File size: 170,162 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 |
{
"paper_id": "O12-4003",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:02:45.858921Z"
},
"title": "Enhancement of Feature Engineering for Conditional Random Field Learning in Chinese Word Segmentation Using Unlabeled Data",
"authors": [
{
"first": "Mike",
"middle": [],
"last": "Tian-Jian",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Jiang",
"middle": [],
"last": "\uff0a+",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Tsing Hua University",
"location": {
"settlement": "Hsinchu",
"country": "Taiwan"
}
},
"email": ""
},
{
"first": "Cheng-Wei",
"middle": [],
"last": "Shih",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Tsing Hua University",
"location": {
"settlement": "Hsinchu",
"country": "Taiwan"
}
},
"email": ""
},
{
"first": "Ting-Hao",
"middle": [],
"last": "Yang",
"suffix": "",
"affiliation": {},
"email": "tinghaoyang@iis.sinica.edu.tw"
},
{
"first": "Chan-Hung",
"middle": [],
"last": "Kuo",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Richard",
"middle": [],
"last": "Tzong",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Han",
"middle": [],
"last": "Tsai",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Yuan Ze University",
"location": {
"settlement": "Taoyuan",
"country": "Taiwan"
}
},
"email": "thtsai@saturn.yzu.edu.tw"
},
{
"first": "Wen-Lian",
"middle": [],
"last": "Hsu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Tsing Hua University",
"location": {
"settlement": "Hsinchu",
"country": "Taiwan"
}
},
"email": "hsu@iis.sinica.edu.tw"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "This work proposes a unified view of several features based on frequent strings extracted from unlabeled data that improve the conditional random fields (CRF) model for Chinese word segmentation (CWS). These features include character-based n-gram (CNG), accessor variety based string (AVS) and its variation of left-right co-existed feature (LRAVS), term-contributed frequency (TCF), and term-contributed boundary (TCB) with a specific manner of boundary overlapping. For the experiments, the baseline is the 6-tag, a state-of-the-art labeling scheme of CRF-based CWS, and the data set is acquired from the 2005 CWS Bakeoff of Special Interest Group on Chinese Language Processing (SIGHAN) of the Association for Computational Linguistics (ACL) and SIGHAN CWS Bakeoff 2010. The experimental results show that all of these features improve the performance of the baseline system in terms of recall, precision, and their harmonic average as F 1 measure score, on both accuracy (F) and out-of-vocabulary recognition (F OOV). In particular, this work presents compound features involving LRAVS/AVS and TCF/TCB that are competitive with other types of features for CRF-based CWS in terms of F and F OOV , respectively.",
"pdf_parse": {
"paper_id": "O12-4003",
"_pdf_hash": "",
"abstract": [
{
"text": "This work proposes a unified view of several features based on frequent strings extracted from unlabeled data that improve the conditional random fields (CRF) model for Chinese word segmentation (CWS). These features include character-based n-gram (CNG), accessor variety based string (AVS) and its variation of left-right co-existed feature (LRAVS), term-contributed frequency (TCF), and term-contributed boundary (TCB) with a specific manner of boundary overlapping. For the experiments, the baseline is the 6-tag, a state-of-the-art labeling scheme of CRF-based CWS, and the data set is acquired from the 2005 CWS Bakeoff of Special Interest Group on Chinese Language Processing (SIGHAN) of the Association for Computational Linguistics (ACL) and SIGHAN CWS Bakeoff 2010. The experimental results show that all of these features improve the performance of the baseline system in terms of recall, precision, and their harmonic average as F 1 measure score, on both accuracy (F) and out-of-vocabulary recognition (F OOV). In particular, this work presents compound features involving LRAVS/AVS and TCF/TCB that are competitive with other types of features for CRF-based CWS in terms of F and F OOV , respectively.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Many intelligent text processing tasks, such as information retrieval, text-to-speech, and machine translation assume the ready availability of a tokenization into words, which is relatively straightforward in languages with word delimiters (e.g., space) but is a little difficult for Asian languages, such as Chinese and Japanese.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction Background",
"sec_num": "1."
},
{
"text": "Chinese word segmentation (CWS) has been an active area of research in computational linguistics for two decades. SIGHAN, the Special Interest Group for Chinese Language Processing of the Association for Computational Linguistics, has conducted five word segmentation bakeoffs (Emerson, 2005; Jin & Chen, 2007; Levow, 2006; Sproat & Emerson, 2003; Zhao & Liu, 2010) . After years of intensive research, CWS has achieved high accuracy, but the issue of out-of-vocabulary (OOV) word recognition remains.",
"cite_spans": [
{
"start": 277,
"end": 292,
"text": "(Emerson, 2005;",
"ref_id": "BIBREF4"
},
{
"start": 293,
"end": 310,
"text": "Jin & Chen, 2007;",
"ref_id": "BIBREF11"
},
{
"start": 311,
"end": 323,
"text": "Levow, 2006;",
"ref_id": "BIBREF16"
},
{
"start": 324,
"end": 347,
"text": "Sproat & Emerson, 2003;",
"ref_id": "BIBREF25"
},
{
"start": 348,
"end": 365,
"text": "Zhao & Liu, 2010)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction Background",
"sec_num": "1."
},
{
"text": "Traditional approaches for CWS adopt a dictionary and rules to segment unlabeled texts, such as the work of Ma and Chen (2003) . In recent years, there has been a potent trend of using statistical machine learning models, especially the conditional random fields (CRF) (Lafferty et al., 2001) , which displays moderate performance for the sequential labeling problem and achieves competitive results with character-position based methods (Zhao et al., 2010) .",
"cite_spans": [
{
"start": 108,
"end": 126,
"text": "Ma and Chen (2003)",
"ref_id": "BIBREF20"
},
{
"start": 269,
"end": 292,
"text": "(Lafferty et al., 2001)",
"ref_id": "BIBREF14"
},
{
"start": 438,
"end": 457,
"text": "(Zhao et al., 2010)",
"ref_id": "BIBREF37"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The State of the Art of CWS",
"sec_num": null
},
{
"text": "In this work, unsupervised feature selection for CWS is based on frequent strings that are extracted automatically from unlabeled corpora. For convenience, these features are referred to as unsupervised features in the rest of this paper. Unsupervised features are suitable for closed training evaluation where external resources or extra information is not allowed, especially for cross-domain tasks, such as SIGHAN CWS bakeoff 2010 (Zhao & Liu, 2010) . Without proper knowledge, the closed training evaluation of word segmentation can be difficult with OOV words, where frequent strings collected from the test data may help. For incorporating unsupervised features into character-position based CRF for CWS, Zhao and Kit (2007) tried strings based on accessor variety (AV), which was developed by Feng et al. (2004) , and based on co-occurrence strings (COS). Jiang et al. (2010) applied a feature similar to COS, called term-contributed boundary (TCB).",
"cite_spans": [
{
"start": 434,
"end": 452,
"text": "(Zhao & Liu, 2010)",
"ref_id": null
},
{
"start": 711,
"end": 730,
"text": "Zhao and Kit (2007)",
"ref_id": "BIBREF38"
},
{
"start": 800,
"end": 818,
"text": "Feng et al. (2004)",
"ref_id": "BIBREF5"
},
{
"start": 863,
"end": 882,
"text": "Jiang et al. (2010)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Unsupervised Feature Selection for CWS",
"sec_num": null
},
{
"text": "According to Zhao and Kit (2007) , AV-based string (AVS) is one of the most effective unsupervised features for CWS by character-position based CRF. One motivation here is to seek deeper understanding of AVS's success. This work suspects that, since AVS is designed to keep overlapping substrings via the outer structure of a string while COS/TCB is usually selected via the inner structure of a string with its longest-first (i.e., non-overlapping) nature before integration into CRF, combining overlapping and outer information with",
"cite_spans": [
{
"start": 13,
"end": 32,
"text": "Zhao and Kit (2007)",
"ref_id": "BIBREF38"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Unsupervised Feature Selection for CWS",
"sec_num": null
},
{
"text": "Field Learning in Chinese Word Segmentation Using Unlabeled Data non-overlapping and inner information may enhance CRF-based CWS. Hence, a series of experiments is conducted to examine this hypothesis.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Enhancement of Feature Engineering for Conditional Random 47",
"sec_num": null
},
{
"text": "The remainder of the article is organized as follows. Section 2 briefly introduces CRF. Common unsupervised features based on the concept of frequent strings are explained in Section 3. Section 4 discusses related works. Section 5 describes the design of the labeling scheme and feature templates, along with a framework that is able to encode those overlapping features in a unified way. Details about the experiment are reported in Section 6. Finally, the conclusion is presented in Section 7.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Enhancement of Feature Engineering for Conditional Random 47",
"sec_num": null
},
{
"text": "Conditional random fields (CRF) are undirected graphical models trained to maximize a conditional probability of random variables X and Y, and the concept is well established for the sequential labeling problem (Lafferty et al., 2001) . Given an input sequence (or observation sequence) 1 ... T X x x = and a label sequence 1 ... T Y y y = , a conditional probability of linear-chain CRF with parameters 1 ... n \u03bb \u03bb \u039b = can be defined as:",
"cite_spans": [
{
"start": 211,
"end": 234,
"text": "(Lafferty et al., 2001)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Random Fields",
"sec_num": "2."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "1 1 X 1 ( | ) exp ( , , , ) T k k t t t k P Y X f y y X t Z \u03bb \u03bb \u2212 = \u239b \u239e = \u239c \u239f \u239d \u23a0 \u2211 \u2211 .",
"eq_num": "(1)"
}
],
"section": "Conditional Random Fields",
"sec_num": "2."
},
{
"text": "where Z X is the normalization constant that makes probability of all label sequences sum to one; 1 ( , , , )",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Random Fields",
"sec_num": "2."
},
{
"text": "k t t f y y X t \u2212",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Random Fields",
"sec_num": "2."
},
{
"text": "is a feature function which is often binary valued, but can be real valued; and k \u03bb is a learned weight associated with feature k f .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Random Fields",
"sec_num": "2."
},
{
"text": "The feature functions can measure any aspect of state transition , and the entire observation sequence X is centered at the current position t.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Random Fields",
"sec_num": "2."
},
{
"text": "Given the model defined in (1), the most probable labeling sequence for an input sequence X is as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Random Fields",
"sec_num": "2."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "* argmax ( | ) Y y P Y X \u039b = .",
"eq_num": "(2)"
}
],
"section": "Conditional Random Fields",
"sec_num": "2."
},
{
"text": "Equation (2) can be efficiently calculated by dynamic programming using the Viterbi algorithm. More details about the concepts of CRF and learning parameters could be found in Wallach (2004) . For sequential labeling tasks, like CWS, a linear-chain CRF is currently one of the most popular choices.",
"cite_spans": [
{
"start": 176,
"end": 190,
"text": "Wallach (2004)",
"ref_id": "BIBREF34"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Random Fields",
"sec_num": "2."
},
{
"text": "The word boundary and the word frequency are the standard notions of frequency in corpus-based natural language processing. Word-based n-gram is an intuitive and effective solution of language modeling. For languages without explicit word boundaries, such as Chinese, character-based n-gram (CNG) is usually insufficient. For example, consider some sample texts in Chinese:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Character-based N-gram",
"sec_num": "3.1"
},
{
"text": "\"\u81ea\u7136\u79d1\u5b78\u7684\u91cd\u8981\u6027\" (the importance of natural science), and \"\u81ea\u7136\u79d1\u5b78\u7684\u7814\u7a76\u662f\u552f\u4e00\u7684\u9014\u5f91\" (natural science research is the only way), where many character-based n-grams can be extracted, but some of them are out of context, such as \"\u7136\u79d1\" (so; discipline) and \"\u5b78\u7684\" (study; of), even when they are relatively frequent. For the purpose of interpreting overlapping behavior of frequent strings, however, character-based n-grams could still be useful for baseline analysis and implementation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Character-based N-gram",
"sec_num": "3.1"
},
{
"text": "The lack of correct information about the actual boundary and frequency of a multi-character/word expression's occurrence has been researched in different languages. The distortion of phrase boundaries and frequencies was first observed in the Vodis Corpus, where the word-based bigram \"RAIL ENQUIRIES\" and word-based trigram \"BRITISH RAIL ENQUIRIES\" were estimated and reported by O'Boyle (1993) and Ha et al. (2005) . Both of them occur 73 times, which is a large number for such a small corpus. \"ENQUIRIES\" follows \"RAIL\" with a very high probability when \"BRITISH\" precedes it. When \"RAIL\" is preceded by words other than \"BRITISH,\" however, \"ENQUIRIES\" does not occur, but words like \"TICKET\" or \"JOURNEY\" may. Thus, the bigram \"RAIL ENQUIRIES\" gives a misleading probability that \"RAIL\" is followed by \"ENQUIRIES\" irrespective of what precedes it.",
"cite_spans": [
{
"start": 390,
"end": 396,
"text": "(1993)",
"ref_id": null
},
{
"start": 401,
"end": 417,
"text": "Ha et al. (2005)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Reduced N-gram",
"sec_num": "3.2"
},
{
"text": "A common solution to this problem is that, if some n-grams consist of others, then the frequencies of the shorter ones have to be discounted with the frequencies of the longer ones. For Chinese, Lin & Yu (2011) reported a similar problem and its corresponding solution in the sense of reduced n-gram of Chinese characters. By excluding n-grams with their numbers of appearance that fully depend on other superstrings, \"\u7136\u79d1\" and \"\u5b78\u7684\" from the sample texts in the previous sub-section are no longer candidates of the string. Zhao and Kit (2007) described the same concept briefly as co-occurrence string (COS). Sung et al. (2008) invented a specific data structure for suffix array algorithm to calculate exact boundaries of phrase-alike string and their frequencies called term-contributed boundaries (TCB) and term-contributed frequencies (TCF), respectively, to analogize similarities and differences",
"cite_spans": [
{
"start": 522,
"end": 541,
"text": "Zhao and Kit (2007)",
"ref_id": "BIBREF38"
},
{
"start": 608,
"end": 626,
"text": "Sung et al. (2008)",
"ref_id": "BIBREF30"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Reduced N-gram",
"sec_num": "3.2"
},
{
"text": "Field Learning in Chinese Word Segmentation Using Unlabeled Data with the term frequencies. Since this work uses the program of TCB and TCF (namely YASA, yet another suffix array) for experiments, the family of reduced n-gram will be referred as TCB hereafter for convenience. Feng et al. (2004) proposed accessor variety (AV) to measure the likelihood a substring is a Chinese word. Another measurement, called boundary entropy or branching entropy (BE), exists in some works (Chang & Su, 1997; Cohen et al., 2007; Huang & Powers, 2003; Tanaka-Ishii, 2005; Tung & Lee, 1994) . The basic idea behind those measurements is closely related to one particular perspective of n-gram and information theory, cross-entropy or perplexity. According to Zhao and Kit (2007) , AV and BE both assume that the border of a potential Chinese word is located where the uncertainty of successive character increases. They believe that AV and BE are the discrete and continuous version, respectively, of a fundamental work of Harris (1970) , and they decided to adopt AVS as an unsupervised feature for CRF-based CWS. This work follows their choice in hope of producing a comparable study. AV of a string s is defined as:",
"cite_spans": [
{
"start": 277,
"end": 295,
"text": "Feng et al. (2004)",
"ref_id": "BIBREF5"
},
{
"start": 477,
"end": 495,
"text": "(Chang & Su, 1997;",
"ref_id": "BIBREF0"
},
{
"start": 496,
"end": 515,
"text": "Cohen et al., 2007;",
"ref_id": "BIBREF3"
},
{
"start": 516,
"end": 537,
"text": "Huang & Powers, 2003;",
"ref_id": "BIBREF8"
},
{
"start": 538,
"end": 557,
"text": "Tanaka-Ishii, 2005;",
"ref_id": "BIBREF32"
},
{
"start": 558,
"end": 575,
"text": "Tung & Lee, 1994)",
"ref_id": "BIBREF33"
},
{
"start": 744,
"end": 763,
"text": "Zhao and Kit (2007)",
"ref_id": "BIBREF38"
},
{
"start": 1008,
"end": 1021,
"text": "Harris (1970)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Enhancement of Feature Engineering for Conditional Random 49",
"sec_num": null
},
{
"text": "( ) min{ ( ), ( )} av av AV s L s R s = .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Uncertainty of Succeeding Character",
"sec_num": "3.3"
},
{
"text": "(3)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Uncertainty of Succeeding Character",
"sec_num": "3.3"
},
{
"text": "In (3), L av (s) and R av (s) are defined as the number of distinct preceding and succeeding characters, respectively, except, when the adjacent character is absent because of a sentence boundary, the pseudo-character of sentence beginning or sentence ending will be accumulated. Feng et al. (2004) also developed more heuristic rules to remove strings that contain known words or adhesive characters. For the strict meaning of unsupervised feature and for the sake of simplicity, these additional rules are dropped in this study.",
"cite_spans": [
{
"start": 280,
"end": 298,
"text": "Feng et al. (2004)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Uncertainty of Succeeding Character",
"sec_num": "3.3"
},
{
"text": "Since a recent work of Sun and Xu (2011) used both L av (s) and R av (s) as features of CRF, this work will apply a similar approach, which is denoted as LRAVS, to make a thorough comparison.",
"cite_spans": [
{
"start": 23,
"end": 40,
"text": "Sun and Xu (2011)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Uncertainty of Succeeding Character",
"sec_num": "3.3"
},
{
"text": "Besides previous works of TCB and TCF extraction (Sung et al., 2008) , Chinese frequent strings (Lin & Yu, 2001) , and reduced n-gram (Ha et al., 2005) , which have already been mentioned, the article about a linear algorithm for frequency of substring with reduction (L\u00fc & Zhang, 2005 ) also falls into this category. Most of these projects focused on the computational complexity of algorithms. Broader algorithms for frequent string extraction are suffix array (Manber & Myers, 1993) and PAT-tree (Chien, 1997) .",
"cite_spans": [
{
"start": 49,
"end": 68,
"text": "(Sung et al., 2008)",
"ref_id": "BIBREF30"
},
{
"start": 96,
"end": 112,
"text": "(Lin & Yu, 2001)",
"ref_id": "BIBREF19"
},
{
"start": 134,
"end": 151,
"text": "(Ha et al., 2005)",
"ref_id": "BIBREF6"
},
{
"start": 268,
"end": 285,
"text": "(L\u00fc & Zhang, 2005",
"ref_id": "BIBREF13"
},
{
"start": 464,
"end": 486,
"text": "(Manber & Myers, 1993)",
"ref_id": "BIBREF21"
},
{
"start": 500,
"end": 513,
"text": "(Chien, 1997)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Frequent String Extraction Algorithm",
"sec_num": "4.1"
},
{
"text": "Zhao and Kit have explored several unsupervised strategies with their unified goodness measurement of logarithm ranking (Zhao & Kit, 2007) , including frequency of substring with reduction (L\u00fc & Zhang, 2005) , description length gain (Kit & Wilks, 1999) , accessor variety (Feng et al., 2004) , and boundary/branching entropy (Chang & Su, 1997; Cohen et al., 2007; Huang & Powers, 2003; Tanaka-Ishii, 2005; Tung & Lee, 1994) . Unlike the technique described in this paper for incorporating unsupervised features into supervised CRF learning, those methods usually filter out word-alike candidates using their own scoring mechanism directly as unsupervised word segmentation.",
"cite_spans": [
{
"start": 120,
"end": 138,
"text": "(Zhao & Kit, 2007)",
"ref_id": "BIBREF38"
},
{
"start": 189,
"end": 207,
"text": "(L\u00fc & Zhang, 2005)",
"ref_id": "BIBREF13"
},
{
"start": 234,
"end": 253,
"text": "(Kit & Wilks, 1999)",
"ref_id": "BIBREF12"
},
{
"start": 273,
"end": 292,
"text": "(Feng et al., 2004)",
"ref_id": "BIBREF5"
},
{
"start": 326,
"end": 344,
"text": "(Chang & Su, 1997;",
"ref_id": "BIBREF0"
},
{
"start": 345,
"end": 364,
"text": "Cohen et al., 2007;",
"ref_id": "BIBREF3"
},
{
"start": 365,
"end": 386,
"text": "Huang & Powers, 2003;",
"ref_id": "BIBREF8"
},
{
"start": 387,
"end": 406,
"text": "Tanaka-Ishii, 2005;",
"ref_id": "BIBREF32"
},
{
"start": 407,
"end": 424,
"text": "Tung & Lee, 1994)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Unsupervised Word Segmentation Method",
"sec_num": "4.2"
},
{
"text": "Subword based tagging of Zhang et al. (2006) utilizes confidence measurement. Other overlapping ambiguity resolution approaches are Na\u00efve Bayesian classifiers (Li et al., 2003) , mutual information, difference of t-test (Sun et al., 1997) , and sorted table look-up (Qiao et al., 2008) . These works concentrate on overlapping of words according to some (supervised) standard, rather than overlapping of substrings from unsupervised selection.",
"cite_spans": [
{
"start": 25,
"end": 44,
"text": "Zhang et al. (2006)",
"ref_id": "BIBREF36"
},
{
"start": 159,
"end": 176,
"text": "(Li et al., 2003)",
"ref_id": "BIBREF18"
},
{
"start": 220,
"end": 238,
"text": "(Sun et al., 1997)",
"ref_id": "BIBREF27"
},
{
"start": 266,
"end": 285,
"text": "(Qiao et al., 2008)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Overlapping Ambiguity Resolution",
"sec_num": "4.3"
},
{
"text": "In this study, the CRF label set for CWS prediction adopts the 6-tag approach of Zhao et al. (2010) , which achieves very competitive performance and is one of the most fine-grained character position based labeling schemes. According to Zhao et al. (2010) , since less than 1% of Chinese words are longer than five characters in most corpora from SIGHAN CWS bakeoffs 2003 , 2006 , the coverage of a 6-tag approach should be sufficient. This configuration of CRF without additional unsupervised features is also the control group of the experiment. Table 1 provides a sample of labeled training data. For the sample text \"\u53cd\u800c (contrarily) / \u6703 (make) / \u6b32\u901f\u5247\uf967\u9054 (more haste, less speed)\" (on the contrary, haste makes waste), the tag B stands for the beginning character of a word, while C and D represent the second character and the third character of a word, respectively. The ending character of a word is tagged as E. Once a word consists of more than four characters, the tag for all of the middle characters between D and E is I. Finally, the tag S is reserved specifically for single-character words.",
"cite_spans": [
{
"start": 81,
"end": 99,
"text": "Zhao et al. (2010)",
"ref_id": "BIBREF37"
},
{
"start": 238,
"end": 256,
"text": "Zhao et al. (2010)",
"ref_id": "BIBREF37"
},
{
"start": 348,
"end": 372,
"text": "SIGHAN CWS bakeoffs 2003",
"ref_id": null
},
{
"start": 373,
"end": 379,
"text": ", 2006",
"ref_id": "BIBREF16"
}
],
"ref_spans": [
{
"start": 549,
"end": 556,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Character Position Based Labels",
"sec_num": "5.1"
},
{
"text": "\u53cd B \u800c E \u6703 S \u6b32 B \u901f C \u5247 D \uf967 I \u9054 E Enhancement",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Character Label",
"sec_num": null
},
{
"text": "Feature instances are generated from templates based on the work of Ratnaparkhi (1996) . Table 2 explains their abilities. C -1 , C 0 , and C 1 stand for the input tokens individually bound to the prediction label at the current position. For example, in Table 1 , if the current position is at the label I, features generated by C -1 , C 0 , and C 1 are \"\u5247,\" \"\uf967,\" and \"\u9054,\" respectively. Meanwhile, for window size 2, C -1 C 0 , C 0 C 1 , and C -1 C 1 expands features of the label I to \"\u5247\uf967,\" \"\uf967\u9054,\" and \"\u5247\u9054,\" respectively. One may argue that the feature template should expand to five tokens to cover the whole range of the 6-tag approach; however, according to Zhao et al. (2010) , the context window size in three tokens is effective to catch parameters of the 6-tag approach for most strings that do not exceed five characters. Our pilot test for this case also showed that context window size in two tokens would be sufficient without a significant decrease in performance (Jiang et al., 2010) .",
"cite_spans": [
{
"start": 68,
"end": 86,
"text": "Ratnaparkhi (1996)",
"ref_id": "BIBREF24"
},
{
"start": 662,
"end": 680,
"text": "Zhao et al. (2010)",
"ref_id": "BIBREF37"
},
{
"start": 977,
"end": 997,
"text": "(Jiang et al., 2010)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [
{
"start": 89,
"end": 96,
"text": "Table 2",
"ref_id": "TABREF1"
},
{
"start": 255,
"end": 262,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Feature Templates",
"sec_num": "5.2"
},
{
"text": "Unsupervised features that will be introduced in the next subsection are generated by the same template, except the binding target moves column by column, as listed in tables of the next subsection. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Feature Templates",
"sec_num": "5.2"
},
{
"text": "To our knowledge, TCF, which is designed to fulfill a symmetrical comparison between the properties of inner pattern (CNG, TCF, or COS/TCB) vs. outer pattern (AVS) and between overlapping string (CNG, AVS, or TCF) vs. maximally matched string (COS/TCB), has not been evaluated in any previous work. In short, while the original version of COS/TCB selects the maximally matched string (i.e., non-overlapping string) as the feature (Feng et al., 2004; Jiang et al., 2010; Zhao & Kit, 2007) , TCF collects features of reduced n-gram from every character position with additional rank of likelihood converted from term-contributed frequency, as its name implies. To compare different types of overlapping strings as unsupervised features systematically, this work extends the previous work of Zhao and Kit (2007) into a unified representation of features. The representation accommodates both character position of a string and the string's likelihood ranked in the logarithm. Formally, the ranking function for a string s with a score x counted by CNG, AVS, or TCF is defined as:",
"cite_spans": [
{
"start": 430,
"end": 449,
"text": "(Feng et al., 2004;",
"ref_id": "BIBREF5"
},
{
"start": 450,
"end": 469,
"text": "Jiang et al., 2010;",
"ref_id": "BIBREF10"
},
{
"start": 470,
"end": 487,
"text": "Zhao & Kit, 2007)",
"ref_id": "BIBREF38"
},
{
"start": 789,
"end": 808,
"text": "Zhao and Kit (2007)",
"ref_id": "BIBREF38"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
"sec_num": "5.3"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "1 ( ) , 2 2 r r f s r if x + = \u2264 < .",
"eq_num": "(4)"
}
],
"section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
"sec_num": "5.3"
},
{
"text": "The logarithm ranking mechanism in (4) is inspired by Zipf's law with the intention to alleviate the potential data sparseness problem of infrequent strings. The rank r and the corresponding character positions of a string then are concatenated as feature tokens. To give the reader a clearer picture about what feature tokens look like, a sample representation, which is denoted in regex as \"[0-9]+[B|C|D|I|E|S]\" for rank and character position, of CNG, AVS, or TCF is demonstrated and explained by Figure 1 and Table 3 . For example, judging by strings with two characters, one of the strings \"\u53cd\u800c\" gets rank r = 3; therefore, the column of two-character feature tokens has \"\u53cd\" denoted as 3B and \"\u800c\" denoted as 3E. If another two-character string \"\u800c\u6703\" competes with \"\u53cd\u800c\" at the position of \"\u800c\" with a lower rank r = 0, then 3E is selected for feature representation of the token at a certain position.",
"cite_spans": [],
"ref_spans": [
{
"start": 500,
"end": 508,
"text": "Figure 1",
"ref_id": "FIGREF1"
},
{
"start": 513,
"end": 520,
"text": "Table 3",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
"sec_num": "5.3"
},
{
"text": "Note that, when the string \"\u5247\uf967\" conflicts with the string \"\uf967\u9054\" at the position of \"\uf967\" with the same rank r = 3, the corresponding character position with rank of the leftmost string, which is 3E in this case, is applied arbitrarily.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
"sec_num": "5.3"
},
{
"text": "Although those are indeed common situations of overlapping strings, this work simply implements the above rules by Zhao and Kit (2007) for the sake of compatibility. In fact, pilot tests have been done with a more complicated representation, like 3E-0B for \"\u800c\" and 3E-3B for \"\uf967,\" to keep the overlapping information within each column, but the test result shows no significant differences in terms of accuracy and OOV recognition. Since the statistics of the pilot tests could be redundant, they are omitted in this paper.",
"cite_spans": [
{
"start": 115,
"end": 134,
"text": "Zhao and Kit (2007)",
"ref_id": "BIBREF38"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
"sec_num": "5.3"
},
{
"text": "To make an informative comparison, this work also applies the original version of non-overlapping COS/TCB features that is without ranks and is selected by the forward maximum matching algorithm (Feng et al., 2004; Jiang et al., 2010; Zhao & Kit, 2007) . Table 4 illustrates a sample representation of features in this case. Notably, there are several features encoded as -1 individually to represent that the desired string is unseen. For the non-overlapping siblings of the reduced n-grams family, such as COS/TCB, either the string is always occupied by other superstrings or it simply does not appear more than once.",
"cite_spans": [
{
"start": 195,
"end": 214,
"text": "(Feng et al., 2004;",
"ref_id": "BIBREF5"
},
{
"start": 215,
"end": 234,
"text": "Jiang et al., 2010;",
"ref_id": "BIBREF10"
},
{
"start": 235,
"end": 252,
"text": "Zhao & Kit, 2007)",
"ref_id": "BIBREF38"
}
],
"ref_spans": [
{
"start": 255,
"end": 263,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Unified Feature Representation of CNG/AVS/TCF/TCB",
"sec_num": "5.3"
},
{
"text": "Non-overlapping COS/TCB strings.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Table 4. Sample of the unified feature representation for",
"sec_num": null
},
{
"text": "\u53cd B B \u800c C E \u6703 E S \u6b32 -1 B \u901f -1 C \u5247 -1 D \uf967 -1 I \u9054 -1 E",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Input Original COS/TCB Feature Label",
"sec_num": null
},
{
"text": "The length of a string is limited to five characters for the sake of efficiency and consistency with the 6-tag approach.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Input Original COS/TCB Feature Label",
"sec_num": null
},
{
"text": "CRF++ 0.54 (http://crfpp.sourceforge.net/) employs L-BFGS optimization and the tunable hyper-parameter (CRF++ training function argument \"-c\"), i.e., the Gaussian prior, set to 100 throughout the whole experiment.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "6."
},
{
"text": "The corpora used for the experiment are from the SIGHAN CWS bakeoff 2005 (Emerson, 2005) and SIGHAN CWS bakeoff 2010 (Zhao & Liu, 2010) . SIGHAN 2005 comes with four different standards, including Academia Sinica (AS), City University of Hong Kong (CityU), Microsoft Research (MSR), and Peking University (PKU). SIGHAN 2010 provides a Traditional Chinese corpus and a Simplified Chinese corpus. Each corpus has training/test sets of four domains, including literature, computers, medicine, and finance, that are denoted as domains A, B, C, and D, respectively. For comparison, statistics on most corpora of SIGHAN 2003 SIGHAN , 2006 SIGHAN , and 2008 that have been obtained are listed in the appendix.",
"cite_spans": [
{
"start": 73,
"end": 88,
"text": "(Emerson, 2005)",
"ref_id": "BIBREF4"
},
{
"start": 117,
"end": 135,
"text": "(Zhao & Liu, 2010)",
"ref_id": null
},
{
"start": 607,
"end": 618,
"text": "SIGHAN 2003",
"ref_id": null
},
{
"start": 619,
"end": 632,
"text": "SIGHAN , 2006",
"ref_id": null
},
{
"start": 633,
"end": 650,
"text": "SIGHAN , and 2008",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data Set",
"sec_num": "6.1"
},
{
"text": "Unsupervised features are collected according to pairs of corresponding training/test corpora. CNG and AVS are arranged with the help from SRILM (Stolcke, 2002) . TCB strings and their ranks converted from TCF are calculated by YASA (Sung et al., 2008) . To distinguish the ranked and overlapping features of TCB/TCF from those of the original version of non-overlapping COS/TCB-based features, the former are denoted as TCF to indicate the score source of frequency for ranking, and the abbreviation of the later remains as TCB.",
"cite_spans": [
{
"start": 145,
"end": 160,
"text": "(Stolcke, 2002)",
"ref_id": "BIBREF26"
},
{
"start": 233,
"end": 252,
"text": "(Sung et al., 2008)",
"ref_id": "BIBREF30"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Unsupervised Feature Selection",
"sec_num": "6.2"
},
{
"text": "The evaluation metrics of CWS task are adopted from SIGHAN bakeoffs, including test precision (P), test recall (R), and their harmonic average F 1 measure score (F), as (5), (6), and 7, respectively. For performance of OOV, formulae that are similar to P/R/F are employed. To estimate the differences of performance between configurations of CWS experiments, this work uses the confidence level, which has been applied since SIGHAN CWS bakeoff 2003 (Sproat & Emerson, 2003) . The confidence level assumes that the recall (or precision) X of accuracy (or OOV recognition) represents the probability that a word (or OOV word) will be identified from N words in total and that a binomial distribution is appropriate for the experiment. Confidence levels of P, R, P OOV , and R OOV appear in Tables 5-10 under the columns C P , C R , C Poov , and C Roov , respectively, and they are calculated at the 95% confidence interval with the formula \u00b12 \u221a ([X(1-X)] / N). Two configurations of CWS experiments then are considered to be statistically different at a 95% confidence level if one of their C P , C R , ",
"cite_spans": [
{
"start": 449,
"end": 473,
"text": "(Sproat & Emerson, 2003)",
"ref_id": "BIBREF25"
},
{
"start": 550,
"end": 570,
"text": "(or OOV recognition)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation Metrics",
"sec_num": "6.3"
},
{
"text": "the number of words that are correctly segmented 100% the number of words in the gold standard R = \u00d7 .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation Metrics",
"sec_num": "6.3"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "2 P R F P R \u00d7 \u00d7 = + .",
"eq_num": "(6)"
}
],
"section": "Evaluation Metrics",
"sec_num": "6.3"
},
{
"text": "The most significant type of error is unintentionally segmented alphanumeric sequences, such as English words or factoids in Arabic numerals. Rather than developing another set of feature templates for non-Chinese characters that may violate the rules of closed training evaluation, post-processing, which is mentioned in the official report of SIGHAN CWS bakeoff 2005 (Emerson, 2005) , has been applied to remove spaces between non-Chinese characters in the gold standard data of the AS corpus manually, since there are no urgent expectations of correct segmentation on non-Chinese text. In SIGHAN 2005 and 2006, however, some participants used character types, such as digits, date/time specific Chinese characters, English letters, punctuation, and others (Chinese characters) as extra features, which triggered a debate of closed training criteria (Zhao et al., 2010) . Consequently, SIGHAN 2010 decided to allow four types of characters, distinguished as Chinese characters, English letters, digits, and punctuation. This work provides preliminary tests on non-Chinese patterns extracted from SIGHAN 2010 unlabeled training corpora A and B, extra features of character types (in character based trigram, T -1 T 0 T 1 , where T can be E, D, P, or C for alphabets, digits, punctuations, or Chinese characters, respectively), and their combinations to verify the performance impact of these special treatments, as shown in Table 5 -Table 8 . On the one hand, the statistics indicate that the character types perform well and stably on most of the corpora. On the other hand, the features, such as AVS and TCF, may still need help from non-Chinese patterns of unlabeled training corpora A and B. As a matter of fact, our other preliminary test suggests that SIGHAN 2010 test corpora contain a lot of OOV and inconsistent segments from non-Chinese text (for example, inconsistency of usage on full-width or half-width non-Chinese characters, some English words and factoids being segmented but some of them not, etc.), which only can be memorized from the non-Chinese patterns. Consequently, the experimental results of SIGHAN 2010 corpora involve non-Chinese treatment based on the combination of the extra character type features and the non-Chinese patterns, but the experimental results of SIGHAN 2005 corpora do not. This empirical decision implies that CWS benchmarking corpus should be prepared more carefully to avoid unpredictable side effects from non-Chinese text. Note that the treatment does not use unlabeled training corpora A and B separately. Further discussions are mainly based on this treatment, hopefully without loss of generality and of interest for comparative studies. Numbers in bold face and italic style indicate the best and the second best results of a certain evaluation metric, respectively, except for the topline and the best record from each year of SIGHAN bakeoffs. Configurations with the same values of confidence level on P or R are underlined, but only records that have the same confidence level on both P and R should be considered as statistically insignificant, and this phenomenon did not occur in our experiment results.",
"cite_spans": [
{
"start": 369,
"end": 384,
"text": "(Emerson, 2005)",
"ref_id": "BIBREF4"
},
{
"start": 852,
"end": 871,
"text": "(Zhao et al., 2010)",
"ref_id": "BIBREF37"
}
],
"ref_spans": [
{
"start": 1425,
"end": 1441,
"text": "Table 5 -Table 8",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Experimental Results",
"sec_num": "6.4"
},
{
"text": "Unlike the previous work, which showed a relatively clearer trend of feature selection (Jiang et al., 2011) , CWS performance may vary between different CWS standards and domains in this study. Considering either the best or second best records in terms of F, feature combinations consisting of LRAVS or AVS usually outperform, except on MSR of SIGHAN 2005 corpora. Nevertheless, in terms of F OOV , feature combinations consisting of TCF or TCB consistently increase in performance on every corpus. Similar situations also can be recognized from the experiments on some of the SIGHAN 2003 SIGHAN , 2006 SIGHAN , and 2008 please refer to the appendix for details. This complicated phenomenon indicates that, since CWS studies usually struggle with incremental and small improvements, different CWS standards and/or domains can make comparative research difficult and cause experimental results of related works to be incompatible. For equipping supervised CWS with unsupervised feature selection from unlabeled data, the experimental results of this work suggests that using LRAVS+TCF with more careful non-Chinese text treatments and CRF parameter tuning (e.g., more cross-validations to find a specific hyper-parameter of Gaussian prior) would be a very good choice. Nevertheless, it is still worth noting that the best performance of this work in terms of F is found on the best official records on traditional Chinese domain B (Computer) of SIGHAN 2010 corpora and all of the SIGHAN 2005 corpora except the PKU corpus. This is especially true when this work does not apply any special treatment of character type and non-Chinese text that many other related works do on SIGHAN 2005 corpora. Note that \"Our Baseline/Topline\" in the following tables indicates where official baseline/topline suffered from official release script for maximum matching malfunctions on data in UTF-8 encoding and/or some uncertain incompatibilities between obtained corpora and official ones that caused inconsistent statistics during experiment reproductions. It has been observed that using any of the unsupervised features could create short patterns for the CRF learner, which might break more English words than using the 6-tag approach alone. AVS, TCF, and TCB, however, resolve more overlapping ambiguities of Chinese words than the 6-tag approach and CNG. Interestingly, even for the unsupervised feature without rank or overlapping information, TCB/TCF successfully recognizes \"\u4f9d\u9760 / \u5355\u4f4d / \u7684 / \u7ebd\u5e26 / \u6765 / \u7ef4\u6301,\" while the 6-tag approach sees this phrase incorrectly as \"\u4f9d \u9760 / \u5355\u4f4d / \u7684 / \u7ebd / \u5e26\u6765 / \u7ef4\u6301.\" TCB/TCF also saves more factoids, such as \"\u4e00\u4e8c\u4e5d\uff0e \u4e5d / \u5de6\u53f3\" (129.9 / around) from scattered tokens, such as \"\u4e00\u4e8c\u4e5d / \uff0e / \u4e5d / \u5de6\u53f3\" (129 / point / 9 / around).",
"cite_spans": [
{
"start": 87,
"end": 107,
"text": "(Jiang et al., 2011)",
"ref_id": "BIBREF9"
},
{
"start": 578,
"end": 589,
"text": "SIGHAN 2003",
"ref_id": null
},
{
"start": 590,
"end": 603,
"text": "SIGHAN , 2006",
"ref_id": null
},
{
"start": 604,
"end": 621,
"text": "SIGHAN , and 2008",
"ref_id": null
},
{
"start": 622,
"end": 622,
"text": "",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Results",
"sec_num": "6.4"
},
{
"text": "The above observations suggest that the quality of a string as a word-like candidate should be an important factor for the unsupervised feature injected CRF learner. Relatively speaking, CNG probably brings in too much noise. Feature combinations of LRAVS and TCF usually improve F and F OOV , respectively. Improvements are significant in terms of C R , C P , C Roov , and C Poov ,, which confirms the hypothesis mentioned at the end of Section 1.3 that, combining information from the outer pattern of a substring (i.e., LRAVS) with information from the inner pattern of a substring (i.e., TCF) into a compound of unsupervised feature could help improving CWS performance of supervised labeling scheme of CRF. Nevertheless, since AVS or TCB sometimes gain better results, fine-tuning of feature engineering according to different corpora and segmentation standards is necessary.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Results",
"sec_num": "6.4"
},
{
"text": "This work provides a unified view of CRF-based CWS integrated with unsupervised features via frequent string, and it reasons that, since LRAVS comes with inner structure and TCF comes with outer structure of overlapping string, utilizing their compound features could be more useful than applying one of them solely. The thorough experimental results show that the compound features of LRAVS and TCF usually obtain competitive performance in terms of F and F OOV , respectively. Sometimes, AVS and TCB may contribute more, but generally combining the outer pattern of a substring (i.e., LRAVS or AVS) with the inner pattern of a substring (i.e., TCF or TCB) into a compound of unsupervised features could help improve CWS performance of a supervised labeling scheme of CRF. Recommended future investigation is unknown word extraction and named entity recognition using AVS (Li et al., 2010) and TCF/TCB (Chang & Lee, 2003; Zhang et al., 2010) as features for more complicated CRF (Sun & Nan, 2010 ",
"cite_spans": [
{
"start": 873,
"end": 890,
"text": "(Li et al., 2010)",
"ref_id": "BIBREF17"
},
{
"start": 903,
"end": 922,
"text": "(Chang & Lee, 2003;",
"ref_id": "BIBREF1"
},
{
"start": 923,
"end": 942,
"text": "Zhang et al., 2010)",
"ref_id": "BIBREF35"
},
{
"start": 980,
"end": 996,
"text": "(Sun & Nan, 2010",
"ref_id": "BIBREF29"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "7."
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "An Unsupervised Iterative Method for Chinese New Lexicon Extraction",
"authors": [
{
"first": "J.-S",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "K.-Y",
"middle": [],
"last": "Su",
"suffix": ""
}
],
"year": 1997,
"venue": "Proc. Computational Linguistics and Chinese Language Processing",
"volume": "2",
"issue": "",
"pages": "97--148",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chang, J.-S., & Su, K.-Y. (1997). An Unsupervised Iterative Method for Chinese New Lexicon Extraction. in Proc. Computational Linguistics and Chinese Language Processing, 2(2), 97-148.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Automatic Chinese unknown word extraction using small-corpus-based method",
"authors": [
{
"first": "T.-H",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "C.-H",
"middle": [],
"last": "Lee",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. International Conference on Natural Language Processing and Knowledge Engineering",
"volume": "",
"issue": "",
"pages": "459--464",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chang, T.-H., & Lee, C.-H. (2003). Automatic Chinese unknown word extraction using small-corpus-based method. in Proc. International Conference on Natural Language Processing and Knowledge Engineering, 459-464.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "PAT-tree-based Keyword Extraction for Chinese Information Retrieval",
"authors": [
{
"first": "L.-F",
"middle": [],
"last": "Chien",
"suffix": ""
}
],
"year": 1997,
"venue": "Proc. 20th Annnual International ACM SIGIR Conference on Research and Development in Information Retrieval",
"volume": "",
"issue": "",
"pages": "50--58",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chien, L.-F. (1997). PAT-tree-based Keyword Extraction for Chinese Information Retrieval. in Proc. 20th Annnual International ACM SIGIR Conference on Research and Development in Information Retrieval, 50-58.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Voting Experts: An Unsupervised Algorithm for Segmenting Sequences",
"authors": [
{
"first": "P",
"middle": [],
"last": "Cohen",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Adams",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Heeringa",
"suffix": ""
}
],
"year": 2007,
"venue": "Intelligent Data Analysis",
"volume": "11",
"issue": "6",
"pages": "607--625",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Cohen, P., Adams, N., & Heeringa, B. (2007). Voting Experts: An Unsupervised Algorithm for Segmenting Sequences. Intelligent Data Analysis, 11(6), 607-625.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "The Second International Chinese Word Segmentation Bakeoff",
"authors": [
{
"first": "T",
"middle": [],
"last": "Emerson",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. 4th SIGHAN Workshop on Chinese Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Emerson, T. (2005). The Second International Chinese Word Segmentation Bakeoff. in Proc. 4th SIGHAN Workshop on Chinese Language Processing.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Accessor Variety Criteria for Chinese Word Extraction",
"authors": [
{
"first": "H",
"middle": [],
"last": "Feng",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Zheng",
"suffix": ""
}
],
"year": 2004,
"venue": "Computational Linguistics",
"volume": "30",
"issue": "1",
"pages": "75--93",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Feng, H., Chen, K., Deng, X., & Zheng, W. (2004). Accessor Variety Criteria for Chinese Word Extraction. Computational Linguistics, 30(1), 75-93.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Reduced N-Grams for Chinese Evaluation",
"authors": [
{
"first": "L",
"middle": [
"Q"
],
"last": "Ha",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Seymour",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Hanna",
"suffix": ""
},
{
"first": "F",
"middle": [
"J"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2005,
"venue": "Computational Linguistics and Chinese Language Processing",
"volume": "10",
"issue": "",
"pages": "19--34",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ha, L. Q., Seymour, R., Hanna, P., & Smith, F. J. (2005). Reduced N-Grams for Chinese Evaluation. Computational Linguistics and Chinese Language Processing, 10(1), 19-34.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Morpheme Boundaries within Words. Paper presented at the Structural and Transformational Linguistics",
"authors": [
{
"first": "Z",
"middle": [
"S"
],
"last": "Harris",
"suffix": ""
}
],
"year": 1970,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Harris, Z. S. (1970). Morpheme Boundaries within Words. Paper presented at the Structural and Transformational Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Chinese Word Segmentation based on contextual entropy",
"authors": [
{
"first": "J",
"middle": [
"H"
],
"last": "Huang",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Powers",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. 17th Asian Pacific Conference on Language, Information and Computation",
"volume": "",
"issue": "",
"pages": "152--158",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Huang, J. H., & Powers, D. (2003). Chinese Word Segmentation based on contextual entropy. in Proc. 17th Asian Pacific Conference on Language, Information and Computation, 152-158.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Enhancement of Unsupervised Feature Selection for Conditional Random Fields Learning in Chinese Word Segmentation",
"authors": [
{
"first": "T.-J",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "W.-L",
"middle": [],
"last": "Hsu",
"suffix": ""
},
{
"first": "C.-H",
"middle": [],
"last": "Kuo",
"suffix": ""
},
{
"first": "T.-H",
"middle": [],
"last": "Yang",
"suffix": ""
}
],
"year": 2011,
"venue": "Proc. 7th IEEE International Conference on Natural Language Processing and Knowledge Engineering",
"volume": "",
"issue": "",
"pages": "382--389",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jiang, T.-J., Hsu, W.-L., Kuo, C.-H., & Yang, T.-H. (2011). Enhancement of Unsupervised Feature Selection for Conditional Random Fields Learning in Chinese Word Segmentation. in Proc. 7th IEEE International Conference on Natural Language Processing and Knowledge Engineering, 382-389.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Term Contributed Boundary Tagging by Conditional Random Fields for SIGHAN 2010 Chinese Word Segmentation Bakeoff",
"authors": [
{
"first": "T.-J",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "S.-H",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "C.-L",
"middle": [],
"last": "Sung",
"suffix": ""
},
{
"first": "W.-L",
"middle": [],
"last": "Hsu",
"suffix": ""
}
],
"year": 2010,
"venue": "Proc. 1st CIPS-SIGHAN Joint Conf. on Chinese Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jiang, T.-J., Liu, S.-H., Sung, C.-L., & Hsu, W.-L. (2010). Term Contributed Boundary Tagging by Conditional Random Fields for SIGHAN 2010 Chinese Word Segmentation Bakeoff. in Proc. 1st CIPS-SIGHAN Joint Conf. on Chinese Language Processing, Beijing, China.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "The Fourth International Chinese Language Processing Bakeoff : Chinese Word Segmentation, Named Entity Recognition and Chinese POS Tagging",
"authors": [
{
"first": "G",
"middle": [],
"last": "Jin",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2007,
"venue": "Proc. 6th SIGHAN Workshop on Chinese Language Processing",
"volume": "",
"issue": "",
"pages": "69--81",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jin, G., & Chen, X. (2007). The Fourth International Chinese Language Processing Bakeoff : Chinese Word Segmentation, Named Entity Recognition and Chinese POS Tagging. in Proc. 6th SIGHAN Workshop on Chinese Language Processing, 69-81.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Unsupervised learning of word boundary with description length gain",
"authors": [
{
"first": "C",
"middle": [],
"last": "Kit",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Wilks",
"suffix": ""
}
],
"year": 1999,
"venue": "Proc. CoNLL-99",
"volume": "",
"issue": "",
"pages": "1--6",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kit, C., & Wilks, Y. (1999). Unsupervised learning of word boundary with description length gain. in Proc. CoNLL-99, 1-6.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Statistical Substring Reduction in Linear Time",
"authors": [
{
"first": "X",
"middle": [],
"last": "L\u00fc",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. 1st Internal Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L\u00fc, X., & Zhang, L. (2005). Statistical Substring Reduction in Linear Time. in Proc. 1st Internal Joint Conference on Natural Language Processing.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Conditional Random Fields Enhancement of Feature Engineering for Conditional Random 73",
"authors": [
{
"first": "J",
"middle": [],
"last": "Lafferty",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Mccallum",
"suffix": ""
},
{
"first": "F",
"middle": [
"C N"
],
"last": "Pereira",
"suffix": ""
}
],
"year": 2001,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lafferty, J., McCallum, A., & Pereira, F. C. N. (2001). Conditional Random Fields Enhancement of Feature Engineering for Conditional Random 73",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Field Learning in Chinese Word Segmentation Using Unlabeled Data Probabilistic Models for Segmenting and Labeling Sequence Data",
"authors": [],
"year": null,
"venue": "Proc. ICML",
"volume": "",
"issue": "",
"pages": "282--289",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Field Learning in Chinese Word Segmentation Using Unlabeled Data Probabilistic Models for Segmenting and Labeling Sequence Data. in Proc. ICML. 282-289.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "The Third International Chinese Language Processing Bakeoff Word Segmentation and Named Entity Recognition",
"authors": [
{
"first": "G.-A",
"middle": [],
"last": "Levow",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. 5th SIGHAN Workshop on Chinese Language Processing",
"volume": "",
"issue": "",
"pages": "108--117",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Levow, G.-A. (2006). The Third International Chinese Language Processing Bakeoff Word Segmentation and Named Entity Recognition. in Proc. 5th SIGHAN Workshop on Chinese Language Processing, 108-117.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "A Hybrid Model Combining CRF with Boundary Templates for Chinese Person Name Recognition",
"authors": [
{
"first": "L",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Z",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Z",
"middle": [],
"last": "Ding",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2010,
"venue": "International Journal Advanced Intelligent",
"volume": "2",
"issue": "1",
"pages": "73--80",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Li, L., Li, Z., Ding, Z., & Huang, D. (2010). A Hybrid Model Combining CRF with Boundary Templates for Chinese Person Name Recognition. International Journal Advanced Intelligent, 2(1), 73-80.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Unsupervised Training for Overlapping Ambiguity Resolution in Chinese Word Segmentation",
"authors": [
{
"first": "M",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. 2nd SIGHAN Workshop on Chinese Language Processing",
"volume": "17",
"issue": "",
"pages": "1--7",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Li, M., Gao, J., Huang, C., & Li, J. (2003). Unsupervised Training for Overlapping Ambiguity Resolution in Chinese Word Segmentation. in Proc. 2nd SIGHAN Workshop on Chinese Language Processing, 17, 1-7.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Extracting Chinese Frequent Strings without a Dictionary from a Chinese Corpus and its Applications",
"authors": [
{
"first": "Y.-J",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "M.-S",
"middle": [],
"last": "Yu",
"suffix": ""
}
],
"year": 2001,
"venue": "J. Information Science and Engineering",
"volume": "17",
"issue": "",
"pages": "805--824",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lin, Y.-J., & Yu, M.-S. (2001). Extracting Chinese Frequent Strings without a Dictionary from a Chinese Corpus and its Applications. J. Information Science and Engineering, 17, 805-824.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff",
"authors": [
{
"first": "W.-Y",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "K.-J",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. 2nd SIGHAN Workshop on Chinese Language Processing",
"volume": "17",
"issue": "",
"pages": "168--171",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ma, W.-Y., & Chen, K.-J. (2003). Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff. in Proc. 2nd SIGHAN Workshop on Chinese Language Processing, 17, 168-171.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Suffix arrays: a new method for on-line string searches",
"authors": [
{
"first": "U",
"middle": [],
"last": "Manber",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Myers",
"suffix": ""
}
],
"year": 1993,
"venue": "SIAM J. Computing",
"volume": "22",
"issue": "5",
"pages": "935--948",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Manber, U., & Myers, G. (1993). Suffix arrays: a new method for on-line string searches. SIAM J. Computing, 22(5), 935-948.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "A Study of an N-Gram Language Model for Speech Recognition",
"authors": [
{
"first": "P",
"middle": [],
"last": "O'boyle",
"suffix": ""
}
],
"year": 1993,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "O'Boyle, P. (1993). A Study of an N-Gram Language Model for Speech Recognition. (Ph.D.), Queen's University Belfast.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Statistical Properties of Overlapping Ambiguities in Chinese Word Segmentation and a Strategy for Their Disambiguation",
"authors": [
{
"first": "W",
"middle": [],
"last": "Qiao",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Menzel",
"suffix": ""
}
],
"year": 2008,
"venue": "Proc. Text, Speech and Dialogue",
"volume": "",
"issue": "",
"pages": "177--186",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Qiao, W., Sun, M., & Menzel, W. (2008). Statistical Properties of Overlapping Ambiguities in Chinese Word Segmentation and a Strategy for Their Disambiguation. in Proc. Text, Speech and Dialogue, 177-186.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "A Maximum Entropy Model for Part-of-Speech Tagging",
"authors": [
{
"first": "A",
"middle": [],
"last": "Ratnaparkhi",
"suffix": ""
}
],
"year": 1996,
"venue": "Proc. Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "133--142",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ratnaparkhi, A. (1996). A Maximum Entropy Model for Part-of-Speech Tagging. in Proc. Empirical Methods in Natural Language Processing, 133-142.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "The First International Chinese Word Segmentation Bakeoff",
"authors": [
{
"first": "R",
"middle": [],
"last": "Sproat",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Emerson",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. 2nd SIGHAN Workshop on Chinese Language Processing",
"volume": "17",
"issue": "",
"pages": "133--143",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sproat, R., & Emerson, T. (2003). The First International Chinese Word Segmentation Bakeoff. in Proc. 2nd SIGHAN Workshop on Chinese Language Processing, 17, 133-143.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "SRILM -An Extensible Language Modeling Toolkit",
"authors": [
{
"first": "A",
"middle": [],
"last": "Stolcke",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. Spoken Language Processing",
"volume": "",
"issue": "",
"pages": "901--904",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stolcke, A. (2002). SRILM -An Extensible Language Modeling Toolkit. in Proc. Spoken Language Processing, 901-904.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Using Character Bigram for Ambiguity Resolution In Chinese Word Segmentation (In Chinese)",
"authors": [
{
"first": "M",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "C",
"middle": [
"N"
],
"last": "Huang",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "D",
"middle": [
"Y"
],
"last": "Shen",
"suffix": ""
}
],
"year": 1997,
"venue": "Computer Research and Development",
"volume": "34",
"issue": "5",
"pages": "332--339",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sun, M., Huang, C. N., Lu, F., & Shen, D. Y. (1997). Using Character Bigram for Ambiguity Resolution In Chinese Word Segmentation (In Chinese). Computer Research and Development, 34(5), 332-339.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Enhancing Chinese Word Segmentation Using Unlabeled Data",
"authors": [
{
"first": "W",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Xu",
"suffix": ""
}
],
"year": 2011,
"venue": "Proc. Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "970--979",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sun, W., & Xu, J. (2011). Enhancing Chinese Word Segmentation Using Unlabeled Data. in Proc. Empirical Methods in Natural Language Processing, 970-979.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Chinese base phrases chunking based on latent semi-CRF model",
"authors": [
{
"first": "X",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Nan",
"suffix": ""
}
],
"year": 2010,
"venue": "Proc. International Conference on Natural Language Processing and Knowledge Engineering",
"volume": "",
"issue": "",
"pages": "1--7",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sun, X., & Nan, X. (2010). Chinese base phrases chunking based on latent semi-CRF model. in Proc. International Conference on Natural Language Processing and Knowledge Engineering, 1-7.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Compute the Term Contributed Frequency",
"authors": [
{
"first": "C.-L",
"middle": [],
"last": "Sung",
"suffix": ""
},
{
"first": "H.-C",
"middle": [],
"last": "Yen",
"suffix": ""
},
{
"first": "W.-L",
"middle": [],
"last": "Hsu",
"suffix": ""
}
],
"year": 2008,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sung, C.-L., Yen, H.-C., & Hsu, W.-L. (2008). Compute the Term Contributed Frequency. in Mike Tian-Jian Jiang et al.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Proc. 8th Int. Conference Intelligent System Design and Application",
"authors": [],
"year": null,
"venue": "",
"volume": "2",
"issue": "",
"pages": "325--328",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Proc. 8th Int. Conference Intelligent System Design and Application, 2, 325-328.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Entropy as an Indicator of Context Boundaries: An Experiment Using a Web Search Engine",
"authors": [
{
"first": "K",
"middle": [],
"last": "Tanaka-Ishii",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. Internal Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "93--105",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tanaka-Ishii, K. (2005). Entropy as an Indicator of Context Boundaries: An Experiment Using a Web Search Engine. in Proc. Internal Joint Conference on Natural Language Processing, 93-105.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Identification of Unkown Words from Corpus",
"authors": [
{
"first": "C.-H",
"middle": [],
"last": "Tung",
"suffix": ""
},
{
"first": "H.-J",
"middle": [],
"last": "Lee",
"suffix": ""
}
],
"year": 1994,
"venue": "Computational Proc. Chinese and Oriental Languages",
"volume": "8",
"issue": "",
"pages": "131--145",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tung, C.-H., & Lee, H.-J. (1994). Identification of Unkown Words from Corpus. Computational Proc. Chinese and Oriental Languages, 8, 131-145.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Conditional Random Fields An Introduction",
"authors": [
{
"first": "H",
"middle": [
"M"
],
"last": "Wallach",
"suffix": ""
}
],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wallach, H. M. (2004). Conditional Random Fields An Introduction. (MS-CIS-04-21).",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "A pragmatic model for new Chinese word extraction",
"authors": [
{
"first": "H",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Shi",
"suffix": ""
}
],
"year": 2010,
"venue": "Proc. International Conference on Natural Language Processing and Knowledge Engineering",
"volume": "",
"issue": "",
"pages": "1--8",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhang, H., Huang, H., Zhu, C., & Shi, S. (2010). A pragmatic model for new Chinese word extraction. in Proc. International Conference on Natural Language Processing and Knowledge Engineering, 1-8.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Subword-based Tagging for Confidence-dependent Chinese Word Segmentation",
"authors": [
{
"first": "R",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Kikui",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Sumita",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. COLING/ACL",
"volume": "",
"issue": "",
"pages": "961--968",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhang, R., Kikui, G., & Sumita, E. (2006). Subword-based Tagging for Confidence-dependent Chinese Word Segmentation. in Proc. COLING/ACL, 961-968.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "A Unified Character-Based Tagging Framework for Chinese Word Segmentation",
"authors": [
{
"first": "H",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "C.-N",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "B.-L",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2010,
"venue": "ACM Trans. on Asian Language Information Processing",
"volume": "9",
"issue": "2",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhao, H., Huang, C.-N., Li, M., & Lu, B.-L. (2010). A Unified Character-Based Tagging Framework for Chinese Word Segmentation. ACM Trans. on Asian Language Information Processing, 9(2).",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Incorporating Global Information into Supervised Learning for Chinese Word Segmentation",
"authors": [
{
"first": "H",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Kit",
"suffix": ""
}
],
"year": 2007,
"venue": "Proc. 10th PACLIC",
"volume": "",
"issue": "",
"pages": "66--74",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhao, H., & Kit, C. (2007). Incorporating Global Information into Supervised Learning for Chinese Word Segmentation. in Proc. 10th PACLIC, 66-74.",
"links": null
}
},
"ref_entries": {
"FIGREF1": {
"text": "Example of overlapping strings with ranks.",
"num": null,
"type_str": "figure",
"uris": null
},
"TABREF1": {
"text": "",
"content": "<table><tr><td>C -1 , C 0 , C 1</td><td>Previous, current, or next token</td></tr><tr><td>C -1 C 0</td><td>Previous and current tokens</td></tr><tr><td>C 0 C 1</td><td>Current and next tokens</td></tr><tr><td>C -1 C 1</td><td>Previous and next tokens</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF2": {
"text": "",
"content": "<table><tr><td>Input</td><td>1 char</td><td>2 char</td><td colspan=\"2\">Unsupervised Feature 3 char 4 char</td><td>5 char</td><td>Label</td></tr><tr><td>\u53cd</td><td>5S</td><td>3B</td><td>4B</td><td>0B</td><td>0B</td><td>B</td></tr><tr><td>\u800c</td><td>6S</td><td>3E</td><td>4C</td><td>0C</td><td>0C</td><td>E</td></tr><tr><td>\u6703</td><td>6S</td><td>0E</td><td>4E</td><td>0D</td><td>0D</td><td>S</td></tr><tr><td>\u6b32</td><td>4S</td><td>0E</td><td>0E</td><td>0E</td><td>0I</td><td>B</td></tr><tr><td>\u901f</td><td>4S</td><td>0E</td><td>0E</td><td>0E</td><td>0E</td><td>C</td></tr><tr><td>\u5247</td><td>6S</td><td>3B</td><td>0E</td><td>0E</td><td>0E</td><td>D</td></tr><tr><td>\uf967</td><td>7S</td><td>3E</td><td>0E</td><td>0E</td><td>0E</td><td>I</td></tr><tr><td>\u9054</td><td>5S</td><td>3E</td><td>0E</td><td>0E</td><td>0E</td><td>E</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF3": {
"text": "Enhancement of Feature Engineering for Conditional Random 55 Field Learning in Chinese Word Segmentation Using Unlabeled Data C Poov , or C Roov is different.",
"content": "<table><tr><td>P =</td><td>the number of words thatare correctly segmented 100% \u00d7 the number of words that are segmented</td><td>.</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF4": {
"text": "",
"content": "<table><tr><td colspan=\"2\">Domain Feature</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td/><td>Original 6-tag</td><td/><td>92.16 \u00b10.002869</td><td/><td>91.63 \u00b10.002956</td><td>91.89</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td/><td>92.32 \u00b10.002842</td><td/><td>91.27 \u00b10.003013</td><td>91.79</td></tr><tr><td>A</td><td>+(Character Type)</td><td/><td>92.70 \u00b10.002777</td><td/><td>92.33 \u00b10.002840</td><td>92.51</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td/><td>92.71 \u00b10.002775</td><td/><td>92.33 \u00b10.002841</td><td>92.52</td></tr><tr><td/><td>Original 6-tag</td><td/><td>77.44 \u00b10.004558</td><td/><td>86.72 \u00b10.003701</td><td>81.82</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td/><td>89.85 \u00b10.003294</td><td/><td>83.62 \u00b10.004036</td><td>86.62</td></tr><tr><td>B</td><td/><td/><td/><td/><td/></tr><tr><td/><td>+(Character Type)</td><td/><td>91.68 \u00b10.003013</td><td/><td>93.58 \u00b10.002673</td><td>92.62</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td/><td>92.93 \u00b10.002795</td><td/><td>91.19 \u00b10.003091</td><td>92.05</td></tr><tr><td/><td>Original 6-tag</td><td/><td>89.61 \u00b10.003466</td><td/><td>90.64 \u00b10.003309</td><td>90.12</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td/><td>90.87 \u00b10.003272</td><td/><td>89.77 \u00b10.003443</td><td>90.32</td></tr><tr><td>C</td><td>+(Character Type)</td><td/><td>91.11 \u00b10.003233</td><td/><td>92.02 \u00b10.003078</td><td>91.56</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td/><td>91.54 \u00b10.003161</td><td/><td>91.29 \u00b10.003203</td><td>91.42</td></tr><tr><td/><td>Original 6-tag</td><td/><td>89.82 \u00b10.003367</td><td/><td>91.24 \u00b10.003148</td><td>90.52</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td/><td>93.48 \u00b10.002749</td><td/><td>91.06 \u00b10.003176</td><td>92.25</td></tr><tr><td>D</td><td>+(Character Type)</td><td/><td>92.35 \u00b10.002960</td><td/><td>93.99 \u00b10.002646</td><td>93.16</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF5": {
"text": "",
"content": "<table><tr><td colspan=\"2\">Domain Feature</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td/><td>Original 6-tag</td><td colspan=\"2\">55.52 \u00b10.019647</td><td colspan=\"2\">52.00 \u00b10.019752</td><td>53.71</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td colspan=\"2\">53.71 \u00b10.019714</td><td colspan=\"2\">52.34 \u00b10.019746</td><td>53.01</td></tr><tr><td>A</td><td>+(Character Type)</td><td colspan=\"2\">62.42 \u00b10.019149</td><td colspan=\"2\">58.86 \u00b10.019455</td><td>60.59</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td colspan=\"2\">61.77 \u00b10.019212</td><td colspan=\"2\">59.24 \u00b10.019427</td><td>60.48</td></tr><tr><td/><td>Original 6-tag</td><td colspan=\"2\">36.06 \u00b10.014105</td><td colspan=\"2\">20.49 \u00b10.011855</td><td>26.13</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td colspan=\"2\">41.38 \u00b10.014467</td><td colspan=\"2\">52.17 \u00b10.014673</td><td>46.16</td></tr><tr><td>B</td><td>+(Character Type)</td><td colspan=\"2\">76.27 \u00b10.012496</td><td colspan=\"2\">71.40 \u00b10.013274</td><td>73.76</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td colspan=\"2\">67.49 \u00b10.013759</td><td colspan=\"2\">76.28 \u00b10.012495</td><td>71.62</td></tr><tr><td/><td>Original 6-tag</td><td colspan=\"2\">59.69 \u00b10.016736</td><td colspan=\"2\">49.40 \u00b10.017059</td><td>54.06</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td colspan=\"2\">58.80 \u00b10.016793</td><td colspan=\"2\">54.76 \u00b10.016982</td><td>56.71</td></tr><tr><td>C</td><td>+(Character Type)</td><td colspan=\"2\">68.14 \u00b10.015898</td><td colspan=\"2\">59.69 \u00b10.016736</td><td>63.64</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td colspan=\"2\">66.03 \u00b10.016159</td><td colspan=\"2\">60.54 \u00b10.016677</td><td>63.17</td></tr><tr><td/><td>Original 6-tag</td><td colspan=\"2\">48.79 \u00b10.018869</td><td colspan=\"2\">35.90 \u00b10.018109</td><td>41.36</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td colspan=\"2\">53.98 \u00b10.018815</td><td colspan=\"2\">55.56 \u00b10.018757</td><td>54.76</td></tr><tr><td>D</td><td>+(Character Type)</td><td colspan=\"2\">68.81 \u00b10.017487</td><td colspan=\"2\">57.73 \u00b10.018648</td><td>62.79</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td colspan=\"2\">68.64 \u00b10.017514</td><td colspan=\"2\">66.30 \u00b10.017844</td><td>67.45</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF6": {
"text": "",
"content": "<table><tr><td colspan=\"2\">Domain Feature</td><td>R OOV C Roov</td><td>P OOV C Poov</td><td>F OOV</td></tr><tr><td/><td>Original 6-tag</td><td>72.50 \u00b10.015297</td><td>57.20 \u00b10.016951</td><td>63.95</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td>71.62 \u00b10.015446</td><td>57.04 \u00b10.016959</td><td>63.50</td></tr><tr><td>A</td><td>+(Character Type)</td><td>75.45 \u00b10.014745</td><td>67.72 \u00b10.016017</td><td>71.38</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td>75.60 \u00b10.014715</td><td>68.44 \u00b10.015923</td><td>71.84</td></tr><tr><td/><td>Original 6-tag</td><td>76.46 \u00b10.014455</td><td>71.38 \u00b10.015399</td><td>73.83</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td>68.49 \u00b10.015828</td><td>65.20 \u00b10.016229</td><td>66.80</td></tr><tr><td>B</td><td/><td/><td/><td/></tr><tr><td/><td>+(Character Type)</td><td>80.44 \u00b10.013514</td><td>81.81 \u00b10.013143</td><td>81.12</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td>74.07 \u00b10.014931</td><td>76.40 \u00b10.014466</td><td>75.22</td></tr><tr><td/><td>Original 6-tag</td><td>73.48 \u00b10.015336</td><td>58.33 \u00b10.017128</td><td>65.03</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td>69.69 \u00b10.015968</td><td>56.31 \u00b10.017232</td><td>62.29</td></tr><tr><td>C</td><td/><td/><td/><td/></tr><tr><td/><td>+(Character Type)</td><td>76.91 \u00b10.014641</td><td>68.87 \u00b10.016087</td><td>72.67</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td>75.97 \u00b10.014843</td><td>68.18 \u00b10.016181</td><td>71.87</td></tr><tr><td/><td>Original 6-tag</td><td>78.54 \u00b10.013963</td><td>66.01 \u00b10.016110</td><td>71.73</td></tr><tr><td/><td>+(Non-Chinese Pattern)</td><td>75.53 \u00b10.014622</td><td>63.69 \u00b10.016355</td><td>69.11</td></tr><tr><td>D</td><td/><td/><td/><td/></tr><tr><td/><td>+(Character Type)</td><td>81.58 \u00b10.013184</td><td>76.99 \u00b10.014315</td><td>79.22</td></tr><tr><td/><td>+(Non-Chinese Pattern, Character Type)</td><td>80.64 \u00b10.013438</td><td>76.22 \u00b10.014481</td><td>78.37</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF7": {
"text": "Enhancement of Feature Engineering for Conditional Random 59 Field Learning in Chinese Word Segmentation Using Unlabeled Data",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>94.50</td><td>\u00b10.001308</td><td>95.74</td><td>\u00b10.001159</td><td>95.12</td></tr><tr><td>CNG</td><td>95.12</td><td>\u00b10.001236</td><td>95.53</td><td>\u00b10.001186</td><td>95.32</td></tr><tr><td>AVS</td><td>95.14</td><td>\u00b10.001234</td><td>95.86</td><td>\u00b10.001143</td><td>95.50</td></tr><tr><td>TCB</td><td>94.48</td><td>\u00b10.001311</td><td>95.73</td><td>\u00b10.001160</td><td>95.10</td></tr><tr><td>TCF</td><td>94.86</td><td>\u00b10.001267</td><td>95.92</td><td>\u00b10.001135</td><td>95.39</td></tr><tr><td>AVS+TCB</td><td>95.21</td><td>\u00b10.001226</td><td>95.96</td><td>\u00b10.001130</td><td>95.58</td></tr><tr><td>AVS+TCF</td><td>95.27</td><td>\u00b10.001218</td><td>96.02</td><td>\u00b10.001121</td><td>95.65</td></tr><tr><td>LRAVS</td><td>94.88</td><td>\u00b10.001265</td><td>95.91</td><td>\u00b10.001136</td><td>95.39</td></tr><tr><td>LRAVS+TCB</td><td>95.03</td><td>\u00b10.001247</td><td>96.02</td><td>\u00b10.001122</td><td>95.52</td></tr><tr><td>LRAVS+TCF</td><td>95.00</td><td>\u00b10.001251</td><td>96.01</td><td>\u00b10.001124</td><td>95.50</td></tr><tr><td>2005 Best</td><td>95.10</td><td>\u00b10.001230</td><td>95.20</td><td>\u00b10.001220</td><td>95.20</td></tr><tr><td>2005 Baseline</td><td>85.70</td><td>\u00b10.002000</td><td>90.90</td><td>\u00b10.001643</td><td>88.20</td></tr><tr><td>Our Baseline</td><td>86.40</td><td>\u00b10.001967</td><td>91.15</td><td>\u00b10.001629</td><td>88.71</td></tr><tr><td>2005 Topline</td><td>98.50</td><td>\u00b10.000694</td><td>97.90</td><td>\u00b10.000819</td><td>98.20</td></tr><tr><td>Our Topline</td><td>98.64</td><td>\u00b10.000665</td><td>97.97</td><td>\u00b10.000809</td><td>98.30</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>66.09</td><td>\u00b10.012356</td><td>61.85</td><td>\u00b10.012678</td><td>63.90</td></tr><tr><td>CNG</td><td>67.39</td><td>\u00b10.012235</td><td>66.81</td><td>\u00b10.01229</td><td>67.10</td></tr><tr><td>AVS</td><td>68.93</td><td>\u00b10.012078</td><td>70.73</td><td>\u00b10.011875</td><td>69.82</td></tr><tr><td>TCB</td><td>66.16</td><td>\u00b10.012349</td><td>64.02</td><td>\u00b10.012668</td><td>64.02</td></tr><tr><td>TCF</td><td>70.27</td><td>\u00b10.011929</td><td>63.89</td><td>\u00b10.012536</td><td>66.93</td></tr><tr><td>AVS+TCB</td><td>69.31</td><td>\u00b10.012037</td><td>71.49</td><td>\u00b10.011783</td><td>70.38</td></tr><tr><td>AVS+TCF</td><td>69.59</td><td>\u00b10.012006</td><td>70.94</td><td>\u00b10.011850</td><td>70.26</td></tr><tr><td>LRAVS</td><td>66.31</td><td>\u00b10.012336</td><td>67.07</td><td>\u00b10.012266</td><td>66.69</td></tr><tr><td>LRAVS+TCB</td><td>67.33</td><td>\u00b10.012241</td><td>67.91</td><td>\u00b10.012184</td><td>67.62</td></tr><tr><td>LRAVS+TCF</td><td>69.82</td><td>\u00b10.011981</td><td>66.15</td><td>\u00b10.012350</td><td>67.94</td></tr><tr><td>2005 Best</td><td>69.60</td><td>\u00b10.012005</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2005 Baseline</td><td>0.40</td><td>\u00b10.001647</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>1.41</td><td>\u00b10.003080</td><td>3.08</td><td>\u00b10.004512</td><td>1.94</td></tr><tr><td>2005 Topline</td><td>99.60</td><td>\u00b10.001647</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.59</td><td>\u00b10.001677</td><td>95.48</td><td>\u00b10.005420</td><td>97.49</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF8": {
"text": "",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>94.82</td><td>\u00b10.002207</td><td>94.64</td><td>\u00b10.002245</td><td>94.73</td></tr><tr><td>CNG</td><td>95.55</td><td>\u00b10.002055</td><td>94.39</td><td>\u00b10.002292</td><td>94.97</td></tr><tr><td>AVS</td><td>95.27</td><td>\u00b10.002115</td><td>94.93</td><td>\u00b10.002185</td><td>95.10</td></tr><tr><td>TCB</td><td>95.21</td><td>\u00b10.002129</td><td>94.93</td><td>\u00b10.002186</td><td>95.07</td></tr><tr><td>TCF</td><td>95.30</td><td>\u00b10.002107</td><td>94.96</td><td>\u00b10.002180</td><td>95.13</td></tr><tr><td>AVS+TCB</td><td>95.34</td><td>\u00b10.002100</td><td>95.13</td><td>\u00b10.002145</td><td>95.23</td></tr><tr><td>AVS+TCF</td><td>95.39</td><td>\u00b10.002088</td><td>95.15</td><td>\u00b10.002140</td><td>95.27</td></tr><tr><td>LRAVS</td><td>95.35</td><td>\u00b10.002099</td><td>95.08</td><td>\u00b10.002155</td><td>95.21</td></tr><tr><td>LRAVS+TCB</td><td>95.45</td><td>\u00b10.002077</td><td>95.21</td><td>\u00b10.002127</td><td>95.33</td></tr><tr><td>LRAVS+TCF</td><td>95.41</td><td>\u00b10.002085</td><td>95.20</td><td>\u00b10.002130</td><td>95.30</td></tr><tr><td>2005 Best</td><td>94.60</td><td>\u00b10.002230</td><td>94.10</td><td>\u00b10.002330</td><td>94.30</td></tr><tr><td>2005 Baseline</td><td>79.00</td><td>\u00b10.004026</td><td>88.20</td><td>\u00b10.003189</td><td>83.30</td></tr><tr><td>Our Baseline</td><td>83.84</td><td>\u00b10.003667</td><td>90.81</td><td>\u00b10.002877</td><td>87.19</td></tr><tr><td>2005 Topline</td><td>99.10</td><td>\u00b10.000934</td><td>98.80</td><td>\u00b10.001076</td><td>98.20</td></tr><tr><td>Our Topline</td><td>99.24</td><td>\u00b10.000867</td><td>98.90</td><td>\u00b10.001040</td><td>99.07</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>69.15</td><td>\u00b10.016141</td><td>65.54</td><td>\u00b10.016609</td><td>67.30</td></tr><tr><td>CNG</td><td>69.68</td><td>\u00b10.016063</td><td>69.41</td><td>\u00b10.016104</td><td>69.55</td></tr><tr><td>AVS</td><td>70.48</td><td>\u00b10.015942</td><td>71.90</td><td>\u00b10.015709</td><td>71.18</td></tr><tr><td>TCB</td><td>71.83</td><td>\u00b10.015721</td><td>70.12</td><td>\u00b10.016236</td><td>70.12</td></tr><tr><td>TCF</td><td>72.39</td><td>\u00b10.015624</td><td>68.76</td><td>\u00b10.016198</td><td>70.53</td></tr><tr><td>AVS+TCB</td><td>71.14</td><td>\u00b10.015836</td><td>72.70</td><td>\u00b10.01557</td><td>71.91</td></tr><tr><td>AVS+TCF</td><td>70.97</td><td>\u00b10.015863</td><td>72.77</td><td>\u00b10.015556</td><td>71.86</td></tr><tr><td>LRAVS</td><td>69.78</td><td>\u00b10.016048</td><td>72.09</td><td>\u00b10.015676</td><td>70.92</td></tr><tr><td>LRAVS+TCB</td><td>70.57</td><td>\u00b10.015926</td><td>73.06</td><td>\u00b10.015505</td><td>71.80</td></tr><tr><td>LRAVS+TCF</td><td>71.17</td><td>\u00b10.015831</td><td>73.22</td><td>\u00b10.015475</td><td>72.18</td></tr><tr><td>2005 Best</td><td>69.80</td><td>\u00b10.016046</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2005 Baseline</td><td>0.00</td><td>\u00b10.000000</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>16.22</td><td>\u00b10.012882</td><td>33.91</td><td>\u00b10.016544</td><td>21.94</td></tr><tr><td>2005 Topline</td><td>99.70</td><td>\u00b10.001911</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.74</td><td>\u00b10.001794</td><td>98.82</td><td>\u00b10.003771</td><td>99.28</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF9": {
"text": "",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>93.73</td><td>\u00b10.001512</td><td>92.70</td><td>\u00b10.001623</td><td>93.21</td></tr><tr><td>CNG</td><td>94.36</td><td>\u00b10.001438</td><td>93.57</td><td>\u00b10.001530</td><td>93.96</td></tr><tr><td>AVS</td><td>94.21</td><td>\u00b10.001457</td><td>93.24</td><td>\u00b10.001566</td><td>93.72</td></tr><tr><td>TCB</td><td>93.97</td><td>\u00b10.001485</td><td>92.76</td><td>\u00b10.001616</td><td>93.36</td></tr><tr><td>TCF</td><td>93.94</td><td>\u00b10.001488</td><td>92.81</td><td>\u00b10.001611</td><td>93.37</td></tr><tr><td>AVS+TCB</td><td>94.33</td><td>\u00b10.001443</td><td>93.31</td><td>\u00b10.001559</td><td>93.81</td></tr><tr><td>AVS+TCF</td><td>94.25</td><td>\u00b10.001451</td><td>93.44</td><td>\u00b10.001544</td><td>93.85</td></tr><tr><td>LRAVS</td><td>94.34</td><td>\u00b10.001441</td><td>93.48</td><td>\u00b10.001540</td><td>93.91</td></tr><tr><td>LRAVS+TCB</td><td>94.32</td><td>\u00b10.001443</td><td>93.44</td><td>\u00b10.001544</td><td>93.88</td></tr><tr><td>LRAVS+TCF</td><td>93.91</td><td>\u00b10.001492</td><td>92.20</td><td>\u00b10.001672</td><td>93.05</td></tr><tr><td>2005 Best</td><td>94.60</td><td>\u00b10.001400</td><td>95.30</td><td>\u00b10.001310</td><td>95.00</td></tr><tr><td>2005 Baseline</td><td>83.60</td><td>\u00b10.002292</td><td>90.40</td><td>\u00b10.001824</td><td>86.90</td></tr><tr><td>Our Baseline</td><td>84.29</td><td>\u00b10.002269</td><td>90.68</td><td>\u00b10.001813</td><td>87.37</td></tr><tr><td>2005 Topline</td><td>98.80</td><td>\u00b10.000674</td><td>98.50</td><td>\u00b10.000752</td><td>98.70</td></tr><tr><td>Our Topline</td><td>98.96</td><td>\u00b10.000634</td><td>98.62</td><td>\u00b10.000726</td><td>98.79</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>57.48</td><td>\u00b10.012083</td><td>48.04</td><td>\u00b10.012211</td><td>52.33</td></tr><tr><td>CNG</td><td>65.58</td><td>\u00b10.011612</td><td>57.87</td><td>\u00b10.012068</td><td>61.48</td></tr><tr><td>AVS</td><td>62.69</td><td>\u00b10.011821</td><td>55.60</td><td>\u00b10.012144</td><td>58.93</td></tr><tr><td>TCB</td><td>60.07</td><td>\u00b10.011970</td><td>54.87</td><td>\u00b10.012220</td><td>54.87</td></tr><tr><td>TCF</td><td>60.39</td><td>\u00b10.011954</td><td>50.41</td><td>\u00b10.012220</td><td>54.95</td></tr><tr><td>AVS+TCB</td><td>64.02</td><td>\u00b10.011730</td><td>56.97</td><td>\u00b10.012101</td><td>60.29</td></tr><tr><td>AVS+TCF</td><td>63.80</td><td>\u00b10.011746</td><td>56.06</td><td>\u00b10.012130</td><td>59.68</td></tr><tr><td>LRAVS</td><td>65.02</td><td>\u00b10.011656</td><td>57.31</td><td>\u00b10.012089</td><td>60.92</td></tr><tr><td>LRAVS+TCB</td><td>65.42</td><td>\u00b10.011625</td><td>57.60</td><td>\u00b10.012079</td><td>61.26</td></tr><tr><td>LRAVS+TCF</td><td>60.42</td><td>\u00b10.011952</td><td>48.92</td><td>\u00b10.012218</td><td>54.07</td></tr><tr><td>2005 Best</td><td>63.60</td><td>\u00b10.011760</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2005 Baseline</td><td>5.90</td><td>\u00b10.005759</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>6.86</td><td>\u00b10.006178</td><td>6.10</td><td>\u00b10.005850</td><td>6.46</td></tr><tr><td>2005 Topline</td><td>99.40</td><td>\u00b10.001888</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.37</td><td>\u00b10.001938</td><td>97.72</td><td>\u00b10.003645</td><td>98.54</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF10": {
"text": "",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>90.95</td><td>\u00b10.003129</td><td>92.46</td><td>\u00b10.002880</td><td>91.70</td></tr><tr><td>CNG</td><td>91.45</td><td>\u00b10.003050</td><td>92.36</td><td>\u00b10.002898</td><td>91.90</td></tr><tr><td>AVS</td><td>91.25</td><td>\u00b10.003081</td><td>92.72</td><td>\u00b10.002833</td><td>91.98</td></tr><tr><td>TCB</td><td>91.21</td><td>\u00b10.003087</td><td>92.53</td><td>\u00b10.002867</td><td>91.87</td></tr><tr><td>TCF</td><td>90.86</td><td>\u00b10.003143</td><td>92.62</td><td>\u00b10.002852</td><td>91.73</td></tr><tr><td>AVS+TCB</td><td>91.60</td><td>\u00b10.003026</td><td>92.67</td><td>\u00b10.002842</td><td>92.13</td></tr><tr><td>AVS+TCF</td><td>90.81</td><td>\u00b10.003151</td><td>92.16</td><td>\u00b10.002932</td><td>91.48</td></tr><tr><td>LRAVS</td><td>91.71</td><td>\u00b10.003007</td><td>92.61</td><td>\u00b10.002854</td><td>92.16</td></tr><tr><td>LRAVS+TCB</td><td>91.97</td><td>\u00b10.002963</td><td>92.76</td><td>\u00b10.002826</td><td>92.37</td></tr><tr><td>LRAVS+TCF</td><td>91.28</td><td>\u00b10.003077</td><td>92.60</td><td>\u00b10.002856</td><td>91.93</td></tr><tr><td>2010 Best</td><td>95.00</td><td>\u00b10.002320</td><td>95.30</td><td>\u00b10.002250</td><td>95.10</td></tr><tr><td>2010 Baseline</td><td>63.20</td><td>\u00b10.005132</td><td>85.60</td><td>\u00b10.003736</td><td>72.70</td></tr><tr><td>Our Baseline</td><td>63.26</td><td>\u00b10.005258</td><td>85.68</td><td>\u00b10.003820</td><td>72.78</td></tr><tr><td>2010 Topline</td><td>99.30</td><td>\u00b10.000887</td><td>99.10</td><td>\u00b10.001005</td><td>99.20</td></tr><tr><td>Our Topline</td><td>99.25</td><td>\u00b10.000940</td><td>99.06</td><td>\u00b10.001052</td><td>99.16</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>70.62</td><td>\u00b10.013380</td><td>67.66</td><td>\u00b10.013740</td><td>69.11</td></tr><tr><td>CNG</td><td>70.38</td><td>\u00b10.013412</td><td>65.17</td><td>\u00b10.013994</td><td>67.67</td></tr><tr><td>AVS</td><td>69.85</td><td>\u00b10.013479</td><td>66.16</td><td>\u00b10.013898</td><td>67.96</td></tr><tr><td>TCB</td><td>71.23</td><td>\u00b10.013297</td><td>69.66</td><td>\u00b10.013684</td><td>69.66</td></tr><tr><td>TCF</td><td>72.01</td><td>\u00b10.013187</td><td>66.02</td><td>\u00b10.013913</td><td>68.89</td></tr><tr><td>AVS+TCB</td><td>70.25</td><td>\u00b10.013429</td><td>67.22</td><td>\u00b10.013788</td><td>68.70</td></tr><tr><td>AVS+TCF</td><td>69.63</td><td>\u00b10.013507</td><td>63.73</td><td>\u00b10.014123</td><td>66.55</td></tr><tr><td>LRAVS</td><td>71.25</td><td>\u00b10.013294</td><td>68.25</td><td>\u00b10.013673</td><td>69.72</td></tr><tr><td>LRAVS+TCB</td><td>71.81</td><td>\u00b10.013216</td><td>69.47</td><td>\u00b10.013528</td><td>70.62</td></tr><tr><td>LRAVS+TCF</td><td>70.92</td><td>\u00b10.013340</td><td>66.13</td><td>\u00b10.013902</td><td>68.44</td></tr><tr><td>2010 Best</td><td>82.70</td><td>\u00b10.011111</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2010 Baseline</td><td>16.30</td><td>\u00b10.010850</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>16.65</td><td>\u00b10.010944</td><td>6.39</td><td>\u00b10.007185</td><td>9.24</td></tr><tr><td>2010 Topline</td><td>99.00</td><td>\u00b10.002923</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.00</td><td>\u00b10.002930</td><td>98.08</td><td>\u00b10.004028</td><td>98.54</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF11": {
"text": "",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>93.01</td><td>\u00b10.002838</td><td>93.74</td><td>\u00b10.002697</td><td>93.38</td></tr><tr><td>CNG</td><td>94.40</td><td>\u00b10.002561</td><td>93.66</td><td>\u00b10.002714</td><td>94.02</td></tr><tr><td>AVS</td><td>93.54</td><td>\u00b10.002736</td><td>94.30</td><td>\u00b10.002581</td><td>93.92</td></tr><tr><td>TCB</td><td>93.35</td><td>\u00b10.002774</td><td>94.14</td><td>\u00b10.002614</td><td>93.74</td></tr><tr><td>TCF</td><td>93.10</td><td>\u00b10.002822</td><td>93.88</td><td>\u00b10.002669</td><td>93.49</td></tr><tr><td>AVS+TCB</td><td>94.56</td><td>\u00b10.002526</td><td>94.49</td><td>\u00b10.002540</td><td>94.53</td></tr><tr><td>AVS+TCF</td><td>94.05</td><td>\u00b10.002633</td><td>94.10</td><td>\u00b10.002624</td><td>94.08</td></tr><tr><td>LRAVS</td><td>94.30</td><td>\u00b10.002582</td><td>94.13</td><td>\u00b10.002616</td><td>94.21</td></tr><tr><td>LRAVS+TCB</td><td>94.36</td><td>\u00b10.002568</td><td>94.16</td><td>\u00b10.002611</td><td>94.26</td></tr><tr><td>LRAVS+TCF</td><td>94.36</td><td>\u00b10.002569</td><td>94.19</td><td>\u00b10.002604</td><td>94.28</td></tr><tr><td>2010 Best</td><td>96.00</td><td>\u00b10.002160</td><td>95.90</td><td>\u00b10.002180</td><td>95.90</td></tr><tr><td>2010 Baseline</td><td>80.30</td><td>\u00b10.004377</td><td>91.40</td><td>\u00b10.003085</td><td>85.50</td></tr><tr><td>Our Baseline</td><td>80.26</td><td>\u00b10.004431</td><td>91.41</td><td>\u00b10.003119</td><td>85.48</td></tr><tr><td>2010 Topline</td><td>99.50</td><td>\u00b10.000776</td><td>99.40</td><td>\u00b10.000850</td><td>99.40</td></tr><tr><td>Our Topline</td><td>99.56</td><td>\u00b10.000734</td><td>99.47</td><td>\u00b10.000810</td><td>99.52</td></tr><tr><td colspan=\"6\">Table 24. Non-Chinese treatment performance comparison of OOV on SIGHAN 2010</td></tr><tr><td colspan=\"4\">simplified Chinese domain D (Finance) corpus.</td><td/><td/></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>67.60</td><td>\u00b10.017666</td><td>61.28</td><td>\u00b10.018388</td><td>64.28</td></tr><tr><td>CNG</td><td>73.53</td><td>\u00b10.016655</td><td>67.77</td><td>\u00b10.017642</td><td>70.53</td></tr><tr><td>AVS</td><td>71.10</td><td>\u00b10.017111</td><td>64.17</td><td>\u00b10.018101</td><td>67.46</td></tr><tr><td>TCB</td><td>70.58</td><td>\u00b10.017201</td><td>66.44</td><td>\u00b10.018250</td><td>66.44</td></tr><tr><td>TCF</td><td>70.13</td><td>\u00b10.017277</td><td>61.19</td><td>\u00b10.018396</td><td>65.35</td></tr><tr><td>AVS+TCB</td><td>73.80</td><td>\u00b10.016598</td><td>70.79</td><td>\u00b10.017166</td><td>72.26</td></tr><tr><td>AVS+TCF</td><td>70.76</td><td>\u00b10.017172</td><td>67.73</td><td>\u00b10.017648</td><td>69.21</td></tr><tr><td>LRAVS</td><td>71.66</td><td>\u00b10.017012</td><td>68.54</td><td>\u00b10.017528</td><td>70.07</td></tr><tr><td>LRAVS+TCB</td><td>72.63</td><td>\u00b10.016831</td><td>69.82</td><td>\u00b10.017328</td><td>71.20</td></tr><tr><td>LRAVS+TCF</td><td>72.38</td><td>\u00b10.016878</td><td>69.40</td><td>\u00b10.017396</td><td>70.86</td></tr><tr><td>2010 Best</td><td>82.70</td><td>\u00b10.014279</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2010 Baseline</td><td>23.30</td><td>\u00b10.015958</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>23.32</td><td>\u00b10.015963</td><td>14.15</td><td>\u00b10.013157</td><td>17.61</td></tr><tr><td>2010 Topline</td><td>99.50</td><td>\u00b10.002663</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.72</td><td>\u00b10.001985</td><td>99.34</td><td>\u00b10.003047</td><td>99.53</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF12": {
"text": "",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>95.15</td><td>\u00b10.002122</td><td>93.20</td><td>\u00b10.002487</td><td>94.17</td></tr><tr><td>CNG</td><td>95.60</td><td>\u00b10.002027</td><td>93.16</td><td>\u00b10.002494</td><td>94.36</td></tr><tr><td>AVS</td><td>95.67</td><td>\u00b10.002012</td><td>93.83</td><td>\u00b10.002378</td><td>94.74</td></tr><tr><td>TCB</td><td>95.21</td><td>\u00b10.002111</td><td>93.25</td><td>\u00b10.002480</td><td>94.22</td></tr><tr><td>TCF</td><td>95.28</td><td>\u00b10.002095</td><td>93.42</td><td>\u00b10.002450</td><td>94.34</td></tr><tr><td>AVS+TCB</td><td>95.62</td><td>\u00b10.002023</td><td>93.72</td><td>\u00b10.002398</td><td>94.66</td></tr><tr><td>AVS+TCF</td><td>95.74</td><td>\u00b10.001996</td><td>93.83</td><td>\u00b10.002378</td><td>94.77</td></tr><tr><td>LRAVS</td><td>95.57</td><td>\u00b10.002034</td><td>93.79</td><td>\u00b10.002384</td><td>94.67</td></tr><tr><td>LRAVS+TCB</td><td>95.63</td><td>\u00b10.002020</td><td>93.85</td><td>\u00b10.002373</td><td>94.73</td></tr><tr><td>LRAVS+TCF</td><td>95.55</td><td>\u00b10.002038</td><td>93.81</td><td>\u00b10.002381</td><td>94.67</td></tr><tr><td>2010 Best</td><td>95.70</td><td>\u00b10.001950</td><td>94.80</td><td>\u00b10.002130</td><td>95.20</td></tr><tr><td>2010 Baseline</td><td>70.10</td><td>\u00b10.004390</td><td>87.30</td><td>\u00b10.003193</td><td>77.80</td></tr><tr><td>Our Baseline</td><td>70.15</td><td>\u00b10.004522</td><td>87.33</td><td>\u00b10.003286</td><td>77.80</td></tr><tr><td>2010 Topline</td><td>99.10</td><td>\u00b10.000906</td><td>98.80</td><td>\u00b10.001044</td><td>99.00</td></tr><tr><td>Our Topline</td><td>99.38</td><td>\u00b10.000778</td><td>98.85</td><td>\u00b10.001055</td><td>99.11</td></tr><tr><td colspan=\"6\">Table 28. Non-Chinese-Pattern performance comparison of OOV on SIGHAN 2010</td></tr><tr><td colspan=\"4\">traditional Chinese domain B (Computer) corpus.</td><td/><td/></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>58.79</td><td>\u00b10.016769</td><td>68.17</td><td>\u00b10.015871</td><td>63.14</td></tr><tr><td>CNG</td><td>61.77</td><td>\u00b10.016556</td><td>70.16</td><td>\u00b10.015589</td><td>65.70</td></tr><tr><td>AVS</td><td>60.59</td><td>\u00b10.016649</td><td>72.29</td><td>\u00b10.015248</td><td>65.93</td></tr><tr><td>TCB</td><td>59.09</td><td>\u00b10.016751</td><td>68.81</td><td>\u00b10.015784</td><td>63.58</td></tr><tr><td>TCF</td><td>59.34</td><td>\u00b10.016735</td><td>69.21</td><td>\u00b10.015727</td><td>63.89</td></tr><tr><td>AVS+TCB</td><td>60.89</td><td>\u00b10.016626</td><td>72.24</td><td>\u00b10.015257</td><td>66.08</td></tr><tr><td>AVS+TCF</td><td>61.35</td><td>\u00b10.01659</td><td>72.90</td><td>\u00b10.015143</td><td>66.63</td></tr><tr><td>LRAVS</td><td>61.67</td><td>\u00b10.016564</td><td>72.84</td><td>\u00b10.015155</td><td>66.79</td></tr><tr><td>LRAVS+TCB</td><td>61.82</td><td>\u00b10.016552</td><td>73.07</td><td>\u00b10.015113</td><td>66.98</td></tr><tr><td>LRAVS+TCF</td><td>61.55</td><td>\u00b10.016574</td><td>72.94</td><td>\u00b10.015135</td><td>66.76</td></tr><tr><td>2010 Best</td><td>66.60</td><td>\u00b10.016069</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2010 Baseline</td><td>1.00</td><td>\u00b10.003390</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>1.03</td><td>\u00b10.003445</td><td>0.55</td><td>\u00b10.002515</td><td>0.72</td></tr><tr><td>2010 Topline</td><td>99.60</td><td>\u00b10.002150</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.34</td><td>\u00b10.002765</td><td>99.41</td><td>\u00b10.002609</td><td>99.37</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF13": {
"text": "",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>95.52</td><td>\u00b10.001925</td><td>95.46</td><td>\u00b10.001937</td><td>95.49</td></tr><tr><td>CNG</td><td>96.13</td><td>\u00b10.001794</td><td>95.04</td><td>\u00b10.002020</td><td>95.58</td></tr><tr><td>AVS</td><td>95.99</td><td>\u00b10.001825</td><td>95.79</td><td>\u00b10.001868</td><td>95.89</td></tr><tr><td>TCB</td><td>95.55</td><td>\u00b10.001918</td><td>95.51</td><td>\u00b10.001927</td><td>95.53</td></tr><tr><td>TCF</td><td>95.61</td><td>\u00b10.001907</td><td>95.57</td><td>\u00b10.001915</td><td>95.59</td></tr><tr><td>AVS+TCB</td><td>95.93</td><td>\u00b10.001839</td><td>95.77</td><td>\u00b10.001874</td><td>95.85</td></tr><tr><td>AVS+TCF</td><td>95.99</td><td>\u00b10.001825</td><td>95.88</td><td>\u00b10.001850</td><td>95.93</td></tr><tr><td>LRAVS</td><td>96.02</td><td>\u00b10.001820</td><td>95.73</td><td>\u00b10.001881</td><td>95.87</td></tr><tr><td>LRAVS+TCB</td><td>96.04</td><td>\u00b10.001814</td><td>95.82</td><td>\u00b10.001862</td><td>95.93</td></tr><tr><td>LRAVS+TCF</td><td>95.94</td><td>\u00b10.001836</td><td>95.71</td><td>\u00b10.001885</td><td>95.83</td></tr><tr><td>2010 Best</td><td>96.20</td><td>\u00b10.001760</td><td>96.40</td><td>\u00b10.001720</td><td>96.30</td></tr><tr><td>2010 Baseline</td><td>82.60</td><td>\u00b10.003492</td><td>88.80</td><td>\u00b10.002905</td><td>85.50</td></tr><tr><td>Our Baseline</td><td>82.56</td><td>\u00b10.003531</td><td>88.77</td><td>\u00b10.002937</td><td>85.55</td></tr><tr><td>2010 Topline</td><td>98.60</td><td>\u00b10.001082</td><td>98.10</td><td>\u00b10.001258</td><td>98.40</td></tr><tr><td>Our Topline</td><td>98.63</td><td>\u00b10.001081</td><td>98.10</td><td>\u00b10.00127</td><td>98.36</td></tr><tr><td colspan=\"6\">Table 32. Non-Chinese treatment performance comparison of OOV on SIGHAN 2010</td></tr><tr><td colspan=\"4\">traditional Chinese domain D (Finance) corpus.</td><td/><td/></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>80.45</td><td>\u00b10.013488</td><td>76.61</td><td>\u00b10.014398</td><td>78.48</td></tr><tr><td>CNG</td><td>82.96</td><td>\u00b10.012787</td><td>78.16</td><td>\u00b10.014053</td><td>80.49</td></tr><tr><td>AVS</td><td>81.33</td><td>\u00b10.013253</td><td>81.28</td><td>\u00b10.013267</td><td>81.30</td></tr><tr><td>TCB</td><td>80.99</td><td>\u00b10.013346</td><td>77.44</td><td>\u00b10.014216</td><td>79.17</td></tr><tr><td>TCF</td><td>80.92</td><td>\u00b10.013363</td><td>77.26</td><td>\u00b10.014255</td><td>79.05</td></tr><tr><td>AVS+TCB</td><td>80.99</td><td>\u00b10.013346</td><td>81.55</td><td>\u00b10.013193</td><td>81.27</td></tr><tr><td>AVS+TCF</td><td>80.99</td><td>\u00b10.013346</td><td>81.96</td><td>\u00b10.013077</td><td>81.47</td></tr><tr><td>LRAVS</td><td>82.62</td><td>\u00b10.012889</td><td>82.10</td><td>\u00b10.013038</td><td>82.36</td></tr><tr><td>LRAVS+TCB</td><td>82.18</td><td>\u00b10.013016</td><td>82.44</td><td>\u00b10.012942</td><td>82.31</td></tr><tr><td>LRAVS+TCF</td><td>81.86</td><td>\u00b10.013105</td><td>82.04</td><td>\u00b10.013054</td><td>81.95</td></tr><tr><td>2010 Best</td><td>81.20</td><td>\u00b10.013288</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2010 Baseline</td><td>0.60</td><td>\u00b10.002627</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>0.60</td><td>\u00b10.002618</td><td>2.28</td><td>\u00b10.005078</td><td>0.95</td></tr><tr><td>2010 Topline</td><td>99.70</td><td>\u00b10.001860</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.69</td><td>\u00b10.001902</td><td>98.54</td><td>\u00b10.004076</td><td>99.11</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF15": {
"text": "",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>94.77</td><td>\u00b10.002381</td><td>94.79</td><td>\u00b10.002377</td><td>94.78</td></tr><tr><td>CNG</td><td>95.24</td><td>\u00b10.002278</td><td>95.48</td><td>\u00b10.002222</td><td>95.36</td></tr><tr><td>AVS</td><td>95.13</td><td>\u00b10.002302</td><td>95.20</td><td>\u00b10.002286</td><td>95.17</td></tr><tr><td>TCB</td><td>94.84</td><td>\u00b10.002367</td><td>94.87</td><td>\u00b10.002360</td><td>94.85</td></tr><tr><td>TCF</td><td>94.78</td><td>\u00b10.002380</td><td>94.77</td><td>\u00b10.002382</td><td>94.77</td></tr><tr><td>AVS+TCB</td><td>95.18</td><td>\u00b10.002291</td><td>95.24</td><td>\u00b10.002278</td><td>95.21</td></tr><tr><td>AVS+TCF</td><td>95.08</td><td>\u00b10.002313</td><td>95.19</td><td>\u00b10.002288</td><td>95.14</td></tr><tr><td>LRAVS</td><td>95.00</td><td>\u00b10.002332</td><td>95.21</td><td>\u00b10.002284</td><td>95.10</td></tr><tr><td>LRAVS+TCB</td><td>95.18</td><td>\u00b10.002292</td><td>95.33</td><td>\u00b10.002256</td><td>95.26</td></tr><tr><td>LRAVS+TCF</td><td>95.00</td><td>\u00b10.002330</td><td>95.27</td><td>\u00b10.002271</td><td>95.14</td></tr><tr><td>2003 Best</td><td>93.40</td><td>\u00b10.002700</td><td>94.70</td><td>\u00b10.002400</td><td>94.00</td></tr><tr><td>2003 Baseline</td><td>83.00</td><td>\u00b10.004018</td><td>90.80</td><td>\u00b10.003092</td><td>86.70</td></tr><tr><td>Our Baseline</td><td>82.97</td><td>\u00b10.004021</td><td>90.77</td><td>\u00b10.003097</td><td>86.69</td></tr><tr><td>2003 Topline</td><td>99.10</td><td>\u00b10.001010</td><td>98.60</td><td>\u00b10.001257</td><td>98.90</td></tr><tr><td>Our Topline</td><td>99.10</td><td>\u00b10.001009</td><td>98.62</td><td>\u00b10.001249</td><td>98.86</td></tr><tr><td colspan=\"5\">Table 36. Performance comparison of OOV on SIGHAN 2003 CityU corpus.</td><td/></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>75.80</td><td>\u00b10.017149</td><td>66.07</td><td>\u00b10.018969</td><td>70.60</td></tr><tr><td>CNG</td><td>77.25</td><td>\u00b10.016796</td><td>73.25</td><td>\u00b10.017735</td><td>75.20</td></tr><tr><td>AVS</td><td>75.16</td><td>\u00b10.017311</td><td>71.79</td><td>\u00b10.018030</td><td>73.44</td></tr><tr><td>TCB</td><td>76.20</td><td>\u00b10.017061</td><td>66.63</td><td>\u00b10.018891</td><td>71.10</td></tr><tr><td>TCF</td><td>76.28</td><td>\u00b10.017041</td><td>66.38</td><td>\u00b10.018927</td><td>70.99</td></tr><tr><td>AVS+TCB</td><td>75.44</td><td>\u00b10.017245</td><td>72.06</td><td>\u00b10.017977</td><td>73.71</td></tr><tr><td>AVS+TCF</td><td>74.88</td><td>\u00b10.017376</td><td>71.66</td><td>\u00b10.018055</td><td>73.23</td></tr><tr><td>LRAVS</td><td>74.12</td><td>\u00b10.017548</td><td>72.01</td><td>\u00b10.017987</td><td>73.05</td></tr><tr><td>LRAVS+TCB</td><td>74.88</td><td>\u00b10.017376</td><td>72.92</td><td>\u00b10.017804</td><td>73.89</td></tr><tr><td>LRAVS+TCF</td><td>74.32</td><td>\u00b10.017503</td><td>72.23</td><td>\u00b10.017943</td><td>73.26</td></tr><tr><td>2003 Best</td><td>62.50</td><td>\u00b10.019396</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2003 Baseline</td><td>3.70</td><td>\u00b10.007563</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>3.69</td><td>\u00b10.007555</td><td>5.20</td><td>\u00b10.008896</td><td>4.32</td></tr><tr><td>2003 Topline</td><td>99.60</td><td>\u00b10.002529</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.60</td><td>\u00b10.002533</td><td>98.65</td><td>\u00b10.004626</td><td>99.12</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF16": {
"text": "",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>87.30</td><td>\u00b10.003334</td><td>86.83</td><td>\u00b10.003385</td><td>87.06</td></tr><tr><td>CNG</td><td>89.61</td><td>\u00b10.003054</td><td>88.66</td><td>\u00b10.003175</td><td>89.13</td></tr><tr><td>AVS</td><td>89.38</td><td>\u00b10.003085</td><td>88.06</td><td>\u00b10.003246</td><td>88.71</td></tr><tr><td>TCB</td><td>87.46</td><td>\u00b10.003315</td><td>86.86</td><td>\u00b10.003382</td><td>87.16</td></tr><tr><td>TCF</td><td>87.18</td><td>\u00b10.003347</td><td>86.45</td><td>\u00b10.003426</td><td>86.81</td></tr><tr><td>AVS+TCB</td><td>89.31</td><td>\u00b10.003092</td><td>88.08</td><td>\u00b10.003244</td><td>88.69</td></tr><tr><td>AVS+TCF</td><td>89.39</td><td>\u00b10.003082</td><td>88.17</td><td>\u00b10.003233</td><td>88.78</td></tr><tr><td>LRAVS</td><td>89.30</td><td>\u00b10.003094</td><td>88.21</td><td>\u00b10.003228</td><td>88.75</td></tr><tr><td>LRAVS+TCB</td><td>89.37</td><td>\u00b10.003086</td><td>88.09</td><td>\u00b10.003243</td><td>88.72</td></tr><tr><td>LRAVS+TCF</td><td>89.31</td><td>\u00b10.003093</td><td>88.07</td><td>\u00b10.003244</td><td>88.68</td></tr><tr><td>2003 Best</td><td>87.50</td><td>\u00b10.003300</td><td>86.60</td><td>\u00b10.003200</td><td>88.10</td></tr><tr><td>2003 Baseline</td><td>66.30</td><td>\u00b10.004731</td><td>80.00</td><td>\u00b10.004004</td><td>72.50</td></tr><tr><td>Our Baseline</td><td>66.33</td><td>\u00b10.004730</td><td>80.01</td><td>\u00b10.004003</td><td>72.53</td></tr><tr><td>2003 Topline</td><td>98.80</td><td>\u00b10.001090</td><td>98.20</td><td>\u00b10.001331</td><td>98.50</td></tr><tr><td>Our Topline</td><td>98.84</td><td>\u00b10.001072</td><td>98.19</td><td>\u00b10.001333</td><td>98.52</td></tr><tr><td colspan=\"5\">Table 40. Performance comparison of OOV on SIGHAN 2003 CTB corpus.</td><td/></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>69.85</td><td>\u00b10.010805</td><td>62.24</td><td>\u00b10.011415</td><td>65.83</td></tr><tr><td>CNG</td><td>71.79</td><td>\u00b10.010596</td><td>71.31</td><td>\u00b10.010650</td><td>71.55</td></tr><tr><td>AVS</td><td>70.59</td><td>\u00b10.010728</td><td>69.61</td><td>\u00b10.010830</td><td>70.09</td></tr><tr><td>TCB</td><td>70.23</td><td>\u00b10.010766</td><td>62.51</td><td>\u00b10.011398</td><td>66.14</td></tr><tr><td>TCF</td><td>69.49</td><td>\u00b10.010841</td><td>61.91</td><td>\u00b10.011434</td><td>65.48</td></tr><tr><td>AVS+TCB</td><td>70.73</td><td>\u00b10.010714</td><td>70.05</td><td>\u00b10.010785</td><td>70.39</td></tr><tr><td>AVS+TCF</td><td>70.95</td><td>\u00b10.010690</td><td>69.80</td><td>\u00b10.010811</td><td>70.37</td></tr><tr><td>LRAVS</td><td>70.35</td><td>\u00b10.010753</td><td>69.98</td><td>\u00b10.010793</td><td>70.16</td></tr><tr><td>LRAVS+TCB</td><td>70.58</td><td>\u00b10.010730</td><td>70.49</td><td>\u00b10.010739</td><td>70.53</td></tr><tr><td>LRAVS+TCF</td><td>70.24</td><td>\u00b10.010765</td><td>70.05</td><td>\u00b10.010785</td><td>70.15</td></tr><tr><td>2003 Best</td><td>70.50</td><td>\u00b10.010738</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2003 Baseline</td><td>6.20</td><td>\u00b10.005678</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>6.24</td><td>\u00b10.005694</td><td>8.36</td><td>\u00b10.006516</td><td>7.14</td></tr><tr><td>2003 Topline</td><td>99.00</td><td>\u00b10.002343</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.02</td><td>\u00b10.002324</td><td>97.46</td><td>\u00b10.003703</td><td>98.23</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF17": {
"text": "",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>96.92</td><td>\u00b10.000736</td><td>96.88</td><td>\u00b10.000741</td><td>96.90</td></tr><tr><td>CNG</td><td>97.26</td><td>\u00b10.000696</td><td>97.21</td><td>\u00b10.000701</td><td>97.23</td></tr><tr><td>AVS</td><td>97.31</td><td>\u00b10.000690</td><td>97.34</td><td>\u00b10.000686</td><td>97.32</td></tr><tr><td>TCB</td><td>96.95</td><td>\u00b10.000733</td><td>96.89</td><td>\u00b10.000740</td><td>96.92</td></tr><tr><td>TCF</td><td>96.96</td><td>\u00b10.000732</td><td>96.90</td><td>\u00b10.000739</td><td>96.93</td></tr><tr><td>AVS+TCB</td><td>97.32</td><td>\u00b10.000689</td><td>97.32</td><td>\u00b10.000689</td><td>97.32</td></tr><tr><td>AVS+TCF</td><td>97.35</td><td>\u00b10.000685</td><td>97.32</td><td>\u00b10.000688</td><td>97.33</td></tr><tr><td>LRAVS</td><td>97.35</td><td>\u00b10.000684</td><td>97.32</td><td>\u00b10.000688</td><td>97.34</td></tr><tr><td>LRAVS+TCB</td><td>97.34</td><td>\u00b10.000686</td><td>97.33</td><td>\u00b10.000687</td><td>97.34</td></tr><tr><td>LRAVS+TCF</td><td>97.23</td><td>\u00b10.000700</td><td>97.26</td><td>\u00b10.000696</td><td>97.24</td></tr><tr><td>2006 Best</td><td>97.20</td><td>\u00b10.000703</td><td>97.30</td><td>\u00b10.000691</td><td>97.20</td></tr><tr><td>2006 Baseline</td><td>88.20</td><td>\u00b10.002134</td><td>93.00</td><td>\u00b10.001687</td><td>90.60</td></tr><tr><td>Our Baseline</td><td>88.22</td><td>\u00b10.001374</td><td>93.06</td><td>\u00b10.001083</td><td>90.57</td></tr><tr><td>2006 Topline</td><td>98.50</td><td>\u00b10.000804</td><td>98.20</td><td>\u00b10.000879</td><td>98.40</td></tr><tr><td>Our Topline</td><td>98.55</td><td>\u00b10.00051</td><td>98.19</td><td>\u00b10.000568</td><td>98.37</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>78.35</td><td>\u00b10.008738</td><td>69.60</td><td>\u00b10.009759</td><td>73.72</td></tr><tr><td>CNG</td><td>79.66</td><td>\u00b10.008540</td><td>76.97</td><td>\u00b10.008932</td><td>78.29</td></tr><tr><td>AVS</td><td>79.27</td><td>\u00b10.008600</td><td>78.08</td><td>\u00b10.008777</td><td>78.67</td></tr><tr><td>TCB</td><td>78.55</td><td>\u00b10.008708</td><td>69.97</td><td>\u00b10.009725</td><td>74.01</td></tr><tr><td>TCF</td><td>78.94</td><td>\u00b10.008651</td><td>69.94</td><td>\u00b10.009728</td><td>74.17</td></tr><tr><td>AVS+TCB</td><td>79.31</td><td>\u00b10.008595</td><td>77.93</td><td>\u00b10.008798</td><td>78.61</td></tr><tr><td>AVS+TCF</td><td>79.70</td><td>\u00b10.008533</td><td>78.30</td><td>\u00b10.008745</td><td>78.99</td></tr><tr><td>LRAVS</td><td>79.84</td><td>\u00b10.008512</td><td>78.32</td><td>\u00b10.008742</td><td>79.07</td></tr><tr><td>LRAVS+TCB</td><td>79.82</td><td>\u00b10.008514</td><td>78.57</td><td>\u00b10.008706</td><td>79.19</td></tr><tr><td>LRAVS+TCF</td><td>79.48</td><td>\u00b10.008568</td><td>77.93</td><td>\u00b10.008798</td><td>78.70</td></tr><tr><td>2006 Best</td><td>78.70</td><td>\u00b10.008686</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2006 Baseline</td><td>0.90</td><td>\u00b10.002004</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>0.95</td><td>\u00b10.002053</td><td>2.47</td><td>\u00b10.003293</td><td>1.37</td></tr><tr><td>2006 Topline</td><td>99.30</td><td>\u00b10.001769</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.31</td><td>\u00b10.001752</td><td>95.22</td><td>\u00b10.004526</td><td>97.22</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF18": {
"text": "",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>96.44</td><td>\u00b10.001169</td><td>95.71</td><td>\u00b10.001279</td><td>96.08</td></tr><tr><td>CNG</td><td>96.19</td><td>\u00b10.001208</td><td>95.58</td><td>\u00b10.001298</td><td>95.88</td></tr><tr><td>AVS</td><td>96.30</td><td>\u00b10.001191</td><td>95.84</td><td>\u00b10.001260</td><td>96.07</td></tr><tr><td>TCB</td><td>96.40</td><td>\u00b10.001177</td><td>95.74</td><td>\u00b10.001275</td><td>96.07</td></tr><tr><td>TCF</td><td>96.35</td><td>\u00b10.001183</td><td>95.69</td><td>\u00b10.001283</td><td>96.02</td></tr><tr><td>AVS+TC</td><td>96.38</td><td>\u00b10.001180</td><td>95.87</td><td>\u00b10.001256</td><td>96.12</td></tr><tr><td>AVS+TCF</td><td>96.40</td><td>\u00b10.001177</td><td>95.73</td><td>\u00b10.001276</td><td>96.06</td></tr><tr><td>LRAVS</td><td>96.22</td><td>\u00b10.001203</td><td>95.85</td><td>\u00b10.001259</td><td>96.04</td></tr><tr><td>LRAVS+TCB</td><td>96.24</td><td>\u00b10.001200</td><td>95.88</td><td>\u00b10.001255</td><td>96.06</td></tr><tr><td>LRAVS+TC</td><td>96.16</td><td>\u00b10.001213</td><td>95.85</td><td>\u00b10.001259</td><td>96.01</td></tr><tr><td>2006 Best</td><td>96.10</td><td>\u00b10.001222</td><td>96.40</td><td>\u00b10.001176</td><td>96.30</td></tr><tr><td>2006 Baseline</td><td>90.00</td><td>\u00b10.001984</td><td>94.90</td><td>\u00b10.001455</td><td>92.40</td></tr><tr><td>Our Baseline</td><td>90.03</td><td>\u00b10.001891</td><td>94.94</td><td>\u00b10.001384</td><td>92.42</td></tr><tr><td>2006 Topline</td><td>99.30</td><td>\u00b10.000551</td><td>99.10</td><td>\u00b10.000625</td><td>99.20</td></tr><tr><td>Our Topline</td><td>99.28</td><td>\u00b10.000534</td><td>99.08</td><td>\u00b10.000603</td><td>99.18</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>66.57</td><td>\u00b10.016171</td><td>55.62</td><td>\u00b10.017031</td><td>60.60</td></tr><tr><td>CNG</td><td>61.60</td><td>\u00b10.016672</td><td>58.23</td><td>\u00b10.016906</td><td>59.87</td></tr><tr><td>AVS</td><td>64.60</td><td>\u00b10.016393</td><td>60.83</td><td>\u00b10.016733</td><td>62.66</td></tr><tr><td>TCB</td><td>66.86</td><td>\u00b10.016136</td><td>55.95</td><td>\u00b10.017018</td><td>60.92</td></tr><tr><td>TCF</td><td>66.42</td><td>\u00b10.016189</td><td>54.67</td><td>\u00b10.017065</td><td>59.97</td></tr><tr><td>AVS+TCB</td><td>64.72</td><td>\u00b10.016380</td><td>61.19</td><td>\u00b10.016705</td><td>62.91</td></tr><tr><td>AVS+TCF</td><td>62.78</td><td>\u00b10.016571</td><td>59.86</td><td>\u00b10.016803</td><td>61.28</td></tr><tr><td>LRAVS</td><td>63.92</td><td>\u00b10.016462</td><td>59.94</td><td>\u00b10.016797</td><td>61.87</td></tr><tr><td>LRAVS+TCB</td><td>62.87</td><td>\u00b10.016563</td><td>60.40</td><td>\u00b10.016765</td><td>61.61</td></tr><tr><td>LRAVS+TCF</td><td>62.96</td><td>\u00b10.016554</td><td>59.56</td><td>\u00b10.016824</td><td>61.21</td></tr><tr><td>2006 Best</td><td>61.20</td><td>\u00b10.016704</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>2006 Baseline</td><td>2.20</td><td>\u00b10.005028</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Baseline</td><td>2.17</td><td>\u00b10.004999</td><td>11.13</td><td>\u00b10.010780</td><td>3.64</td></tr><tr><td>2006 Topline</td><td>99.90</td><td>\u00b10.001083</td><td>N/A</td><td>N/A</td><td>N/A</td></tr><tr><td>Our Topline</td><td>99.85</td><td>\u00b10.001313</td><td>99.24</td><td>\u00b10.002975</td><td>99.55</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF19": {
"text": "",
"content": "<table><tr><td>Configuration</td><td>P</td><td>C P</td><td>R</td><td>C R</td><td>F</td></tr><tr><td>6-tag</td><td>95.56</td><td>\u00b10.001682</td><td>95.51</td><td>\u00b10.001691</td><td>95.54</td></tr><tr><td>CNG</td><td>95.54</td><td>\u00b10.001686</td><td>95.53</td><td>\u00b10.001688</td><td>95.54</td></tr><tr><td>AVS</td><td>95.68</td><td>\u00b10.001660</td><td>95.71</td><td>\u00b10.001655</td><td>95.70</td></tr><tr><td>TCB</td><td>95.54</td><td>\u00b10.001687</td><td>95.54</td><td>\u00b10.001687</td><td>95.54</td></tr><tr><td>TCF</td><td>95.52</td><td>\u00b10.001689</td><td>95.54</td><td>\u00b10.001685</td><td>95.53</td></tr><tr><td>AVS+TCB</td><td>95.58</td><td>\u00b10.001680</td><td>95.61</td><td>\u00b10.001674</td><td>95.59</td></tr><tr><td>AVS+TCF</td><td>95.98</td><td>\u00b10.001605</td><td>95.96</td><td>\u00b10.001609</td><td>95.97</td></tr><tr><td>LRAVS</td><td>95.55</td><td>\u00b10.001684</td><td>95.56</td><td>\u00b10.001682</td><td>95.56</td></tr><tr><td>LRAVS+TCB</td><td>95.53</td><td>\u00b10.001687</td><td>95.56</td><td>\u00b10.001683</td><td>95.55</td></tr><tr><td>LRAVS+TCF</td><td>95.69</td><td>\u00b10.001658</td><td>95.72</td><td>\u00b10.001653</td><td>95.71</td></tr><tr><td>2008 Best</td><td>95.96</td><td>\u00b10.001386</td><td>95.83</td><td>\u00b10.001408</td><td>95.89</td></tr><tr><td>2008 Baseline</td><td>84.27</td><td>\u00b10.002563</td><td>88.64</td><td>\u00b10.002234</td><td>86.40</td></tr><tr><td>Our Baseline</td><td>84.05</td><td>\u00b10.002991</td><td>88.86</td><td>\u00b10.002570</td><td>86.39</td></tr><tr><td>2008 Topline</td><td>98.25</td><td>\u00b10.000923</td><td>97.10</td><td>\u00b10.001181</td><td>97.67</td></tr><tr><td>Our Topline</td><td>98.42</td><td>\u00b10.001018</td><td>97.55</td><td>\u00b10.001264</td><td>97.98</td></tr><tr><td>Configuration</td><td>R OOV</td><td>C Roov</td><td>P OOV</td><td>C Poov</td><td>F OOV</td></tr><tr><td>6-tag</td><td>77.63</td><td>\u00b10.014611</td><td>70.56</td><td>\u00b10.01598</td><td>73.92</td></tr><tr><td>CNG</td><td>76.28</td><td>\u00b10.014915</td><td>74.58</td><td>\u00b10.015266</td><td>75.42</td></tr><tr><td>AVS</td><td>77.69</td><td>\u00b10.014597</td><td>75.87</td><td>\u00b10.015001</td><td>76.77</td></tr><tr><td>TCB</td><td>77.69</td><td>\u00b10.014597</td><td>70.71</td><td>\u00b10.015955</td><td>74.04</td></tr><tr><td>TCF</td><td>77.69</td><td>\u00b10.014597</td><td>71.03</td><td>\u00b10.015904</td><td>74.21</td></tr><tr><td>AVS+TCB</td><td>77.20</td><td>\u00b10.014710</td><td>75.14</td><td>\u00b10.015153</td><td>76.16</td></tr><tr><td>AVS+TCF</td><td>78.86</td><td>\u00b10.014316</td><td>77.43</td><td>\u00b10.014657</td><td>78.14</td></tr><tr><td>LRAVS</td><td>77.11</td><td>\u00b10.014731</td><td>75.21</td><td>\u00b10.015139</td><td>76.15</td></tr><tr><td>LRAVS+TCB</td><td>77.04</td><td>\u00b10.014745</td><td>75.19</td><td>\u00b10.015142</td><td>76.11</td></tr><tr><td>LRAVS+TCF</td><td>78.15</td><td>\u00b10.014488</td><td>76.50</td><td>\u00b10.014865</td><td>77.32</td></tr><tr><td>2008 Best</td><td>77.30</td><td>\u00b10.014687</td><td>77.61</td><td>\u00b10.014615</td><td>77.45</td></tr><tr><td>2008 Baseline</td><td>2.83</td><td>\u00b10.005814</td><td>7.69</td><td>\u00b10.009341</td><td>4.14</td></tr><tr><td>Our Baseline</td><td>1.54</td><td>\u00b10.004313</td><td>3.34</td><td>\u00b10.006298</td><td>2.10</td></tr><tr><td>2008 Topline</td><td>99.20</td><td>\u00b10.003123</td><td>97.07</td><td>\u00b10.005913</td><td>98.12</td></tr><tr><td>Our Topline</td><td>99.54</td><td>\u00b10.002375</td><td>97.56</td><td>\u00b10.005409</td><td>98.54</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
}
}
}
} |