File size: 126,131 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
{
    "paper_id": "O13-1014",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:04:07.475604Z"
    },
    "title": "Improved Modulation Spectrum Histogram Equalization for Robust Speech Recognition",
    "authors": [
        {
            "first": "\u9ad8\u4e88\u771f",
            "middle": [],
            "last": "\u9673\u67cf\u7433",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Taiwan Normal University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Yu -Chen",
            "middle": [],
            "last": "Kao",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Taiwan Normal University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Berlin",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Taiwan Normal University",
                "location": {}
            },
            "email": "berlin@ntnu.edu.tw"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "",
    "pdf_parse": {
        "paper_id": "O13-1014",
        "_pdf_hash": "",
        "abstract": [],
        "body_text": [
            {
                "text": "\u76ee\u524d\u7684\u81ea\u52d5\u8a9e\u97f3\u8fa8\u8b58(automatic speech recognition, ASR)\u7cfb\u7d71\uff0c\u5728\u4e0d\u53d7\u5404\u7a2e\u74b0\u5883\u8b8a\u56e0\u5e72\u64fe \u7684\u7406\u60f3\u9304\u97f3\u74b0\u5883\u4e0b\uff0c\u53ef\u4ee5\u5f97\u5230\u76f8\u7576\u512a\u79c0\u7684\u8fa8\u8b58\u6548\u679c\uff1b\u4f46\u5728\u5be6\u52d9\u61c9\u7528\u4e0a\uff0c\u8a9e\u8005\u7684\u5dee\u7570\u3001\u9304 \u97f3\u904e\u7a0b\u7522\u751f\u7684\u566a\u97f3\u3001\u5176\u4ed6\u74b0\u5883\u8072\u97ff\u53ca\u901a\u9053\u6548\u61c9(channel effect)\u7b49\u74b0\u5883\u4e0a\u7684\u8b8a\u56e0\uff0c\u6703\u4f7f\u8a13 \u7df4\u74b0\u5883\u548c\u6e2c\u8a66\u74b0\u5883\u9593\u7522\u751f\u74b0\u5883\u4e0d\u5339\u914d(environmental mismatch)\u7684\u554f\u984c\uff0c\u5728\u672c\u8ad6\u6587\u4e2d\u4e5f\u7a31 \u70ba\u96dc\u8a0a(noise) \u3002 \u96dc \u8a0a \u53ef \u4ee5 \u7c97 \u7565 \u5730 \u5206 \u6210 \u52a0 \u6210 \u6027 \u566a \u97f3 (additive noise) \u53ca\u647a\u7a4d\u6027\u566a\u97f3 (convolutional noise)\uff1a\u52a0\u6210\u6027\u566a\u97f3\u5373\u9664\u4e86\u5be6\u969b\u6240\u9700\u7684\u8a9e\u97f3\u8a0a\u865f\u5916\uff0c\u7cfb\u7d71\u6240\u63a5\u6536\u5230\u7684\u5176\u4ed6 \u8072\u97f3\uff0c\u5176\u5728\u6642\u57df(time domain)\u53ca\u983b\u57df(spectrum domain)\u4e0a\u8207\u539f\u8a9e\u97f3\u8a0a\u865f\u662f\u76f8\u52a0\u7684\u95dc\u4fc2\uff0c \u56e0\u800c\u5f97\u540d\uff1b\u647a\u7a4d\u6027\u566a\u97f3\u53c8\u7a31\u70ba\u901a\u9053\u6548\u61c9(channel effect)\uff0c\u662f\u8a9e\u97f3\u5f9e\u767c\u8072\u5230\u63a5\u6536\u7684\u904e\u7a0b\u4e2d \u7d93\u904e\u7684\u5404\u7a2e\u5be6\u9ad4\u4ecb\u8cea\u53ca\u96fb\u5b50\u8a2d\u5099\u6240\u9020\u6210\u7684\u626d\u66f2\uff0c\u5728\u6642\u57df\u4e0a\u8207\u539f\u8a9e\u97f3\u8a0a\u865f\u70ba\u647a\u7a4d (convolution)\u7684\u95dc\u4fc2\uff0c\u800c\u5728\u983b\u57df\u4e0a\u5247\u8207\u539f\u8a9e\u97f3\u8a0a\u865f\u70ba\u76f8\u4e58\u7684\u95dc\u4fc2\u3002 \u4eba\u8033\u5c0d\u96dc\u8a0a\u6709\u975e\u5e38\u512a\u826f\u7684\u5f37\u5065\u6027(robustness)\uff0c\u9019\u4e9b\u96dc\u8a0a\u5c0d\u4eba\u8033\u7684\u5f71\u97ff\u4e26\u4e0d\u5927\uff1b\u4f46\u5c0d \u65bc\u81ea\u52d5\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u800c\u8a00\uff0c\u9019\u6a23\u7684\u4e0d\u5339\u914d\u6703\u4f7f\u8a9e\u97f3\u8fa8\u8b58\u7684\u6b63\u78ba\u7387(recognition accuracy) \u5927\u8f3b\u964d\u4f4e\uff0c\u9700\u8981\u63a1\u7528\u82e5\u5e72\u5f37\u5065\u6027\u8a9e\u97f3\u8fa8\u8b58(robust speech recognition)\u6280\u8853\u6e1b\u5c11\u74b0\u5883\u4e0d\u5339\u914d \u6240\u9020\u6210\u7684\u5f71\u97ff\uff0c\u4f7f\u81ea\u52d5\u8a9e\u97f3\u8fa8\u8b58\u5728\u4e0d\u540c\u7684\u74b0\u5883\u4e0b\u4ecd\u80fd\u4fdd\u6709\u4e00\u5b9a\u7684\u8fa8\u8b58\u6b63\u78ba\u7387\u3002\u5f37\u5065\u6027\u8a9e \u97f3\u8fa8\u8b58\u6280\u8853\u4f9d\u5176\u7279\u6027\u53ef\u4ee5\u5927\u81f4\u5206\u70ba\u4e09\u5927\u985e\u578b [1, 2] ",
                "cite_spans": [
                    {
                        "start": 698,
                        "end": 701,
                        "text": "[1,",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 702,
                        "end": 704,
                        "text": "2]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u4e00\u3001\u7dd2\u8ad6",
                "sec_num": null
            },
            {
                "text": "\u0302P HEQ , -= \u22121 ( ( , -)) = \u2211 ( ( , -)) =0 (4) (\u4e09)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u4e00\u3001\u7dd2\u8ad6",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u5716\u4e8c\u3001ST-PSHE \u6d41\u7a0b\u793a\u610f\u5716 * , -+\u4e4b\u8abf\u8b8a\u983b\u8b5c\u5f37\u5ea6*| , -|+\u7684\u6a5f\u7387\u5206\u4f48\uff0c (\u2022)\u70ba\u6240\u6709\u8a13\u7df4\u8a9e\u6599\u7684\u8abf\u8b8a\u983b\u8b5c\u5f37\u5ea6\u6a5f\u7387\u5206 \u4f48\uff0c\u4e5f\u5c31\u662f\u53c3\u8003\u5206\u4f48\uff0c\u6b64\u65b9\u6cd5\u4e2d\u6b63\u898f\u5316\u5f8c\u7684\u983b\u8b5c\u5f37\u5ea6| , -|\u8207\u539f\u59cb\u983b\u8b5c\u5f37\u5ea6| , -|\u7684\u95dc \u4fc2\u70ba\uff1a | , -| SHE = \u22121 ( (| , -|))",
                        "eq_num": "(6)"
                    }
                ],
                "section": "\u4e00\u3001\u7dd2\u8ad6",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u6642 \u57df t,hp , -= { , - , if = 1 , -\u2212 , \u2212 1- 2 , otherwise (10) t,lp , -= { 0 , if = 1 , -+ , \u2212 1- 2 , otherwise",
                        "eq_num": "(11)"
                    }
                ],
                "section": "\u4e00\u3001\u7dd2\u8ad6",
                "sec_num": null
            },
            {
                "text": "\u5176\u4e2d , -\u70ba\u8a72\u8a9e\u53e5\u4e2d\u7b2c \u500b\u97f3\u6846\u7b2c \u7dad\u5ea6\u7684\u8a9e\u97f3\u7279\u5fb5\u503c\uff0c = 1\u53ca = 1\u4ee3\u8868\u7b2c\u4e00\u500b\u97f3\u6846\u53ca \u7b2c\u4e00\u500b\u7dad\u5ea6\uff0c\u4f9d\u6b64\u985e\u63a8\uff1b ,hp , -\u3001 ,lp , -\u3001 t,hp , -\u53ca t,lp ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u4e00\u3001\u7dd2\u8ad6",
                "sec_num": null
            },
            {
                "text": "Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing(ROCLING 2013)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Environmental robustness",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Droppo",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Acero",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Springer handbook of speech processing",
                "volume": "33",
                "issue": "",
                "pages": "653--679",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Droppo and A. Acero, \"Environmental robustness,\" in Springer handbook of speech processing, 1st ed., J. Benesty, M. M. Sondhi, and Y. Huang, Eds. Springer, 2008, ch. 33, pp. 653-679.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Speech recognition in noisy environments: a survey",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Gong",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Speech Communication",
                "volume": "16",
                "issue": "3",
                "pages": "261--291",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Gong, \"Speech recognition in noisy environments: a survey,\" Speech Communication, vol. 16, no. 3, pp. 261-291, 1995.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Maximum likelihood linear regression for speaker adaptation of continuous density hidden markov models",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "J"
                        ],
                        "last": "Leggetter",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "C"
                        ],
                        "last": "Woodland",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Computer Speech & Language",
                "volume": "9",
                "issue": "2",
                "pages": "171--185",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. J. Leggetter and P. C. Woodland, \"Maximum likelihood linear regression for speaker adaptation of continuous density hidden markov models,\" Computer Speech & Language, vol. 9, no. 2, pp. 171-185, 1995.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Model based techniques for noise robust speech recognition",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "J"
                        ],
                        "last": "Gales",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. J. Gales, \"Model based techniques for noise robust speech recognition,\" Ph.D. dissertation, Cambridge University, 1995.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "A vector taylor series approach for environment-independent speech recognition",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Moreno",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Raj",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Stern",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing",
                "volume": "2",
                "issue": "",
                "pages": "733--736",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Moreno, B. Raj, and R. Stern, \"A vector taylor series approach for environment-independent speech recognition,\" in Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, vol. 2, 1996, pp. 733 -736.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Suppression of acoustic noise in speech using spectral subtraction",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Boll",
                        "suffix": ""
                    }
                ],
                "year": 1979,
                "venue": "IEEE Transactions on Acoustics, Speech and Signal Processing",
                "volume": "27",
                "issue": "2",
                "pages": "113--120",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Boll, \"Suppression of acoustic noise in speech using spectral subtraction,\" IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 27, no. 2, pp. 113-120, 1979.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A signal subspace approach for speech enhancement",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Ephraim",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Van Trees",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "IEEE Transactions on Speech and Audio Processing",
                "volume": "3",
                "issue": "4",
                "pages": "251--266",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Ephraim and H. Van Trees, \"A signal subspace approach for speech enhancement,\" IEEE Transactions on Speech and Audio Processing, vol. 3, no. 4, pp. 251-266, 1995.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Enhancement and bandwidth compression of noisy speech",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "S"
                        ],
                        "last": "Lim",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "V"
                        ],
                        "last": "Oppenheim",
                        "suffix": ""
                    }
                ],
                "year": 1979,
                "venue": "Proceedings of the IEEE",
                "volume": "67",
                "issue": "12",
                "pages": "1586--1604",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. S. Lim and A. V. Oppenheim, \"Enhancement and bandwidth compression of noisy speech,\" Proceedings of the IEEE, vol. 67, no. 12, pp. 1586-1604, 1979.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Speech enhancement using a minimum mean-square error log-spectral amplitude estimator",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Ephraim",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Malah",
                        "suffix": ""
                    }
                ],
                "year": 1985,
                "venue": "IEEE Transactions on Acoustics, Speech and Signal Processing",
                "volume": "33",
                "issue": "2",
                "pages": "443--445",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Ephraim and D. Malah, \"Speech enhancement using a minimum mean-square error log-spectral amplitude estimator,\" IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 33, no. 2, pp. 443-445, 1985.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Low distortion speech enhancement",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Soon",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Koh",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "IEEE Proceedings of Vision, Image and Signal Processing",
                "volume": "147",
                "issue": "",
                "pages": "247--253",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Soon and S. Koh, \"Low distortion speech enhancement,\" IEEE Proceedings of Vision, Image and Signal Processing, vol. 147, no. 3, pp. 247-253, 2000.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Non-linear transformations of the feature space for robust speech recognition",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "De La Torre",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Segura",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Benitez",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "M"
                        ],
                        "last": "Peinado",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "J"
                        ],
                        "last": "Rubio",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing",
                "volume": "",
                "issue": "",
                "pages": "401--404",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. de la Torre, J. C. Segura, C. Benitez, A. M. Peinado, and A. J. Rubio, \"Non-linear transformations of the feature space for robust speech recognition,\" in Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, 2002, pp. 401-404.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Cepstral analysis technique for automatic speaker verification",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Furui",
                        "suffix": ""
                    }
                ],
                "year": 1981,
                "venue": "IEEE Transactions on Acoustics, Speech and Signal Processing",
                "volume": "29",
                "issue": "2",
                "pages": "254--272",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Furui, \"Cepstral analysis technique for automatic speaker verification,\" IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 29, no. 2, pp. 254-272, 1981.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Cepstral domain segmental feature vector normalization for noise robust speech recognition",
                "authors": [
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Viikki",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Laurila",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Speech Communucation",
                "volume": "25",
                "issue": "1-3",
                "pages": "133--147",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "O. Viikki and K. Laurila, \"Cepstral domain segmental feature vector normalization for noise robust speech recognition,\" Speech Communucation, vol. 25, no. 1-3, pp. 133- 147, 1998.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Large-vocabulary speech recognition under adverse acoustic environments",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Acero",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Plumpe",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. Int. Conf. on Spoken Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. Deng, A. Acero, M. Plumpe, and X. Huang, \"Large-vocabulary speech recognition under adverse acoustic environments,\" in Proc. Int. Conf. on Spoken Language Processing, 2000.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "An environment compensated maximum likelihood Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) training approach based on stochastic vector mapping",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Huo",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing",
                "volume": "1",
                "issue": "",
                "pages": "429--432",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Wu, Q. Huo, and D. Zhu, \"An environment compensated maximum likelihood Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) training approach based on stochastic vector mapping,\" in Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, vol. 1, 2005, pp. 429-432.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Higher order cepstral moment normalization for improved robust speech recognition",
                "authors": [
                    {
                        "first": "C.-W",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    },
                    {
                        "first": "L.-S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "IEEE Transactions on Audio, Speech, and Language Processing",
                "volume": "17",
                "issue": "2",
                "pages": "205--220",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C.-W. Hsu and L.-S. Lee, \"Higher order cepstral moment normalization for improved robust speech recognition,\" IEEE Transactions on Audio, Speech, and Language Processing, vol. 17, no. 2, pp. 205-220, 2009.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Distribution-based feature compensation for robust speech recognition",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "S.-H",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Recent Advances in Robust Speech Recognition Technology",
                "volume": "",
                "issue": "",
                "pages": "155--168",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Chen and S.-H. Lin, \"Distribution-based feature compensation for robust speech recognition,\" in Recent Advances in Robust Speech Recognition Technology. Bentham Science Publishers, 2011, ch. 10, pp. 155-168.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Histogram equalization of speech representation for robust speech recognition",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "De La Torre",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "M"
                        ],
                        "last": "Peinado",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Segura",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "L"
                        ],
                        "last": "Perez-Cordoba",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "C"
                        ],
                        "last": "Benitez",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "J"
                        ],
                        "last": "Rubio",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "IEEE Transactions on Speech and Audio Processing",
                "volume": "13",
                "issue": "3",
                "pages": "355--366",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. de la Torre, A. M. Peinado, J. C. Segura, J. L. Perez-Cordoba, M. C. Benitez, and A. J. Rubio, \"Histogram equalization of speech representation for robust speech recognition,\" IEEE Transactions on Speech and Audio Processing, vol. 13, no. 3, pp. 355-366, 2005.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "A nonlinear unsupervised adaptation technique for speech recognition",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "P"
                        ],
                        "last": "Ibm",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Dharanipragada",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Padmanabhan",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. Int. Conf. on Spoken Language Processing",
                "volume": "",
                "issue": "",
                "pages": "556--559",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. P. Ibm, S. Dharanipragada, and M. Padmanabhan, \"A nonlinear unsupervised adaptation technique for speech recognition,\" in Proc. Int. Conf. on Spoken Language Processing, 2000, pp. 556-559.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Robust speech recognition using spatial-temporal feature distribution characteristics",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "W.-H",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "S.-H",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "W.-Y",
                        "middle": [],
                        "last": "Chu",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Pattern Recognition Letter",
                "volume": "32",
                "issue": "7",
                "pages": "919--926",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Chen, W.-H. Chen, S.-H. Lin, and W.-Y. Chu, \"Robust speech recognition using spatial-temporal feature distribution characteristics,\" Pattern Recognition Letter, vol. 32, no. 7, pp. 919-926, 2011.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Filtering on the temporal probability sequence in histogram equalization for robust speech recognition",
                "authors": [
                    {
                        "first": "S.-S",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Tsao",
                        "suffix": ""
                    },
                    {
                        "first": "J.-W",
                        "middle": [],
                        "last": "Hung",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S.-S. Wang, Y. Tsao, and J.-W. Hung, \"Filtering on the temporal probability sequence in histogram equalization for robust speech recognition,\" in Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, 2013.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Exploring joint equalization of spatial-temporal contextual statistics of speech features for robust speech recognition",
                "authors": [
                    {
                        "first": "H.-J",
                        "middle": [],
                        "last": "Hsieh",
                        "suffix": ""
                    },
                    {
                        "first": "J.-W",
                        "middle": [],
                        "last": "Hung",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proc. Annu. Conf. of the Int. Speech Communication Association",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H.-J. Hsieh, J.-W. Hung, and B. Chen, \"Exploring joint equalization of spatial-temporal contextual statistics of speech features for robust speech recognition,\" in Proc. Annu. Conf. of the Int. Speech Communication Association, 2012.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Sub-band level histogram equalization for robust speech recognition",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Biligi",
                        "suffix": ""
                    },
                    {
                        "first": "U",
                        "middle": [
                            "S"
                        ],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Garcia",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Benitez",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proc. Annu. Conf. of the Int. Speech Communication Association",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "V. Joshi, R. Biligi, U. S., L. Garcia, and C. Benitez, \"Sub-band level histogram equalization for robust speech recognition,\" in Proc. Annu. Conf. of the Int. Speech Communication Association, 2011.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Speech enhancement based on physiological and psychoacoustical models of modulation perception and binaural interaction",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Kollmeier",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Koch",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "The Journal of the Acoustical Society of America",
                "volume": "95",
                "issue": "3",
                "pages": "1593--1602",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Kollmeier and R. Koch, \"Speech enhancement based on physiological and psychoacoustical models of modulation perception and binaural interaction,\" The Journal of the Acoustical Society of America, vol. 95, no. 3, pp. 1593-1602, 1994.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Sub-band modulation spectrum compensation for robust speech recognition",
                "authors": [
                    {
                        "first": "W.-H",
                        "middle": [],
                        "last": "Tu",
                        "suffix": ""
                    },
                    {
                        "first": "S.-Y",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "J.-W",
                        "middle": [],
                        "last": "Hung",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc. IEEE Workshop on Automatic Speech Recognition Understanding",
                "volume": "",
                "issue": "",
                "pages": "261--265",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W.-H. Tu, S.-Y. Huang, and J.-W. Hung, \"Sub-band modulation spectrum compensation for robust speech recognition,\" in Proc. IEEE Workshop on Automatic Speech Recognition Understanding, 2009, pp. 261-265.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Modulation spectrum equalization for robust speech recognition",
                "authors": [
                    {
                        "first": "L.-C",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "C.-W",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    },
                    {
                        "first": "L.-S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "IEEE Workshop on Automatic Speech Recognition Understanding",
                "volume": "",
                "issue": "",
                "pages": "81--86",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L.-C. Sun, C.-W. Hsu, and L.-S. Lee, \"Modulation spectrum equalization for robust speech recognition,\" in IEEE Workshop on Automatic Speech Recognition Understanding, 2007, pp. 81-86.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Improved modulation spectrum enhancement methods for robust speech recognition",
                "authors": [
                    {
                        "first": "J.-W",
                        "middle": [],
                        "last": "Hung",
                        "suffix": ""
                    },
                    {
                        "first": "W.-H",
                        "middle": [],
                        "last": "Tu",
                        "suffix": ""
                    },
                    {
                        "first": "C.-C",
                        "middle": [],
                        "last": "Lai",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Signal Processing",
                "volume": "92",
                "issue": "11",
                "pages": "2791--2814",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J.-W. Hung, W.-H. Tu, and C.-C. Lai, \"Improved modulation spectrum enhancement methods for robust speech recognition,\" Signal Processing, vol. 92, no. 11, pp. 2791- 2814, 2012.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Normalization of the speech modulation spectra for robust speech recognition",
                "authors": [
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [
                            "S"
                        ],
                        "last": "Chng",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "IEEE Transactions on Audio, Speech, and Language Processing",
                "volume": "16",
                "issue": "8",
                "pages": "1662--1674",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "X. Xiao, E. S. Chng, and H. Li, \"Normalization of the speech modulation spectra for robust speech recognition,\" IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 8, pp. 1662-1674, 2008.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Leveraging distributional characteristics of modulation spectra for robust speech recognition",
                "authors": [
                    {
                        "first": "Y. -C",
                        "middle": [],
                        "last": "Kao",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proc. Int. Conf. on Information Science",
                "volume": "",
                "issue": "",
                "pages": "120--125",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. -C. Kao and B. Chen, \"Leveraging distributional characteristics of modulation spectra for robust speech recognition,\" in Proc. Int. Conf. on Information Science, Signal Processing and their Applications, 2012, pp. 120-125.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Modulation spectrum equalization for improved robust speech recognition",
                "authors": [
                    {
                        "first": "L.-C",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "L.-S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "IEEE Transactions on Audio, Speech, and Language Processing",
                "volume": "20",
                "issue": "3",
                "pages": "828--843",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L.-C. Sun and L.-S. Lee, \"Modulation spectrum equalization for improved robust speech recognition,\" IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 3, pp. 828-843, 2012.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Image Processing: Principles and Applications",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Acharya",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ray",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Acharya and A. Ray, Image Processing: Principles and Applications. Wiley, 2005.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Quantile based histogram equalization for noise robust large vocabulary speech recognition",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Hilger",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "IEEE Transactions on Audio, Speech, and Language Processing",
                "volume": "14",
                "issue": "3",
                "pages": "845--854",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. Hilger and H. Ney, \"Quantile based histogram equalization for noise robust large vocabulary speech recognition,\" IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 3, pp. 845-854, 2006.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Exploring the use of speech features and their corresponding distribution characteristics for robust speech recognition",
                "authors": [
                    {
                        "first": "S.-H",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Y.-M",
                        "middle": [],
                        "last": "Yeh",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "IEEE Transactions on Audio, Speech, and Language Processing",
                "volume": "17",
                "issue": "1",
                "pages": "84--94",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S.-H. Lin, B. Chen, and Y.-M. Yeh, \"Exploring the use of speech features and their corresponding distribution characteristics for robust speech recognition,\" IEEE Transactions on Audio, Speech, and Language Processing, vol. 17, no. 1, pp. 84-94, 2009.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Nonlinear and linear transformations of speech features to compensate for channel and noise effects",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Prasad",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Zahorian",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. European Conf. on Speech Communication and Technology",
                "volume": "",
                "issue": "",
                "pages": "969--972",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Prasad and S. A. Zahorian, \"Nonlinear and linear transformations of speech features to compensate for channel and noise effects,\" in Proc. European Conf. on Speech Communication and Technology, 2005, pp. 969-972.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Cepstral domain segmental nonlinear feature transformations for robust speech recognition",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Segura",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Benitez",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "De La Torre",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "J"
                        ],
                        "last": "Rubio",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Ramirez",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "IEEE Signal Processing Letters",
                "volume": "11",
                "issue": "5",
                "pages": "517--520",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. C. Segura, C. Benitez, A. de la Torre, A. J. Rubio, and J. Ramirez, \"Cepstral domain segmental nonlinear feature transformations for robust speech recognition,\" IEEE Signal Processing Letters, vol. 11, no. 5, pp. 517-520, 2004.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Rasta processing of speech",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Hermansky",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Morgan",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "IEEE Transactions on Speech and Audio Processing",
                "volume": "2",
                "issue": "4",
                "pages": "578--589",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Hermansky and N. Morgan, \"Rasta processing of speech,\" IEEE Transactions on Speech and Audio Processing, vol. 2, no. 4, pp. 578-589, 1994.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Frontend post-processing and backend model enhancement on the aurora 2.0/3.0 databases",
                "authors": [
                    {
                        "first": "C.-P",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Filali",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "A"
                        ],
                        "last": "Bilmes",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. Annu. Conf. of the Int. Speech Communication Association",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C.-P. Chen, K. Filali, and J. A. Bilmes, \"Frontend post-processing and backend model enhancement on the aurora 2.0/3.0 databases,\" in Proc. Annu. Conf. of the Int. Speech Communication Association, 2002.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Communication in the presence of noise",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "E"
                        ],
                        "last": "Shannon",
                        "suffix": ""
                    }
                ],
                "year": 1949,
                "venue": "Proceedings of the IRE",
                "volume": "37",
                "issue": "1",
                "pages": "10--21",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. E. Shannon, \"Communication in the presence of noise,\" Proceedings of the IRE, vol. 37, no. 1, pp. 10-21, 1949.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "On the importance of various modulation frequencies for speech recognition",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Kanedera",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Arai",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Hermansky",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Pavel",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proc. European Conf. on Speech Communication and Technology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Kanedera, T. Arai, H. Hermansky, and M. Pavel, \"On the importance of various modulation frequencies for speech recognition,\" in Proc. European Conf. on Speech Communication and Technology, 1997.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "On the origins of speech intelligibility in the real world",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Greenberg",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proc. ESCA-NATO Tutorial and Research Workshop on Robust Speech Recognition for Unknown Communication Channels",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Greenberg, \"On the origins of speech intelligibility in the real world,\" in Proc. ESCA-NATO Tutorial and Research Workshop on Robust Speech Recognition for Unknown Communication Channels, 1997.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Davis",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Mermelstein",
                        "suffix": ""
                    }
                ],
                "year": 1980,
                "venue": "IEEE Transactions on Acoustics, Speech and Signal Processing",
                "volume": "28",
                "issue": "4",
                "pages": "357--366",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Davis and P. Mermelstein, \"Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences,\" IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 28, no. 4, pp. 357-366, 1980.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "The aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Pearce",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [
                            "G"
                        ],
                        "last": "Hirsch",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Gmbh",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. ISCA Workshop on ASR",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Pearce, H. G. Hirsch, and D. Gmbh, \"The aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions,\" in Proc. ISCA Workshop on ASR, 2000.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Evaluation of a noise-robust dsr front-end on aurora databases",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Macho",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Mauuary",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Noe",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [
                            "M"
                        ],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Ealey",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Jouvet",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Kelleher",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Pearce",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Saadoun",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. Annu. Conf. of the Int. Speech Communication Association",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Macho, L. Mauuary, B. Noe, Y. M. Cheng, D. Ealey, D. Jouvet, H. Kelleher, D. Pearce, and F. Saadoun, \"Evaluation of a noise-robust dsr front-end on aurora databases,\" in Proc. Annu. Conf. of the Int. Speech Communication Association, 2002.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Experimental framework for the performance evaluation of speech recognition front-ends on a large vocabulary task",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "G"
                        ],
                        "last": "Hirsch",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "ETSI STQ-Aurora DSR Working Group",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. G. Hirsch, \"Experimental framework for the performance evaluation of speech recognition front-ends on a large vocabulary task,\" ETSI STQ-Aurora DSR Working Group, Tech. Rep. AU/384/02, 2002.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "MATBN: A Mandarin Chinese Broadcast News Corpus",
                "authors": [
                    {
                        "first": "H.-M",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "J.-W",
                        "middle": [],
                        "last": "Kuo",
                        "suffix": ""
                    },
                    {
                        "first": "S.-S",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "International Journal of Computational Linguistics and Chinese Language Processing",
                "volume": "10",
                "issue": "2",
                "pages": "219--236",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H.-M. Wang, B. Chen, J.-W. Kuo, and S.-S. Cheng, \"MATBN: A Mandarin Chinese Broadcast News Corpus,\" International Journal of Computational Linguistics and Chinese Language Processing, vol. 10, no. 2, pp. 219-236, 2005.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "\u4e03\u3001\u8a8c\u8b1d \u672c\u8ad6\u6587\u4e4b\u7814\u7a76\u627f\u8499\u6559\u80b2\u90e8-\u570b\u7acb\u81fa\u7063\u5e2b\u7bc4\u5927\u5b78\u9081\u5411\u9802\u5c16\u5927\u5b78\u8a08\u756b(102J1A0800)\u8207\u884c \u653f\u9662\u570b\u5bb6\u79d1\u5b78\u59d4\u54e1\u6703\u7814\u7a76\u8a08\u756b(NSC 101-2221-E-003-024-MY3, NSC 101-2511-S-003-057-MY3, NSC 101-2511-S-003-047-MY3 \u548c NSC 102-2221-E-003-014-) \u4e4b\u7d93\u8cbb\u652f\u6301\uff0c\u8b39\u6b64\u81f4\u8b1d\u3002 \u53c3\u8003\u6587\u737b",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "\u4ee5\u8072\u5b78\u6a21\u578b\u70ba\u57fa\u790e\u4e4b\u5f37\u5065\u6027\u6280\u8853(model-based techniques)\uff1a\u85c9\u7531\u4fee\u6539\u5df2\u8a13\u7df4\u4e4b\u8072 \u5b78\u6a21\u578b(acoustic model)\u7684\u6a21\u578b\u53c3\u6578\uff0c\u4f7f\u8072\u5b78\u6a21\u578b\u80fd\u5920\u9069\u61c9\u8207\u8a13\u7df4\u6642\u4e0d\u540c\u7684\u74b0\u5883\uff0c \u8a9e\u6599\u5eab\u4e2d\u4e0d\u540c\u8a0a\u566a\u6bd4\u8a9e\u53e5 MFCC \u7279\u5fb5 c1 \u53c3\u6578\u4e4b\u8abf\u8b8a\u983b\u8b5c\u7684\u5dee\u7570 Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)",
                "content": "<table><tr><td>Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)</td></tr><tr><td>\u53e6\u5916\uff0c\u8fd1\u5e74\u4f86\u4ea6\u6709\u4e00\u4e9b\u7814\u7a76\u986f\u793a\uff0c\u74b0\u5883\u4e2d\u7684\u5e72\u64fe\u56e0\u7d20\u4e0d\u53ea\u6703\u6539\u8b8a\u8a9e\u97f3\u7279\u5fb5\u7684\u5206\u4f48\u7279</td></tr><tr><td>\u6027\uff0c\u4e5f\u6703\u4f7f\u8a9e\u97f3\u7279\u5fb5\u7684\u6642\u57df\u7d50\u69cb(temporal structure)\u7522\u751f\u626d\u66f2\u3002\u8abf\u8b8a\u983b\u8b5c(modulation</td></tr><tr><td>spectrum)[24]\u70ba\u4e00\u6709\u6548\u63cf\u7e6a\u6574\u500b\u8a9e\u53e5\u8a9e\u97f3\u7279\u5fb5\u4e4b\u6642\u57df\u7d50\u69cb\u7684\u5a92\u4ecb\uff0c\u76f8\u8f03\u65bc\u4e00\u822c\u7684\u8a9e\u97f3\u7279</td></tr><tr><td>\u5fb5\u80fd\u5448\u73fe\u51fa\u66f4\u5ee3\u6cdb\u7684\u8a9e\u97f3\u8b8a\u5316\u7279\u6027\u3002\u800c\u8abf\u8b8a\u983b\u8b5c\u6b63\u898f\u5316\u7684\u7814\u7a76\uff0c\u4fbf\u8a66\u5716\u5c07\u4e0a\u8ff0\u8a9e\u97f3\u7279\u5fb5</td></tr><tr><td>\u5206\u4f48\u7279\u6027\u6b63\u898f\u5316\u7684\u6982\u5ff5\uff0c\u61c9\u7528\u5728\u8a9e\u97f3\u7279\u5fb5\u7684\u8abf\u8b8a\u983b\u8b5c\u4e0a\u3002\u4e0d\u540c\u65bc\u5728\u6642\u57df\u4e0a\u8a9e\u97f3\u7279\u5fb5\u6b63\u898f \u5f9e\u800c\u6e1b\u5c11\u74b0\u5883\u4e0d\u5339\u914d\u9020\u6210\u7684\u554f\u984c\u3002\u4f8b\u5982\u7d93\u5178\u7684\u6700\u5927\u76f8\u4f3c\u5ea6\u7dda\u6027\u56de\u6b78\u6cd5(maximum \u5316\u7684\u6280\u8853\uff0c\u8abf\u8b8a\u983b\u8b5c\u6b63\u898f\u5316\u6280\u8853\u8003\u616e\u4e86\u8a9e\u53e5\u7684\u6574\u9ad4\u8b8a\u5316\u60c5\u5f62\uff0c\u8207\u8a9e\u97f3\u7279\u5fb5\u6b63\u898f\u5316\u6280\u8853\u63a1 likelihood linear regression, MLLR)[3]\u3001\u5e73\u884c\u6a21\u578b\u7d50\u5408\u6cd5(parallel model combination, \u7528\u4e0d\u540c\u7684\u89d2\u5ea6\u5207\u5165\u74b0\u5883\u5e72\u64fe\u7684\u554f\u984c\u3002\u985e\u4f3c\u65bc\u8a9e\u97f3\u7279\u5fb5\u6b63\u898f\u5316\u7684\u7814\u7a76\u9014\u5f91\uff0c\u8abf\u8b8a\u983b\u8b5c\u5e73\u5747 PMC)[4]\u3001\u57fa\u65bc\u5411\u91cf\u6cf0\u52d2\u5c55\u958b\u5f0f(vector Taylor series)\u7684\u6a21\u578b\u8abf\u9069[5]\u7b49\u3002\u6b64\u985e\u65b9\u6cd5 \u503c\u6b63\u898f\u5316\u6cd5 (spectral mean normalization, SMN) \u53ca\u8abf\u8b8a\u983b\u8b5c\u5e73\u5747\u503c\u8b8a\u7570\u6578\u6b63\u898f\u5316\u6cd5 \u901a\u5e38\u80fd\u5c0d\u5f37\u5065\u6027\u6709\u76f8\u7576\u4e0d\u932f\u7684\u6539\u5584\uff0c\u4f46\u6240\u9700\u8981\u7684\u8abf\u9069\u8a9e\u6599\u8f03\u591a\uff0c\u904b\u7b97\u8907\u96dc\u5ea6\u4e5f\u8f03 (spectral mean and variance normalization, SMVN)[25]\u3001\u8abf\u8b8a\u983b\u8b5c\u7d71\u8a08\u5716\u7b49\u5316\u6cd5(spectral \u9ad8[1]\u3002 histogram equalization, SHE)[26]\u7b49\u65b9\u6cd5\u90fd\u5c6c\u65bc\u6b64\u4e00\u7814\u7a76\u9818\u57df\u7684\u6210\u679c\u3002\u53e6\u5916\uff0c\u4e5f\u6709\u4e00\u4e9b\u7814 2. \u8a9e\u97f3\u5f37\u5316(speech enhancement)\uff1a\u5f37\u5316\u6240\u63a5\u6536\u5230\u7684\u8a9e\u97f3\u8a0a\u865f\uff0c\u4f7f\u8a72\u8a9e\u97f3\u8a0a\u865f\u6240\u53d7\u5230 \u7a76\u6839\u64da\u8abf\u8b8a\u983b\u8b5c\u7684\u7279\u6027\u767c\u5c55\u65b0\u7684\u6b63\u898f\u5316\u65b9\u6cd5\uff0c\u4f8b\u5982\u8abf\u8b8a\u983b\u8b5c\u53d6\u4ee3\u6cd5(modulation spectrum \u7684\u74b0\u5883\u56e0\u7d20\u5e72\u64fe\u6e1b\u5c11\u6216\u6d88\u5931\uff0c\u5f9e\u800c\u6a21\u64ec\u5728\u7406\u60f3\u9304\u97f3\u74b0\u5883\u4e0b\u6240\u53d6\u5f97\u7684\u8a9e\u97f3\u8a0a\u865f\uff0c\u85c9 replacement, MSR)[27]\u3001\u57fa\u65bc\u6ffe\u6ce2\u5668\u8a2d\u8a08\u7684\u6642\u57df\u5e8f\u5217\u7d50\u69cb\u6b63\u898f\u5316\u6cd5(temporal structure \u4ee5\u964d\u4f4e\u96dc\u8a0a\u7684\u5f71\u97ff\u3002\u4f8b\u5982\u7d93\u5178\u7684\u983b\u8b5c\u6d88\u53bb\u6cd5(spectral subtraction, SS)[6]\u3001\u8a0a\u865f\u5b50 normalization, TSN)[28]\u3001\u4ee5\u53ca\u6b63\u898f\u5316\u9ad8\u4f4e\u983b\u6bd4\u4f8b\u7684\u5f37\u5ea6\u983b\u8b5c\u6bd4\u4f8b\u6b63\u898f\u5316\u6cd5(magnitude \u7a7a\u9593\u6cd5(signal subspace approach)[7]\u3001\u7dad\u7d0d\u6ffe\u6ce2\u5668(Wiener filtering)[8]\u3001\u6216\u662f\u57fa\u65bc ratio equalization, MRE)[26]\u7b49\u3002\u5176\u4e2d SHE \u6240\u63a1\u7528\u7684\u6982\u5ff5\u8207\u4f5c\u7528\u65bc\u7279\u5fb5\u4e0a\u7684 HEQ \u985e\u4f3c\uff0c \u7d71\u8a08\u4f30\u6e2c\u5b50\u7684\u8a9e\u97f3\u5f37\u5316\u6280\u8853[9]\u7b49\u3002\u9019\u4e00\u985e\u7684\u65b9\u6cd5\u7d93\u5e38\u662f\u91dd\u5c0d\u4eba\u8033\u7684\u7279\u6027\u8a2d\u8a08\uff0c \u4f46 HEQ \u662f\u76f4\u63a5\u8abf\u6574\u7279\u5fb5\u7684\u6578\u503c\uff0cSHE \u8abf\u6574\u7684\u5247\u662f\u7279\u5fb5\u8b8a\u5316\u7684\u8da8\u52e2\u8207\u898f\u5f8b\uff0c\u6b64\u5169\u7a2e\u8abf\u6574 \u4f46\u5176\u5f15\u5165\u7684\u975e\u7dda\u6027\u626d\u66f2\u6709\u6642\u6703\u5c0d\u81ea\u52d5\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u6709\u8ca0\u9762\u7684\u5f71\u97ff[10]\u3002 \u6a19\u7684\u662f\u4e0d\u540c\u7684\uff0c\u56e0\u6b64\u5177\u6709\u9ad8\u5ea6\u7684\u4e92\u88dc\u6027[29,30]\u3002 \u5716\u4e00\u3001Aurora-2</td></tr><tr><td>3. \u5f37\u5065\u6027\u8a9e\u97f3\u7279\u5fb5\u64f7\u53d6(robust speech feature extraction)\uff1a\u85c9\u7531\u6539\u8b8a\u8a9e\u97f3\u7279\u5fb5\u64f7\u53d6\u7684 \u904e\u7a0b\uff0c\u627e\u51fa\u8f03\u4e0d\u6703\u56e0\u74b0\u5883\u4e0d\u5339\u914d\u800c\u6539\u8b8a\u5176\u7279\u6027\u7684\u8a9e\u97f3\u7279\u5fb5\u53c3\u6578\u3002\u5176\u4e2d\u6709\u4e00\u90e8\u4efd\u7684 \u65b9\u6cd5\u5e0c\u671b\u627e\u5230\u4e00\u7a2e\u901a\u7528\u7684\u7279\u5fb5\u8868\u793a\u6cd5\uff0c\u4f7f\u4e7e\u6de8\u7684\u8a9e\u97f3\u548c\u53d7\u96dc\u8a0a\u5e72\u64fe\u7684\u8a9e\u97f3\u80fd\u8868\u73fe \u51fa\u985e\u4f3c\u7684\u7279\u6027[11-13]\uff1b\u800c\u53e6\u4e00\u4e9b\u65b9\u6cd5\u5247\u662f\u8a66\u8457\u904b\u7528\u5404\u7a2e\u88dc\u511f\u7684\u65b9\u5f0f\uff0c\u5c07\u8a9e\u97f3\u7279\u5fb5 \u6709\u9451\u65bc\u6b64\uff0c\u672c\u8ad6\u6587\u5ef6\u7e8c\u4ee5\u5206\u983b\u5e36\u7684\u65b9\u5f0f\u5f15\u5165\u6587\u8108\u8cc7\u8a0a\u4e4b\u7814\u7a76\uff0c\u63d0\u51fa\u5c07\u5176\u6982\u5ff5\u61c9\u7528\u5728 \u7279\u5fb5\u9593\u56e0\u70ba\u96dc\u8a0a\u800c\u7522\u751f\u7684\u52d5\u614b\u7bc4\u570d(dynamic range)\u5dee\u7570\uff0c\u4f7f\u5f97\u96dc\u8a0a\u5c0d\u8a9e\u97f3\u7279\u5fb5\u7684\u5f71\u97ff\u66f4 \u8abf\u8b8a\u983b\u8b5c\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u4e2d\u7684 \u300c\u57fa\u65bc\u7a7a\u9593\u57df-\u6642\u57df\u6587\u8108\u7d71\u8a08\u8cc7\u8a0a\u7684\u8abf\u8b8a\u983b\u8b5c\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u300d \u70ba\u7e2e\u5c0f\u3002\u5728\u9019\u4e9b\u57fa\u790e\u4e4b\u4e0b\uff0c\u4e5f\u6709\u5b78\u8005\u63d0\u51fa\u6b63\u898f\u5316\u8a9e\u97f3\u7279\u5fb5\u7684\u7b2c\u4e09\u968e\u52d5\u5dee\u6216\u4efb\u610f\u968e\u6578\u7684\u52d5 (ST-PSHE)\u3002\u5229\u7528\u7c21\u55ae\u7684\u9ad8\u901a(high-pass)\u53ca\u4f4e\u901a(low-pass)\u6ffe\u6ce2\u5668\u53d6\u5f97\u9ad8\u983b\u53ca\u4f4e\u983b\u7684\u6587\u8108 \u5dee\u7684\u6280\u8853[16]\u3002 \u8cc7\u8a0a\uff0c\u91dd\u5c0d\u9019\u4e9b\u6587\u8108\u8cc7\u8a0a\u9032\u884c\u8abf\u8b8a\u983b\u8b5c\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\uff0c\u518d\u5c07\u6b63\u898f\u5316\u5f8c\u7684\u9ad8\u4f4e\u983b\u6210\u4efd\u7d50\u5408 \u7576\u4e2d\u53d7\u5230\u7684\u5e72\u64fe\u9084\u539f\u6210\u672a\u53d7\u5e72\u64fe\u524d\u7684\u6a23\u5b50[14,15]\u3002\u672c\u8ad6\u6587\u7684\u4e3b\u8981\u7684\u8a0e\u8ad6\u90fd\u96c6\u4e2d\u5728 \u6210\u70ba\u65b0\u7684\u8a9e\u97f3\u7279\u5fb5\uff0c\u85c9\u6b64\u6539\u5584\u50b3\u7d71\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u4e2d\u7684\u9650\u5236\uff0c\u53c8 \u540c\u6642\u80fd\u8abf\u6574\u8a9e\u53e5\u7684\u6642\u57df\u7d50 (\u4e8c)\u7d71\u8a08\u5716\u7b49\u5316\u6cd5 \u5f37\u5065\u6027\u8a9e\u97f3\u7279\u5fb5\u64f7\u53d6\u4e2d\u3002 \u5728\u5f37\u5065\u6027\u8a9e\u97f3\u7279\u5fb5\u64f7\u53d6\u7684\u7814\u7a76\u4e2d\uff0c\u5176\u4e2d\u4e00\u500b\u91cd\u8981\u7684\u7814\u7a76\u9818\u57df\u7a31\u70ba\u8a9e\u97f3\u7279\u5fb5\u6b63\u898f\u5316 (feature normalization)\u3002\u9019\u500b\u9818\u57df\u7684\u7814\u7a76\u4e3b\u5f35\u5c07\u8a9e\u97f3\u7279\u5fb5\u5e8f\u5217\u4e2d\u7684\u67d0\u4e9b\u7279\u6027\u8b8a\u70ba\u4e00\u81f4\uff0c \u4f7f\u9019\u7a2e\u65b0\u7684\u8a9e\u97f3\u7279\u5fb5\u8868\u793a\u6cd5\u80fd\u8f03\u4e0d\u53d7\u96dc\u8a0a\u7684\u5f71\u97ff\u3002\u5176\u4e2d\uff0c\u672c\u8ad6\u6587\u8a0e\u8ad6\u7684\u4e3b\u8981\u70ba\u57fa\u65bc\u7d71\u8a08 \u69cb\u8cc7\u8a0a\uff0c\u4e5f\u5c31\u662f\u7279\u5fb5\u8b8a\u5316\u7684\u898f\u5f8b\u3002\u5728\u7b2c\u4e8c\u7ae0\u53ca\u7b2c\u4e09\u7ae0\u4e2d\uff0c\u6211\u5011\u5c07\u5148\u7c21\u8981\u4ecb\u7d39\u8a9e\u97f3\u7279\u5fb5\u6b63 \u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u70ba\u5f71\u50cf\u8655\u7406\u9818\u57df\u5e38\u7528\u7684\u6f14\u7b97\u6cd5\uff0c\u7528\u4ee5\u8abf\u6574\u5982\u660e\u5ea6\u3001\u8272\u5f69\u5e73\u8861\u7b49\u5f71\u50cf\u53c3\u6578 \u898f\u5316\u7684\u65b9\u6cd5\u53ca\u57fa\u65bc\u8abf\u8b8a\u983b\u8b5c\u7684\u6b63\u898f\u5316\u65b9\u6cd5\uff1b\u7b2c\u56db\u7ae0\u5247\u8a73\u7d30\u8aaa\u660e\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u4e4b\u6539\u826f\u5f0f\u67b6 [31]\uff1b\u800c\u5728\u81ea\u52d5\u8a9e\u97f3\u8fa8\u8b58\u7684\u9818\u57df\uff0c\u4e5f\u6709\u5b78\u8005\u63d0\u51fa\u5229\u7528\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u4f86\u88dc\u511f\u96dc\u8a0a\u5728\u8a9e\u97f3\u7279 \u69cb\uff1b\u63a5\u8457\uff0c\u5be6\u9a57\u7684\u8a2d\u5b9a\u3001\u7d50\u679c\u8207\u5206\u6790\u5c07\u5728\u7b2c\u4e94\u7ae0\u4e2d\u5448\u73fe\uff0c\u800c\u7b2c\u516d\u7ae0\u5247\u70ba\u7d50\u8ad6\u8207\u672a\u4f86\u53ef\u80fd \u5fb5\u4e0a\u9020\u6210\u7684\u5931\u771f\uff0c\u8a31\u591a\u7814\u7a76\u4e5f\u8b49\u660e\u4e86\u5b83\u7684\u6709\u6548\u6027[18,32-35]\u3002\u524d\u4e00\u7bc0\u6240\u4ecb\u7d39\u7684 CMS \u8207 \u7684\u7814\u7a76\u65b9\u5411\u3002 CMVN\uff0c\u4e43\u81f3\u65bc\u66f4\u9ad8\u968e\u52d5\u5dee\u7684\u6b63\u898f\u5316\u65b9\u6cd5\uff0c\u5747\u662f\u4ee5\u7dda\u6027(linear)\u7684\u65b9\u5f0f\u88dc\u511f\u96dc\u8a0a\u5c0d\u8a9e\u97f3\u7279 \u5206\u4f48\u7684\u8a9e\u97f3\u7279\u5fb5\u6b63\u898f\u5316(distribution-based feature normalization)\uff0c\u4ea6\u5373\u5c07\u540c\u4e00\u7dad\u5ea6\u7684\u8a9e\u97f3 \u7279\u5fb5\u5e8f\u5217\u8996\u70ba\u96a8\u6a5f\u8b8a\u6578(random variable)\u7684\u4e00\u7d44\u6a23\u672c(sample)\uff0c\u5229\u7528\u9019\u4e9b\u6a23\u672c\u4f30\u8a08\u8a72\u96a8\u6a5f \u5fb5\u7684\u5e72\u64fe\uff0c\u4f46\u5c0d\u65bc\u975e\u7dda\u6027\u7684\u626d\u66f2\u88dc\u511f\u6548\u679c\u6709\u9650\uff0c\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u5247\u5f4c\u88dc\u4e86\u52d5\u5dee\u6b63\u898f\u5316\u6cd5\u7684 \u4e8c\u3001\u8a9e\u97f3\u7279\u5fb5\u6b63\u898f\u5316\u6280\u8853 \u6b64\u4e00\u7f3a\u5931\u3002\u76f8\u8f03\u65bc\u52d5\u5dee\u6b63\u898f\u5316\u6cd5\uff0c\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u4e0d\u5c0d\u52d5\u5dee\u9032\u884c\u6b63\u898f\u5316\uff0c\u800c\u662f\u5229\u7528\u4e00\u975e\u7dda \u8b8a\u6578\u7684\u7d71\u8a08\u91cf\uff0c\u64da\u6b64\u5c0d\u7279\u5fb5\u5e8f\u5217\u7684\u5206\u4f48\u9032\u884c\u7dda\u6027\u6216\u975e\u7dda\u6027\u7684\u8f49\u63db\u3002\u4f8b\u5982\u57fa\u65bc\u52d5\u5dee\u6b63\u898f\u5316 (moment normalization)\u7684\u5012\u983b\u8b5c\u5e73\u5747\u503c\u6e1b\u53bb\u6cd5(cepstral mean subtraction, CMS)[12]\u3001\u5012\u983b \u6027(non-linear)\u7684\u8f49\u63db\uff0c\u5c07\u6240\u6709\u8a9e\u97f3\u7279\u5fb5\u7684\u7d71\u8a08\u5206\u4f48\u76f4\u63a5\u8b8a\u5f97\u8207\u672a\u53d7\u96dc\u8a0a\u5e72\u64fe\u6642\u7684\u7d71\u8a08\u5206 (\u4e00)\u52d5\u5dee\u6b63\u898f\u5316\u6cd5 \u4f48\u4e00\u81f4\uff0c\u4e26\u4e14\u7121\u9700\u5c0d\u8a72\u7d71\u8a08\u5206\u4f48\u64c1\u6709\u5148\u9a57\u77e5\u8b58(prior knowledge)\uff0c\u5373\u53ef\u6709\u6548\u5730\u6539\u5584\u96dc\u8a0a \u8b5c\u5e73\u5747\u503c\u8b8a\u7570\u6578\u6b63\u898f\u5316\u6cd5(cepstral mean and variance normalization, CMVN)[13]\u3001\u9ad8\u968e\u5012 \u52d5\u5dee\u6b63\u898f\u5316(moment normalization)\u7684\u6280\u8853\uff0c\u4e3b\u8981\u900f\u904e\u6b63\u898f\u5316\u6bcf\u4e00\u500b\u8a9e\u53e5(utterance)\u4e2d\u5404\u7dad \u8a9e\u97f3\u7684\u8fa8\u8b58\u6b63\u78ba\u7387\u3002 \u983b\u8b5c\u52d5\u5dee\u6b63\u898f\u5316\u6cd5(higher order cepstral moment normalization, HOCMN)[16]\uff0c\u4ee5\u53ca\u53ef\u4ee5 \u6d88\u9664\u66f4\u591a\u975e\u7dda\u6027\u74b0\u5883\u56e0\u7d20\u5f71\u97ff\u7684\u7d71\u8a08\u5716\u7b49\u5316\u6cd5(histogram equalization, HEQ)[11]\u7b49\u90fd\u662f \u6b64\u4e00\u7814\u7a76\u65b9\u5411\u7684\u6210\u54e1\u3002\u6b64\u985e\u7684\u6280\u8853\u5927\u591a\u5177\u6709\u76f4\u89c0\u3001\u5feb\u901f\u4e14\u6709\u6548\u7684\u7279\u6027\uff0c\u662f\u5f37\u5065\u6027\u8a9e\u97f3\u7279 \u5fb5\u64f7\u53d6\u7684\u9818\u57df\u4e0d\u53ef\u7f3a\u5c11\u7684\u4e00\u74b0\u3002 \u8a31\u591a\u904e\u53bb\u7814\u7a76[17-19]\u90fd\u8aaa\u660e\u4e86\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u80fd\u5920\u6709\u6548\u5730\u88dc\u511f\u975e\u7dda\u6027\u7684\u96dc\u8a0a\u5e72\u64fe\uff0c\u800c \u5c0d\u8fa8\u8b58\u7684\u6b63\u78ba\u7387\u6709\u986f\u8457\u7684\u63d0\u5347\uff0c\u4f46\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u4ecd\u7136\u6709\u4e00\u4e9b\u4e0d\u76e1\u6b63\u78ba\u7684\u5047\u8a2d\u3002\u4f8b\u5982\u5176\u5047 \u8a2d\u8a9e\u97f3\u7279\u5fb5\u4e2d\u5404\u7dad\u5ea6\u9593\u5f7c\u6b64\u7368\u7acb\uff0c\u56e0\u800c\u53ef\u4ee5\u5c0d\u500b\u5225\u7dad\u5ea6\u5206\u5225\u9032\u884c\u6b63\u898f\u5316\uff0c\u4f46\u5e38\u898b\u7684\u904b\u7528 \u5ea6\u7279\u5fb5\u7d71\u8a08\u5206\u4f48\u7684\u52d5\u5dee\uff0c\u4f86\u6e1b\u5c11\u96dc\u8a0a\u5c0d\u8a9e\u97f3\u7279\u5fb5\u7684\u5f71\u97ff\u3002\u4f8b\u5982\u5012\u983b\u8b5c\u5e73\u5747\u503c\u6e1b\u53bb\u6cd5 \u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u4e3b\u8981\u7684\u505a\u6cd5\uff0c\u662f\u5c07\u76ee\u524d\u8a9e\u53e5\u4e2d\u7279\u5fb5\u5206\u4f48\u7684\u7d2f\u7a4d\u5bc6\u5ea6\u51fd\u6578(cumulative [12](\u4e0b\u7a31 CMS)\u5e0c\u671b\u85c9\u7531\u5c07\u6bcf\u4e00\u500b\u8a9e\u53e5\u7684\u7b2c\u4e00\u968e\u52d5\u5dee(first-order moment)\uff0c\u4e5f\u5c31\u662f\u671f\u671b\u503c distribution function, CDF)\uff0c\u5c0d\u61c9\u81f3\u7531\u8a13\u7df4\u8a9e\u6599\u6240\u7d71\u8a08\u51fa\u4f86\u7684\u53c3\u8003\u5206\u5e03\uff0c\u85c9\u6b64\u5c07\u6574\u53e5\u8a71\u7684 \u6e1b\u53bb\uff0c\u4f86\u6e1b\u5c11\u96dc\u8a0a\u7684\u5f71\u97ff\uff1b\u800c\u5012\u983b\u8b5c\u5e73\u5747\u503c\u8b8a\u7570\u6578\u6b63\u898f\u5316\u6cd5[13](\u4e0b\u7a31 CMVN)\u5247\u66f4\u9032\u4e00 \u7279\u5fb5\u9084\u539f\u81f3\u8207\u8a13\u7df4\u8a9e\u6599\u76f8\u540c\u7684\u7d71\u8a08\u5206\u4f48\u3002\u4ee4 (\u2022)\u70ba\u76ee\u524d\u8a9e\u53e5\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\u5217* , -+\u7684 \u6b65\u5c07\u6b63\u898f\u5316\u7684\u7bc4\u570d\u64f4\u5c55\u81f3\u7b2c\u4e8c\u968e\u52d5\u5dee\uff0c\u4f7f\u4e0d\u540c\u8a9e\u53e5\u9593\u7684\u8b8a\u7570\u6578(variance)\u4e5f\u8b8a\u5f97\u4e00\u81f4\u3002\u4ee4 \u6a5f\u7387\u5206\u4f48(\u4ee5\u4e00\u500b\u5c07\u503c\u5c0d\u61c9\u5230 CDF \u7684\u51fd\u6578\u8868\u793a)\uff0c\u800c (\u2022)\u70ba\u6839\u64da\u6240\u6709\u8a13\u7df4\u8a9e\u6599\u7d71\u8a08\u51fa\u7684\u53c3 \u4e00\u8a9e\u53e5\u4e2d\uff0c\u67d0\u4e00\u7dad\u5ea6\u7684\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\u5217\u70ba* , -+\uff0c\u03bc\u70ba* , -+\u7684\u671f\u671b\u503c\uff0c\u03c3 2 \u70ba\u5176\u8b8a\u7570\u6578\uff0c \u8003\u5206\u4f48\uff0c\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u6b63\u898f\u5316\u5f8c\u7684\u8a9e\u97f3\u7279\u5fb5\u53ef\u4ee5\u8868\u793a\u70ba\uff1a \u5247\u7d93\u6b64\u5169\u500b\u65b9\u6cd5\u6b63\u898f\u5316\u904e\u7684\u7279\u5fb5\u5206\u5225\u53ef\u4ee5\u8868\u793a\u70ba\uff1a \u0302C MS , -= , -\u2212 \u0302H EQ , -= \u22121 ( ( , -)) (3) (1) \uf9dd\u7528\u96e2\u6563\u9918\u5f26\u8f49\u63db(discrete cosine transform, DCT)\u6c42\u53d6\u7684\u8a9e\u97f3\u7279\u5fb5\uff0c\u5404\u7dad\u5ea6\u4e4b\u9593\u4ecd\u5177\u6709 \u90e8\u4efd\u7684\u76f8\u95dc\u6027\uff1b\u800c\u8a9e\u97f3\u662f\u96a8\u6642\u9593\u7de9\u6162\u8b8a\u5316\u7684\u8a0a\u865f\uff0c\u5728\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u4e2d\u5c07\u6bcf\u4e00\u500b\u97f3\u6846 \u0302C MVN , -= \u50b3\u7d71\u7684\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u901a\u5e38\u4ee5\u67e5\u8868\u6cd5(table lookup)\u63cf\u8ff0 (\u2022)\u51fd\u6578\u7684\u5c0d\u61c9\u95dc\u4fc2\uff0c\u4f46\u9019\u6a23 , -\u2212 (2) \u7684\u65b9\u6cd5\u4e0d\u50c5\u8f03\u8cbb\u6642\uff0c\u4e5f\u9700\u8981\u82b1\u8cbb\u8a31\u591a\u7a7a\u9593\u4f86\u8a18\u9304\u8868\u683c\u3002\u5728[33]\u4e2d\uff0c\u6211\u5011\u63d0\u51fa\u5229\u7528\u4e00\u591a\u9805 (frame)\u500b\u5225\u770b\u5f85\u7684\u65b9\u5f0f\u4e5f\u7121\u6cd5\u6709\u6548\u6293\u4f4f\u6642\u57df\u4e0a\u8207\u524d\u5f8c\u5176\u4ed6\u97f3\u6846\u7684\u76f8\u95dc\u6027\u3002\u91dd\u5c0d\u9019\u7a2e\u6bd4\u8f03 \u56b4\u683c\u7684\u5047\u8a2d\uff0c\u6709\u8a31\u591a\u4e0d\u540c\u7684\u65b9\u6cd5\u88ab\u63d0\u51fa \uff0c\u5982\u904b\u7528\u8ff4\u6b78 (regression)\u6280 \u8853\u6216\u6642\u57df\u5e73\u5747 (temporal average, TA)\u6280\u8853\u5f15\u5165\u524d\u5f8c\u6587\u8cc7\u8a0a[20,21]\uff0c\u6291\u6216\u662f\u5c07\u7a7a\u9593(spatial)\u57df\u53ca\u6642\u57df\u7684\u9ad8 \u4f4e\u983b\u6210\u4efd\u9032\u884c\u6b63\u898f\u5316\uff0c\u4ee5\u5206\u983b\u5e36\u7684\u65b9\u5f0f\u5f15\u5165\u6587\u8108\u8cc7\u8a0a(context information)[22,23]\u3002 \u5f0f\u51fd\u6578\u4f86\u903c\u8fd1 \u22121 (\u2022)\uff0c\u53ef\u4ee5\u964d\u4f4e\u8a08\u7b97\u6642\u9593\u8207\u5132\u5b58\u7a7a\u9593\uff0c\u540c\u6642\u7372\u5f97\u6bd4\u539f\u59cb\u7684 HEQ \u76f8\u4f3c\u6216 \u7531\u65bc\u901a\u9053\u6548\u61c9\u5728\u5012\u983b\u8b5c(cepstrum)\u4e0a\u8207\u539f\u672c\u7684\u8a9e\u97f3\u8a0a\u865f\u70ba\u76f8\u52a0\u7684\u95dc\u4fc2\uff0cCMS \u7684\u6b63\u898f \u8f03\u4f73\u7684\u8fa8\u8b58\u6b63\u78ba\u7387\u3002\u6b64\u65b9\u6cd5\u7a31\u70ba\u591a\u9805\u5f0f\u64ec\u5408\u7d71\u8a08\u5716\u7b49\u5316\u6cd5(polynomial-fit histogram \u5316\u53ef\u4ee5\u6709\u6548\u5730\u6d88\u53bb\u4e00\u4e9b\u7a69\u5b9a(stationary)\u7684\u901a\u9053\u6548\u61c9\uff0c\u800c\u4f7f\u5f97\u8a9e\u97f3\u8fa8\u8b58\u7684\u6b63\u78ba\u7387\u6709\u76f8\u7576\u660e \u986f\u7684\u6539\u5584\u3002\u53e6\u4e00\u65b9\u9762\uff0cCMVN \u5c0d\u8b8a\u7570\u6578\u7684\u6b63\u898f\u5316\uff0c\u66f4\u9032\u4e00\u6b65\u5730\u88dc\u511f\u4e86\u4e0d\u540c\u8a9e\u53e5\u7684\u8a9e\u97f3 equalization, PHEQ)\uff0c\u672c\u8ad6\u6587\u4e2d\u4e4b\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u7686\u4ee5\u6b64\u65b9\u5f0f\u5be6\u4f5c\uff0c\u5982\u4e0b\u5f0f\u6240\u793a\uff1a</td></tr></table>"
            },
            "TABREF1": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing(ROCLING 2013)",
                "content": "<table><tr><td>\u57fa\u65bc\u6ffe\u6ce2\u5668\u7684\u6b63\u898f\u5316\u6280\u8853</td></tr><tr><td>\u9664\u4e86\u5728\u7d71\u8a08\u5206\u4f48\u4e0a\u9032\u884c\u8655\u7406\u5916\uff0c\u4e5f\u6709\u4e00\u4e9b\u8a9e\u97f3\u7279\u5fb5\u6b63\u898f\u5316\u7684\u65b9\u6cd5\u8a66\u5716\u5f9e\u6ffe\u6ce2\u5668\u7684\u8a2d\u8a08\u51fa</td></tr><tr><td>\u767c\u3002\u4f8b\u5982\u76f8\u5c0d\u983b\u8b5c\u6cd5(relative spectra, RASTA)[36]\u4fbf\u662f\u5229\u7528\u4eba\u985e\u8a9e\u97f3\u4e3b\u8981\u8cc7\u8a0a\u96c6\u4e2d\u5728\u7279</td></tr><tr><td>\u5b9a\u8abf\u8b8a\u983b\u8b5c\u983b\u5e36\u7684\u539f\u7406\uff0c\u8a2d\u8a08\u4e00\u5e36\u901a\u6ffe\u6ce2\u5668(band-pass filter)\uff0c\u85c9\u4ee5\u79fb\u9664\u8a9e\u97f3\u7279\u5fb5\u4e2d\u8207\u8a9e</td></tr><tr><td>\u97f3\u8f03\u4e0d\u76f8\u95dc\u7684\u6210\u4efd\uff1b\u800c\u5728[37]\u4e2d\uff0c\u5247\u662f\u4f7f\u7528\u4f4e\u901a\u6ffe\u6ce2\u5668(low-pass filter)\u5c0d\u7279\u5fb5\u9032\u884c\u5e73\u6ed1\u5316</td></tr><tr><td>(smoothing)\uff0c\u4ee5\u964d\u4f4e\u8a9e\u97f3\u7279\u5fb5\u4e2d\u4e0d\u7a69\u5b9a\u6216\u7a81\u767c\u7684\u96dc\u8a0a\u5c0d\u8a9e\u97f3\u7279\u5fb5\u9020\u6210\u7684\u5e72\u64fe\u3002\u503c\u5f97\u4e00\u63d0</td></tr><tr><td>\u7684\u662f\uff0c\u5f0f (1)\u4e5f\u53ef\u4ee5\u8996\u70ba\u662f\u4e00\u500b\u9ad8\u901a\u6ffe\u6ce2\u5668(high-pass filter)\u7684\u8108\u885d\u97ff\u61c9(impulse response)\uff0c</td></tr><tr><td>\u56e0\u6b64\u5f9e\u53e6\u4e00\u500b\u89d2\u5ea6\u4f86\u89e3\u8b80\uff0cCMS \u4ea6\u662f\u5229\u7528\u6ffe\u6ce2\u7684\u6982\u5ff5\u4f86\u79fb\u9664\u7a69\u5b9a\u901a\u9053\u6548\u61c9\u7684\u4e00\u7a2e\u6280</td></tr><tr><td>\u8853\u3002</td></tr><tr><td>\u4e09\u3001\u8abf\u8b8a\u983b\u8b5c\u65bc\u5f37\u5065\u6027\u8a9e\u97f3\u8fa8\u8b58\u4e4b\u7814\u7a76 (\u4e8c)\u8abf\u8b8a\u983b\u8b5c\u4e4b\u6b63\u898f\u5316</td></tr><tr><td>\u8abf\u8b8a\u983b\u8b5c\u6b63\u898f\u5316\u7684\u76f8\u95dc\u6280\u8853\uff0c\u65e8\u5728\u4f7f\u53d7\u5230\u74b0\u5883\u5e72\u64fe\u800c\u626d\u66f2\u7684\u8abf\u8b8a\u983b\u8b5c\u6062\u5fa9\u70ba\u672a\u53d7\u5e72\u64fe\u7684</td></tr><tr><td>(\u4e00)\u8abf\u8b8a\u983b\u8b5c\u4e4b\u5b9a\u7fa9\u8207\u7279\u6027 \u6a23\u8c8c\u3002\u91dd\u5c0d\u5f37\u5065\u6027\u8a9e\u97f3\u8fa8\u8b58\u6b63\u898f\u5316\u8abf\u8b8a\u983b\u8b5c\u7684\u904e\u7a0b\u5927\u81f4\u4e0a\u53ef\u4ee5\u5982\u4e0b\u4e09\u500b\u6b65\u9a5f\u8aaa\u660e\uff1a</td></tr><tr><td>\u4ee4\u4e00\u8a9e\u53e5\u4e2d\uff0c\u67d0\u4e00\u7279\u5b9a\u7dad\u5ea6\u4e4b\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\u5217\u70ba* , -+\uff0c\u5176\u4e2d n \u70ba\u97f3\u6846(frame)\u7684\u7d22\u5f15 1) \u5206\u6790\uff1a\u5c07\u53d7\u5230\u74b0\u5883\u5e72\u64fe\u7684\u6574\u53e5\u8a9e\u53e5\u4e4b\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\u5217* , -+\u9032\u884c\u96e2\u6563\u5085\u7acb\u8449\u8f49</td></tr><tr><td>\u503c\uff0c\u8a72\u8a9e\u97f3\u7279\u5fb5\u5e8f\u5217\u7684\u8abf\u8b8a\u983b\u8b5c\u53ef\u4ee5\u5b9a\u7fa9\u70ba\uff1a \u63db\uff0c\u5f97\u5230\u8a72\u8a9e\u53e5\u7684\u8abf\u8b8a\u983b\u8b5c* , -+\u3002\u4ee5\u96e2\u6563\u5085\u7acb\u8449\u8f49\u63db\u53d6\u5f97\u4e4b\u5e8f\u5217\u70ba\u4e00\u8907\u6578\u5e8f\u5217\uff0c</td></tr><tr><td>\u22121 \u53ef\u518d\u5206\u89e3\u6210\u8a72\u8abf\u8b8a\u983b\u8b5c\u7684\u5f37\u5ea6\u983b\u8b5c*| , -|+\u53ca\u76f8\u4f4d\u983b\u8b5c*\u2220 , -+\u3002 \u2212 2 , -= \u2211 , -2) \u6b63\u898f\u5316\uff1a\u91dd\u5c0d\u524d\u4e00\u6b65\u9a5f\u6240\u5f97\u5230\u7684\u5f37\u5ea6\u983b\u8b5c\u53ca\u76f8\u4f4d\u983b\u8b5c\u9032\u884c\u8655\u7406\u3002\u5176\u4e2d\u76f8\u4f4d\u983b\u8b5c\u901a (5) =0 \u5176\u4e2d = \u221a\u22121\u70ba\u865b\u6578\u55ae\u4f4d\uff0c\u5176\u4e2d \u70ba\u8abf\u8b8a\u983b\u7387\u7684\u7d22\u5f15\uff0cN \u70ba\u8a9e\u53e5\u4e2d\u97f3\u6846\u7684\u7e3d\u6578\uff0c\u6240\u5f97\u4e4b\u5e8f \u5e38\u7dad\u6301\u539f\u72c0\uff0c\u50c5\u6539\u8b8a\u5f37\u5ea6\u983b\u8b5c\u4e2d\u7684\u5f37\u5ea6\uff0c\u4e26\u5f97\u5230\u65b0\u7684\u5f37\u5ea6\u983b\u8b5c*| , -|+\u3002</td></tr><tr><td>\u5217* , -+\u5373\u70ba* , -+\u7684\u8abf\u8b8a\u983b\u8b5c\u3002\u5f0f(5)\u53ef\u4ee5\u8996\u70ba\u4e00\u96e2\u6563\u5085\u7acb\u8449\u8f49\u63db(discrete Fourier 3) \u9084\u539f\uff1a\u4f9d\u64da\u539f\u672c\u7684\u76f8\u4f4d\u983b\u8b5c*\u2220 , -+\u548c\u7b2c\u4e8c\u6b65\u9a5f\u4e2d\u6240\u5f97\u4e4b\u65b0\u7684\u5f37\u5ea6\u983b\u8b5c*| , -|+\uff0c</td></tr><tr><td>transform, DFT)\uff0c\u8abf\u8b8a\u983b\u8b5c\u4e2d\u7684\u983b\u7387\u7bc4\u570d\u8207\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\u5217\u4e4b\u53d6\u6a23\u7387\u6709\u95dc\uff1a\u5728\u672c\u8ad6\u6587 \u9032\u884c\u53cd\u96e2\u6563\u5085\u7acb\u8449\u8f49\u63db(inverse discrete Fourier transform, IDFT)\uff0c\u53d6\u5f97\u9084\u539f\u5f8c\u7684\u8a9e</td></tr><tr><td>\u7684\u57fa\u790e\u8a9e\u97f3\u7279\u5fb5\u8a2d\u5b9a\u4e2d\uff0c\u6bcf\u5169\u500b\u76f8\u9130\u97f3\u6846\u4e4b\u9593\u9694\u70ba 10ms\uff0c\u4ea6\u5373\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\u5217\u4e4b\u53d6 \u97f3\u7279\u5fb5\u6642\u9593\u5e8f\u5217\u3002</td></tr><tr><td>\u6a23\u7387\u70ba 100Hz\uff0c\u6839\u64da\u5948\u594e\u65af\u7279\u5b9a\u7406(Nyquist-Shannon sampling theorem)[38]\uff0c\u8abf\u8b8a\u983b\u8b5c\u4e4b</td></tr><tr><td>\u6700\u9ad8\u983b\u7387\u70ba 50Hz\u3002 \u82e5\u4e0a\u8ff0\u7b2c\u4e8c\u6b65\u9a5f\u4e2d\u7684\u5f37\u5ea6\u983b\u8b5c\u80fd\u5920\u88ab\u9069\u7576\u5730\u6b63\u898f\u5316\uff0c\u5247\u53ef\u4ee5\u6709\u6548\u964d\u4f4e\u74b0\u5883\u5e72\u64fe\u5c0d\u8abf</td></tr><tr><td>\u8b8a\u983b\u8b5c\u7684\u5931\u771f\uff0c\u9032\u800c\u4f7f\u9084\u539f\u5f8c\u7684\u8a9e\u97f3\u7279\u5fb5\u53c3\u6578\uff0c\u5728\u81ea\u52d5\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u4e2d\u5f97\u5230\u8f03\u597d\u7684\u8fa8\u8b58 \u8abf\u8b8a\u983b\u8b5c\u5728\u5206\u6790\u8a9e\u97f3\u7279\u5fb5\u4e4b\u6642\u57df\u7d50\u69cb\u4e0a\uff0c\u662f\u5f88\u6709\u7528\u7684\u5de5\u5177\uff1b\u904e\u53bb\u6709\u7814\u7a76[39]\u6307\u51fa\uff0c \u8abf\u8b8a\u983b\u7387\u5927\u7d04 1Hz \u5230 16Hz \u9593\u7684\u4f4e\u983b\u6210\u4efd\uff0c\u8207\u8a9e\u97f3\u8fa8\u8b58\u7684\u6b63\u78ba\u7387\u6709\u660e\u986f\u7684\u95dc\u806f\uff0c\u800c\u5176\u4e2d \u7cbe\u78ba\u7387\u3002\u4ee5\u4e0b\u5c07\u7c21\u8ff0\u6578\u7a2e\u8abf\u8b8a\u983b\u8b5c\u6b63\u898f\u5316\u7684\u65b9\u6cd5\uff1a</td></tr><tr><td>\u4ee5 4Hz \u9644\u8fd1\u6240\u5305\u542b\u7684\u8cc7\u8a0a\u6700\u70ba\u91cd\u8981\u3002\u95dc\u65bc\u4eba\u985e\u807d\u89ba\u7684\u7814\u7a76[40]\u4e5f\u4e0d\u7d04\u800c\u540c\u5730\u767c\u73fe\uff1a4Hz \u7684\u8abf\u8b8a\u983b\u7387\u5728\u4eba\u985e\u7684\u807d\u89ba\u611f\u77e5\u4e2d\u4f54\u6709\u5f88\u91cd\u8981\u7684\u5730\u4f4d\u3002 1. \u5f37\u5ea6\u983b\u8b5c\u6bd4\u4f8b\u6b63\u898f\u5316\u6cd5(magnitude ratio equalization, MRE)</td></tr><tr><td>\u7576\u8a9e\u97f3\u8a0a\u865f\u53d7\u5230\u96dc\u8a0a\u5e72\u64fe\u6642\uff0c\u4e0d\u53ea\u5176\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\u5217\u7684\u5206\u4f48\u7279\u6027\u6703\u6539\u8b8a\uff0c\u5176\u6642\u57df \u6b64\u6280\u8853[26]\u8a08\u7b97\u8abf\u8b8a\u983b\u8b5c\u4e2d\u4f4e\u983b\u6210\u4efd\u5f37\u5ea6\u548c\u9ad8\u983b\u6210\u4efd\u5f37\u5ea6\u7684\u6bd4\u4f8b\uff0c\u5728\u8a9e\u53e5\u53d7\u5230\u74b0\u5883\u5e72\u64fe</td></tr><tr><td>\u7d50\u69cb\u4e5f\u6703\u6709\u4e00\u5b9a\u7a0b\u5ea6\u7684\u626d\u66f2\uff0c\u4ea6\u5373\u4f7f\u5176\u8abf\u8b8a\u983b\u8b5c\u7522\u751f\u5931\u771f\u3002\u4e00\u4e9b\u904e\u53bb\u91dd\u5c0d\u8abf\u8b8a\u983b\u8b5c\u7684\u7814 \u6642\uff0c\u5c07\u6b64\u6bd4\u4f8b\u8abf\u6574\u56de\u672a\u53d7\u5e72\u64fe\u60c5\u6cc1\u4e0b\u7684\u6bd4\u4f8b\u3002\u7531\u65bc\u8abf\u8b8a\u983b\u8b5c\u53d7\u74b0\u5883\u5e72\u64fe\u6642\u300c\u4f4e\u983b\u4e0b\u964d\uff0c</td></tr><tr><td>\u7a76[25,30]\u767c\u73fe\uff0c\u8a9e\u97f3\u8a0a\u865f\u53d7\u5230\u74b0\u5883\u5e72\u64fe\u7684\u5f71\u97ff\u8d8a\u5287\u70c8\uff0c\u4ea6\u5373\u8a0a\u566a\u6bd4(signal-to-noise ratio, \u9ad8\u983b\u62ac\u5347\u300d\u7684\u73fe\u8c61\u5341\u5206\u660e\u986f\uff0c\u82e5\u80fd\u627e\u5230\u9ad8\u983b\u6210\u4efd\u548c\u4f4e\u983b\u6210\u4efd\u9593\u9069\u7576\u7684\u754c\u7dda\uff0c\u6b64\u65b9\u6cd5\u80fd\u6709</td></tr><tr><td>SNR)\u8d8a\u4f4e\u7684\u6642\u5019\uff0c\u8abf\u8b8a\u983b\u8b5c\u4e2d\u5c0d\u8a9e\u97f3\u8fa8\u8b58\u6700\u91cd\u8981\u7684 1Hz \u5230 16Hz \u6210\u4efd\u5f37\u5ea6\u8d8a\u53d7\u5230\u58d3\u6291\uff0c \u4e0d\u932f\u7684\u6210\u6548\uff0c\u4e14\u904b\u7b97\u5341\u5206\u5feb\u901f\u3002</td></tr><tr><td>\u800c\u504f\u96e2\u4e7e\u6de8\u72c0\u6cc1\u7684\u8abf\u8b8a\u983b\u8b5c\u8d8a\u9060\u3002\u8209\u4f8b\u4f86\u8aaa\uff0c\u5716\u4e00\u662f Aurora-2 \u8a9e\u6599\u5eab\u6240\u6709\u6e2c\u8a66\u96c6\u6885\u723e \u5012\u983b\u8b5c\u7cfb\u6578(Mel-frequency cepstral coefficients, MFCC)[41]\u4e2d c1 \u7cfb\u6578\u7684\u8abf\u8b8a\u983b\u8b5c\u3002\u7531\u65bc 2. \u8abf\u8b8a\u983b\u8b5c\u7d71\u8a08\u5716\u7b49\u5316\u6cd5(spectral histogram equalization, SHE)</td></tr><tr><td>\u9664\u4e86\u74b0\u5883\u5e72\u64fe\u5916\uff0c\u5c1a\u6709\u500b\u5225\u8a9e\u8005\u7684\u5dee\u7570\u7b49\u56e0\u7d20\uff0c\u56e0\u6b64\u6b64\u5716\u63a1\u7528\u6e2c\u8a66\u96c6\u4e2d\u6240\u6709\u53e5\u8a9e\u53e5\u8abf\u8b8a</td></tr><tr><td>\u983b\u8b5c\u4e4b\u5e73\u5747\u503c\uff0c\u4ee5\u7a81\u986f\u74b0\u5883\u689d\u4ef6\u7684\u4e0d\u540c\uff0c\u964d\u4f4e\u500b\u5225\u8a9e\u53e5\u5dee\u7570\u9020\u6210\u7684\u5f71\u97ff\u3002\u5f9e\u6b64\u5716\u4e2d\u53ef\u4ee5</td></tr><tr><td>\u89c0\u5bdf\u5230\uff0c\u7576\u8a0a\u566a\u6bd4\u964d\u4f4e\u6642\uff0c\u6574\u500b\u8abf\u8b8a\u983b\u8b5c\u7684\u6240\u6709\u983b\u5e36\u90fd\u6703\u7522\u751f\u5931\u771f\uff0c\u5c24\u5176\u4ee5\u5305\u542b\u6700\u591a\u8a9e</td></tr><tr><td>\u97f3\u5167\u5bb9\u8cc7\u8a0a\u7684\u983b\u5e36\u70ba\u751a\u3002</td></tr></table>"
            },
            "TABREF3": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "\uff0c\u6700\u5f8c 13 \u7dad\u5247\u70ba\u524d 13 \u7dad\u7684\u4e8c\u968e\u5dee\u91cf\u4fc2\u6578(acceleration coefficient)\u3002\u672c \u8ad6\u6587\u7684\u5be6\u9a57\u4e2d\uff0c\u64f7\u53d6\u7279\u5fb5\u7684\u904e\u7a0b\u5171\u4f7f\u7528 23 \u7d44\u6885\u723e\u6ffe\u6ce2\u5668(Mel filter)\u3002 PHEQ)\u5177\u6709\u826f\u597d\u7684\u4e92\u88dc\u6027[29]\u3002\u9032\u4e00\u6b65\u5c07 PSHE \u904b\u7528\u5728\u7d93 CMVN \u6216 HEQ \u6b63\u898f\u5316\u5f8c\u7684\u7279\u5fb5\u4e0a\uff0c\u53ef\u4ee5\u7372\u5f97\u76f8\u7576\u7a81\u51fa\u7684\u6210\u679c\uff0c\u5176\u6548\u80fd\u751a\u81f3\u9ad8\u65bc ST-PHEQ\u3002\u4f9d\u9019\u6a23\u7684 \u7d50\u679c\u4f86\u770b\uff0c\u986f\u7136\u4f7f\u7528\u8abf\u8b8a\u983b\u8b5c\u9019\u7a2e\u63cf\u8ff0\u8a9e\u53e5\u6574\u9ad4\u8b8a\u5316\u8cc7\u8a0a\u7684\u8868\u793a\u6cd5\u662f\u6709\u5176\u91cd\u8981\u6027\u7684\u3002\u53e6 \u5916\uff0c\u5728\u96dc\u8a0a\u7684\u5e72\u64fe\u76f8\u7576\u56b4\u91cd\u7684\u74b0\u5883\u4e0b(\u5982\u8a0a\u566a\u6bd4\u70ba-5dB \u7684\u60c5\u6cc1)\uff0c\u61c9\u7528 PSHE \u5f8c\uff0c\u5176\u6539\u5584 \u7684\u8f3b\u5ea6\u591a\u65bc\u5728\u6240\u6709\u74b0\u5883\u4e0b\u7684\u5e73\u5747\u60c5\u6cc1\uff0c\u751a\u81f3\u5728\u540c\u6642\u61c9\u7528 HEQ+PSHE \u7684\u60c5\u6cc1\u4e0b\uff0c\u8a0a\u566a\u6bd4 -5dB \u7684\u8fa8\u8b58\u6b63\u78ba\u7387\u9ad8\u9054\u539f\u59cb MFCC \u7279\u5fb5\u7684 8 \u500d\u4ee5\u4e0a\u3002\u6b64\u7d50\u679c\u8aaa\u660e\u4e86\u8abf\u8b8a\u983b\u8b5c\u78ba\u5be6\u80fd\u6355 \u6349\u5230\u4e00\u4e9b\u7121\u6cd5\u76f4\u63a5\u900f\u904e\u6b63\u898f\u5316\u8a9e\u97f3\u7279\u5fb5\u6539\u5584\u7684\u554f\u984c\uff0c\u5c24\u4ee5\u5728\u96dc\u8a0a\u8f03\u5f37\u6642\u70ba\u751a\u3002 \u672c\u8ad6\u6587\u6240\u63d0\u51fa\u7684\u65b9\u6cd5\uff0c\u5176\u5be6\u9a57\u7d50\u679c\u5247\u5217\u5728\u8868\u4e8c\u4e2d\u3002\u8207\u539f\u672c\u7684 PSHE \u76f8\u8f03\uff0c\u91dd\u5c0d\u5176\u6b63 \u898f\u5316\u5f8c\u7684\u7279\u5fb5\u9032\u884c\u5206\u983b\u5e36\u7684\u6b63\u898f\u5316\uff0c\u7121\u8ad6\u4ee5\u4f55\u7a2e\u9806\u5e8f\u7d44\u5408\u6642\u57df\u8207\u7a7a\u9593\u57df\u5169\u500b\u5143\u7d20\uff0c\u90fd\u80fd \u53d6\u5f97\u66f4\u597d\u7684\u7d50\u679c\uff0c\u9019\u986f\u793a\u4e86 PSHE \u96d6\u7136\u80fd\u5920\u4f7f\u8abf\u8b8a\u983b\u8b5c\u4e0a\u7684\u5206\u4f48\u8b8a\u5f97\u4e00\u81f4\uff0c\u4f46\u5728\u6642\u57df\u8207 \u7a7a\u9593\u57df\u9ad8\u4f4e\u983b\u6210\u4efd\u7684\u8abf\u8b8a\u983b\u8b5c\u4e2d\u4ecd\u7136\u5b58\u5728\u8457\u4e00\u4e9b\u672a\u88ab\u6d88\u9664\u7684\u5e72\u64fe\uff0c\u85c9\u7531\u5c07\u9019\u4e9b\u6210\u4efd\u4e5f\u7d0d \u5165\u6b63\u898f\u5316\u7684\u7bc4\u570d\uff0c\u53ef\u4ee5\u88dc\u8db3 PSHE \u9019\u4e00\u9ede\u4e0d\u8db3\u4e4b\u8655\u3002\u5728\u5716\u4e09\u4e2d\uff0c\u6211\u5011\u4ee5\u7a7a\u9593\u57df\u9ad8\u983b\u6210\u4efd Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013) \u70ba\u4f8b\uff0c\u986f\u793a\u4e86\u5373\u4f7f PSHE \u5df2\u5c07\u5168\u983b\u5e36\u7279\u5fb5\u7684\u8abf\u8b8a\u983b\u8b5c\u8b8a\u5f97\u8f03\u70ba\u4e00\u81f4\uff0c\u5728\u5b50\u983b\u5e36\u7279\u5fb5\u7684\u8abf \u8b8a\u983b\u8b5c\u4e2d\uff0c\u4ecd\u7136\u5b58\u5728\u8457\u56e0\u70ba\u96dc\u8a0a\u800c\u7522\u751f\u7684\u5931\u771f\uff1b\u800c\u9019\u500b\u5931\u771f\u5728\u7d93\u904e ST-PSHE \u7684\u8655\u7406\u4ee5 \u5f8c\uff0c\u5247\u6709\u986f\u8457\u7684\u6539\u5584\uff0c\u4e26\u9054\u5230\u8ddf\u5168\u983b\u5e36\u7684\u8abf\u8b8a\u983b\u8b5c\u76f8\u8fd1\u7684\u4e00\u81f4\u7a0b\u5ea6\u3002\u53e6\u5916\uff0c\u55ae\u7368\u5728\u7a7a\u9593 \u57df\u4e0a\u6216\u662f\u6642\u57df\u4e0a\u9032\u884c\u5206\u983b\u7684\u6b63\u898f\u5316\uff0c\u90fd\u80fd\u5920\u76f8\u5c0d\u5730\u6e1b\u5c11\u5927\u7d04 1.3%\u7684\u5b57\u932f\u8aa4\u7387(word error rate)\uff0c\u800c\u4f9d\u7167\u7a7a\u9593\u57df-\u6642\u57df\u7684\u9806\u5e8f\u9032\u884c\u5206\u983b\u6b63\u898f\u5316\uff0c\u66f4\u80fd\u5920\u76f8\u5c0d\u6e1b\u5c11 2.8%\u7684\u932f\u8aa4\u3002\u4f46 \u82e5\u5c07\u9806\u5e8f\u53cd\u904e\u4f86\uff0c\u4f9d\u7167\u6642\u57df-\u7a7a\u9593\u57df\u7684\u9806\u5e8f\u9032\u884c\uff0c\u5247\u6539\u9032\u7684\u8f3b\u5ea6\u53cd\u800c\u8b8a\u5f97\u975e\u5e38\u6709\u9650\u3002 \u524d\u6587\u4e2d\u63d0\u5230\u5728\u8abf\u8b8a\u983b\u8b5c\u4e0a\u7684\u6b63\u898f\u5316\u65b9\u6cd5\uff0c\u82e5\u8207\u5728\u7279\u5fb5\u6642\u57df\u4e0a\u7684\u6b63\u898f\u5316\u65b9\u6cd5\u7d50\u5408\uff0c\u6703 \u7522\u751f\u5f88\u660e\u986f\u7684\u4e92\u88dc\u6548\u61c9\uff0c\u800c\u4f7f\u8fa8\u8b58\u7387\u5927\u8f3b\u4e0a\u5347\u3002\u56e0\u6b64\u5728\u8868\u4e09\u7576\u4e2d\uff0c\u6211\u5011\u4e5f\u5617\u8a66\u5c07 ST-PSHE \u8207 CMVN\u3001HEQ \u4ee5\u53ca\u540c\u6a23\u61c9\u7528\u6642\u57df\u53ca\u7a7a\u9593\u57df\u6587\u8108\u8cc7\u8a0a\u9032\u884c\u5206\u983b\u7684 ST-PHEQ \u9032\u884c\u7d50\u5408\uff0c \u63a2\u7d22\u8207\u9019\u4e9b\u65b9\u6cd5\u7d50\u5408\u7684\u6548\u679c\u3002\u7531\u65bc\u8abf\u8b8a\u983b\u8b5c\u96d6\u7136\u6293\u4f4f\u4e86\u6574\u500b\u8a9e\u53e5\u7684\u7279\u5fb5\u8b8a\u5316\u6a21\u5f0f\uff0c\u4f46\u5c0d \u65bc\u6bd4\u8f03\u5340\u57df\u6027\u7684\u96dc\u8a0a\u5e72\u64fe\u53ca\u500b\u5225\u97f3\u6846\u7684\u626d\u66f2\u5247 \u8f03\u96e3\u8a73\u76e1\u5730\u63cf\u8ff0\uff0c\u56e0\u6b64\u82e5\u80fd\u5728\u9032\u884c ST-PSHE \u524d\u5148\u5229\u7528\u7279\u5fb5\u4e0a\u7684\u6b63\u898f\u5316\u65b9\u6cd5 CMVN \u53ca HEQ \u8655\u7406\u904e\uff0c\u5247\u80fd\u540c\u6642\u6b63\u898f\u5316\u6574\u9ad4 \u8b8a\u5316\u6a21\u5f0f\u53ca\u500b\u5225\u97f3\u6846\u7684\u6578\u503c\uff0c\u8207\u55ae\u7d14\u8655\u7406\u8abf\u8b8a\u983b\u8b5c\u76f8\u8f03\uff0c\u53ef\u4ee5\u53d6\u5f97\u8d85\u904e 36%\u7684\u76f8\u5c0d\u5b57\u932f \u8aa4\u7387\u6e1b\u5c11\u3002\u800c\u82e5\u5728\u9032\u884c ST-PSHE \u4e4b\u524d\u5148\u4f7f\u7528 ST-PHEQ \u8655\u7406\u904e\u4e00\u6b21\uff0c\u96d6\u7136\u540c\u6a23\u662f\u904b\u7528\u5206 \u983b\u53d6\u5f97\u6587\u8108\u7684\u6982\u5ff5\u9032\u884c\uff0c\u4f46\u7531\u65bc\u8655\u7406\u7684\u9762\u5411\u4e0d\u540c\uff0c\u56e0\u6b64\u4ecd\u7136\u6709\u5f88\u5927\u7684\u4e92\u88dc\u6210\u4efd\u5b58\u5728\uff0c\u5176 \u7d50\u679c\u8f03\u55ae\u7368\u4f7f\u7528 ST-PSHE \u76f8\u5c0d\u6e1b\u5c11\u4e86 36.8%\u7684\u8fa8\u8b58\u932f\u8aa4\uff0c\u8207 ST-PHEQ \u6bd4\u8f03\u4e5f\u76f8\u5c0d\u964d\u4f4e \u4e86 14.4%\u7684\u5b57\u932f\u8aa4\u7387\u3002 \u6700\u5f8c\uff0c\u6211\u5011\u4e5f\u5c07\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u7684\u65b9\u6cd5\u8207\u6b50\u6d32\u96fb\u4fe1\u5354\u6703(European telecommunications standards institute, ETSI)\u767c\u5c55\u7684 AFE (advanced front end)[44]\u9032\u884c\u6bd4\u8f03\u3002\u5982\u8868\u56db\u6240\u793a\uff0c\u7531 \u65bc AFE \u5305\u542b\u4e86\u8f03\u8907\u96dc\u7684\u8a9e\u97f3\u6d3b\u52d5\u5075\u6e2c(voice-activity detection, VAD)\u53ca\u566a\u97f3\u6291\u5236(noise reduction)\u7684\u6280\u8853\uff0cAFE \u7684\u8fa8\u8b58\u6b63\u78ba\u7387\u76f8\u8f03\u65bc ST-PSHE \u660e\u986f\u662f\u8f03\u597d\u7684\uff1b\u4f46\u9032\u4e00\u6b65\u5c07 AFE \u7684\u7279\u5fb5\u65bd\u4ee5 ST-PSHE \u7684\u8655\u7406\uff0c\u4e26\u5c07\u4e4b\u8207\u539f\u672c\u7684 AFE \u7279\u5fb5\u7dda\u6027\u7d50\u5408\u4e4b\u5f8c\uff0c\u4ecd\u7136\u80fd\u5920\u76f8\u5c0d \u5730\u6e1b\u5c11\u5927\u7d04 2.7%\u7684\u8fa8\u8b58\u932f\u8aa4\uff0c\u986f\u793a\u9019\u5169\u6a23\u6280\u8853\u5f7c\u6b64\u4ecd\u7136\u6709\u80fd\u5920\u4e92\u88dc\u7684\u5c64\u9762\u5b58\u5728\u3002\u503c\u5f97 \u6ce8\u610f\u7684\u662f\uff0c\u4ee5 ST-PSHE \u8655\u7406\u5f8c\u7684 MFCC \u7279\u5fb5\u96d6\u7136\u5e73\u5747\u7684\u8fa8\u8b58\u6b63\u78ba\u7387\u4e0d\u5982 AFE\uff0c\u4f46\u5728\u6975 \u7aef\u7684\u566a\u97f3\u74b0\u5883\u4e0b(\u8a0a\u566a\u6bd4-5dB)\u53cd\u800c\u80fd\u53d6\u5f97\u8f03\u597d\u7684\u6548\u679c\uff0c\u518d\u6b21\u986f\u793a\u8abf\u8b8a\u983b\u8b5c\u7684\u6b63\u898f\u5316\u5c0d\u65bc \u56b4\u91cd\u7684\u96dc\u8a0a\u5e72\u64fe\u662f\u5f88\u6709\u6548\u7684\u3002 \u516d\u3001\u7d50\u8ad6 \u5728\u672c\u8ad6\u6587\u4e2d\uff0c\u6211\u5011\u63a2\u8a0e\u4e86\u4f7f\u7528\u5c07\u8a9e\u97f3\u7279\u5fb5\u5728\u6642\u57df\u8207\u7a7a\u9593\u57df\u9032\u884c\u5206\u983b\u7684\u65b9\u5f0f\u4ee5\u53d6\u5f97\u6587\u8108\u8cc7 \u8a0a\uff0c\u9032\u800c\u6e1b\u7de9\u50b3\u7d71 SHE \u4ee5\u53ca PSHE \u7684\u56b4\u683c\u9650\u5236\u3002ST-PSHE \u548c\u50b3\u7d71\u7684\u65b9\u6cd5\u76f8\u8f03\uff0c\u4e0d\u50c5\u5168 \u983b\u5e36\u7684\u8abf\u8b8a\u983b\u8b5c\u5177\u6709\u4e00\u81f4\u7684\u5206\u4f48\uff0c\u9ad8\u983b\u6210\u4efd\u8207\u4f4e\u983b\u6210\u4efd\u7684\u8abf\u8b8a\u983b\u8b5c\u5206\u4f48\u4e5f\u7d0d\u5165\u6b63\u898f\u5316\u7684 \u7bc4\u570d\uff0c\u9032\u4e00\u6b65\u5730\u6e1b\u5c11\u4e86\u96dc\u8a0a\u5c0d\u8abf\u8b8a\u983b\u8b5c\u7684\u5e72\u64fe\u3002\u5be6\u9a57\u7684\u7d50\u679c\u4e5f\u8aaa\u660e\u4e86\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u7684\u65b9 \u6cd5\u78ba\u5be6\u80fd\u5920\u9054\u6210\u8f03\u9ad8\u7684\u8fa8\u8b58\u6b63\u78ba\u7387\u8868\u73fe\uff0c\u4e26\u80fd\u5920\u8207\u5176\u4ed6\u7279\u5fb5\u6b63\u898f\u5316\u7684\u65b9\u6cd5\u4e92\u88dc\u3002 \u5c55\u671b\u672a\u4f86\u7814\u7a76\uff0c\u6211\u5011\u63d0\u51fa\u5169\u9ede\u53ef\u80fd\u7684\u65b9\u5411\u3002\u7b2c\u4e00\u662f\u5c07\u6b64\u6280\u8853\u61c9\u7528\u5230\u66f4\u8907\u96dc\u7684\u8a9e\u97f3\u8fa8 \u8b58\u4efb\u52d9\u4e0a\uff0c\u5982\u5c6c\u65bc\u5927\u8a5e\u5f59\u9023\u7e8c\u8a9e\u97f3\u8fa8\u8b58(large vocabulary continuous speech recognition, LVCSR)\u7684 Aurora-4 \u8a9e\u6599\u5eab[45]\u548c MATBN \u8a9e\u6599\u5eab[46]\u4e0a\uff0c\u4ee5\u66f4\u9032\u4e00\u6b65\u9a57\u8b49\u6211\u5011\u6240\u63d0\u51fa\u4e4b \u65b9\u6cd5\u662f\u5426\u5728\u8f03\u8907\u96dc\u7684\u8a9e\u97f3\u8fa8\u8b58\u4efb\u52d9\u4e0a\u4e5f\u80fd\u5920\u6709\u76f8\u540c\u7684\u8868\u73fe\u3002\u7b2c\u4e8c\u662f\u5728\u6574\u500b\u8a9e\u53e5\u7684\u8abf\u8b8a\u983b \u8b5c\u4e4b\u5916\uff0c\u66f4\u6df1\u5165\u5730\u63a2\u8a0e\u904b\u7528\u4e0d\u540c\u7684\u5206\u6790\u55ae\u4f4d\u8655\u7406\u8abf\u8b8a\u983b\u8b5c\uff0c\u4ee5\u671f\u80fd\u6355\u6349\u66f4\u591a\u5c64\u9762\u7684\u8cc7\u8a0a \u800c\u9032\u4e00\u6b65\u63d0\u5347\u8a9e\u97f3\u8fa8\u8b58\u7684\u5f37\u5065\u6027\uff0c\u4e26\u4f7f\u6b64\u65b9\u6cd5\u80fd\u5920\u61c9\u7528\u5728\u5be6\u6642(real-time)\u7684\u7cfb\u7d71\u4e2d\u3002",
                "content": "<table><tr><td colspan=\"2\">\u8868\u4e00\u3001\u5404\u7a2e\u57fa\u790e\u7279\u5fb5\u53ca\u5f37\u5065\u6027\u6280\u8853\u7684\u8fa8\u8b58\u6b63\u78ba\u7387(%) \u8a0a\u566a\u6bd4 \u4e7e\u6de8 20dB 15dB 10dB 5dB 0dB -5dB 99.71 92.44 80.56 58.61 30.04 9.31 3.39 99.72 98.13 94.27 80.45 50.64 23.81 13.04 \u8868\u4e09\u3001ST-PSHE \u8207\u5176\u4ed6\u5f37\u5065\u6027\u6280\u8853\u7d50\u5408\u4e4b\u8fa8\u8b58\u6b63\u78ba\u7387(%) MFCC \u7279\u5fb5 CMS \u7279\u5fb5 \u8a0a\u566a\u6bd4 \u4e7e\u6de8 20dB 15dB 10dB 5dB 0dB (delta coefficient)\u8a55\u4f30\u8a9e\u97f3\u7279\u5fb5\u6240\u4f7f\u7528\u7684\u8072\u5b78\u6a21\u578b\u8a13\u7df4\u53ca\u8fa8\u8b58\uff0c\u7686\u4f7f\u7528 HTK \u5957\u4ef6[43]\u5b8c\u6210\u3002\u5176\u4e2d\u6bcf \u5e73\u5747\u503c 54.19 \u5e73\u5747\u503c -5dB CMVN+ST-PSHE 99.45 98.44 96.82 92.8 82.01 58.44 29.39 \u500b\u6578\u5b57\u7686\u7531\u4e00\u500b\u7531\u5de6\u5230\u53f3\u5f62\u5f0f\u7684\u9023\u7e8c\u5bc6\u5ea6\u96b1\u85cf\u5f0f\u99ac\u53ef\u592b\u6a21\u578b(continuous density hidden 85.70 Markov model, CDHMM)\u8868\u793a\uff0c\u6bcf\u500b\u6a21\u578b\u6263\u9664\u524d\u5f8c\u4e4b\u929c\u63a5\u7528\u72c0\u614b(state)\u5171\u6709 16 \u500b\u72c0\u614b\uff0c 69.46 PHEQ+ST-PSHE 99.41 98.28 96.59 92.44 82.03 59.13 29.32 85.69 \u6bcf\u500b\u72c0\u614b\u4ee5\u542b 20 \u500b\u9ad8\u65af\u6df7\u5408(Gaussian mixture)\u7684\u9ad8\u65af\u6df7\u5408\u6a21\u578b(Gaussian mixture model,</td></tr><tr><td>CMVN ST-PHEQ+ST-PSHE 99.37 98.12 96.42 92.28 82.16 60.08 30.98 99.69 97.97 94.98 87.25 67.52 34.87 13.73 GMM)\u8868\u793a\u3002\u975c\u97f3(silence)\u6a21\u578b\u5247\u70ba 3 \u500b\u72c0\u614b\u548c 36 \u500b\u9ad8\u65af\u6df7\u5408\u3002</td><td>76.52 85.81</td></tr><tr><td colspan=\"2\">MVA PHEQ (\u4e09)\u8fa8\u8b58\u6548\u80fd\u8a55\u4f30\u65b9\u5f0f 99.66 97.96 95.98 90.27 76.46 50.70 22.86 99.65 98.52 96.56 91.19 75.78 45.39 18.14 ST-PHEQ 99.58 98.59 96.99 92.26 78.95 50.36 20.04 \u8868\u56db\u3001ST-PSHE \u8207 AFE \u6bd4\u8f03\u53ca\u7d50\u5408\u7684\u8fa8\u8b58\u6b63\u78ba\u7387(%) PSHE 99.47 97.55 94.29 86.54 68.54 37.58 16.09 CMVN+PSHE 99.56 98.38 96.59 92.26 80.63 56.24 26.93 \u7279\u5fb5 \u672c\u8ad6\u6587\u8fa8\u8b58\u6548\u80fd\u8a55\u4f30\u7684\u65b9\u6cd5\u63a1\u7528\u7f8e\u570b\u6a19\u6e96\u8207\u79d1\u6280\u7d44\u7e54(The National Institute of Standards 82.27 81.49 83.43 76.90 \u8a0a\u566a\u6bd4 and Technology, NIST)\u6240\u8a02\u5b9a\u4e4b\u7528\u4ee5\u8a55\u4f30\u8f49\u8b6f\u6587\u53e5\u8207\u6b63\u78ba\u6587\u53e5\u6bd4\u8f03\u7684\u6a19\u6e96\u3002\u8a55\u4f30\u7684\u6307\u6a19 \u5e73\u5747\u503c \u4e7e\u6de8 20dB 15dB 10dB 5dB 0dB -5dB \u70ba\u8a5e\u6b63\u78ba\u7387(word accuracy)\uff0c\u8a08\u7b97\u65b9\u5f0f\u5982\u4e0b\uff1a 84.82 PHEQ+PSHE 99.45 98.39 96.61 92.71 82.05 58.75 28.34 AFE 99.74 98.89 97.68 94.27 85.47 62.54 30.26 87.77 85.70 AFE+ST-PSHE 99.70 98.82 97.64 94.28 85.89 63.86 32.22 88.10 \u8a5e\u6b63\u78ba\u7387 = \u8a5e\u6b63\u78ba\u8fa8\u8b58\u500b\u6578 \u2212 \u8a5e\u63d2\u5165\u500b\u6578 \u2212 \u8a5e\u522a\u9664\u500b\u6578 \u6b64\u53e5\u4e2d\u8a5e\u7684\u7e3d\u6578 (14)</td></tr><tr><td colspan=\"2\">, -\u5247\u5206\u5225\u4ee3\u8868\u7a7a\u9593\u57df\u9ad8\u983b\u3001\u7a7a\u9593\u57df \u5c0d\u65bc\u6bcf\u4e00\u500b\u8a9e\u53e5\uff0c\u5728\u9032\u884c\u4e86\u4e00\u6b21 PSHE \u4e4b\u5f8c\uff0c\u5176\u5168\u983b\u5e36(full-band)\u7684\u8abf\u8b8a\u983b\u8b5c\u5df2\u7d93 \u4f4e\u983b\u3001\u6642\u57df\u9ad8\u983b\u3001\u6642\u57df\u4f4e\u983b\u7684\u5b50\u983b\u5e36\u6210\u4efd\u7279\u5fb5\u3002 \u5177\u6709\u548c\u8a13\u7df4\u8a9e\u6599\u7684\u8abf\u8b8a\u983b\u8b5c\u76f8\u540c\u7684\u5206\u4f48\uff0c\u4f46\u6642\u57df\u6216\u7a7a\u9593\u57df\u4e0a\u7684\u9ad8\u4f4e\u983b\u6210\u4efd\u537b\u9084\u662f\u6709\u4e00\u90e8 \u4efd\u7684\u4e0d\u5339\u914d\u73fe\u8c61\u3002\u56e0\u6b64\u5728\u9032\u884c PSHE \u4ee5\u5f8c\uff0c\u8981\u5c07\u8655\u7406\u5f8c\u7684\u7279\u5fb5\u4f9d\u5f0f(8)\u53ca\u5f0f(9)\u5728\u7a7a\u9593\u57df \u4e0a\u5206\u70ba\u9ad8\u983b\u7279\u5fb5\u8207\u4f4e\u983b\u7279\u5fb5\uff0c\u5c07\u6b64\u5169\u500b\u983b\u5e36\u7684\u7279\u5fb5\u5206\u5225\u6c42\u53d6\u5176\u8abf\u8b8a\u983b\u8b5c\u4e26\u4ee5 PSHE \u6b63\u898f \u5316\u4e26\u7531\u8abf\u8b8a\u983b\u8b5c\u9084\u539f\u56de\u7279\u5fb5\u57df\u4e4b\u5f8c\uff0c\u518d\u4f9d\u4e0b\u5f0f\u5c07\u7a7a\u9593\u57df\u9ad8\u4f4e\u983b\u6210\u4efd\u7d50\u5408\uff1a \u0302, -=\u0302s ,hp , -+\u0302s ,lp , -(12) \u5176\u4e2d\u0302s ,hp , -\u70ba\u7a7a\u9593\u57df\u9ad8\u983b\u6210\u4efd\u7d93 PSHE \u6b63\u898f\u5316\u5f8c\u4e4b\u7279\u5fb5\uff0c\u0302s ,lp , -\u5247\u70ba\u7a7a\u9593\u57df\u4f4e\u983b\u6210\u4efd \u7d93 PSHE \u6b63\u898f\u5316\u5f8c\u4e4b\u7279\u5fb5\u3002\u7531\u65bc\u5f0f(8)\u8207\u5f0f(9)\u7684\u8a2d\u8a08\u4f7f\u5f97\u6b64\u5169\u500b\u983b\u5e36\u5177\u6709\u4e92\u88dc\u95dc\u4fc2\uff0c\u6545 \u5728\u50b3\u7d71\u7684 HEQ \u6216\u662f SHE \u4e2d\uff0c\u90fd\u5047\u8a2d\u96dc\u8a0a\u5c0d\u65bc\u8a9e\u97f3\u53ea\u5177\u6709\u55ae\u8abf(monotonic)\u7684\u7684\u5e72\u64fe\uff0c \u4ea6\u5373\u6703\u6539\u8b8a\u7279\u5fb5\u6216\u8abf\u8b8a\u983b\u8b5c\u4e2d\u6240\u6709\u6578\u503c\u7684\u5927\u5c0f\uff0c\u4f46\u5404\u6578\u503c\u4e4b\u9593\u7684\u76f8\u5c0d\u6392\u5e8f(ordering)\u662f\u7dad \u6301\u4e0d\u8b8a\u7684\u3002ST-PSHE \u9664\u4e86\u6253\u7834\u6642\u57df\u53ca\u7a7a\u9593\u57df\u4e0a\u7684\u7368\u7acb\u5047\u8a2d\u4ee5\u5916\uff0c\u6b64\u7a2e\u5c07\u9ad8\u4f4e\u983b\u5206\u5225\u6b63\u898f \u5316\u518d\u7d50\u5408\u7684\u65b9\u5f0f\u4e5f\u53ef\u80fd\u6703\u6539\u8b8a\u8abf\u8b8a\u983b\u8b5c\u4e0d\u540c\u983b\u7387\u5f37\u5ea6\u7684\u5927\u5c0f\u9806\u5e8f\uff0c\u800c\u4f7f\u5f97\u975e\u55ae\u8abf\u7684\u5e72\u64fe \u8868\u4e8c\u3001PSHE \u7d50\u5408\u7a7a\u9593\u57df\u6216\u6642\u57df\u6587\u8108\u8cc7\u8a0a\u7684\u8fa8\u8b58\u6b63\u78ba\u7387(%) \u7279\u5fb5 \u8a0a\u566a\u6bd4 \u53e6\u5916\uff0c\u672c\u8ad6\u6587\u4e2d\u975c\u97f3\u8a5e(silence \u548c short pause)\u5c07\u4e0d\u5217\u5165\u8a5e\u6b63\u78ba\u7387\u7684\u8a08\u7b97\u3002\u800c\u5728 Aurora-2 \u4e94\u3001\u5be6\u9a57\u8207\u5206\u6790 \u8a9e\u6599\u5eab\u7684\u8a2d\u5b9a\u4e2d\uff0c\u6bcf\u4e00\u500b\u6e2c\u8a66\u5b50\u96c6\u7684\u5e73\u5747\u8fa8\u8b58\u7387\uff0c\u53ea\u4ee5 0dB(\u542b)\u5230 20dB(\u542b)\u9593\u7684\u8fa8\u8b58\u7cbe \u5e73\u5747\u503c \u4e7e\u6de8 20dB 15dB 10dB 5dB 0dB -5dB S-PSHE 99.39 97.29 93.69 85.73 68.77 40.17 17.75 \u78ba\u7387\u8a08\u7b97\u5e73\u5747\u3002\u672c\u8ad6\u6587\u4ea6\u4ee5\u6b64\u8a08\u7b97\u65b9\u5f0f\u8a55\u4f30\u8fa8\u8b58\u6548\u80fd\u3002 (\u4e00)\u5be6\u9a57\u8a9e\u6599\u5eab 77.19 T-PSHE 99.41 97.31 93.78 85.90 68.89 40.18 17.68 \u672c\u8ad6\u6587\u7684\u5be6\u9a57\u6240\u4f7f\u7528\u7684\u8a9e\u6599\u5eab\u70ba Aurora-2 \u82f1\u6587\u9023\u7e8c\u6578\u5b57\u8a9e\u6599\u5eab[42]\uff0c\u6b64\u8a9e\u6599\u5eab\u7531\u6b50\u6d32\u96fb (\u56db)\u5be6\u9a57\u7d50\u679c\u8207\u8a0e\u8ad6 77.21 TS-PSHE 99.45 97.10 93.44 85.50 68.65 39.96 17.13 76.93 ST-PSHE 99.28 97.28 94.21 86.70 69.48 40.06 17.71 77.55 \u4fe1\u6a19\u6e96\u5354\u6703(European Telecommunications Standards Institute, ESTI)\u6240\u767c\u884c\uff0c\u5167\u5bb9\u7686\u662f\u7531 \u9996\u5148\uff0c\u4f5c\u70ba\u6bd4\u8f03\u7684\u57fa\u6e96\uff0c\u6211\u5011\u5728\u8868\u4e00\u4e2d\u5217\u51fa\u4e86 MFCC \u7279\u5fb5\u53ca\u4e00\u4e9b\u57fa\u790e\u5f37\u5065\u6027\u8a9e\u97f3\u8fa8\u8b58 \u7f8e\u570b\u6210\u5e74\u4eba\u9304\u88fd\u7684\u9023\u7e8c\u6578\u5b57\u3002\u6b64\u8a9e\u6599\u5eab\u5305\u542b G.712 \u548c MIRS \u5169\u7a2e\u4e0d\u540c\u7684\u901a\u9053\u6548\u61c9\uff0c\u53ca\u6a5f \u6280\u8853\u7684\u8fa8\u8b58\u6b63\u78ba\u7387\u3002\u5176\u4e2d PHEQ \u53ca PSHE \u7684\u591a\u9805\u5f0f\u968e\u6578\u5747\u662f\u6839\u64da Aurora-2 \u8a9e\u6599\u5eab\u9032\u884c \u5834\u3001\u4eba\u8072\u3001\u6c7d\uf902\u3001\u5c55\u89bd\u6703\ufa2c\u3001\u9910\u5ef3\u3001\u5730\u4e0b\u9435\u3001\u8857\u9053\u3001\u706b\uf902\u7ad9\u7b49\u516b\u7a2e\u52a0\u6210\u6027\u566a\u97f3\uff0c\u52a0\u6210\u6027 \u6311\u9078\u4e4b\u6700\u4f73\u8a2d\u5b9a\u503c\uff0c\u672c\u8ad6\u6587\u5f8c\u7e8c\u5be6\u9a57\u7686\u4f9d\u5faa\u6b64\u7d44\u8a2d\u5b9a\uff0c\u800c\u4e0d\u53e6\u884c\u6700\u4f73\u5316\u591a\u9805\u5f0f\u968e\u6578\u3002\u800c \u566a\u97f3\u5206\u5225\u4ee5\u4e7e\u6de8\u300120dB\u300115dB\u300110dB\u30015dB\u30010dB\u3001-5dB \u7b49\u4e03\u7a2e\u4e0d\u540c\u7684\u8a0a\u566a\u6bd4\u6df7\u5165\u8a9e\u97f3 \u7531\u8868\u4e00\u4e2d\u4e5f\u53ef\u4ee5\u767c\u73fe\uff1a\u7531\u65bc PHEQ \u975e\u7dda\u6027\u8f49\u63db\u7684\u7279\u6027\uff0c\u6bd4\u8d77\u4f7f\u7528\u7dda\u6027\u8f49\u63db\u7684 CMS \u53ca \u4e2d\u3002\u6b64\u8a9e\u6599\u5eab\u542b\u6709\u5169\u7d44\u4e0d\u540c\u7684\u8a13\u7df4\u8a9e\u6599\uff0c\u5206\u5225\u6709 8,440 \u53e5\u7684\u8a13\u7df4\u8a9e\u53e5\u3002\u5728\u4e7e\u6de8\u8a13\u7df4 CMVN \u80fd\u5920\u88dc\u511f\u66f4\u591a\u96dc\u8a0a\u9020\u6210\u7684\u5e72\u64fe\uff0c\u5728\u8fa8\u8b58\u6b63\u78ba\u7387\u4e0a\u6709\u8f03\u597d\u7684\u8868\u73fe\uff0c\u800c\u540c\u6a23\u5f15\u5165\u6642 (clean-condition training) \u8a9e \u6599 \u4e2d \uff0c \u6240 \u6709 \u8a9e \u53e5 \u7686 \u4e7e \u6de8 \u4e0d \u542b \u4efb \u4f55 \u566a \u97f3 \uff1b \u800c \u5728 \u8907 \u5408 \u60c5 \u5883 \u57df\u53ca\u7a7a\u9593\u57df\u6587\u8108\u8cc7\u8a0a\u9032\u884c\u5206\u983b\u7684 ST-PHEQ\uff0c\u76f8\u8f03\u65bc\u539f\u672c\u7684 PHEQ \u4ea6\u6709\u5927\u8f3b\u7684\u6539\u9032\uff0c\u986f (multi-condition training)\u8a13\u7df4\u8a9e\u6599\u4e2d\uff0c\u542b\u6709\u53ca\u5730\u4e0b\u9435\u3001\u4eba\u8072\u3001\u6c7d\uf902\u3001\u5c55\u89bd\u6703\ufa2c\u7b49\u56db\u7a2e\u566a \u97f3\uff0c\u5176\u8a0a\u566a\u6bd4\u7531 5dB \u5230 20dB \u5916\u52a0\u4e7e\u6de8\u8a9e\u97f3\uff0c\u5169\u7d44\u8a13\u7df4\u8a9e\u6599\u7686\u542b G.712 \u901a\u9053\u6548\u61c9\u3002\u672c\u8ad6 \u793a\u9019\u4e9b\u6587\u8108\u8cc7\u8a0a\u5c0d\u65bc\u8a9e\u97f3\u8fa8\u8b58\u7684\u5f37\u5065\u6027\u6709\u5de8\u5927\u7684\u5e6b\u52a9\u3002 \u80fd\u5920\u4e00\u4f75\u88ab\u8003\u616e\u9032\u4f86\u3002\u6709\u9451\u65bc\u6b64\uff0c\u5728\u8a13\u7df4\u968e\u6bb5\u7d71\u8a08\u6642\u57df\u5206\u983b\u90e8\u4efd\u7684\u53c3\u8003\u5206\u4f48\u6642\uff0c\u9700\u8981\u4f7f \u6587\u4e2d\u7684\u5be6\u9a57\u4e00\u5f8b\u4f7f\u7528\u4e7e\u6de8\u8a13\u7df4\u8a9e\u6599\u9032\u884c\u8a13\u7df4\u3002 \u800c\u5728\u8abf\u8b8a\u983b\u8b5c\u7684\u6b63\u898f\u5316\u65b9\u9762\uff0c\u96d6\u7136\u55ae\u7368\u4f7f\u7528 PSHE \u6c92\u6709\u592a\u7a81\u51fa\u7684\u8868\u73fe\uff0c\u4f46\u7531\u65bc PSHE \u7528\u7a7a\u9593\u57df\u5206\u983b\u90e8\u4efd\u5df2\u7d93\u6b63\u898f\u5316\u904e\u7684\u8a9e\u97f3\u7279\u5fb5\u9032\u884c\u7d71\u8a08\uff0c\u800c\u975e\u539f\u59cb\u672a\u7d93\u6b63\u898f\u5316\u7684\u8a9e\u97f3\u7279 \u5fb5\u3002 \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u672c\u8ad6\u6587\u4e2d\u6642\u57df\u5206\u983b\u7684\u65b9\u6cd5\uff0c\u5176\u6982\u5ff5\u8207\u524d\u4eba\u91dd\u5c0d SHE \u6240\u63d0\u51fa\u7684\u5206\u983b \u6b63\u898f\u5316\u7684\u662f\u6574\u500b\u8a9e\u53e5\u4e2d\u7279\u5fb5\u8b8a\u5316\u7684\u8da8\u52e2\u8207\u898f\u5f8b\uff0c\u8207\u5176\u4ed6\u76f4\u63a5\u8abf\u6574\u8a9e\u97f3\u7279\u5fb5\u6578\u503c\u7684\u65b9\u6cd5 \u5728\u6e2c\u8a66\u8a9e\u6599\u90e8\u4efd\uff0c\u8a0a\u566a\u6bd4\u7bc4\u570d\u7686\u662f\u7531-5dB \u5230 20dB \u5916\u52a0\u4e7e\u6de8\u8a9e\u97f3\u3002\u6e2c\u8a66\u96c6 A \u6709 28,028 \u53e5\uff0c\u5206\u70ba\u56db\u500b\u5b50\u96c6\uff0c\u542b\u6709\u548c\u8907\u5408\u60c5\u5883\u8a13\u7df4\u8a9e\u6599\u4e2d\u76f8\u540c\u7684\u566a\u97f3\u548c\u901a\u9053\u6548\u61c9\uff1b\u6e2c\u8a66\u96c6 B \u6709 (\u5982 CMVN \u8207</td></tr><tr><td colspan=\"2\">\u5c07\u5169\u500b\u983b\u5e36\u7684\u7279\u5fb5\u76f4\u63a5\u76f8\u52a0\u5373\u53ef\u9084\u539f\u56de\u539f\u672c\u5168\u983b\u5e36\u7684\u7279\u5fb5\u3002\u9032\u884c\u5b8c\u7a7a\u9593\u57df\u4e0a\u7684\u5206\u983b\u6b63\u898f \u8655\u7406\u985e\u4f3c\uff0c\u4e26\u5177\u6709\u76f8\u4eff\u7684\u6210\u6548\uff1a\u5728[25]\u4e2d\uff0c\u8abf\u8b8a\u983b\u8b5c\u88ab\u4f9d\u7b49\u6bd4\u97f3\u7a0b(octave)\u7684\u6bd4\u4f8b\u5206\u70ba\u82e5 28,028 \u53e5\uff0c\u5206\u70ba\u56db\u500b\u5b50\u96c6\uff0c\u542b\u6709\u9910\u5ef3\u3001\u6a5f\u5834\u3001\u8857\u9053\u3001\u706b\uf902\u7ad9\u7b49\u56db\u7a2e\u566a\u97f3\uff0c\u4ee5\u53ca\u548c\u8a13\u7df4\u8a9e</td></tr><tr><td colspan=\"2\">\u5316\u4ee5\u5f8c\uff0c\u5c07\u7d50\u5408\u5f8c\u7684\u5168\u983b\u5e36\u7279\u5fb5\u518d\u6b21\u4f9d\u64da\u5f0f(10)\u53ca\u5f0f(11)\u5728\u6642\u57df\u4e0a\u5206\u70ba\u9ad8\u983b\u7279\u5fb5\u8207\u4f4e\u983b \u5e72\u500b\u983b\u5e36\uff0c\u8d8a\u4f4e\u983b\u7684\u6210\u4efd\u8d8a\u52a0\u7d30\u5206\uff0c\u4e26\u91dd\u5c0d\u6bcf\u4e00\u500b\u983b\u5e36\u9032\u884c\u7368\u7acb\u7684 SHE \u8655\u7406\uff1b\u800c\u5728[30] \u6599\u76f8\u540c\u7684\u901a\u9053\u6548\u61c9\uff1b\u6e2c\u8a66\u96c6 C \u6709 14,014 \u53e5\uff0c\u5206\u70ba\u5169\u500b\u5b50\u96c6\uff0c\u542b\u6709\u5730\u4e0b\u9435\u548c\u8857\u9053\u5169\u7a2e\u566a</td></tr><tr><td colspan=\"2\">\u7279\u5fb5\uff0c\u540c\u6a23\u5c07\u6b64\u4e8c\u983b\u5e36\u5206\u5225\u9032\u884c PSHE \u5f8c\uff0c\u5229\u7528\u8207\u7a7a\u9593\u57df\u9ad8\u4f4e\u983b\u7d50\u5408\u76f8\u540c\u7684\u65b9\u5f0f\uff0c\u4f9d\u4e0b \u4e2d\uff0c\u8abf\u8b8a\u983b\u8b5c\u88ab\u756b\u5206\u70ba\u5169\u500b\u983b\u5e36\u7368\u7acb\u9032\u884c SHE \u8655\u7406\uff0c\u800c\u5283\u5206\u7684\u983b\u7387\u5247\u70ba\u53ef\u8abf\u6574\u4e4b\u53c3\u6578\u3002 \u97f3\uff0c\u901a\u9053\u6548\u61c9\u70ba MIRS\u3002\u7531\u65bc\u672c\u8ad6\u6587\u4f7f\u7528\u4e7e\u6de8\u8a13\u7df4\u8a9e\u6599\uff0c\u6240\u6709\u52a0\u6210\u6027\u566a\u97f3\u7686\u662f\u8a13\u7df4\u8a9e\u6599</td></tr><tr><td colspan=\"2\">\u5f0f\u6240\u793a\u5c07\u6642\u57df\u4e4b\u9ad8\u4f4e\u983b\u6210\u4efd\u7d50\u5408\uff1a \u5728\u6b64\u5169\u7a2e\u6280\u8853\u4e2d\uff0c\u5c0d\u983b\u5e36\u7684\u756b\u5206\u90fd\u662f\u76f4\u63a5\u5c07\u67d0\u500b\u7279\u5b9a\u983b\u7387\u4ee5\u4e0b\u53ca\u4ee5\u4e0a\u7684\u6210\u4efd\u756b\u5206\u70ba\u4e0d\u540c \u4e2d\u672a\u66fe\u898b\u904e\uff0c\u800c\u53ea\u6709\u6e2c\u8a66\u96c6 C \u7684\u901a\u9053\u6548\u61c9\u8207\u8a13\u7df4\u8a9e\u6599\u4e0d\u540c\u3002</td></tr><tr><td colspan=\"2\">\u0303, -=\u0303t \u7684\u983b\u5e36\uff1b\u7136\u800c\u672c\u8ad6\u6587\u4e2d\u9032\u884c\u5206\u983b\u7684\u6ffe\u6ce2\u5668\u5728\u9ad8\u983b\u5e36\u8207\u4f4e\u983b\u5e36\u4e4b\u9593\u6709\u91cd\u758a\uff0c\u5728\u9ad8\u4f4e\u983b\u4e4b\u9593 ,hp , -+\u0303t ,lp , -(13) \u6c92\u6709\u4e00\u500b\u78ba\u5207\u7684\u5206\u5272\u9ede\uff0c\u5c07\u9ad8\u4f4e\u983b\u7d50\u5408\u5f8c\u4e5f\u4e0d\u6703\u7522\u751f\u660e\u986f\u7684\u4e0d\u9023\u7e8c\u73fe\u8c61\u3002\u53e6\u5916\uff0c\u672c\u8ad6\u6587 (\u4e8c)\u57fa\u790e\u5be6\u9a57\u8a2d\u5b9a</td></tr><tr><td colspan=\"2\">\u5176\u4e2d\u0303t \u4e2d\u5206\u983b\u7684\u6ffe\u6ce2\u5668\u70ba\u6709\u9650\u8108\u885d\u97ff\u61c9(finite impulse response, FIR)\u6ffe\u6ce2\u5668\uff0c\u5206\u983b\u7684\u904e\u7a0b\u4e0d\u9700\u8f49 ,hp , -\u70ba\u6642\u57df\u9ad8\u983b\u6210\u4efd\u7d93 PSHE \u6b63\u898f\u5316\u5f8c\u4e4b\u7279\u5fb5\uff0c\u0303t ,lp , -\u5247\u70ba\u6642\u57df\u4f4e\u983b\u6210\u4efd\u7d93 \u672c \u8ad6 \u6587 \u7684 \u57fa \u790e \u5be6 \u9a57 \u662f \u63a1 \u7528 \u6885 \u723e \u5012 \u983b \u8b5c \u4fc2 \u6578 [41] \u505a \u70ba \u8a9e \u97f3 \u7279 \u5fb5 \u53c3 \u6578 \uff0c \u5176 \u4e2d \u9810 \u5f37 \u8abf</td></tr><tr><td colspan=\"2\">PSHE \u6b63\u898f\u5316\u5f8c\u4e4b\u7279\u5fb5\uff0c\u7d93\u904e\u6b64\u4e00\u904e\u7a0b\u7522\u751f\u6700\u7d42\u7d93 ST-PSHE \u8655\u7406\u5f8c\u7684\u7279\u5fb5\u3002\u5176\u4e2d\uff0c\u4ea6\u53ef \u63db\u81f3\u8abf\u8b8a\u983b\u8b5c\uff0c\u53ef\u76f4\u63a5\u5728\u7279\u5fb5\u4e0a\u5feb\u901f\u4e26\u7a69\u5b9a(numerical stability)\u5730\u9032\u884c\u5be6\u4f5c\u3002 (pre-emphasis)\u53c3\u6578\u8a2d\u70ba 0.97\uff0c\u7a97\u51fd\u6578(window function)\u70ba\u6f22\u660e\u7a97(Hamming window)\uff0c\u5176</td></tr><tr><td colspan=\"2\">\u4ee5\u9078\u64c7\u8df3\u904e\u6642\u57df\u5206\u983b\u7684\u90e8\u4efd(\u7a31\u70ba S-PSHE)\u3001\u8df3\u904e\u7a7a\u9593\u57df\u5206\u983b\u7684\u90e8\u4efd(\u7a31\u70ba T-PSHE)\u3001\u6216 \u53c3\u6578\u8a2d\u70ba 0.46\uff0c\u53d6\u6a23\u97f3\u6846\u9577\u5ea6\u70ba 25 \u6beb\u79d2\uff0c\u97f3\u6846\u9593\u8ddd(frame shift)\u70ba 10 \u6beb\u79d2\u3002\u6bcf\u500b\u97f3\u6846\u5167</td></tr><tr><td colspan=\"2\">\u662f\u5c07\u6642\u57df\u5206\u983b\u8207\u7a7a\u9593\u57df\u5206\u983b\u5169\u90e8\u4efd\u8abf\u63db\u9806\u5e8f(\u7a31\u70ba TS-PSHE)\uff0c\u6b64\u90e8\u4efd\u7684\u5dee\u7570\u5c07\u65bc\u7b2c\u4e94\u7ae0 \u7684\u8cc7\u8a0a\uff0c\u5728\u5b8c\u6210\u7279\u5fb5\u64f7\u53d6\u4ee5\u5f8c\u7531 39 \u7dad\u7684\u8a9e\u97f3\u7279\u5fb5\u5411\u91cf\u8868\u793a\u3002\u5176\u4e2d\u524d 13 \u7dad\u70ba\u6885\u723e\u5012\u983b\u8b5c</td></tr><tr><td colspan=\"2\">\u4e2d\u63a2\u8a0e\u3002 \u4fc2\u6578\u7684\u524d 12 \u9805(c1~c12)\u53ca\u7b2c\u96f6\u5012\u983b\u8b5c\u4fc2\u6578(c0)\uff0c14 \u7dad\u5230 26 \u7dad\u70ba\u524d 13 \u7dad\u7684\u4e00\u968e\u5dee\u91cf\u4fc2\u6578</td></tr></table>"
            }
        }
    }
}