1997)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Frequent String Extraction Algorithm",
                "sec_num": "4.1"
            },
            {
                "text": "Zhao and Kit have explored several unsupervised strategies with their unified goodness measurement of logarithm ranking (Zhao & Kit, 2007) , including frequency of substring with reduction (L\u00fc & Zhang, 2005) , description length gain (Kit & Wilks, 1999) , accessor variety (Feng et al., 2004) , and boundary/branching entropy (Chang & Su, 1997; Cohen et al., 2007; Huang & Powers, 2003; Tanaka-Ishii, 2005; Tung & Lee, 1994) . Unlike the technique described in this paper for incorporating unsupervised features into supervised CRF learning, those methods usually filter out word-alike candidates using their own scoring mechanism directly as unsupervised word segmentation.",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 138,
                        "text": "(Zhao & Kit, 2007)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 189,
                        "end": 207,
                        "text": "(L\u00fc & Zhang, 2005)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 234,
                        "end": 253,
                        "text": "(Kit & Wilks, 1999)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 273,
                        "end": 292,
                        "text": "(Feng et al., 2004)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 326,
                        "end": 344,
                        "text": "(Chang & Su, 1997;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 345,
                        "end": 364,
                        "text": "Cohen et al., 2007;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 365,
                        "end": 386,
                        "text": "Huang & Powers, 2003;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 387,
                        "end": 406,
                        "text": "Tanaka-Ishii, 2005;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 407,
                        "end": 424,
                        "text": "Tung & Lee, 1994)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unsupervised Word Segmentation Method",
                "sec_num": "4.2"
            },
            {
                "text": "Subword based tagging of Zhang et al. (2006) utilizes confidence measurement. Other overlapping ambiguity resolution approaches are Na\u00efve Bayesian classifiers (Li et al., 2003) , mutual information, difference of t-test (Sun et al., 1997) , and sorted table look-up (Qiao et al., 2008) . These works concentrate on overlapping of words according to some (supervised) standard, rather than overlapping of substrings from unsupervised selection.",
                "cite_spans": [
                    {
                        "start": 25,
                        "end": 44,
                        "text": "Zhang et al. (2006)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 159,
                        "end": 176,
                        "text": "(Li et al., 2003)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 220,
                        "end": 238,
                        "text": "(Sun et al., 1997)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 266,
                        "end": 285,
                        "text": "(Qiao et al., 2008)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Overlapping Ambiguity Resolution",
                "sec_num": "4.3"
            },
            {
                "text": "In this study, the CRF label set for CWS prediction adopts the 6-tag approach of Zhao et al. (2010) , which achieves very competitive performance and is one of the most fine-grained character position based labeling schemes. According to Zhao et al. (2010) , since less than 1% of Chinese words are longer than five characters in most corpora from SIGHAN CWS bakeoffs 2003 , 2006 , the coverage of a 6-tag approach should be sufficient. This configuration of CRF without additional unsupervised features is also the control group of the experiment. Table 1 provides a sample of labeled training data. For the sample text \"\u53cd\u800c (contrarily) / \u6703 (make) / \u6b32\u901f\u5247\uf967\u9054 (more haste, less speed)\" (on the contrary, haste makes waste), the tag B stands for the beginning character of a word, while C and D represent the second character and the third character of a word, respectively. The ending character of a word is tagged as E. Once a word consists of more than four characters, the tag for all of the middle characters between D and E is I. Finally, the tag S is reserved specifically for single-character words.",
                "cite_spans": [
                    {
                        "start": 81,
                        "end": 99,
                        "text": "Zhao et al. (2010)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 238,
                        "end": 256,
                        "text": "Zhao et al. (2010)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 348,
                        "end": 372,
                        "text": "SIGHAN CWS bakeoffs 2003",
                        "ref_id": null
                    },
                    {
                        "start": 373,
                        "end": 379,
                        "text": ", 2006",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 549,
                        "end": 556,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Character Position Based Labels",
                "sec_num": "5.1"
            },
            {
                "text": "\u53cd B \u800c E \u6703 S \u6b32 B \u901f C \u5247 D \uf967 I \u9054 E Enhancement",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Character Label",
                "sec_num": null
            },
            {
                "text": "Feature instances are generated from templates based on the work of Ratnaparkhi (1996) . Table 2 explains their abilities. C -1 , C 0 , and C 1 stand for the input tokens individually bound to the prediction label at the current position. For example, in Table 1 , if the current position is at the label I, features generated by C -1 , C 0 , and C 1 are \"\u5247,\" \"\uf967,\" and \"\u9054,\" respectively. Meanwhile, for window size 2, C -1 C 0 , C 0 C 1 , and C -1 C 1 expands features of the label I to \"\u5247\uf967,\" \"\uf967\u9054,\" and \"\u5247\u9054,\" respectively. One may argue that the feature template should expand to five tokens to cover the whole range of the 6-tag approach; however, according to Zhao et al. (2010) , the context window size in three tokens is effective to catch parameters of the 6-tag approach for most strings that do not exceed five characters. Our pilot test for this case also showed that context window size in two tokens would be sufficient without a significant decrease in performance (Jiang et al., 2010) .",
                "cite_spans": [
                    {
                        "start": 68,
                        "end": 86,
                        "text": "Ratnaparkhi (1996)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 662,
                        "end": 680,
                        "text": "Zhao et al. (2010)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 977,
                        "end": 997,
                        "text": "(Jiang et al., 2010)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 89,
                        "end": 96,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 255,
                        "end": 262,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Feature Templates",
                "sec_num": "5.2"
            },
            {
                "text": "Unsupervised features that will be introduced in the next subsection are generated by the same template, except the binding target moves column by column, as listed in tables of the next subsection. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Templates",
                "sec_num": "5.2"
            },
            {
                "text": "To our knowledge, TCF, which is designed to fulfill a symmetrical comparison between the properties of inner pattern (CNG, TCF, or COS/TCB) vs. outer pattern (AVS) and between overlapping string (CNG, AVS, or TCF) vs. maximally matched string (COS/TCB), has not been evaluated in any previous work. In short, while the original version of COS/TCB selects the maximally matched string (i.e., non-overlapping string) as the feature (Feng et al., 2004; Jiang et al., 2010; Zhao & Kit, 2007) , TCF collects features of reduced n-gram from every character position with additional rank of likelihood converted from term-contributed frequency, as its name implies. To compare different types of overlapping strings as unsupervised features systematically, this work extends the previous work of Zhao and Kit (2007) into a unified representation of features. The representation accommodates both character position of a string and the string's likelihood ranked in the logarithm. Formally, the ranking function for a string s with a score x counted by CNG, AVS, or TCF is defined as:",
                "cite_spans": [
                    {
                        "start": 430,
                        "end": 449,
                        "text": "(Feng et al., 2004;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 450,
                        "end": 469,
                        "text": "Jiang et al., 2010;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 470,
                        "end": 487,
                        "text": "Zhao & Kit, 2007)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 789,
                        "end": 808,
                        "text": "Zhao and Kit (2007)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
                "sec_num": "5.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 ( ) , 2 2 r r f s r if x + = \u2264 < .",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
                "sec_num": "5.3"
            },
            {
                "text": "The logarithm ranking mechanism in (4) is inspired by Zipf's law with the intention to alleviate the potential data sparseness problem of infrequent strings. The rank r and the corresponding character positions of a string then are concatenated as feature tokens. To give the reader a clearer picture about what feature tokens look like, a sample representation, which is denoted in regex as \"[0-9]+[B|C|D|I|E|S]\" for rank and character position, of CNG, AVS, or TCF is demonstrated and explained by Figure 1 and Table 3 . For example, judging by strings with two characters, one of the strings \"\u53cd\u800c\" gets rank r = 3; therefore, the column of two-character feature tokens has \"\u53cd\" denoted as 3B and \"\u800c\" denoted as 3E. If another two-character string \"\u800c\u6703\" competes with \"\u53cd\u800c\" at the position of \"\u800c\" with a lower rank r = 0, then 3E is selected for feature representation of the token at a certain position.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 500,
                        "end": 508,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 513,
                        "end": 520,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
                "sec_num": "5.3"
            },
            {
                "text": "Note that, when the string \"\u5247\uf967\" conflicts with the string \"\uf967\u9054\" at the position of \"\uf967\" with the same rank r = 3, the corresponding character position with rank of the leftmost string, which is 3E in this case, is applied arbitrarily.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
                "sec_num": "5.3"
            },
            {
                "text": "Although those are indeed common situations of overlapping strings, this work simply implements the above rules by Zhao and Kit (2007) for the sake of compatibility. In fact, pilot tests have been done with a more complicated representation, like 3E-0B for \"\u800c\" and 3E-3B for \"\uf967,\" to keep the overlapping information within each column, but the test result shows no significant differences in terms of accuracy and OOV recognition. Since the statistics of the pilot tests could be redundant, they are omitted in this paper.",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 134,
                        "text": "Zhao and Kit (2007)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
                "sec_num": "5.3"
            },
            {
                "text": "To make an informative comparison, this work also applies the original version of non-overlapping COS/TCB features that is without ranks and is selected by the forward maximum matching algorithm (Feng et al., 2004; Jiang et al., 2010; Zhao & Kit, 2007) . Table  4 illustrates a sample representation of features in this case. Notably, there are several features encoded as -1 individually to represent that the desired string is unseen. For the non-overlapping siblings of the reduced n-grams family, such as COS/TCB, either the string is always occupied by other superstrings or it simply does not appear more than once.",
                "cite_spans": [
                    {
                        "start": 195,
                        "end": 214,
                        "text": "(Feng et al., 2004;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 215,
                        "end": 234,
                        "text": "Jiang et al., 2010;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 235,
                        "end": 252,
                        "text": "Zhao & Kit, 2007)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 255,
                        "end": 263,
                        "text": "Table  4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
                "sec_num": "5.3"
            },
            {
                "text": "Non-overlapping COS/TCB strings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Table 4. Sample of the unified feature representation for",
                "sec_num": null
            },
            {
                "text": "\u53cd B B \u800c C E \u6703 E S \u6b32 -1 B \u901f -1 C \u5247 -1 D \uf967 -1 I \u9054 -1 E",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Original COS/TCB Feature Label",
                "sec_num": null
            },
            {
                "text": "The length of a string is limited to five characters for the sake of efficiency and consistency with the 6-tag approach.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Original COS/TCB Feature Label",
                "sec_num": null
            },
            {
                "text": "CRF++ 0.54 (http://crfpp.sourceforge.net/) employs L-BFGS optimization and the tunable hyper-parameter (CRF++ training function argument \"-c\"), i.e., the Gaussian prior, set to 100 throughout the whole experiment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "6."
            },
            {
                "text": "The corpora used for the experiment are from the SIGHAN CWS bakeoff 2005 (Emerson, 2005) and SIGHAN CWS bakeoff 2010 (Zhao & Liu, 2010) . SIGHAN 2005 comes with four different standards, including Academia Sinica (AS), City University of Hong Kong (CityU), Microsoft Research (MSR), and Peking University (PKU). SIGHAN 2010 provides a Traditional Chinese corpus and a Simplified Chinese corpus. Each corpus has training/test sets of four domains, including literature, computers, medicine, and finance, that are denoted as domains A, B, C, and D, respectively. For comparison, statistics on most corpora of SIGHAN 2003 SIGHAN , 2006 SIGHAN , and 2008 that have been obtained are listed in the appendix.",
                "cite_spans": [
                    {
                        "start": 73,
                        "end": 88,
                        "text": "(Emerson, 2005)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 117,
                        "end": 135,
                        "text": "(Zhao & Liu, 2010)",
                        "ref_id": null
                    },
                    {
                        "start": 607,
                        "end": 618,
                        "text": "SIGHAN 2003",
                        "ref_id": null
                    },
                    {
                        "start": 619,
                        "end": 632,
                        "text": "SIGHAN , 2006",
                        "ref_id": null
                    },
                    {
                        "start": 633,
                        "end": 650,
                        "text": "SIGHAN , and 2008",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Set",
                "sec_num": "6.1"
            },
            {
                "text": "Unsupervised features are collected according to pairs of corresponding training/test corpora. CNG and AVS are arranged with the help from SRILM (Stolcke, 2002) . TCB strings and their ranks converted from TCF are calculated by YASA (Sung et al., 2008) . To distinguish the ranked and overlapping features of TCB/TCF from those of the original version of non-overlapping COS/TCB-based features, the former are denoted as TCF to indicate the score source of frequency for ranking, and the abbreviation of the later remains as TCB.",
                "cite_spans": [
                    {
                        "start": 145,
                        "end": 160,
                        "text": "(Stolcke, 2002)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 233,
                        "end": 252,
                        "text": "(Sung et al., 2008)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unsupervised Feature Selection",
                "sec_num": "6.2"
            },
            {
                "text": "The evaluation metrics of CWS task are adopted from SIGHAN bakeoffs, including test precision (P), test recall (R), and their harmonic average F 1 measure score (F), as (5), (6), and 7, respectively. For performance of OOV, formulae that are similar to P/R/F are employed. To estimate the differences of performance between configurations of CWS experiments, this work uses the confidence level, which has been applied since SIGHAN CWS bakeoff 2003 (Sproat & Emerson, 2003) . The confidence level assumes that the recall (or precision) X of accuracy (or OOV recognition) represents the probability that a word (or OOV word) will be identified from N words in total and that a binomial distribution is appropriate for the experiment. Confidence levels of P, R, P OOV , and R OOV appear in Tables 5-10 under the columns C P , C R , C Poov , and C Roov , respectively, and they are calculated at the 95% confidence interval with the formula \u00b12 \u221a ([X(1-X)] / N). Two configurations of CWS experiments then are considered to be statistically different at a 95% confidence level if one of their C P , C R , ",
                "cite_spans": [
                    {
                        "start": 449,
                        "end": 473,
                        "text": "(Sproat & Emerson, 2003)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 550,
                        "end": 570,
                        "text": "(or OOV recognition)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "6.3"
            },
            {
                "text": "the number of words that are correctly segmented 100% the number of words in the gold standard R = \u00d7 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "6.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "2 P R F P R \u00d7 \u00d7 = + .",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Evaluation Metrics",
                "sec_num": "6.3"
            },
            {
                "text": "The most significant type of error is unintentionally segmented alphanumeric sequences, such as English words or factoids in Arabic numerals. Rather than developing another set of feature templates for non-Chinese characters that may violate the rules of closed training evaluation, post-processing, which is mentioned in the official report of SIGHAN CWS bakeoff 2005 (Emerson, 2005) , has been applied to remove spaces between non-Chinese characters in the gold standard data of the AS corpus manually, since there are no urgent expectations of correct segmentation on non-Chinese text. In SIGHAN 2005 and 2006, however, some participants used character types, such as digits, date/time specific Chinese characters, English letters, punctuation, and others (Chinese characters) as extra features, which triggered a debate of closed training criteria (Zhao et al., 2010) . Consequently, SIGHAN 2010 decided to allow four types of characters, distinguished as Chinese characters, English letters, digits, and punctuation. This work provides preliminary tests on non-Chinese patterns extracted from SIGHAN 2010 unlabeled training corpora A and B, extra features of character types (in character based trigram, T -1 T 0 T 1 , where T can be E, D, P, or C for alphabets, digits, punctuations, or Chinese characters, respectively), and their combinations to verify the performance impact of these special treatments, as shown in Table 5 -Table 8 . On the one hand, the statistics indicate that the character types perform well and stably on most of the corpora. On the other hand, the features, such as AVS and TCF, may still need help from non-Chinese patterns of unlabeled training corpora A and B. As a matter of fact, our other preliminary test suggests that SIGHAN 2010 test corpora contain a lot of OOV and inconsistent segments from non-Chinese text (for example, inconsistency of usage on full-width or half-width non-Chinese characters, some English words and factoids being segmented but some of them not, etc.), which only can be memorized from the non-Chinese patterns. Consequently, the experimental results of SIGHAN 2010 corpora involve non-Chinese treatment based on the combination of the extra character type features and the non-Chinese patterns, but the experimental results of SIGHAN 2005 corpora do not. This empirical decision implies that CWS benchmarking corpus should be prepared more carefully to avoid unpredictable side effects from non-Chinese text. Note that the treatment does not use unlabeled training corpora A and B separately. Further discussions are mainly based on this treatment, hopefully without loss of generality and of interest for comparative studies. Numbers in bold face and italic style indicate the best and the second best results of a certain evaluation metric, respectively, except for the topline and the best record from each year of SIGHAN bakeoffs. Configurations with the same values of confidence level on P or R are underlined, but only records that have the same confidence level on both P and R should be considered as statistically insignificant, and this phenomenon did not occur in our experiment results.",
                "cite_spans": [
                    {
                        "start": 369,
                        "end": 384,
                        "text": "(Emerson, 2005)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 852,
                        "end": 871,
                        "text": "(Zhao et al., 2010)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1425,
                        "end": 1441,
                        "text": "Table 5 -Table 8",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Results",
                "sec_num": "6.4"
            },
            {
                "text": "Unlike the previous work, which showed a relatively clearer trend of feature selection (Jiang et al., 2011) , CWS performance may vary between different CWS standards and domains in this study. Considering either the best or second best records in terms of F, feature combinations consisting of LRAVS or AVS usually outperform, except on MSR of SIGHAN 2005 corpora. Nevertheless, in terms of F OOV , feature combinations consisting of TCF or TCB consistently increase in performance on every corpus. Similar situations also can be recognized from the experiments on some of the SIGHAN 2003 SIGHAN , 2006 SIGHAN , and 2008  please refer to the appendix for details. This complicated phenomenon indicates that, since CWS studies usually struggle with incremental and small improvements, different CWS standards and/or domains can make comparative research difficult and cause experimental results of related works to be incompatible. For equipping supervised CWS with unsupervised feature selection from unlabeled data, the experimental results of this work suggests that using LRAVS+TCF with more careful non-Chinese text treatments and CRF parameter tuning (e.g., more cross-validations to find a specific hyper-parameter of Gaussian prior) would be a very good choice. Nevertheless, it is still worth noting that the best performance of this work in terms of F is found on the best official records on traditional Chinese domain B (Computer) of SIGHAN 2010 corpora and all of the SIGHAN 2005 corpora except the PKU corpus. This is especially true when this work does not apply any special treatment of character type and non-Chinese text that many other related works do on SIGHAN 2005 corpora. Note that \"Our Baseline/Topline\" in the following tables indicates where official baseline/topline suffered from official release script for maximum matching malfunctions on data in UTF-8 encoding and/or some uncertain incompatibilities between obtained corpora and official ones that caused inconsistent statistics during experiment reproductions. It has been observed that using any of the unsupervised features could create short patterns for the CRF learner, which might break more English words than using the 6-tag approach alone. AVS, TCF, and TCB, however, resolve more overlapping ambiguities of Chinese words than the 6-tag approach and CNG. Interestingly, even for the unsupervised feature without rank or overlapping information, TCB/TCF successfully recognizes \"\u4f9d\u9760 / \u5355\u4f4d / \u7684 / \u7ebd\u5e26 / \u6765 / \u7ef4\u6301,\" while the 6-tag approach sees this phrase incorrectly as \"\u4f9d \u9760 / \u5355\u4f4d / \u7684 / \u7ebd / \u5e26\u6765 / \u7ef4\u6301.\" TCB/TCF also saves more factoids, such as \"\u4e00\u4e8c\u4e5d\uff0e \u4e5d / \u5de6\u53f3\" (129.9 / around) from scattered tokens, such as \"\u4e00\u4e8c\u4e5d / \uff0e / \u4e5d / \u5de6\u53f3\" (129 / point / 9 / around).",
                "cite_spans": [
                    {
                        "start": 87,
                        "end": 107,
                        "text": "(Jiang et al., 2011)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 578,
                        "end": 589,
                        "text": "SIGHAN 2003",
                        "ref_id": null
                    },
                    {
                        "start": 590,
                        "end": 603,
                        "text": "SIGHAN , 2006",
                        "ref_id": null
                    },
                    {
                        "start": 604,
                        "end": 621,
                        "text": "SIGHAN , and 2008",
                        "ref_id": null
                    },
                    {
                        "start": 622,
                        "end": 622,
                        "text": "",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Results",
                "sec_num": "6.4"
            },
            {
                "text": "The above observations suggest that the quality of a string as a word-like candidate should be an important factor for the unsupervised feature injected CRF learner. Relatively speaking, CNG probably brings in too much noise. Feature combinations of LRAVS and TCF usually improve F and F OOV , respectively. Improvements are significant in terms of C R , C P , C Roov , and C Poov ,, which confirms the hypothesis mentioned at the end of Section 1.3 that, combining information from the outer pattern of a substring (i.e., LRAVS) with information from the inner pattern of a substring (i.e., TCF) into a compound of unsupervised feature could help improving CWS performance of supervised labeling scheme of CRF. Nevertheless, since AVS or TCB sometimes gain better results, fine-tuning of feature engineering according to different corpora and segmentation standards is necessary.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Results",
                "sec_num": "6.4"
            },
            {
                "text": "This work provides a unified view of CRF-based CWS integrated with unsupervised features via frequent string, and it reasons that, since LRAVS comes with inner structure and TCF comes with outer structure of overlapping string, utilizing their compound features could be more useful than applying one of them solely. The thorough experimental results show that the compound features of LRAVS and TCF usually obtain competitive performance in terms of F and F OOV , respectively. Sometimes, AVS and TCB may contribute more, but generally combining the outer pattern of a substring (i.e., LRAVS or AVS) with the inner pattern of a substring (i.e., TCF or TCB) into a compound of unsupervised features could help improve CWS performance of a supervised labeling scheme of CRF. Recommended future investigation is unknown word extraction and named entity recognition using AVS (Li et al., 2010) and TCF/TCB (Chang & Lee, 2003; Zhang et al., 2010) as features for more complicated CRF (Sun & Nan, 2010 ",
                "cite_spans": [
                    {
                        "start": 873,
                        "end": 890,
                        "text": "(Li et al., 2010)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 903,
                        "end": 922,
                        "text": "(Chang & Lee, 2003;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 923,
                        "end": 942,
                        "text": "Zhang et al., 2010)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 980,
                        "end": 996,
                        "text": "(Sun & Nan, 2010",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "7."
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "An Unsupervised Iterative Method for Chinese New Lexicon Extraction",
                "authors": [
                    {
                        "first": "J.-S",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "K.-Y",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proc. Computational Linguistics and Chinese Language Processing",
                "volume": "2",
                "issue": "",
                "pages": "97--148",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chang, J.-S., & Su, K.-Y. (1997). An Unsupervised Iterative Method for Chinese New Lexicon Extraction. in Proc. Computational Linguistics and Chinese Language Processing, 2(2), 97-148.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Automatic Chinese unknown word extraction using small-corpus-based method",
                "authors": [
                    {
                        "first": "T.-H",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "C.-H",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. International Conference on Natural Language Processing and Knowledge Engineering",
                "volume": "",
                "issue": "",
                "pages": "459--464",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chang, T.-H., & Lee, C.-H. (2003). Automatic Chinese unknown word extraction using small-corpus-based method. in Proc. International Conference on Natural Language Processing and Knowledge Engineering, 459-464.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "PAT-tree-based Keyword Extraction for Chinese Information Retrieval",
                "authors": [
                    {
                        "first": "L.-F",
                        "middle": [],
                        "last": "Chien",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proc. 20th Annnual International ACM SIGIR Conference on Research and Development in Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "50--58",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chien, L.-F. (1997). PAT-tree-based Keyword Extraction for Chinese Information Retrieval. in Proc. 20th Annnual International ACM SIGIR Conference on Research and Development in Information Retrieval, 50-58.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Voting Experts: An Unsupervised Algorithm for Segmenting Sequences",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Adams",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Heeringa",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Intelligent Data Analysis",
                "volume": "11",
                "issue": "6",
                "pages": "607--625",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cohen, P., Adams, N., & Heeringa, B. (2007). Voting Experts: An Unsupervised Algorithm for Segmenting Sequences. Intelligent Data Analysis, 11(6), 607-625.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "The Second International Chinese Word Segmentation Bakeoff",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Emerson",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. 4th SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emerson, T. (2005). The Second International Chinese Word Segmentation Bakeoff. in Proc. 4th SIGHAN Workshop on Chinese Language Processing.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Accessor Variety Criteria for Chinese Word Extraction",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Computational Linguistics",
                "volume": "30",
                "issue": "1",
                "pages": "75--93",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Feng, H., Chen, K., Deng, X., & Zheng, W. (2004). Accessor Variety Criteria for Chinese Word Extraction. Computational Linguistics, 30(1), 75-93.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Reduced N-Grams for Chinese Evaluation",
                "authors": [
                    {
                        "first": "L",
                        "middle": [
                            "Q"
                        ],
                        "last": "Ha",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Seymour",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Hanna",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Computational Linguistics and Chinese Language Processing",
                "volume": "10",
                "issue": "",
                "pages": "19--34",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ha, L. Q., Seymour, R., Hanna, P., & Smith, F. J. (2005). Reduced N-Grams for Chinese Evaluation. Computational Linguistics and Chinese Language Processing, 10(1), 19-34.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Morpheme Boundaries within Words. Paper presented at the Structural and Transformational Linguistics",
                "authors": [
                    {
                        "first": "Z",
                        "middle": [
                            "S"
                        ],
                        "last": "Harris",
                        "suffix": ""
                    }
                ],
                "year": 1970,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Harris, Z. S. (1970). Morpheme Boundaries within Words. Paper presented at the Structural and Transformational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Chinese Word Segmentation based on contextual entropy",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "H"
                        ],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Powers",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. 17th Asian Pacific Conference on Language, Information and Computation",
                "volume": "",
                "issue": "",
                "pages": "152--158",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Huang, J. H., & Powers, D. (2003). Chinese Word Segmentation based on contextual entropy. in Proc. 17th Asian Pacific Conference on Language, Information and Computation, 152-158.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Enhancement of Unsupervised Feature Selection for Conditional Random Fields Learning in Chinese Word Segmentation",
                "authors": [
                    {
                        "first": "T.-J",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "W.-L",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    },
                    {
                        "first": "C.-H",
                        "middle": [],
                        "last": "Kuo",
                        "suffix": ""
                    },
                    {
                        "first": "T.-H",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proc. 7th IEEE International Conference on Natural Language Processing and Knowledge Engineering",
                "volume": "",
                "issue": "",
                "pages": "382--389",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiang, T.-J., Hsu, W.-L., Kuo, C.-H., & Yang, T.-H. (2011). Enhancement of Unsupervised Feature Selection for Conditional Random Fields Learning in Chinese Word Segmentation. in Proc. 7th IEEE International Conference on Natural Language Processing and Knowledge Engineering, 382-389.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Term Contributed Boundary Tagging by Conditional Random Fields for SIGHAN 2010 Chinese Word Segmentation Bakeoff",
                "authors": [
                    {
                        "first": "T.-J",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "S.-H",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "C.-L",
                        "middle": [],
                        "last": "Sung",
                        "suffix": ""
                    },
                    {
                        "first": "W.-L",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proc. 1st CIPS-SIGHAN Joint Conf. on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiang, T.-J., Liu, S.-H., Sung, C.-L., & Hsu, W.-L. (2010). Term Contributed Boundary Tagging by Conditional Random Fields for SIGHAN 2010 Chinese Word Segmentation Bakeoff. in Proc. 1st CIPS-SIGHAN Joint Conf. on Chinese Language Processing, Beijing, China.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "The Fourth International Chinese Language Processing Bakeoff : Chinese Word Segmentation, Named Entity Recognition and Chinese POS Tagging",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Jin",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc. 6th SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "69--81",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jin, G., & Chen, X. (2007). The Fourth International Chinese Language Processing Bakeoff : Chinese Word Segmentation, Named Entity Recognition and Chinese POS Tagging. in Proc. 6th SIGHAN Workshop on Chinese Language Processing, 69-81.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Unsupervised learning of word boundary with description length gain",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Kit",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Wilks",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proc. CoNLL-99",
                "volume": "",
                "issue": "",
                "pages": "1--6",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kit, C., & Wilks, Y. (1999). Unsupervised learning of word boundary with description length gain. in Proc. CoNLL-99, 1-6.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Statistical Substring Reduction in Linear Time",
                "authors": [
                    {
                        "first": "X",
                        "middle": [],
                        "last": "L\u00fc",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. 1st Internal Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L\u00fc, X., & Zhang, L. (2005). Statistical Substring Reduction in Linear Time. in Proc. 1st Internal Joint Conference on Natural Language Processing.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Conditional Random Fields Enhancement of Feature Engineering for Conditional Random 73",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "C N"
                        ],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lafferty, J., McCallum, A., & Pereira, F. C. N. (2001). Conditional Random Fields Enhancement of Feature Engineering for Conditional Random 73",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Field Learning in Chinese Word Segmentation Using Unlabeled Data Probabilistic Models for Segmenting and Labeling Sequence Data",
                "authors": [],
                "year": null,
                "venue": "Proc. ICML",
                "volume": "",
                "issue": "",
                "pages": "282--289",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Field Learning in Chinese Word Segmentation Using Unlabeled Data Probabilistic Models for Segmenting and Labeling Sequence Data. in Proc. ICML. 282-289.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "The Third International Chinese Language Processing Bakeoff Word Segmentation and Named Entity Recognition",
                "authors": [
                    {
                        "first": "G.-A",
                        "middle": [],
                        "last": "Levow",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. 5th SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "108--117",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Levow, G.-A. (2006). The Third International Chinese Language Processing Bakeoff Word Segmentation and Named Entity Recognition. in Proc. 5th SIGHAN Workshop on Chinese Language Processing, 108-117.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "A Hybrid Model Combining CRF with Boundary Templates for Chinese Person Name Recognition",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Ding",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "International Journal Advanced Intelligent",
                "volume": "2",
                "issue": "1",
                "pages": "73--80",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Li, L., Li, Z., Ding, Z., & Huang, D. (2010). A Hybrid Model Combining CRF with Boundary Templates for Chinese Person Name Recognition. International Journal Advanced Intelligent, 2(1), 73-80.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Unsupervised Training for Overlapping Ambiguity Resolution in Chinese Word Segmentation",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. 2nd SIGHAN Workshop on Chinese Language Processing",
                "volume": "17",
                "issue": "",
                "pages": "1--7",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Li, M., Gao, J., Huang, C., & Li, J. (2003). Unsupervised Training for Overlapping Ambiguity Resolution in Chinese Word Segmentation. in Proc. 2nd SIGHAN Workshop on Chinese Language Processing, 17, 1-7.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Extracting Chinese Frequent Strings without a Dictionary from a Chinese Corpus and its Applications",
                "authors": [
                    {
                        "first": "Y.-J",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "M.-S",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "J. Information Science and Engineering",
                "volume": "17",
                "issue": "",
                "pages": "805--824",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lin, Y.-J., & Yu, M.-S. (2001). Extracting Chinese Frequent Strings without a Dictionary from a Chinese Corpus and its Applications. J. Information Science and Engineering, 17, 805-824.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff",
                "authors": [
                    {
                        "first": "W.-Y",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "K.-J",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. 2nd SIGHAN Workshop on Chinese Language Processing",
                "volume": "17",
                "issue": "",
                "pages": "168--171",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ma, W.-Y., & Chen, K.-J. (2003). Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff. in Proc. 2nd SIGHAN Workshop on Chinese Language Processing, 17, 168-171.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Suffix arrays: a new method for on-line string searches",
                "authors": [
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Manber",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Myers",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "SIAM J. Computing",
                "volume": "22",
                "issue": "5",
                "pages": "935--948",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Manber, U., & Myers, G. (1993). Suffix arrays: a new method for on-line string searches. SIAM J. Computing, 22(5), 935-948.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A Study of an N-Gram Language Model for Speech Recognition",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "O'boyle",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "O'Boyle, P. (1993). A Study of an N-Gram Language Model for Speech Recognition. (Ph.D.), Queen's University Belfast.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Statistical Properties of Overlapping Ambiguities in Chinese Word Segmentation and a Strategy for Their Disambiguation",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Qiao",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Menzel",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proc. Text, Speech and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "177--186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Qiao, W., Sun, M., & Menzel, W. (2008). Statistical Properties of Overlapping Ambiguities in Chinese Word Segmentation and a Strategy for Their Disambiguation. in Proc. Text, Speech and Dialogue, 177-186.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "A Maximum Entropy Model for Part-of-Speech Tagging",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ratnaparkhi",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proc. Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "133--142",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ratnaparkhi, A. (1996). A Maximum Entropy Model for Part-of-Speech Tagging. in Proc. Empirical Methods in Natural Language Processing, 133-142.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "The First International Chinese Word Segmentation Bakeoff",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Sproat",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Emerson",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. 2nd SIGHAN Workshop on Chinese Language Processing",
                "volume": "17",
                "issue": "",
                "pages": "133--143",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sproat, R., & Emerson, T. (2003). The First International Chinese Word Segmentation Bakeoff. in Proc. 2nd SIGHAN Workshop on Chinese Language Processing, 17, 133-143.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "SRILM -An Extensible Language Modeling Toolkit",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Stolcke",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. Spoken Language Processing",
                "volume": "",
                "issue": "",
                "pages": "901--904",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stolcke, A. (2002). SRILM -An Extensible Language Modeling Toolkit. in Proc. Spoken Language Processing, 901-904.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Using Character Bigram for Ambiguity Resolution In Chinese Word Segmentation (In Chinese)",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "N"
                        ],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "Y"
                        ],
                        "last": "Shen",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Computer Research and Development",
                "volume": "34",
                "issue": "5",
                "pages": "332--339",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sun, M., Huang, C. N., Lu, F., & Shen, D. Y. (1997). Using Character Bigram for Ambiguity Resolution In Chinese Word Segmentation (In Chinese). Computer Research and Development, 34(5), 332-339.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Enhancing Chinese Word Segmentation Using Unlabeled Data",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proc. Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "970--979",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sun, W., & Xu, J. (2011). Enhancing Chinese Word Segmentation Using Unlabeled Data. in Proc. Empirical Methods in Natural Language Processing, 970-979.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Chinese base phrases chunking based on latent semi-CRF model",
                "authors": [
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Nan",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proc. International Conference on Natural Language Processing and Knowledge Engineering",
                "volume": "",
                "issue": "",
                "pages": "1--7",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sun, X., & Nan, X. (2010). Chinese base phrases chunking based on latent semi-CRF model. in Proc. International Conference on Natural Language Processing and Knowledge Engineering, 1-7.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Compute the Term Contributed Frequency",
                "authors": [
                    {
                        "first": "C.-L",
                        "middle": [],
                        "last": "Sung",
                        "suffix": ""
                    },
                    {
                        "first": "H.-C",
                        "middle": [],
                        "last": "Yen",
                        "suffix": ""
                    },
                    {
                        "first": "W.-L",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sung, C.-L., Yen, H.-C., & Hsu, W.-L. (2008). Compute the Term Contributed Frequency. in Mike Tian-Jian Jiang et al.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Proc. 8th Int. Conference Intelligent System Design and Application",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "2",
                "issue": "",
                "pages": "325--328",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Proc. 8th Int. Conference Intelligent System Design and Application, 2, 325-328.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Entropy as an Indicator of Context Boundaries: An Experiment Using a Web Search Engine",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Tanaka-Ishii",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. Internal Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "93--105",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tanaka-Ishii, K. (2005). Entropy as an Indicator of Context Boundaries: An Experiment Using a Web Search Engine. in Proc. Internal Joint Conference on Natural Language Processing, 93-105.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Identification of Unkown Words from Corpus",
                "authors": [
                    {
                        "first": "C.-H",
                        "middle": [],
                        "last": "Tung",
                        "suffix": ""
                    },
                    {
                        "first": "H.-J",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Computational Proc. Chinese and Oriental Languages",
                "volume": "8",
                "issue": "",
                "pages": "131--145",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tung, C.-H., & Lee, H.-J. (1994). Identification of Unkown Words from Corpus. Computational Proc. Chinese and Oriental Languages, 8, 131-145.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Conditional Random Fields An Introduction",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "M"
                        ],
                        "last": "Wallach",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wallach, H. M. (2004). Conditional Random Fields An Introduction. (MS-CIS-04-21).",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "A pragmatic model for new Chinese word extraction",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proc. International Conference on Natural Language Processing and Knowledge Engineering",
                "volume": "",
                "issue": "",
                "pages": "1--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhang, H., Huang, H., Zhu, C., & Shi, S. (2010). A pragmatic model for new Chinese word extraction. in Proc. International Conference on Natural Language Processing and Knowledge Engineering, 1-8.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Subword-based Tagging for Confidence-dependent Chinese Word Segmentation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Kikui",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Sumita",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. COLING/ACL",
                "volume": "",
                "issue": "",
                "pages": "961--968",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhang, R., Kikui, G., & Sumita, E. (2006). Subword-based Tagging for Confidence-dependent Chinese Word Segmentation. in Proc. COLING/ACL, 961-968.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "A Unified Character-Based Tagging Framework for Chinese Word Segmentation",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "C.-N",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "B.-L",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "ACM Trans. on Asian Language Information Processing",
                "volume": "9",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhao, H., Huang, C.-N., Li, M., & Lu, B.-L. (2010). A Unified Character-Based Tagging Framework for Chinese Word Segmentation. ACM Trans. on Asian Language Information Processing, 9(2).",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Incorporating Global Information into Supervised Learning for Chinese Word Segmentation",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Kit",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc. 10th PACLIC",
                "volume": "",
                "issue": "",
                "pages": "66--74",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhao, H., & Kit, C. (2007). Incorporating Global Information into Supervised Learning for Chinese Word Segmentation. in Proc. 10th PACLIC, 66-74.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "text": "Example of overlapping strings with ranks.",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "TABREF1": {
                "text": "",
                "content": "<table><tr><td>C -1 , C 0 , C 1</td><td>Previous, current, or next token</td></tr><tr><td>C -1 C 0</td><td>Previous and current tokens</td></tr><tr><td>C 0 C 1</td><td>Current and next tokens</td></tr><tr><td>C -1 C 1</td><td>Previous and next tokens</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF2": {
                "text": "",
                "content": "<table><tr><td>Input</td><td>1 char</td><td>2 char</td><td colspan=\"2\">Unsupervised Feature 3 char 4 char</td><td>5 char</td><td>Label</td></tr><tr><td>\u53cd</td><td>5S</td><td>3B</td><td>4B</td><td>0B</td><td>0B</td><td>B</td></tr><tr><td>\u800c</td><td>6S</td><td>3E</td><td>4C</td><td>0C</td><td>0C</td><td>E</td></tr><tr><td>\u6703</td><td>6S</td><td>0E</td><td>4E</td><td>0D</td><td>0D</td><td>S</td></tr><tr><td>\u6b32</td><td>4S</td><td>0E</td><td>0E</td><td>0E</td><td>0I</td><td>B</td></tr><tr><td>\u901f</td><td>4S</td><td>0E</td><td>0E</td><td>0E</td><td>0E</td><td>C</td></tr><tr><td>\u5247</td><td>6S</td><td>3B</td><td>0E</td><td>0E</td><td>0E</td><td>D</td></tr><tr><td>\uf967</td><td>7S</td><td>3E</td><td>0E</td><td>0E</td><td>0E</td><td>I</td></tr><tr><td>\u9054</td><td>5S</td><td>3E</td><td>0E</td><td>0E</td><td>0E</td><td>E</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF3": {
                "text": "Enhancement of Feature Engineering for Conditional Random 55 Field Learning in Chinese Word Segmentation Using Unlabeled Data C Poov , or C Roov is different.",
                "content": "<table><tr><td>P =</td><td>the number of words thatare correctly segmented 100% \u00d7 the number of words that are segmented</td><td>.</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF4": {
                "text": "",
                "content": "<table><tr><td colspan=\"2\">Domain Feature</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td/><td>Original 6-tag</td><td/><td>92.16 \u00b10.002869</td><td/><td>91.63 \u00b10.002956</td><td>91.89</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td/><td>92.32 \u00b10.002842</td><td/><td>91.27 \u00b10.003013</td><td>91.79</td></tr><tr><td>A</td><td>+(Character Type)</td><td/><td>92.70 \u00b10.002777</td><td/><td>92.33 \u00b10.002840</td><td>92.51</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td/><td>92.71 \u00b10.002775</td><td/><td>92.33 \u00b10.002841</td><td>92.52</td></tr><tr><td/><td>Original 6-tag</td><td/><td>77.44 \u00b10.004558</td><td/><td>86.72 \u00b10.003701</td><td>81.82</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td/><td>89.85 \u00b10.003294</td><td/><td>83.62 \u00b10.004036</td><td>86.62</td></tr><tr><td>B</td><td/><td/><td/><td/><td/></tr><tr><td/><td>+(Character Type)</td><td/><td>91.68 \u00b10.003013</td><td/><td>93.58 \u00b10.002673</td><td>92.62</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td/><td>92.93 \u00b10.002795</td><td/><td>91.19 \u00b10.003091</td><td>92.05</td></tr><tr><td/><td>Original 6-tag</td><td/><td>89.61 \u00b10.003466</td><td/><td>90.64 \u00b10.003309</td><td>90.12</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td/><td>90.87 \u00b10.003272</td><td/><td>89.77 \u00b10.003443</td><td>90.32</td></tr><tr><td>C</td><td>+(Character Type)</td><td/><td>91.11 \u00b10.003233</td><td/><td>92.02 \u00b10.003078</td><td>91.56</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td/><td>91.54 \u00b10.003161</td><td/><td>91.29 \u00b10.003203</td><td>91.42</td></tr><tr><td/><td>Original 6-tag</td><td/><td>89.82 \u00b10.003367</td><td/><td>91.24 \u00b10.003148</td><td>90.52</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td/><td>93.48 \u00b10.002749</td><td/><td>91.06 \u00b10.003176</td><td>92.25</td></tr><tr><td>D</td><td>+(Character Type)</td><td/><td>92.35 \u00b10.002960</td><td/><td>93.99 \u00b10.002646</td><td>93.16</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF5": {
                "text": "",
                "content": "<table><tr><td colspan=\"2\">Domain Feature</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td/><td>Original 6-tag</td><td colspan=\"2\">55.52 \u00b10.019647</td><td colspan=\"2\">52.00 \u00b10.019752</td><td>53.71</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td colspan=\"2\">53.71 \u00b10.019714</td><td colspan=\"2\">52.34 \u00b10.019746</td><td>53.01</td></tr><tr><td>A</td><td>+(Character Type)</td><td colspan=\"2\">62.42 \u00b10.019149</td><td colspan=\"2\">58.86 \u00b10.019455</td><td>60.59</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td colspan=\"2\">61.77 \u00b10.019212</td><td colspan=\"2\">59.24 \u00b10.019427</td><td>60.48</td></tr><tr><td/><td>Original 6-tag</td><td colspan=\"2\">36.06 \u00b10.014105</td><td colspan=\"2\">20.49 \u00b10.011855</td><td>26.13</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td colspan=\"2\">41.38 \u00b10.014467</td><td colspan=\"2\">52.17 \u00b10.014673</td><td>46.16</td></tr><tr><td>B</td><td>+(Character Type)</td><td colspan=\"2\">76.27 \u00b10.012496</td><td colspan=\"2\">71.40 \u00b10.013274</td><td>73.76</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td colspan=\"2\">67.49 \u00b10.013759</td><td colspan=\"2\">76.28 \u00b10.012495</td><td>71.62</td></tr><tr><td/><td>Original 6-tag</td><td colspan=\"2\">59.69 \u00b10.016736</td><td colspan=\"2\">49.40 \u00b10.017059</td><td>54.06</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td colspan=\"2\">58.80 \u00b10.016793</td><td colspan=\"2\">54.76 \u00b10.016982</td><td>56.71</td></tr><tr><td>C</td><td>+(Character Type)</td><td colspan=\"2\">68.14 \u00b10.015898</td><td colspan=\"2\">59.69 \u00b10.016736</td><td>63.64</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td colspan=\"2\">66.03 \u00b10.016159</td><td colspan=\"2\">60.54 \u00b10.016677</td><td>63.17</td></tr><tr><td/><td>Original 6-tag</td><td colspan=\"2\">48.79 \u00b10.018869</td><td colspan=\"2\">35.90 \u00b10.018109</td><td>41.36</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td colspan=\"2\">53.98 \u00b10.018815</td><td colspan=\"2\">55.56 \u00b10.018757</td><td>54.76</td></tr><tr><td>D</td><td>+(Character Type)</td><td colspan=\"2\">68.81 \u00b10.017487</td><td colspan=\"2\">57.73 \u00b10.018648</td><td>62.79</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td colspan=\"2\">68.64 \u00b10.017514</td><td colspan=\"2\">66.30 \u00b10.017844</td><td>67.45</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF6": {
                "text": "",
                "content": "<table><tr><td colspan=\"2\">Domain Feature</td><td>R OOV C Roov</td><td>P OOV C Poov</td><td>F OOV</td></tr><tr><td/><td>Original 6-tag</td><td>72.50 \u00b10.015297</td><td>57.20 \u00b10.016951</td><td>63.95</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td>71.62 \u00b10.015446</td><td>57.04 \u00b10.016959</td><td>63.50</td></tr><tr><td>A</td><td>+(Character Type)</td><td>75.45 \u00b10.014745</td><td>67.72 \u00b10.016017</td><td>71.38</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td>75.60 \u00b10.014715</td><td>68.44 \u00b10.015923</td><td>71.84</td></tr><tr><td/><td>Original 6-tag</td><td>76.46 \u00b10.014455</td><td>71.38 \u00b10.015399</td><td>73.83</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td>68.49 \u00b10.015828</td><td>65.20 \u00b10.016229</td><td>66.80</td></tr><tr><td>B</td><td/><td/><td/><td/></tr><tr><td/><td>+(Character Type)</td><td>80.44 \u00b10.013514</td><td>81.81 \u00b10.013143</td><td>81.12</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td>74.07 \u00b10.014931</td><td>76.40 \u00b10.014466</td><td>75.22</td></tr><tr><td/><td>Original 6-tag</td><td>73.48 \u00b10.015336</td><td>58.33 \u00b10.017128</td><td>65.03</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td>69.69 \u00b10.015968</td><td>56.31 \u00b10.017232</td><td>62.29</td></tr><tr><td>C</td><td/><td/><td/><td/></tr><tr><td/><td>+(Character Type)</td><td>76.91 \u00b10.014641</td><td>68.87 \u00b10.016087</td><td>72.67</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td>75.97 \u00b10.014843</td><td>68.18 \u00b10.016181</td><td>71.87</td></tr><tr><td/><td>Original 6-tag</td><td>78.54 \u00b10.013963</td><td>66.01 \u00b10.016110</td><td>71.73</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td>75.53 \u00b10.014622</td><td>63.69 \u00b10.016355</td><td>69.11</td></tr><tr><td>D</td><td/><td/><td/><td/></tr><tr><td/><td>+(Character Type)</td><td>81.58 \u00b10.013184</td><td>76.99 \u00b10.014315</td><td>79.22</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td>80.64 \u00b10.013438</td><td>76.22 \u00b10.014481</td><td>78.37</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF7": {
                "text": "Enhancement of Feature Engineering for Conditional Random 59 Field Learning in Chinese Word Segmentation Using Unlabeled Data",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>94.50</td><td>\u00b10.001308</td><td>95.74</td><td>\u00b10.001159</td><td>95.12</td></tr><tr><td>CNG</td><td>95.12</td><td>\u00b10.001236</td><td>95.53</td><td>\u00b10.001186</td><td>95.32</td></tr><tr><td>AVS</td><td>95.14</td><td>\u00b10.001234</td><td>95.86</td><td>\u00b10.001143</td><td>95.50</td></tr><tr><td>TCB</td><td>94.48</td><td>\u00b10.001311</td><td>95.73</td><td>\u00b10.001160</td><td>95.10</td></tr><tr><td>TCF</td><td>94.86</td><td>\u00b10.001267</td><td>95.92</td><td>\u00b10.001135</td><td>95.39</td></tr><tr><td>AVS+TCB</td><td>95.21</td><td>\u00b10.001226</td><td>95.96</td><td>\u00b10.001130</td><td>95.58</td></tr><tr><td>AVS+TCF</td><td>95.27</td><td>\u00b10.001218</td><td>96.02</td><td>\u00b10.001121</td><td>95.65</td></tr><tr><td>LRAVS</td><td>94.88</td><td>\u00b10.001265</td><td>95.91</td><td>\u00b10.001136</td><td>95.39</td></tr><tr><td>LRAVS+TCB</td><td>95.03</td><td>\u00b10.001247</td><td>96.02</td><td>\u00b10.001122</td><td>95.52</td></tr><tr><td>LRAVS+TCF</td><td>95.00</td><td>\u00b10.001251</td><td>96.01</td><td>\u00b10.001124</td><td>95.50</td></tr><tr><td>2005 Best</td><td>95.10</td><td>\u00b10.001230</td><td>95.20</td><td>\u00b10.001220</td><td>95.20</td></tr><tr><td>2005 Baseline</td><td>85.70</td><td>\u00b10.002000</td><td>90.90</td><td>\u00b10.001643</td><td>88.20</td></tr><tr><td>Our Baseline</td><td>86.40</td><td>\u00b10.001967</td><td>91.15</td><td>\u00b10.001629</td><td>88.71</td></tr><tr><td>2005 Topline</td><td>98.50</td><td>\u00b10.000694</td><td>97.90</td><td>\u00b10.000819</td><td>98.20</td></tr><tr><td>Our Topline</td><td>98.64</td><td>\u00b10.000665</td><td>97.97</td><td>\u00b10.000809</td><td>98.30</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>66.09</td><td>\u00b10.012356</td><td>61.85</td><td>\u00b10.012678</td><td>63.90</td></tr><tr><td>CNG</td><td>67.39</td><td>\u00b10.012235</td><td>66.81</td><td>\u00b10.01229</td><td>67.10</td></tr><tr><td>AVS</td><td>68.93</td><td>\u00b10.012078</td><td>70.73</td><td>\u00b10.011875</td><td>69.82</td></tr><tr><td>TCB</td><td>66.16</td><td>\u00b10.012349</td><td>64.02</td><td>\u00b10.012668</td><td>64.02</td></tr><tr><td>TCF</td><td>70.27</td><td>\u00b10.011929</td><td>63.89</td><td>\u00b10.012536</td><td>66.93</td></tr><tr><td>AVS+TCB</td><td>69.31</td><td>\u00b10.012037</td><td>71.49</td><td>\u00b10.011783</td><td>70.38</td></tr><tr><td>AVS+TCF</td><td>69.59</td><td>\u00b10.012006</td><td>70.94</td><td>\u00b10.011850</td><td>70.26</td></tr><tr><td>LRAVS</td><td>66.31</td><td>\u00b10.012336</td><td>67.07</td><td>\u00b10.012266</td><td>66.69</td></tr><tr><td>LRAVS+TCB</td><td>67.33</td><td>\u00b10.012241</td><td>67.91</td><td>\u00b10.012184</td><td>67.62</td></tr><tr><td>LRAVS+TCF</td><td>69.82</td><td>\u00b10.011981</td><td>66.15</td><td>\u00b10.012350</td><td>67.94</td></tr><tr><td>2005 Best</td><td>69.60</td><td>\u00b10.012005</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2005 Baseline</td><td>0.40</td><td>\u00b10.001647</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>1.41</td><td>\u00b10.003080</td><td>3.08</td><td>\u00b10.004512</td><td>1.94</td></tr><tr><td>2005 Topline</td><td>99.60</td><td>\u00b10.001647</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.59</td><td>\u00b10.001677</td><td>95.48</td><td>\u00b10.005420</td><td>97.49</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF8": {
                "text": "",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>94.82</td><td>\u00b10.002207</td><td>94.64</td><td>\u00b10.002245</td><td>94.73</td></tr><tr><td>CNG</td><td>95.55</td><td>\u00b10.002055</td><td>94.39</td><td>\u00b10.002292</td><td>94.97</td></tr><tr><td>AVS</td><td>95.27</td><td>\u00b10.002115</td><td>94.93</td><td>\u00b10.002185</td><td>95.10</td></tr><tr><td>TCB</td><td>95.21</td><td>\u00b10.002129</td><td>94.93</td><td>\u00b10.002186</td><td>95.07</td></tr><tr><td>TCF</td><td>95.30</td><td>\u00b10.002107</td><td>94.96</td><td>\u00b10.002180</td><td>95.13</td></tr><tr><td>AVS+TCB</td><td>95.34</td><td>\u00b10.002100</td><td>95.13</td><td>\u00b10.002145</td><td>95.23</td></tr><tr><td>AVS+TCF</td><td>95.39</td><td>\u00b10.002088</td><td>95.15</td><td>\u00b10.002140</td><td>95.27</td></tr><tr><td>LRAVS</td><td>95.35</td><td>\u00b10.002099</td><td>95.08</td><td>\u00b10.002155</td><td>95.21</td></tr><tr><td>LRAVS+TCB</td><td>95.45</td><td>\u00b10.002077</td><td>95.21</td><td>\u00b10.002127</td><td>95.33</td></tr><tr><td>LRAVS+TCF</td><td>95.41</td><td>\u00b10.002085</td><td>95.20</td><td>\u00b10.002130</td><td>95.30</td></tr><tr><td>2005 Best</td><td>94.60</td><td>\u00b10.002230</td><td>94.10</td><td>\u00b10.002330</td><td>94.30</td></tr><tr><td>2005 Baseline</td><td>79.00</td><td>\u00b10.004026</td><td>88.20</td><td>\u00b10.003189</td><td>83.30</td></tr><tr><td>Our Baseline</td><td>83.84</td><td>\u00b10.003667</td><td>90.81</td><td>\u00b10.002877</td><td>87.19</td></tr><tr><td>2005 Topline</td><td>99.10</td><td>\u00b10.000934</td><td>98.80</td><td>\u00b10.001076</td><td>98.20</td></tr><tr><td>Our Topline</td><td>99.24</td><td>\u00b10.000867</td><td>98.90</td><td>\u00b10.001040</td><td>99.07</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>69.15</td><td>\u00b10.016141</td><td>65.54</td><td>\u00b10.016609</td><td>67.30</td></tr><tr><td>CNG</td><td>69.68</td><td>\u00b10.016063</td><td>69.41</td><td>\u00b10.016104</td><td>69.55</td></tr><tr><td>AVS</td><td>70.48</td><td>\u00b10.015942</td><td>71.90</td><td>\u00b10.015709</td><td>71.18</td></tr><tr><td>TCB</td><td>71.83</td><td>\u00b10.015721</td><td>70.12</td><td>\u00b10.016236</td><td>70.12</td></tr><tr><td>TCF</td><td>72.39</td><td>\u00b10.015624</td><td>68.76</td><td>\u00b10.016198</td><td>70.53</td></tr><tr><td>AVS+TCB</td><td>71.14</td><td>\u00b10.015836</td><td>72.70</td><td>\u00b10.01557</td><td>71.91</td></tr><tr><td>AVS+TCF</td><td>70.97</td><td>\u00b10.015863</td><td>72.77</td><td>\u00b10.015556</td><td>71.86</td></tr><tr><td>LRAVS</td><td>69.78</td><td>\u00b10.016048</td><td>72.09</td><td>\u00b10.015676</td><td>70.92</td></tr><tr><td>LRAVS+TCB</td><td>70.57</td><td>\u00b10.015926</td><td>73.06</td><td>\u00b10.015505</td><td>71.80</td></tr><tr><td>LRAVS+TCF</td><td>71.17</td><td>\u00b10.015831</td><td>73.22</td><td>\u00b10.015475</td><td>72.18</td></tr><tr><td>2005 Best</td><td>69.80</td><td>\u00b10.016046</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2005 Baseline</td><td>0.00</td><td>\u00b10.000000</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>16.22</td><td>\u00b10.012882</td><td>33.91</td><td>\u00b10.016544</td><td>21.94</td></tr><tr><td>2005 Topline</td><td>99.70</td><td>\u00b10.001911</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.74</td><td>\u00b10.001794</td><td>98.82</td><td>\u00b10.003771</td><td>99.28</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF9": {
                "text": "",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>93.73</td><td>\u00b10.001512</td><td>92.70</td><td>\u00b10.001623</td><td>93.21</td></tr><tr><td>CNG</td><td>94.36</td><td>\u00b10.001438</td><td>93.57</td><td>\u00b10.001530</td><td>93.96</td></tr><tr><td>AVS</td><td>94.21</td><td>\u00b10.001457</td><td>93.24</td><td>\u00b10.001566</td><td>93.72</td></tr><tr><td>TCB</td><td>93.97</td><td>\u00b10.001485</td><td>92.76</td><td>\u00b10.001616</td><td>93.36</td></tr><tr><td>TCF</td><td>93.94</td><td>\u00b10.001488</td><td>92.81</td><td>\u00b10.001611</td><td>93.37</td></tr><tr><td>AVS+TCB</td><td>94.33</td><td>\u00b10.001443</td><td>93.31</td><td>\u00b10.001559</td><td>93.81</td></tr><tr><td>AVS+TCF</td><td>94.25</td><td>\u00b10.001451</td><td>93.44</td><td>\u00b10.001544</td><td>93.85</td></tr><tr><td>LRAVS</td><td>94.34</td><td>\u00b10.001441</td><td>93.48</td><td>\u00b10.001540</td><td>93.91</td></tr><tr><td>LRAVS+TCB</td><td>94.32</td><td>\u00b10.001443</td><td>93.44</td><td>\u00b10.001544</td><td>93.88</td></tr><tr><td>LRAVS+TCF</td><td>93.91</td><td>\u00b10.001492</td><td>92.20</td><td>\u00b10.001672</td><td>93.05</td></tr><tr><td>2005 Best</td><td>94.60</td><td>\u00b10.001400</td><td>95.30</td><td>\u00b10.001310</td><td>95.00</td></tr><tr><td>2005 Baseline</td><td>83.60</td><td>\u00b10.002292</td><td>90.40</td><td>\u00b10.001824</td><td>86.90</td></tr><tr><td>Our Baseline</td><td>84.29</td><td>\u00b10.002269</td><td>90.68</td><td>\u00b10.001813</td><td>87.37</td></tr><tr><td>2005 Topline</td><td>98.80</td><td>\u00b10.000674</td><td>98.50</td><td>\u00b10.000752</td><td>98.70</td></tr><tr><td>Our Topline</td><td>98.96</td><td>\u00b10.000634</td><td>98.62</td><td>\u00b10.000726</td><td>98.79</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>57.48</td><td>\u00b10.012083</td><td>48.04</td><td>\u00b10.012211</td><td>52.33</td></tr><tr><td>CNG</td><td>65.58</td><td>\u00b10.011612</td><td>57.87</td><td>\u00b10.012068</td><td>61.48</td></tr><tr><td>AVS</td><td>62.69</td><td>\u00b10.011821</td><td>55.60</td><td>\u00b10.012144</td><td>58.93</td></tr><tr><td>TCB</td><td>60.07</td><td>\u00b10.011970</td><td>54.87</td><td>\u00b10.012220</td><td>54.87</td></tr><tr><td>TCF</td><td>60.39</td><td>\u00b10.011954</td><td>50.41</td><td>\u00b10.012220</td><td>54.95</td></tr><tr><td>AVS+TCB</td><td>64.02</td><td>\u00b10.011730</td><td>56.97</td><td>\u00b10.012101</td><td>60.29</td></tr><tr><td>AVS+TCF</td><td>63.80</td><td>\u00b10.011746</td><td>56.06</td><td>\u00b10.012130</td><td>59.68</td></tr><tr><td>LRAVS</td><td>65.02</td><td>\u00b10.011656</td><td>57.31</td><td>\u00b10.012089</td><td>60.92</td></tr><tr><td>LRAVS+TCB</td><td>65.42</td><td>\u00b10.011625</td><td>57.60</td><td>\u00b10.012079</td><td>61.26</td></tr><tr><td>LRAVS+TCF</td><td>60.42</td><td>\u00b10.011952</td><td>48.92</td><td>\u00b10.012218</td><td>54.07</td></tr><tr><td>2005 Best</td><td>63.60</td><td>\u00b10.011760</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2005 Baseline</td><td>5.90</td><td>\u00b10.005759</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>6.86</td><td>\u00b10.006178</td><td>6.10</td><td>\u00b10.005850</td><td>6.46</td></tr><tr><td>2005 Topline</td><td>99.40</td><td>\u00b10.001888</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.37</td><td>\u00b10.001938</td><td>97.72</td><td>\u00b10.003645</td><td>98.54</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF10": {
                "text": "",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>90.95</td><td>\u00b10.003129</td><td>92.46</td><td>\u00b10.002880</td><td>91.70</td></tr><tr><td>CNG</td><td>91.45</td><td>\u00b10.003050</td><td>92.36</td><td>\u00b10.002898</td><td>91.90</td></tr><tr><td>AVS</td><td>91.25</td><td>\u00b10.003081</td><td>92.72</td><td>\u00b10.002833</td><td>91.98</td></tr><tr><td>TCB</td><td>91.21</td><td>\u00b10.003087</td><td>92.53</td><td>\u00b10.002867</td><td>91.87</td></tr><tr><td>TCF</td><td>90.86</td><td>\u00b10.003143</td><td>92.62</td><td>\u00b10.002852</td><td>91.73</td></tr><tr><td>AVS+TCB</td><td>91.60</td><td>\u00b10.003026</td><td>92.67</td><td>\u00b10.002842</td><td>92.13</td></tr><tr><td>AVS+TCF</td><td>90.81</td><td>\u00b10.003151</td><td>92.16</td><td>\u00b10.002932</td><td>91.48</td></tr><tr><td>LRAVS</td><td>91.71</td><td>\u00b10.003007</td><td>92.61</td><td>\u00b10.002854</td><td>92.16</td></tr><tr><td>LRAVS+TCB</td><td>91.97</td><td>\u00b10.002963</td><td>92.76</td><td>\u00b10.002826</td><td>92.37</td></tr><tr><td>LRAVS+TCF</td><td>91.28</td><td>\u00b10.003077</td><td>92.60</td><td>\u00b10.002856</td><td>91.93</td></tr><tr><td>2010 Best</td><td>95.00</td><td>\u00b10.002320</td><td>95.30</td><td>\u00b10.002250</td><td>95.10</td></tr><tr><td>2010 Baseline</td><td>63.20</td><td>\u00b10.005132</td><td>85.60</td><td>\u00b10.003736</td><td>72.70</td></tr><tr><td>Our Baseline</td><td>63.26</td><td>\u00b10.005258</td><td>85.68</td><td>\u00b10.003820</td><td>72.78</td></tr><tr><td>2010 Topline</td><td>99.30</td><td>\u00b10.000887</td><td>99.10</td><td>\u00b10.001005</td><td>99.20</td></tr><tr><td>Our Topline</td><td>99.25</td><td>\u00b10.000940</td><td>99.06</td><td>\u00b10.001052</td><td>99.16</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>70.62</td><td>\u00b10.013380</td><td>67.66</td><td>\u00b10.013740</td><td>69.11</td></tr><tr><td>CNG</td><td>70.38</td><td>\u00b10.013412</td><td>65.17</td><td>\u00b10.013994</td><td>67.67</td></tr><tr><td>AVS</td><td>69.85</td><td>\u00b10.013479</td><td>66.16</td><td>\u00b10.013898</td><td>67.96</td></tr><tr><td>TCB</td><td>71.23</td><td>\u00b10.013297</td><td>69.66</td><td>\u00b10.013684</td><td>69.66</td></tr><tr><td>TCF</td><td>72.01</td><td>\u00b10.013187</td><td>66.02</td><td>\u00b10.013913</td><td>68.89</td></tr><tr><td>AVS+TCB</td><td>70.25</td><td>\u00b10.013429</td><td>67.22</td><td>\u00b10.013788</td><td>68.70</td></tr><tr><td>AVS+TCF</td><td>69.63</td><td>\u00b10.013507</td><td>63.73</td><td>\u00b10.014123</td><td>66.55</td></tr><tr><td>LRAVS</td><td>71.25</td><td>\u00b10.013294</td><td>68.25</td><td>\u00b10.013673</td><td>69.72</td></tr><tr><td>LRAVS+TCB</td><td>71.81</td><td>\u00b10.013216</td><td>69.47</td><td>\u00b10.013528</td><td>70.62</td></tr><tr><td>LRAVS+TCF</td><td>70.92</td><td>\u00b10.013340</td><td>66.13</td><td>\u00b10.013902</td><td>68.44</td></tr><tr><td>2010 Best</td><td>82.70</td><td>\u00b10.011111</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2010 Baseline</td><td>16.30</td><td>\u00b10.010850</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>16.65</td><td>\u00b10.010944</td><td>6.39</td><td>\u00b10.007185</td><td>9.24</td></tr><tr><td>2010 Topline</td><td>99.00</td><td>\u00b10.002923</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.00</td><td>\u00b10.002930</td><td>98.08</td><td>\u00b10.004028</td><td>98.54</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF11": {
                "text": "",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>93.01</td><td>\u00b10.002838</td><td>93.74</td><td>\u00b10.002697</td><td>93.38</td></tr><tr><td>CNG</td><td>94.40</td><td>\u00b10.002561</td><td>93.66</td><td>\u00b10.002714</td><td>94.02</td></tr><tr><td>AVS</td><td>93.54</td><td>\u00b10.002736</td><td>94.30</td><td>\u00b10.002581</td><td>93.92</td></tr><tr><td>TCB</td><td>93.35</td><td>\u00b10.002774</td><td>94.14</td><td>\u00b10.002614</td><td>93.74</td></tr><tr><td>TCF</td><td>93.10</td><td>\u00b10.002822</td><td>93.88</td><td>\u00b10.002669</td><td>93.49</td></tr><tr><td>AVS+TCB</td><td>94.56</td><td>\u00b10.002526</td><td>94.49</td><td>\u00b10.002540</td><td>94.53</td></tr><tr><td>AVS+TCF</td><td>94.05</td><td>\u00b10.002633</td><td>94.10</td><td>\u00b10.002624</td><td>94.08</td></tr><tr><td>LRAVS</td><td>94.30</td><td>\u00b10.002582</td><td>94.13</td><td>\u00b10.002616</td><td>94.21</td></tr><tr><td>LRAVS+TCB</td><td>94.36</td><td>\u00b10.002568</td><td>94.16</td><td>\u00b10.002611</td><td>94.26</td></tr><tr><td>LRAVS+TCF</td><td>94.36</td><td>\u00b10.002569</td><td>94.19</td><td>\u00b10.002604</td><td>94.28</td></tr><tr><td>2010 Best</td><td>96.00</td><td>\u00b10.002160</td><td>95.90</td><td>\u00b10.002180</td><td>95.90</td></tr><tr><td>2010 Baseline</td><td>80.30</td><td>\u00b10.004377</td><td>91.40</td><td>\u00b10.003085</td><td>85.50</td></tr><tr><td>Our Baseline</td><td>80.26</td><td>\u00b10.004431</td><td>91.41</td><td>\u00b10.003119</td><td>85.48</td></tr><tr><td>2010 Topline</td><td>99.50</td><td>\u00b10.000776</td><td>99.40</td><td>\u00b10.000850</td><td>99.40</td></tr><tr><td>Our Topline</td><td>99.56</td><td>\u00b10.000734</td><td>99.47</td><td>\u00b10.000810</td><td>99.52</td></tr><tr><td colspan=\"6\">Table 24. Non-Chinese treatment performance comparison of OOV on SIGHAN 2010</td></tr><tr><td colspan=\"4\">simplified Chinese domain D (Finance) corpus.</td><td/><td/></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>67.60</td><td>\u00b10.017666</td><td>61.28</td><td>\u00b10.018388</td><td>64.28</td></tr><tr><td>CNG</td><td>73.53</td><td>\u00b10.016655</td><td>67.77</td><td>\u00b10.017642</td><td>70.53</td></tr><tr><td>AVS</td><td>71.10</td><td>\u00b10.017111</td><td>64.17</td><td>\u00b10.018101</td><td>67.46</td></tr><tr><td>TCB</td><td>70.58</td><td>\u00b10.017201</td><td>66.44</td><td>\u00b10.018250</td><td>66.44</td></tr><tr><td>TCF</td><td>70.13</td><td>\u00b10.017277</td><td>61.19</td><td>\u00b10.018396</td><td>65.35</td></tr><tr><td>AVS+TCB</td><td>73.80</td><td>\u00b10.016598</td><td>70.79</td><td>\u00b10.017166</td><td>72.26</td></tr><tr><td>AVS+TCF</td><td>70.76</td><td>\u00b10.017172</td><td>67.73</td><td>\u00b10.017648</td><td>69.21</td></tr><tr><td>LRAVS</td><td>71.66</td><td>\u00b10.017012</td><td>68.54</td><td>\u00b10.017528</td><td>70.07</td></tr><tr><td>LRAVS+TCB</td><td>72.63</td><td>\u00b10.016831</td><td>69.82</td><td>\u00b10.017328</td><td>71.20</td></tr><tr><td>LRAVS+TCF</td><td>72.38</td><td>\u00b10.016878</td><td>69.40</td><td>\u00b10.017396</td><td>70.86</td></tr><tr><td>2010 Best</td><td>82.70</td><td>\u00b10.014279</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2010 Baseline</td><td>23.30</td><td>\u00b10.015958</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>23.32</td><td>\u00b10.015963</td><td>14.15</td><td>\u00b10.013157</td><td>17.61</td></tr><tr><td>2010 Topline</td><td>99.50</td><td>\u00b10.002663</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.72</td><td>\u00b10.001985</td><td>99.34</td><td>\u00b10.003047</td><td>99.53</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF12": {
                "text": "",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>95.15</td><td>\u00b10.002122</td><td>93.20</td><td>\u00b10.002487</td><td>94.17</td></tr><tr><td>CNG</td><td>95.60</td><td>\u00b10.002027</td><td>93.16</td><td>\u00b10.002494</td><td>94.36</td></tr><tr><td>AVS</td><td>95.67</td><td>\u00b10.002012</td><td>93.83</td><td>\u00b10.002378</td><td>94.74</td></tr><tr><td>TCB</td><td>95.21</td><td>\u00b10.002111</td><td>93.25</td><td>\u00b10.002480</td><td>94.22</td></tr><tr><td>TCF</td><td>95.28</td><td>\u00b10.002095</td><td>93.42</td><td>\u00b10.002450</td><td>94.34</td></tr><tr><td>AVS+TCB</td><td>95.62</td><td>\u00b10.002023</td><td>93.72</td><td>\u00b10.002398</td><td>94.66</td></tr><tr><td>AVS+TCF</td><td>95.74</td><td>\u00b10.001996</td><td>93.83</td><td>\u00b10.002378</td><td>94.77</td></tr><tr><td>LRAVS</td><td>95.57</td><td>\u00b10.002034</td><td>93.79</td><td>\u00b10.002384</td><td>94.67</td></tr><tr><td>LRAVS+TCB</td><td>95.63</td><td>\u00b10.002020</td><td>93.85</td><td>\u00b10.002373</td><td>94.73</td></tr><tr><td>LRAVS+TCF</td><td>95.55</td><td>\u00b10.002038</td><td>93.81</td><td>\u00b10.002381</td><td>94.67</td></tr><tr><td>2010 Best</td><td>95.70</td><td>\u00b10.001950</td><td>94.80</td><td>\u00b10.002130</td><td>95.20</td></tr><tr><td>2010 Baseline</td><td>70.10</td><td>\u00b10.004390</td><td>87.30</td><td>\u00b10.003193</td><td>77.80</td></tr><tr><td>Our Baseline</td><td>70.15</td><td>\u00b10.004522</td><td>87.33</td><td>\u00b10.003286</td><td>77.80</td></tr><tr><td>2010 Topline</td><td>99.10</td><td>\u00b10.000906</td><td>98.80</td><td>\u00b10.001044</td><td>99.00</td></tr><tr><td>Our Topline</td><td>99.38</td><td>\u00b10.000778</td><td>98.85</td><td>\u00b10.001055</td><td>99.11</td></tr><tr><td colspan=\"6\">Table 28. Non-Chinese-Pattern performance comparison of OOV on SIGHAN 2010</td></tr><tr><td colspan=\"4\">traditional Chinese domain B (Computer) corpus.</td><td/><td/></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>58.79</td><td>\u00b10.016769</td><td>68.17</td><td>\u00b10.015871</td><td>63.14</td></tr><tr><td>CNG</td><td>61.77</td><td>\u00b10.016556</td><td>70.16</td><td>\u00b10.015589</td><td>65.70</td></tr><tr><td>AVS</td><td>60.59</td><td>\u00b10.016649</td><td>72.29</td><td>\u00b10.015248</td><td>65.93</td></tr><tr><td>TCB</td><td>59.09</td><td>\u00b10.016751</td><td>68.81</td><td>\u00b10.015784</td><td>63.58</td></tr><tr><td>TCF</td><td>59.34</td><td>\u00b10.016735</td><td>69.21</td><td>\u00b10.015727</td><td>63.89</td></tr><tr><td>AVS+TCB</td><td>60.89</td><td>\u00b10.016626</td><td>72.24</td><td>\u00b10.015257</td><td>66.08</td></tr><tr><td>AVS+TCF</td><td>61.35</td><td>\u00b10.01659</td><td>72.90</td><td>\u00b10.015143</td><td>66.63</td></tr><tr><td>LRAVS</td><td>61.67</td><td>\u00b10.016564</td><td>72.84</td><td>\u00b10.015155</td><td>66.79</td></tr><tr><td>LRAVS+TCB</td><td>61.82</td><td>\u00b10.016552</td><td>73.07</td><td>\u00b10.015113</td><td>66.98</td></tr><tr><td>LRAVS+TCF</td><td>61.55</td><td>\u00b10.016574</td><td>72.94</td><td>\u00b10.015135</td><td>66.76</td></tr><tr><td>2010 Best</td><td>66.60</td><td>\u00b10.016069</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2010 Baseline</td><td>1.00</td><td>\u00b10.003390</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>1.03</td><td>\u00b10.003445</td><td>0.55</td><td>\u00b10.002515</td><td>0.72</td></tr><tr><td>2010 Topline</td><td>99.60</td><td>\u00b10.002150</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.34</td><td>\u00b10.002765</td><td>99.41</td><td>\u00b10.002609</td><td>99.37</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF13": {
                "text": "",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>95.52</td><td>\u00b10.001925</td><td>95.46</td><td>\u00b10.001937</td><td>95.49</td></tr><tr><td>CNG</td><td>96.13</td><td>\u00b10.001794</td><td>95.04</td><td>\u00b10.002020</td><td>95.58</td></tr><tr><td>AVS</td><td>95.99</td><td>\u00b10.001825</td><td>95.79</td><td>\u00b10.001868</td><td>95.89</td></tr><tr><td>TCB</td><td>95.55</td><td>\u00b10.001918</td><td>95.51</td><td>\u00b10.001927</td><td>95.53</td></tr><tr><td>TCF</td><td>95.61</td><td>\u00b10.001907</td><td>95.57</td><td>\u00b10.001915</td><td>95.59</td></tr><tr><td>AVS+TCB</td><td>95.93</td><td>\u00b10.001839</td><td>95.77</td><td>\u00b10.001874</td><td>95.85</td></tr><tr><td>AVS+TCF</td><td>95.99</td><td>\u00b10.001825</td><td>95.88</td><td>\u00b10.001850</td><td>95.93</td></tr><tr><td>LRAVS</td><td>96.02</td><td>\u00b10.001820</td><td>95.73</td><td>\u00b10.001881</td><td>95.87</td></tr><tr><td>LRAVS+TCB</td><td>96.04</td><td>\u00b10.001814</td><td>95.82</td><td>\u00b10.001862</td><td>95.93</td></tr><tr><td>LRAVS+TCF</td><td>95.94</td><td>\u00b10.001836</td><td>95.71</td><td>\u00b10.001885</td><td>95.83</td></tr><tr><td>2010 Best</td><td>96.20</td><td>\u00b10.001760</td><td>96.40</td><td>\u00b10.001720</td><td>96.30</td></tr><tr><td>2010 Baseline</td><td>82.60</td><td>\u00b10.003492</td><td>88.80</td><td>\u00b10.002905</td><td>85.50</td></tr><tr><td>Our Baseline</td><td>82.56</td><td>\u00b10.003531</td><td>88.77</td><td>\u00b10.002937</td><td>85.55</td></tr><tr><td>2010 Topline</td><td>98.60</td><td>\u00b10.001082</td><td>98.10</td><td>\u00b10.001258</td><td>98.40</td></tr><tr><td>Our Topline</td><td>98.63</td><td>\u00b10.001081</td><td>98.10</td><td>\u00b10.00127</td><td>98.36</td></tr><tr><td colspan=\"6\">Table 32. Non-Chinese treatment performance comparison of OOV on SIGHAN 2010</td></tr><tr><td colspan=\"4\">traditional Chinese domain D (Finance) corpus.</td><td/><td/></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>80.45</td><td>\u00b10.013488</td><td>76.61</td><td>\u00b10.014398</td><td>78.48</td></tr><tr><td>CNG</td><td>82.96</td><td>\u00b10.012787</td><td>78.16</td><td>\u00b10.014053</td><td>80.49</td></tr><tr><td>AVS</td><td>81.33</td><td>\u00b10.013253</td><td>81.28</td><td>\u00b10.013267</td><td>81.30</td></tr><tr><td>TCB</td><td>80.99</td><td>\u00b10.013346</td><td>77.44</td><td>\u00b10.014216</td><td>79.17</td></tr><tr><td>TCF</td><td>80.92</td><td>\u00b10.013363</td><td>77.26</td><td>\u00b10.014255</td><td>79.05</td></tr><tr><td>AVS+TCB</td><td>80.99</td><td>\u00b10.013346</td><td>81.55</td><td>\u00b10.013193</td><td>81.27</td></tr><tr><td>AVS+TCF</td><td>80.99</td><td>\u00b10.013346</td><td>81.96</td><td>\u00b10.013077</td><td>81.47</td></tr><tr><td>LRAVS</td><td>82.62</td><td>\u00b10.012889</td><td>82.10</td><td>\u00b10.013038</td><td>82.36</td></tr><tr><td>LRAVS+TCB</td><td>82.18</td><td>\u00b10.013016</td><td>82.44</td><td>\u00b10.012942</td><td>82.31</td></tr><tr><td>LRAVS+TCF</td><td>81.86</td><td>\u00b10.013105</td><td>82.04</td><td>\u00b10.013054</td><td>81.95</td></tr><tr><td>2010 Best</td><td>81.20</td><td>\u00b10.013288</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2010 Baseline</td><td>0.60</td><td>\u00b10.002627</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>0.60</td><td>\u00b10.002618</td><td>2.28</td><td>\u00b10.005078</td><td>0.95</td></tr><tr><td>2010 Topline</td><td>99.70</td><td>\u00b10.001860</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.69</td><td>\u00b10.001902</td><td>98.54</td><td>\u00b10.004076</td><td>99.11</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF15": {
                "text": "",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>94.77</td><td>\u00b10.002381</td><td>94.79</td><td>\u00b10.002377</td><td>94.78</td></tr><tr><td>CNG</td><td>95.24</td><td>\u00b10.002278</td><td>95.48</td><td>\u00b10.002222</td><td>95.36</td></tr><tr><td>AVS</td><td>95.13</td><td>\u00b10.002302</td><td>95.20</td><td>\u00b10.002286</td><td>95.17</td></tr><tr><td>TCB</td><td>94.84</td><td>\u00b10.002367</td><td>94.87</td><td>\u00b10.002360</td><td>94.85</td></tr><tr><td>TCF</td><td>94.78</td><td>\u00b10.002380</td><td>94.77</td><td>\u00b10.002382</td><td>94.77</td></tr><tr><td>AVS+TCB</td><td>95.18</td><td>\u00b10.002291</td><td>95.24</td><td>\u00b10.002278</td><td>95.21</td></tr><tr><td>AVS+TCF</td><td>95.08</td><td>\u00b10.002313</td><td>95.19</td><td>\u00b10.002288</td><td>95.14</td></tr><tr><td>LRAVS</td><td>95.00</td><td>\u00b10.002332</td><td>95.21</td><td>\u00b10.002284</td><td>95.10</td></tr><tr><td>LRAVS+TCB</td><td>95.18</td><td>\u00b10.002292</td><td>95.33</td><td>\u00b10.002256</td><td>95.26</td></tr><tr><td>LRAVS+TCF</td><td>95.00</td><td>\u00b10.002330</td><td>95.27</td><td>\u00b10.002271</td><td>95.14</td></tr><tr><td>2003 Best</td><td>93.40</td><td>\u00b10.002700</td><td>94.70</td><td>\u00b10.002400</td><td>94.00</td></tr><tr><td>2003 Baseline</td><td>83.00</td><td>\u00b10.004018</td><td>90.80</td><td>\u00b10.003092</td><td>86.70</td></tr><tr><td>Our Baseline</td><td>82.97</td><td>\u00b10.004021</td><td>90.77</td><td>\u00b10.003097</td><td>86.69</td></tr><tr><td>2003 Topline</td><td>99.10</td><td>\u00b10.001010</td><td>98.60</td><td>\u00b10.001257</td><td>98.90</td></tr><tr><td>Our Topline</td><td>99.10</td><td>\u00b10.001009</td><td>98.62</td><td>\u00b10.001249</td><td>98.86</td></tr><tr><td colspan=\"5\">Table 36. Performance comparison of OOV on SIGHAN 2003 CityU corpus.</td><td/></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>75.80</td><td>\u00b10.017149</td><td>66.07</td><td>\u00b10.018969</td><td>70.60</td></tr><tr><td>CNG</td><td>77.25</td><td>\u00b10.016796</td><td>73.25</td><td>\u00b10.017735</td><td>75.20</td></tr><tr><td>AVS</td><td>75.16</td><td>\u00b10.017311</td><td>71.79</td><td>\u00b10.018030</td><td>73.44</td></tr><tr><td>TCB</td><td>76.20</td><td>\u00b10.017061</td><td>66.63</td><td>\u00b10.018891</td><td>71.10</td></tr><tr><td>TCF</td><td>76.28</td><td>\u00b10.017041</td><td>66.38</td><td>\u00b10.018927</td><td>70.99</td></tr><tr><td>AVS+TCB</td><td>75.44</td><td>\u00b10.017245</td><td>72.06</td><td>\u00b10.017977</td><td>73.71</td></tr><tr><td>AVS+TCF</td><td>74.88</td><td>\u00b10.017376</td><td>71.66</td><td>\u00b10.018055</td><td>73.23</td></tr><tr><td>LRAVS</td><td>74.12</td><td>\u00b10.017548</td><td>72.01</td><td>\u00b10.017987</td><td>73.05</td></tr><tr><td>LRAVS+TCB</td><td>74.88</td><td>\u00b10.017376</td><td>72.92</td><td>\u00b10.017804</td><td>73.89</td></tr><tr><td>LRAVS+TCF</td><td>74.32</td><td>\u00b10.017503</td><td>72.23</td><td>\u00b10.017943</td><td>73.26</td></tr><tr><td>2003 Best</td><td>62.50</td><td>\u00b10.019396</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2003 Baseline</td><td>3.70</td><td>\u00b10.007563</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>3.69</td><td>\u00b10.007555</td><td>5.20</td><td>\u00b10.008896</td><td>4.32</td></tr><tr><td>2003 Topline</td><td>99.60</td><td>\u00b10.002529</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.60</td><td>\u00b10.002533</td><td>98.65</td><td>\u00b10.004626</td><td>99.12</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF16": {
                "text": "",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>87.30</td><td>\u00b10.003334</td><td>86.83</td><td>\u00b10.003385</td><td>87.06</td></tr><tr><td>CNG</td><td>89.61</td><td>\u00b10.003054</td><td>88.66</td><td>\u00b10.003175</td><td>89.13</td></tr><tr><td>AVS</td><td>89.38</td><td>\u00b10.003085</td><td>88.06</td><td>\u00b10.003246</td><td>88.71</td></tr><tr><td>TCB</td><td>87.46</td><td>\u00b10.003315</td><td>86.86</td><td>\u00b10.003382</td><td>87.16</td></tr><tr><td>TCF</td><td>87.18</td><td>\u00b10.003347</td><td>86.45</td><td>\u00b10.003426</td><td>86.81</td></tr><tr><td>AVS+TCB</td><td>89.31</td><td>\u00b10.003092</td><td>88.08</td><td>\u00b10.003244</td><td>88.69</td></tr><tr><td>AVS+TCF</td><td>89.39</td><td>\u00b10.003082</td><td>88.17</td><td>\u00b10.003233</td><td>88.78</td></tr><tr><td>LRAVS</td><td>89.30</td><td>\u00b10.003094</td><td>88.21</td><td>\u00b10.003228</td><td>88.75</td></tr><tr><td>LRAVS+TCB</td><td>89.37</td><td>\u00b10.003086</td><td>88.09</td><td>\u00b10.003243</td><td>88.72</td></tr><tr><td>LRAVS+TCF</td><td>89.31</td><td>\u00b10.003093</td><td>88.07</td><td>\u00b10.003244</td><td>88.68</td></tr><tr><td>2003 Best</td><td>87.50</td><td>\u00b10.003300</td><td>86.60</td><td>\u00b10.003200</td><td>88.10</td></tr><tr><td>2003 Baseline</td><td>66.30</td><td>\u00b10.004731</td><td>80.00</td><td>\u00b10.004004</td><td>72.50</td></tr><tr><td>Our Baseline</td><td>66.33</td><td>\u00b10.004730</td><td>80.01</td><td>\u00b10.004003</td><td>72.53</td></tr><tr><td>2003 Topline</td><td>98.80</td><td>\u00b10.001090</td><td>98.20</td><td>\u00b10.001331</td><td>98.50</td></tr><tr><td>Our Topline</td><td>98.84</td><td>\u00b10.001072</td><td>98.19</td><td>\u00b10.001333</td><td>98.52</td></tr><tr><td colspan=\"5\">Table 40. Performance comparison of OOV on SIGHAN 2003 CTB corpus.</td><td/></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>69.85</td><td>\u00b10.010805</td><td>62.24</td><td>\u00b10.011415</td><td>65.83</td></tr><tr><td>CNG</td><td>71.79</td><td>\u00b10.010596</td><td>71.31</td><td>\u00b10.010650</td><td>71.55</td></tr><tr><td>AVS</td><td>70.59</td><td>\u00b10.010728</td><td>69.61</td><td>\u00b10.010830</td><td>70.09</td></tr><tr><td>TCB</td><td>70.23</td><td>\u00b10.010766</td><td>62.51</td><td>\u00b10.011398</td><td>66.14</td></tr><tr><td>TCF</td><td>69.49</td><td>\u00b10.010841</td><td>61.91</td><td>\u00b10.011434</td><td>65.48</td></tr><tr><td>AVS+TCB</td><td>70.73</td><td>\u00b10.010714</td><td>70.05</td><td>\u00b10.010785</td><td>70.39</td></tr><tr><td>AVS+TCF</td><td>70.95</td><td>\u00b10.010690</td><td>69.80</td><td>\u00b10.010811</td><td>70.37</td></tr><tr><td>LRAVS</td><td>70.35</td><td>\u00b10.010753</td><td>69.98</td><td>\u00b10.010793</td><td>70.16</td></tr><tr><td>LRAVS+TCB</td><td>70.58</td><td>\u00b10.010730</td><td>70.49</td><td>\u00b10.010739</td><td>70.53</td></tr><tr><td>LRAVS+TCF</td><td>70.24</td><td>\u00b10.010765</td><td>70.05</td><td>\u00b10.010785</td><td>70.15</td></tr><tr><td>2003 Best</td><td>70.50</td><td>\u00b10.010738</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2003 Baseline</td><td>6.20</td><td>\u00b10.005678</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>6.24</td><td>\u00b10.005694</td><td>8.36</td><td>\u00b10.006516</td><td>7.14</td></tr><tr><td>2003 Topline</td><td>99.00</td><td>\u00b10.002343</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.02</td><td>\u00b10.002324</td><td>97.46</td><td>\u00b10.003703</td><td>98.23</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF17": {
                "text": "",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>96.92</td><td>\u00b10.000736</td><td>96.88</td><td>\u00b10.000741</td><td>96.90</td></tr><tr><td>CNG</td><td>97.26</td><td>\u00b10.000696</td><td>97.21</td><td>\u00b10.000701</td><td>97.23</td></tr><tr><td>AVS</td><td>97.31</td><td>\u00b10.000690</td><td>97.34</td><td>\u00b10.000686</td><td>97.32</td></tr><tr><td>TCB</td><td>96.95</td><td>\u00b10.000733</td><td>96.89</td><td>\u00b10.000740</td><td>96.92</td></tr><tr><td>TCF</td><td>96.96</td><td>\u00b10.000732</td><td>96.90</td><td>\u00b10.000739</td><td>96.93</td></tr><tr><td>AVS+TCB</td><td>97.32</td><td>\u00b10.000689</td><td>97.32</td><td>\u00b10.000689</td><td>97.32</td></tr><tr><td>AVS+TCF</td><td>97.35</td><td>\u00b10.000685</td><td>97.32</td><td>\u00b10.000688</td><td>97.33</td></tr><tr><td>LRAVS</td><td>97.35</td><td>\u00b10.000684</td><td>97.32</td><td>\u00b10.000688</td><td>97.34</td></tr><tr><td>LRAVS+TCB</td><td>97.34</td><td>\u00b10.000686</td><td>97.33</td><td>\u00b10.000687</td><td>97.34</td></tr><tr><td>LRAVS+TCF</td><td>97.23</td><td>\u00b10.000700</td><td>97.26</td><td>\u00b10.000696</td><td>97.24</td></tr><tr><td>2006 Best</td><td>97.20</td><td>\u00b10.000703</td><td>97.30</td><td>\u00b10.000691</td><td>97.20</td></tr><tr><td>2006 Baseline</td><td>88.20</td><td>\u00b10.002134</td><td>93.00</td><td>\u00b10.001687</td><td>90.60</td></tr><tr><td>Our Baseline</td><td>88.22</td><td>\u00b10.001374</td><td>93.06</td><td>\u00b10.001083</td><td>90.57</td></tr><tr><td>2006 Topline</td><td>98.50</td><td>\u00b10.000804</td><td>98.20</td><td>\u00b10.000879</td><td>98.40</td></tr><tr><td>Our Topline</td><td>98.55</td><td>\u00b10.00051</td><td>98.19</td><td>\u00b10.000568</td><td>98.37</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>78.35</td><td>\u00b10.008738</td><td>69.60</td><td>\u00b10.009759</td><td>73.72</td></tr><tr><td>CNG</td><td>79.66</td><td>\u00b10.008540</td><td>76.97</td><td>\u00b10.008932</td><td>78.29</td></tr><tr><td>AVS</td><td>79.27</td><td>\u00b10.008600</td><td>78.08</td><td>\u00b10.008777</td><td>78.67</td></tr><tr><td>TCB</td><td>78.55</td><td>\u00b10.008708</td><td>69.97</td><td>\u00b10.009725</td><td>74.01</td></tr><tr><td>TCF</td><td>78.94</td><td>\u00b10.008651</td><td>69.94</td><td>\u00b10.009728</td><td>74.17</td></tr><tr><td>AVS+TCB</td><td>79.31</td><td>\u00b10.008595</td><td>77.93</td><td>\u00b10.008798</td><td>78.61</td></tr><tr><td>AVS+TCF</td><td>79.70</td><td>\u00b10.008533</td><td>78.30</td><td>\u00b10.008745</td><td>78.99</td></tr><tr><td>LRAVS</td><td>79.84</td><td>\u00b10.008512</td><td>78.32</td><td>\u00b10.008742</td><td>79.07</td></tr><tr><td>LRAVS+TCB</td><td>79.82</td><td>\u00b10.008514</td><td>78.57</td><td>\u00b10.008706</td><td>79.19</td></tr><tr><td>LRAVS+TCF</td><td>79.48</td><td>\u00b10.008568</td><td>77.93</td><td>\u00b10.008798</td><td>78.70</td></tr><tr><td>2006 Best</td><td>78.70</td><td>\u00b10.008686</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2006 Baseline</td><td>0.90</td><td>\u00b10.002004</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>0.95</td><td>\u00b10.002053</td><td>2.47</td><td>\u00b10.003293</td><td>1.37</td></tr><tr><td>2006 Topline</td><td>99.30</td><td>\u00b10.001769</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.31</td><td>\u00b10.001752</td><td>95.22</td><td>\u00b10.004526</td><td>97.22</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF18": {
                "text": "",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>96.44</td><td>\u00b10.001169</td><td>95.71</td><td>\u00b10.001279</td><td>96.08</td></tr><tr><td>CNG</td><td>96.19</td><td>\u00b10.001208</td><td>95.58</td><td>\u00b10.001298</td><td>95.88</td></tr><tr><td>AVS</td><td>96.30</td><td>\u00b10.001191</td><td>95.84</td><td>\u00b10.001260</td><td>96.07</td></tr><tr><td>TCB</td><td>96.40</td><td>\u00b10.001177</td><td>95.74</td><td>\u00b10.001275</td><td>96.07</td></tr><tr><td>TCF</td><td>96.35</td><td>\u00b10.001183</td><td>95.69</td><td>\u00b10.001283</td><td>96.02</td></tr><tr><td>AVS+TC</td><td>96.38</td><td>\u00b10.001180</td><td>95.87</td><td>\u00b10.001256</td><td>96.12</td></tr><tr><td>AVS+TCF</td><td>96.40</td><td>\u00b10.001177</td><td>95.73</td><td>\u00b10.001276</td><td>96.06</td></tr><tr><td>LRAVS</td><td>96.22</td><td>\u00b10.001203</td><td>95.85</td><td>\u00b10.001259</td><td>96.04</td></tr><tr><td>LRAVS+TCB</td><td>96.24</td><td>\u00b10.001200</td><td>95.88</td><td>\u00b10.001255</td><td>96.06</td></tr><tr><td>LRAVS+TC</td><td>96.16</td><td>\u00b10.001213</td><td>95.85</td><td>\u00b10.001259</td><td>96.01</td></tr><tr><td>2006 Best</td><td>96.10</td><td>\u00b10.001222</td><td>96.40</td><td>\u00b10.001176</td><td>96.30</td></tr><tr><td>2006 Baseline</td><td>90.00</td><td>\u00b10.001984</td><td>94.90</td><td>\u00b10.001455</td><td>92.40</td></tr><tr><td>Our Baseline</td><td>90.03</td><td>\u00b10.001891</td><td>94.94</td><td>\u00b10.001384</td><td>92.42</td></tr><tr><td>2006 Topline</td><td>99.30</td><td>\u00b10.000551</td><td>99.10</td><td>\u00b10.000625</td><td>99.20</td></tr><tr><td>Our Topline</td><td>99.28</td><td>\u00b10.000534</td><td>99.08</td><td>\u00b10.000603</td><td>99.18</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>66.57</td><td>\u00b10.016171</td><td>55.62</td><td>\u00b10.017031</td><td>60.60</td></tr><tr><td>CNG</td><td>61.60</td><td>\u00b10.016672</td><td>58.23</td><td>\u00b10.016906</td><td>59.87</td></tr><tr><td>AVS</td><td>64.60</td><td>\u00b10.016393</td><td>60.83</td><td>\u00b10.016733</td><td>62.66</td></tr><tr><td>TCB</td><td>66.86</td><td>\u00b10.016136</td><td>55.95</td><td>\u00b10.017018</td><td>60.92</td></tr><tr><td>TCF</td><td>66.42</td><td>\u00b10.016189</td><td>54.67</td><td>\u00b10.017065</td><td>59.97</td></tr><tr><td>AVS+TCB</td><td>64.72</td><td>\u00b10.016380</td><td>61.19</td><td>\u00b10.016705</td><td>62.91</td></tr><tr><td>AVS+TCF</td><td>62.78</td><td>\u00b10.016571</td><td>59.86</td><td>\u00b10.016803</td><td>61.28</td></tr><tr><td>LRAVS</td><td>63.92</td><td>\u00b10.016462</td><td>59.94</td><td>\u00b10.016797</td><td>61.87</td></tr><tr><td>LRAVS+TCB</td><td>62.87</td><td>\u00b10.016563</td><td>60.40</td><td>\u00b10.016765</td><td>61.61</td></tr><tr><td>LRAVS+TCF</td><td>62.96</td><td>\u00b10.016554</td><td>59.56</td><td>\u00b10.016824</td><td>61.21</td></tr><tr><td>2006 Best</td><td>61.20</td><td>\u00b10.016704</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2006 Baseline</td><td>2.20</td><td>\u00b10.005028</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>2.17</td><td>\u00b10.004999</td><td>11.13</td><td>\u00b10.010780</td><td>3.64</td></tr><tr><td>2006 Topline</td><td>99.90</td><td>\u00b10.001083</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.85</td><td>\u00b10.001313</td><td>99.24</td><td>\u00b10.002975</td><td>99.55</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF19": {
                "text": "",
                "content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>95.56</td><td>\u00b10.001682</td><td>95.51</td><td>\u00b10.001691</td><td>95.54</td></tr><tr><td>CNG</td><td>95.54</td><td>\u00b10.001686</td><td>95.53</td><td>\u00b10.001688</td><td>95.54</td></tr><tr><td>AVS</td><td>95.68</td><td>\u00b10.001660</td><td>95.71</td><td>\u00b10.001655</td><td>95.70</td></tr><tr><td>TCB</td><td>95.54</td><td>\u00b10.001687</td><td>95.54</td><td>\u00b10.001687</td><td>95.54</td></tr><tr><td>TCF</td><td>95.52</td><td>\u00b10.001689</td><td>95.54</td><td>\u00b10.001685</td><td>95.53</td></tr><tr><td>AVS+TCB</td><td>95.58</td><td>\u00b10.001680</td><td>95.61</td><td>\u00b10.001674</td><td>95.59</td></tr><tr><td>AVS+TCF</td><td>95.98</td><td>\u00b10.001605</td><td>95.96</td><td>\u00b10.001609</td><td>95.97</td></tr><tr><td>LRAVS</td><td>95.55</td><td>\u00b10.001684</td><td>95.56</td><td>\u00b10.001682</td><td>95.56</td></tr><tr><td>LRAVS+TCB</td><td>95.53</td><td>\u00b10.001687</td><td>95.56</td><td>\u00b10.001683</td><td>95.55</td></tr><tr><td>LRAVS+TCF</td><td>95.69</td><td>\u00b10.001658</td><td>95.72</td><td>\u00b10.001653</td><td>95.71</td></tr><tr><td>2008 Best</td><td>95.96</td><td>\u00b10.001386</td><td>95.83</td><td>\u00b10.001408</td><td>95.89</td></tr><tr><td>2008 Baseline</td><td>84.27</td><td>\u00b10.002563</td><td>88.64</td><td>\u00b10.002234</td><td>86.40</td></tr><tr><td>Our Baseline</td><td>84.05</td><td>\u00b10.002991</td><td>88.86</td><td>\u00b10.002570</td><td>86.39</td></tr><tr><td>2008 Topline</td><td>98.25</td><td>\u00b10.000923</td><td>97.10</td><td>\u00b10.001181</td><td>97.67</td></tr><tr><td>Our Topline</td><td>98.42</td><td>\u00b10.001018</td><td>97.55</td><td>\u00b10.001264</td><td>97.98</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>77.63</td><td>\u00b10.014611</td><td>70.56</td><td>\u00b10.01598</td><td>73.92</td></tr><tr><td>CNG</td><td>76.28</td><td>\u00b10.014915</td><td>74.58</td><td>\u00b10.015266</td><td>75.42</td></tr><tr><td>AVS</td><td>77.69</td><td>\u00b10.014597</td><td>75.87</td><td>\u00b10.015001</td><td>76.77</td></tr><tr><td>TCB</td><td>77.69</td><td>\u00b10.014597</td><td>70.71</td><td>\u00b10.015955</td><td>74.04</td></tr><tr><td>TCF</td><td>77.69</td><td>\u00b10.014597</td><td>71.03</td><td>\u00b10.015904</td><td>74.21</td></tr><tr><td>AVS+TCB</td><td>77.20</td><td>\u00b10.014710</td><td>75.14</td><td>\u00b10.015153</td><td>76.16</td></tr><tr><td>AVS+TCF</td><td>78.86</td><td>\u00b10.014316</td><td>77.43</td><td>\u00b10.014657</td><td>78.14</td></tr><tr><td>LRAVS</td><td>77.11</td><td>\u00b10.014731</td><td>75.21</td><td>\u00b10.015139</td><td>76.15</td></tr><tr><td>LRAVS+TCB</td><td>77.04</td><td>\u00b10.014745</td><td>75.19</td><td>\u00b10.015142</td><td>76.11</td></tr><tr><td>LRAVS+TCF</td><td>78.15</td><td>\u00b10.014488</td><td>76.50</td><td>\u00b10.014865</td><td>77.32</td></tr><tr><td>2008 Best</td><td>77.30</td><td>\u00b10.014687</td><td>77.61</td><td>\u00b10.014615</td><td>77.45</td></tr><tr><td>2008 Baseline</td><td>2.83</td><td>\u00b10.005814</td><td>7.69</td><td>\u00b10.009341</td><td>4.14</td></tr><tr><td>Our Baseline</td><td>1.54</td><td>\u00b10.004313</td><td>3.34</td><td>\u00b10.006298</td><td>2.10</td></tr><tr><td>2008 Topline</td><td>99.20</td><td>\u00b10.003123</td><td>97.07</td><td>\u00b10.005913</td><td>98.12</td></tr><tr><td>Our Topline</td><td>99.54</td><td>\u00b10.002375</td><td>97.56</td><td>\u00b10.005409</td><td>98.54</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            }
        }
    }
}