File size: 66,596 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
{
    "paper_id": "O13-1018",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:04:04.863877Z"
    },
    "title": "Multilingual Acoustic Model Splitting and Merging by Latent Dirichlet Allocation",
    "authors": [
        {
            "first": "Jui-Feng",
            "middle": [],
            "last": "\u8449\u745e\u5cf0",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "",
            "middle": [],
            "last": "Yeh",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Sheng-Feng",
            "middle": [],
            "last": "\u674e\u52dd\u8c50",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Shi-Sheng",
            "middle": [],
            "last": "\u8a31\u5e0c\u8056",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "",
            "middle": [],
            "last": "Shiu",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "David",
            "middle": [
                "M"
            ],
            "last": "\u500b\u968e\u5c64\u5f0f\u7684\u6578\u5b78\u6a21\u578b\uff0c\u65e9\u671f\u662f\u7531",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "",
            "middle": [],
            "last": "Blei",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "To avoid the confusion of phonetic acoustic models between different languages is one of the most challenges in multilingual speech recognition. We proposed the method based on Latent Dirichlet Allocation to avoid the confusion of phonetic acoustic models between different languages. We split phonetic acoustic models based on tri-phone. And merging the group that selected by Latent Dirichlet Allocation Detector to solve pronunciation variants problems between different languages. This paper has three parts. First part is introduced the Pronunciation Event and Articulatory Features. Second part is about Latent Dirichlet Allocation and the acoustic model selecting method using Latent Dirichlet Allocation. Latent Dirichlet Allocation is a Hierarchical math model that proposed by David M. Blei at 2003. It is often used on documents classification and document generation. The structure of LDA is also suitable for speech recognition and nature language processing. The final is experiment result and verification the method we proposed.",
    "pdf_parse": {
        "paper_id": "O13-1018",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "To avoid the confusion of phonetic acoustic models between different languages is one of the most challenges in multilingual speech recognition. We proposed the method based on Latent Dirichlet Allocation to avoid the confusion of phonetic acoustic models between different languages. We split phonetic acoustic models based on tri-phone. And merging the group that selected by Latent Dirichlet Allocation Detector to solve pronunciation variants problems between different languages. This paper has three parts. First part is introduced the Pronunciation Event and Articulatory Features. Second part is about Latent Dirichlet Allocation and the acoustic model selecting method using Latent Dirichlet Allocation. Latent Dirichlet Allocation is a Hierarchical math model that proposed by David M. Blei at 2003. It is often used on documents classification and document generation. The structure of LDA is also suitable for speech recognition and nature language processing. The final is experiment result and verification the method we proposed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "(Internal Phone Alphabet ,IPA)\u4e4b\u5b9a\u7fa9\u4f86\u9032\u884c\u767c\u97f3\u4e8b\u4ef6\u5206\u985e\u3002\u7d93\u904e\u5c0d\u53f0\u8a9e\u97f3\u6a19(ForPA)\u3001\u570b\u8a9e\u97f3\u6a19\u548c\u82f1\u6587 (KK \u97f3\u6a19)\u5c0d\u61c9\u5f8c\uff0c\u4f7f\u7528\u5230\u7684\u767c\u97f3\u65b9\u6cd5(Manner)\u7e3d\u5171\u6709\u516d\u985e\uff1a\u9f3b\u97f3(Nasal)\u3001\u585e\u97f3(Stop)\u3001 \u6469\u64e6\u97f3(Fricative)\u3001\u8fd1\u97f3(Approximant)\u3001\u585e\u64e6\u97f3(Affricate)\u548c\u986b\u97f3(Trill)\u3002\u800c\u4f7f\u7528\u7684\u767c\u97f3\u90e8 \u4f4d(Place)\u7e3d\u5171\u6709\u5341\u4e09\u985e\uff1a\u96d9\u5507\u97f3(Bilabial)\u3001\u5507\u9f52\u97f3(Labio-dental)\u3001\u5507\u8edf\u984e(Labio-velar)\u3001 \u9f52\u97f3(Dental) \u3001\u9f66\u97f3(Alveolar) \u3001\u9f66\u5f8c\u97f3(Post-alv) \u3001\u6372\u820c(Retroflex) \u3001\u9f66\u984e\u97f3(Alveolo-palatal) \u3001 \u9f66\u786c\u984e(Palato-alveolar)\u3001\u786c\u984e\u97f3(Patatal)\u3001\u8edf\u984e(Velar)\u3001\u5c0f\u820c\u97f3(Uvular)\u548c\u8072\u9580\u97f3(Glottal)\u3002 \u56db\u3001\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u5075\u6e2c\u5668 (\u4e00)\u6982\u8ff0 \u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u662f\u4e00\u7a2e\u968e\u5c64\u5316\u7684\u751f\u6210\u6a5f\u7387\u6a21\u578b\uff0c\u662f\u7531 David M. Blei[1]\u65bc",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": ", \u03b2) = \u222c p(\u03b8 M |\u03b1 M ) p(\u03b8 P |\u03b1 P ) {\u220f p(Z M |\u03b8 M )p(Z P |\u03b8 P )p(w|Z M , Z P , L, \u03b2) N n=1 } d\u03b8 M d\u03b8 P (\u5f0f 4.1) \u5716\u4e8c\u3001\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u5075\u6e2c\u5668\u4e4b\u5716\u578b\u8868\u793a\u6cd5 \u8868\u4e00\u3001\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u5075\u6e2c\u5668\u4e4b\u53c3\u6578\u4ee3\u8868\u610f\u7fa9 \u7b26\u865f \u63cf\u8ff0 \u03b1M K \u5411\u91cf\uff0c\u767c\u97f3\u65b9\u6cd5\u7684 dirichlet \u5206\u5e03 \u03b1P K \u5411\u91cf\uff0c\u767c\u97f3\u90e8\u4f4d\u7684 dirichlet",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Latent Dirichlet Allocation",
                "authors": [
                    {
                        "first": "David",
                        "middle": [
                            "M"
                        ],
                        "last": "Blei",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [
                            "Y"
                        ],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [
                            "I"
                        ],
                        "last": "Jordan",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Journal of Machine Learning Research",
                "volume": "3",
                "issue": "",
                "pages": "993--1022",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David M. Blei, Andrew Y. Ng, Michael I. Jordan, Latent Dirichlet Allocation, Journal of Machine Learning Research 3, pp.993-1022, 2003.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Automatic Evaluation of English Pronunciation Based on Speech Recognition Techniques",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Hamada",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Miki",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Nakatsu",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "IEICE Trans. Inf. and Sys",
                "volume": "",
                "issue": "3",
                "pages": "352--359",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hamada, H., S. Miki, and R. Nakatsu. Automatic Evaluation of English Pronunciation Based on Speech Recognition Techniques, IEICE Trans. Inf. and Sys. 1993 E76-D(3):352-359.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Pronunciation Scoring of Foreign Language Student Speech In ICSLP' 96",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Neumeyer",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Franco",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Weintraub",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Price",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Neumeyer, L., H. Franco, M. Weintraub, and P. Price. Pronunciation Scoring of Foreign Language Student Speech In ICSLP' 96. Philadelphia, USA, Oct.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Automatic Detection of Mispronunciation for Language Instruction",
                "authors": [
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Ronen",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Neumeyer",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Franco",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Proceedings Eurospeech",
                "volume": "97",
                "issue": "",
                "pages": "649--652",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ronen, O., Neumeyer, L. and Franco, H. Automatic Detection of Mispronunciation for Language Instruction, Proceedings Eurospeech 97, Rhodes, Greece, 649-652.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Automatic Detection of Phone-Level Mispronunciation for Language Learning",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Franco",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Neumeyer",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ramos",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bratt",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Proceedings Eurospeech '99",
                "volume": "",
                "issue": "",
                "pages": "851--854",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franco, H., Neumeyer, L., Ramos, M., and Bratt, H. Automatic Detection of Phone-Level Mispronunciation for Language Learning, Proceedings Eurospeech '99, Budapest, Hungary, 851-854.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "EM Training of Finite-State Transducers and its Application to Pronunciation Modeling",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Shu",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [
                            "L"
                        ],
                        "last": "Hetherington",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. ICSLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Shu and I. L. Hetherington, EM Training of Finite-State Transducers and its Application to Pronunciation Modeling, Proc. ICSLP, Denver, CO, September 2002.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A Vector Space Modeling Approach to Spoken Language Identification\u2016, Audio, Speech, and Language Processing",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "H"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "IEEE Transactions",
                "volume": "15",
                "issue": "1",
                "pages": "271--284",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Li, B. Ma, and C.H. Lee. A Vector Space Modeling Approach to Spoken Language Identification\u2016, Audio, Speech, and Language Processing, IEEE Transactions on vol. 15, NO. 1, JANUARY, pp 271-284, 2007.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Experiments on Cross-Language Attribute Detection and Phone Recognition With Minimal Target-Specific Training Data",
                "authors": [
                    {
                        "first": "Dau-Cheng",
                        "middle": [],
                        "last": "Sabato Marco Siniscalchi",
                        "suffix": ""
                    },
                    {
                        "first": "Torbj\u00f8rn",
                        "middle": [],
                        "last": "Lyu",
                        "suffix": ""
                    },
                    {
                        "first": "Chin-Hui",
                        "middle": [],
                        "last": "Svendsen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING",
                "volume": "20",
                "issue": "3",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sabato Marco Siniscalchi, Dau-Cheng Lyu, Torbj\u00f8rn Svendsen, Chin-Hui Lee, Experiments on Cross-Language Attribute Detection and Phone Recognition With Minimal Target-Specific Training Data, IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 3, MARCH 2012.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "html": null,
                "num": null,
                "content": "<table><tr><td>\u4e00\u3001\u7dd2\u8ad6 (\u4e00)\u7814\u7a76\u52d5\u6a5f \u7531\u65bc\u76ee\u524d\u7db2\u8def\u8207\u4ea4\u901a\u7684\u767c\u9054\uff0c\u4f7f\u5f97\u5168\u7403\u5316\u6210\u70ba\u5fc5\u7136\u7684\u8da8\u52e2\uff0c\u518d\u52a0\u4e0a\u53f0\u7063\u672c\u8eab\u5c31\u662f\u5c6c \u65bc\u4e00\u500b\u591a\u65cf\u7fa4\u793e\u6703\uff0c\u56e0\u6b64\u5728\u65e5\u5e38\u751f\u6d3b\u74b0\u5883\u4e2d\u63a5\u89f8\u5230\u5176\u4ed6\u8a9e\u8a00\u7684\u6a5f\u6703\u4e5f\u65e5\u9032\u589e\u52a0\u3002\u9664\u4e86\u5e73 \u5e38\u6240\u807d\u5230\u548c\u770b\u5230\u7684\u8cc7\u8a0a\u542b\u6709\u5176\u4ed6\u8a9e\u8a00\u5916\uff0c\u73fe\u5728\u9023\u5e73\u6642\u5c0d\u8a71\u4e5f\u6703\u7d93\u5e38\u542b\u6709\u82f1\u6587\u3001\u53f0\u8a9e\u751a\u81f3 \u662f\u65e5\u8a9e\u7684\u60c5\u6cc1\u7522\u751f\u3002\u4e5f\u56e0\u6b64\u8a9e\u97f3\u8fa8\u8b58\u6210\u70ba\u8fd1\u5e74\u4f86\u71b1\u9580\u7684\u79d1\u5b78\u7814\u7a76\u9805\u76ee\u4e4b\u4e00\uff0c\u800c\u4e14\u5e02\u9762\u4e0a \u4e5f\u6709\u8a31\u591a\u76f8\u95dc\u61c9\u7528\u985e\u7522\u54c1\uff0c\u4f8b\u5982\uff1aGoogle Android \u5e73\u53f0\u7684 Google Voice Search\u3001Apple \u7684 Siri \u8a9e\u97f3\u52a9\u7406\u2026\u7b49\uff0c\u4f46\u76ee\u524d\u9019\u4e9b\u5e73\u53f0\u90fd\u53ea\u80fd\u5c0d\u55ae\u4e00\u7a2e\u8a9e\u8a00\u9032\u884c\u8fa8\u8b58\uff0c\u56e0\u6b64\u96e3\u4ee5\u61c9\u4ed8\u65e5\u9032 \u589e\u52a0\u7684\u591a\u8a9e\u74b0\u5883\uff0c\u56e0\u6b64\u9700\u8981\u4e00\u7a2e\u53ef\u4ee5\u8fa8\u8b58\u591a\u7a2e\u8a9e\u8a00\u7684\u8fa8\u8b58\u5668\u3002 \u65e9\u671f\u7684\u591a\u8a9e\u8fa8\u8b58\u5668\u7b2c\u4e00\u6b65\u662f\u5148\u5c07\u8a9e\u8a00\u985e\u578b\u8fa8\u8b58\u51fa\u4f86\u5f8c\uff0c\u518d\u5c07\u8f38\u5165\u7684\u8a9e\u97f3\u8a0a\u865f\u9001\u9032 \u5c0d\u61c9\u7684\u8fa8\u8b58\u5668\u8fa8\u8b58\u3002\u4f46\u662f\u7531\u65bc\u4e0d\u540c\u8a9e\u8a00\u7684\u97f3\u6a19\u96c6\u5408\u4e26\u4e0d\u5b8c\u5168\u76f8\u540c\uff0c\u4e14\u591a\u6578\u7684\u8a9e\u97f3\u8fa8\u8b58\u5668 \u662f\u91dd\u5c0d\u7279\u5b9a\u8a9e\u8a00\u7684\u97f3\u6a19\u96c6\u5408\u9032\u884c\u6a21\u578b\u4e4b\u8a13\u7df4\uff0c\u56e0\u6b64\u82e5\u662f\u5728\u7b2c\u4e00\u968e\u6bb5\u7684\u8a9e\u8a00\u7a2e\u985e\u8fa8\u8b58\u932f\u8aa4\uff0c \u800c\u5c07\u8f38\u5165\u8a9e\u53e5\u9001\u5165\u6240\u5c0d\u61c9\u7684\u932f\u8aa4\u8a9e\u8a00\u8fa8\u8b58\u5668\u4e2d\uff0c\u5247\u6240\u7522\u751f\u7684\u7d50\u679c\u5c07\u6703\u662f\u5e7e\u4e4e\u5b8c\u5168\u4e0d\u7b26\u9810 \u671f\u3002\u800c\u5176\u7d9c\u5408\u8fa8\u8b58\u6b63\u78ba\u7387\u4e5f\u6703\u53d7\u5230\u5169\u500b\u5143\u4ef6\u7684\u932f\u8aa4\u758a\u52a0\u800c\u964d\u4f4e\u3002\u70ba\u4e86\u89e3\u6c7a\u6b64\u554f\u984c\uff0c\u5c07\u524d \u5f8c\u6574\u5408\u5728\u4e00\u8d77\u8a2d\u8a08\u4e00\u500b\u8fa8\u8b58\u5668\u53ef\u4ee5\u76f4\u63a5\u8fa8\u8b58\u591a\u570b\u8a9e\u8a00\u7684\u67b6\u69cb\u5247\u88ab\u63a1\u7528\uff0c\u4ee5\u6e1b\u5c11\u932f\u8aa4\u7387\u7684 \u7d2f\u52a0\u3002\u8981\u5c07\u591a\u500b\u8a9e\u8a00\u6574\u5408\u5728\u540c\u4e00\u8fa8\u8b58\u5668\u5167\u5927\u81f4\u4e0a\u53ef\u5206\u70ba\u4e09\u7a2e\u65b9\u6cd5\uff0c\u7b2c\u4e00\u7a2e\u662f\u5c07\u5404\u500b\u55ae\u4e00 \u8a9e\u8a00\u7684\u97f3\u6a19\u96c6\u5408\u4f75\u6210\u5171\u540c\u97f3\u6a19\u96c6\u5408\uff0c\u4e26\u4ee5\u6b64\u70ba\u4f9d\u64da\u4f86\u5efa\u7acb\u591a\u8a9e\u7684\u8fa8\u8b58\u5668\u3002\u7b2c\u4e8c\u7a2e\u662f\u4f7f\u7528 \u5c08\u5bb6\u77e5\u8b58\u6240\u5efa\u7acb\u7684\u8de8\u8a9e\u8a00\u97f3\u6a19\u96c6\u5408\u4f86\u5408\u4f75\u4e0d\u540c\u8a9e\u8a00\u7684\u97f3\u6a19\uff0c\u76ee\u524d\u570b\u969b\u97f3\u6a19\u96c6\u5408\u6709\u570b\u969b\u97f3 \u4e9b\u4e0d\u540c\u7684\u60c5\u6cc1\u3002\u6216\u8005\u662f\u4e0d\u540c\u8a9e\u8a00\u7684\u4e0d\u540c\u7684\u97f3\u6a19\uff0c\u4f46\u662f\u5176\u767c\u97f3\u6a21\u5f0f\u537b\u6975\u70ba\u76f8\u4f3c\u3002\u70ba\u4e86\u89e3\u6c7a \u4e0a\u8ff0\u4e4b\u554f\u984c\uff0c\u56e0\u6b64\u5c07\u540c\u97f3\u6a19\u4f46\u767c\u97f3\u4e0d\u540c\u7684\u8072\u5b78\u6a21\u578b\u9032\u884c\u62c6\u5206\uff0c\u800c\u97f3\u6a19\u4e0d\u540c\u767c\u97f3\u985e\u4f3c\u7684\u8072 \u5b78\u6a21\u578b\u9032\u884c\u5408\u4f75\uff0c\u4ee5\u6e1b\u5c11\u6df7\u6dc6\u7684\u60c5\u6cc1\u3002 (\u4e8c)\u76f8\u95dc\u7814\u7a76 Haizhou Li, Bin Ma, and Chin-Hui Lee \u65bc\u671f\u520a\u4e0a\u767c\u8868\u7684\u7814\u7a76\u591a\u8a9e\u8fa8\u8b58[7]\uff0c\u63d0\u51fa\u4e86\u65b0 \u7684\u8fa8\u8b58\u55ae\u5143\u69cb\u60f3\uff0c\u4e0d\u518d\u4ee5\u97f3\u6a19\u70ba\u55ae\u5143\u800c\u662f\u7528\u4eba\u985e\u5be6\u969b\u767c\u97f3\u7684\u65b9\u6cd5\u4f86\u505a\u70ba\u55ae\u4f4d\u3002\u6b64\u65b9\u6cd5\u662f \u5f9e\u8a0a\u865f\u9762\u5c0b\u627e\u5404\u7a2e\u7279\u5fb5\uff0c\u4e26\u4ee5\u9019\u4e9b\u7279\u5fb5\u5efa\u7acb\u51fa\u5404\u7a2e\u767c\u97f3\u4e8b\u4ef6(Pronunciation Event)\u7684\u8fa8\u8b58 \u5668\uff0c\u4e26\u5c07\u6240\u6709\u767c\u97f3\u4e8b\u4ef6\u8fa8\u8b58\u5668\u7d50\u679c\u9032\u884c\u4ea4\u53c9\u6bd4\u5c0d\u51fa\u6240\u8981\u8fa8\u8b58\u55ae\u5143\u4e4b\u97f3\u6a19\uff0c\u6b64\u65b9\u6cd5\u53ef\u4ee5\u6709 \u6548\u6e1b\u4f4e\u8072\u5b78\u6a21\u578b\u6578\u91cf\uff0c\u56e0\u6b64\u5177\u6709\u8f03\u4f73\u7684\u6297\u566a\u80fd\u529b[8]\u3002 \u738b\u5c0f\u5ddd[9]\u6559\u6388\u5728\"\u8a9e\u97f3\u4fe1\u865f\u8655\u7406\"\u4e00\u66f8\u4e2d\u5c0d\u65bc\u8a9e\u97f3\u8fa8\u8b58\u7684\u57fa\u790e\u77e5\u8b58\u80cc\u666f\u548c\u6d41\u7a0b\u6709\u76f8 \u7576\u8a73\u7d30\u7684\u6558\u8ff0\uff0c\u5c0d\u65bc\u60f3\u8981\u5b78\u7fd2\u8a9e\u97f3\u8fa8\u8b58\u7684\u4eba\u662f\u4e00\u672c\u5f88\u597d\u7684\u5165\u9580\u66f8\u7c4d\u3002\u9577\u5e9a\u5927\u5b78\u5247\u662f\u9577\u5e74 \u4f86\u9032\u884c\u53f0\u7063\u672c\u571f\u8a9e\u8a00\u7684\u7814\u7a76\uff0c\u6881\u654f\u96c4[10]\u5efa\u7acb\u4ee5 IPA \u70ba\u57fa\u790e\u7684\u53f0\u8a9e\u97f3\u6a19\u96c6\u5408 ForPA\u3001\u6587 \u5b57\u8f49\u8a9e\u97f3(TTS)\u548c\u767c\u97f3\u5075\u932f\u61c9\u7528\u65bc\u8a9e\u8a00\u6559\u5b78\u8207\u53f0\u8a9e\u8a9e\u97f3\u8a9e\uf9be\u5eab\u8a2d\u8a08\u8207\u6536\u96c6\u3002\u9673\u5fd7\u5b87[11]\u5247 \u63a2\u8a0e\u4e86\u540c\u6642\u5c0d\u570b\u53f0\u96d9\u8a9e\u7684\u5927\u8a5e\u5f59\u9023\u7e8c\u8a9e\u97f3\u8fa8\u8b58\u3002\u694a\u6c38\u6cf0[12]\u5c07\u97f3\u6a19\u66ff\u63db\u6539\u8b8a\u6210\u4e2d\u6587\u800c\u5c07 \u96b1\u85cf\u5f0f\u99ac\u53ef\u592b\u6a21\u578b\u904b\u7528\u5728\u4e2d\u6587\u8fa8\u8b58\u4e0a\u3002 \u975e\u672c\u570b\u6bcd\u8a9e\u4eba\u58eb\u6240\u8b1b\u7684\u8a9e\u8a00\u6703\u7522\u751f\u767c\u97f3\u8b8a\u7570\uff0c\u4f8b\u5982\u53f0\u7063\u4eba\u8b1b\u82f1\u6587\uff0c\u6b64\u7a2e\u767c\u97f3\u8b8a\u7570\u6703 \u4f7f\u7cfb\u7d71\u7522\u751f\u6975\u5927\u7684\u8aa4\u5224\u3002\u570b\u7acb\u6210\u529f\u5927\u5b78\u7684\u8521\u4f69\u73ca\u3001\uf972\u6db5\u5e73\u3001\u5433\u5b97\u61b2[13]\u63d0\u51fa\u4ee5\u66f4\u5c0f\u7684\u55ae \u4f4d \u2500 senone \u4f5c\u70ba\u57fa\u672c\u7684\u8fa8\u8b58\u55ae\u5143\uff0c\u4ee5\u66f4\u52a0\u8a73\u7d30\u7684\u6a21\u64ec\u767c\u97f3\u8b8a\u7570\uff0c\u4e26\u5efa\u7acb\u5305\u542b\u767c\u97f3\u8b8a\u7570 \u4e4b\u82f1\u6587\u8072\u5b78\u6a21\u578b\u3002 \u4e8c\u3001\u7cfb\u7d71\u67b6\u69cb (\u4e00)\u7cfb\u7d71\u6846\u67b6 \u5716\u4e00\u70ba\u672c\u8ad6\u6587\u4e4b\u7cfb\u7d71\u67b6\u69cb\u3002\u6839\u64da\u5176\u8655\u7406\u6d41\u7a0b\u53ef\u4ee5\u5206\u70ba\u8a13\u7df4\u968e\u6bb5\u8207\u6e2c\u8a66\u968e\u6bb5\u3002\u8a13\u7df4\u968e \u6bb5\u70ba\u4f7f\u7528\u72c4\u5f0f\u5206\u4f48\u9032\u884c\u5c0d\u97f3\u7d20\u8072\u5b78\u6a21\u578b\u7684\u6df7\u6dc6\u5075\u6e2c\uff0c\u6e2c\u8a66\u968e\u6bb5\u5247\u662f\u5c07\u6df7\u6dc6\u767c\u751f\u7684\u6a21\u578b\u9032 \u884c\u5206\u5272\u6216\u5408\u4f75\u5f8c\u9032\u884c\u6548\u80fd\u6e2c\u8a66\u3002 \u5716\u4e00\u3001\u7cfb\u7d71\u67b6\u69cb (\u4e8c)\u8a13\u7df4\u90e8\u5206 \u5728\u8a13\u7df4\u6642\u7684\u521d\u59cb\u968e\u6bb5\u70ba\u4f7f\u7528 39 \u7dad MFCC \u53c3\u6578\u548c HTK \u4f86\u5efa\u7acb\u8d77\u4ee5\u96b1\u85cf\u5f0f\u99ac\u53ef\u592b\u6a21 \u578b(HMM, Hidden Markov Model)\u70ba\u57fa\u790e\u7684\u591a\u8a9e\u8a00 Tri-phone \u8072\u5b78\u6a21\u578b\u3002\u6b64\u968e\u6bb5\u5c07\u4e0d\u540c\u8a9e \u8a00\u76f8\u540c\u97f3\u6a19\u8996\u70ba\u4e0d\u540c\u97f3\u6a19\uff0c\u4e26\u4e14\u6839\u64da Tri-phone \u5b9a\u7fa9\u5206\u88c2\u6a21\u578b\uff0c\u4f46\u662f\u4e0d\u9032\u884c State-Tying \u548c\u6a21\u578b\u5408\u4f75\u3002\u7b2c\u4e8c\u968e\u6bb5\u70ba\u4f7f\u7528\u8a9e\u6599\u6a19\u8a18\u5efa\u7acb\u4ee5\u72c4\u5f0f\u5206\u4f48(LDA, Latent Dirichlet Allocation) \u70ba\u57fa\u790e\u7684\u5075\u6e2c\u5668\uff1a\u7fa4\u5167\u9a57\u8b49\u5075\u6e2c\u5668(Intra-clustering verification Detector)\u3002\u904e\u4f86\u6839\u64da\u4ee5\u72c4 \u5f0f\u5206\u4f48\u70ba\u57fa\u790e\u7684\u7fa4\u5167\u9a57\u8b49\u5075\u6e2c\u5668\u5206\u5225\u6839\u64da\u767c\u97f3\u90e8\u4f4d\u548c\u767c\u97f3\u65b9\u6cd5\u9032\u884c\u5206\u7fa4\uff0c\u7531\u65bc\u6bcf\u4e00\u500b\u97f3 \u7d20\u90fd\u53ef\u4ee5\u5c0d\u61c9\u7684\u55ae\u4e00\u7684\u767c\u97f3\u90e8\u4f4d\u548c\u767c\u97f3\u65b9\u6cd5\uff0c\u56e0\u6b64\u5c07\u767c\u97f3\u65b9\u6cd5\u8207\u767c\u97f3\u90e8\u4f4d\u7686\u5206\u985e\u5728\u540c\u4e00 (\u4e09)\u6e2c\u8a66\u90e8\u5206 \u6e2c\u8a66\u90e8\u5206\u6700\u4e3b\u8981\u7684\u662f\u5c0d\u8a13\u7df4\u968e\u6bb5\u6240\u4fee\u6b63\u7684\u8072\u5b78\u6a21\u578b\u9032\u884c\u6548\u80fd\u8207\u6b63\u78ba\u6027\u6e2c\u8a66\u3002\u5f9e\u4f7f\u7528 \u8005\u8f38\u5165\u7684\u8a9e\u53e5\u62bd\u53d6 39 \u7dad MFCC \u53c3\u6578\u548c\u8a9e\u97f3\u5c6c\u6027\u4e26\u4f7f\u7528\u4fee\u6b63\u904e\u7684\u8072\u5b78\u6a21\u578b\u9032\u884c\u8fa8\u8b58\uff0c\u4e26 \u6839\u64da\u8fa8\u8b58\u7d50\u679c\u4f86\u5224\u65b7\u662f\u5426\u6709\u6e1b\u5c11\u8072\u5b78\u6a21\u578b\u6df7\u6dc6\u7a0b\u5ea6\u3002 \u4e09\u3001\u767c\u97f3\u4e8b\u4ef6 \u6a19(\u865f\u96c6\uff0c\u4f46\u5728\u4e0d\u540c\u8a9e\u8a00\u7684\u60c5\u6cc1\u4e0b\uff0c\u6703\u51fa\u73fe\u96d6\u7136\u5c6c\u65bc\u540c\u4e00\u500b\u97f3\u6a19\uff0c\u4f46\u662f\u5176\u767c\u97f3\u6a21\u5f0f\u4ecd\u7136\u6703\u6709 \u70ba\u4e86\u89e3\u6c7a\u767c\u97f3\u8b8a\u7570\u800c\u9020\u6210\u8a9e\u97f3\u6a21\u578b\u6df7\u6dc6\u7684\u60c5\u5f62\uff0c\u570b\u5916\u5b78\u8005\u6839\u64da\u4e0d\u540c\u7684\u767c\u97f3\u8b8a\u7570\u6cd5\u9032 \u70ba\u4e86\u89e3\u6c7a\u8a9e\u97f3\u8fa8\u8b58\u7684\u74f6\u9838\uff0c\u7f8e\u570b\u55ac\u6cbb\u4e9e\u7406\u5de5\u5b78\u9662\u7684\u674e\u9326\u8f1d(C.-H. Lee)\u6559\u6388\u63d0\u51fa\u4e86\u5075 \u884c\u4e86\u8a31\u591a\u7684\u7814\u7a76\u3002\u95dc\u65bc\u500b\u4eba\u5316\u767c\u97f3\u8b8a\u7570\u7684\u7814\u7a76\uff0c1993 \u5e74 Hamada \u548c Miki \u7b49\u4eba\u63d0\u51fa\uff0c\u904b \u6e2c\u5f0f(Detection-based)\u7684\u65b9\u6cd5\uff0c\u5176\u4e3b\u8981\u6982\u5ff5\u70ba\u4eba\u985e\u518d\u767c\u97f3\u7684\u6642\u5019\u6703\u6709\u767c\u97f3\u90e8\u4f4d(Place)\u8207\u767c \u7528\u52d5\u614b\u898f\u5283(dynamic programming)\u548c\u5411\uf97e\uf97e\u5316(vector quantization)\u7684\u65b9\u5f0f\u6bd4\u8f03 Native \u97f3\u65b9\u6cd5(Manner)\uff0c\u85c9\u7531\u767c\u97f3\u8a9e\u8a00\u5b78\u4f86\u63cf\u8ff0\u8a9e\u97f3\u3002\u800c\u767c\u97f3\u90e8\u4f4d\u8207\u767c\u97f3\u65b9\u6cd5\u5247\u7d71\u7a31\u70ba\u767c\u97f3\u4e8b Speaker \u8207 Non-Native Speaker \u5728\u540c\u4e00\u500b\u5b57\u767c\u97f3\u4e0a\u7684\u5dee\u7570[2] \u30021996 \u5e74 Neumeyer \u548c Franc \u4ef6\u3002\u800c\u70ba\u4e86\u8981\u5075\u6e2c\u767c\u97f3\u4e8b\u4ef6\uff0c\u5247\u85c9\u7531\u76f4\u63a5\u89c0\u5bdf\u8a9e\u97f3\u8a0a\u865f\u4f86\u5c0b\u627e\u51fa\u7279\u5b9a\u767c\u97f3\u4e8b\u4ef6\u4e0b\u7684\u6709\u6548 \u7b49\u4eba\u5247\u5b9a\u7fa9\u4e86 HMM Log-Likelihood\u3001Segment duration \u548c Timing \u7b49\u7279\u5fb5\u53c3\u6578\uff0c\u91dd\u5c0d\u6574 \u7279\u5fb5\u4f86\u5075\u6e2c\uff0c\u800c\u9019\u4e9b\u7279\u5fb5\u5247\u7a31\u70ba\u8a9e\u97f3\u5c6c\u6027(Articulatory Features)\u3002\u5176\u7279\u6027\u662f\u85c9\u7531\u591a\u5c64\u5316\u67b6 \u500b\u53e5\u5b50\u505a\u767c\u97f3\u8a55\u4f30\uff0c\u800c\u4e14\u5be6\u9a57\u7684\u7d50\u679c\u767c\u73fe normalized segment duration scores \u8207\u5c08\u5bb6\u7d66 \u69cb\u800c\u7e2e\u6e1b\u4e86\u6a21\u578b\u6578\u91cf\uff0c\u4e5f\u56e0\u70ba\u8207\u4eba\u985e\u767c\u97f3\u7684\u65b9\u6cd5\u6709\u6240\u95dc\u9023\uff0c\u56e0\u6b64\u5176\u5177\u6709\u8f03\u9ad8\u7684\u5f37\u5065\u6027\u3002 \u56e0\u6b64\u5c0d\u65bc\u4e0d\u540c\u8a9e\u8a00\u76f8\u540c\u97f3\u6a19\u4e5f\u8f03\u4e0d\u5bb9\u6613\u7522\u751f\u6df7\u6dc6\u3002\u70ba\u4e86\u8655\u7406\u5728\u591a\u8a9e\u8fa8\u8b58\u7684\u74b0\u5883\u4e0b\u7684\u97f3\u6a19 \u6df7\u6dc6\uff0c\u672c\u6587\u4f7f\u7528\u4e86\u767c\u97f3\u4e8b\u4ef6\u4f86\u9032\u884c\u5075\u6e2c\u3002 \u767c\u97f3\u4e8b\u4ef6\u6709\u8a31\u591a\u4e0d\u540c\u7684\u5206\u985e\u6cd5\uff0c\u4f46\u5176\u5171\u901a\u7279\u6027\u5247\u70ba\u53ef\u4ee5\u8de8\u8a9e\u8a00\u7684\u5c0d\u61c9\u5230\u7279\u5b9a\u7684\u97f3\u6a19\uff0c \u4e88\u7684\u5206\u6578\u4e2d\u6709\u6700\u9ad8\u7684\u76f8\u95dc\u6027[3]\u30021997 \uf98e Final State Transducer (FST) [6]\u3002 \u56e0\u6b64\u70ba\u4e86\u5efa\u7acb\u8d77\u8de8\u8a9e\u8a00\u7684\u97f3\u6a19\u96c6\u5408\uff0c\u672c\u6587\u4e3b\u8981\u4f7f\u7528\u4e86\u570b\u969b\u97f3\u6a19\u96c6\u5408</td></tr><tr><td>\u7fa4\u4e4b\u97f3\u7d20\u5b9a\u70ba\u5408\u4f75\u76ee\u6a19\uff0c\u800c\u5c07\u6c92\u6709\u5169\u8005\u7686\u5206\u985e\u5728\u540c\u4e00\u7fa4\u7684\u97f3\u6a19\u793a\u70ba\u4e0d\u540c\u4e4b\u5206\u7fa4\u3002\u6700\u5f8c\u518d</td></tr><tr><td>\u6839\u64da\u6b64\u5206\u7fa4\u5c0d\u7b2c\u4e00\u968e\u6bb5\u6240\u5efa\u7acb\u7684\u8072\u5b78\u6a21\u578b\u9032\u884c\u5408\u4f75\uff0c\u6700\u5f8c\u5373\u53ef\u5f97\u5230\u4fee\u6b63\u904e\u4e4b\u8072\u5b78\u6a21\u578b\u3002</td></tr></table>",
                "text": "The International Phonetic Alphabet, IPA)\u3001\u5b57\u6bcd\u97f3\u6a19\u8a55\u4f30\u6cd5(Speech Assessment Methods Phonetic Alphabet, SAMPA)\u3001Worldbet \u7b49\u3002\u7b2c\u4e09\u7a2e\u662f\u8a08\u7b97\u4e0d\u540c\u97f3\u6a19\u4e4b\u9593\u7684\u76f8\u4f3c\u6027\uff0c\u4e26\u7531 \u4f30\u7b97\u51fa\u4f86\u7684\u76f8\u4f3c\u6027\u4f86\u5efa\u7acb\u5171\u540c\u7684\u97f3\u6a19\u96c6\u3002 \u672c\u6587\u4e3b\u8981\u6ce8\u91cd\u65bc\u4f7f\u7528\u5c08\u5bb6\u77e5\u8b58\u6240\u5efa\u7acb\u7684\u8de8\u8a9e\u8a00\u97f3\u6a19\u96c6\u5408\u4e4b\u65b9\u6cd5\uff0c\u5728\u6b64\u4e3b\u8981\u662f\u4f7f\u7528 \u570b\u969b\u97f3\u6a19(The International Phonetic Alphabet, IPA)\uff0c\u96d6\u7136 IPA \u63d0\u4f9b\u4e86\u4e00\u500b\u901a\u7528\u7684\u97f3\u6a19\u7b26 Ronen \u7b49\u4eba\u63d0\u51fa MisPronunciation network \u7684\u6982 \uf9a3\u3002\u8003\u616e\u6bcf\u500b\u97f3\u7d20\u5728 native speaker \u8207 non-native speaker \u7684\u767c\u97f3\u60c5\u5f62\uff0c\u5efa\uf9f7\u5c0d\u61c9\u7684 HMM Model\uff0c\u8fa8\u8b58\u7684\u6642\u5019\u767c\u97f3\u7db2\uf937\u540c\u6642\u8003\u616e native speaker \u8207 non-native speaker \u7684\u767c\u97f3\u60c5\u5f62 [4]\u30021999 \uf98e Franco \u7b49\u5247\u662f\u4f7f\u7528\u5169\u500b\u5206\u5225\u7531 native speaker \u8207 non-native speaker \u6240\u8a13\uf996 \u7684\u8072\u5b78\u6a21\u578b\uff0c\u5229\u7528 log-likelihood ratio \u4f86\u8a55\u4f30\u767c\u97f3\u932f\u8aa4\uff0c\u540c\u6642\u4e5f\u8b49\u660e\uf9ba\u9019\u6a23\u7684\u65b9\u6cd5\u6bd4\u5229 \u7528 a posterior score \u7684\u65b9\u5f0f\u8207\u5c08\u5bb6\u6240\u7d66\u4e88\u7684\u5206\u6578\u6709\uf901\u9ad8\u7684\u76f8\u95dc\u6027[5]\u3002\u5728\u6a21\u578b\u65b9\u9762\uff0c\u5247\u662f \u9ebb\u7701\u7406\u5de5\u5b78\u9662\u7684",
                "type_str": "table"
            },
            "TABREF1": {
                "html": null,
                "num": null,
                "content": "<table><tr><td>(\u4e8c)\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u6a21\u578b(Latent Dirichlet Allocation Model)</td></tr><tr><td>1. \u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48(Latent Dirichlet Allocation)</td></tr><tr><td>\u6f5b \u85cf \u72c4\u5f0f\u5206\u4f48(Latent Dirichlet Allocation, LDA) \u662f \u7531 \u6a5f \u7387 \u5f0f \u6f5b \u85cf \u8a9e \u610f \u5206 \u6790</td></tr><tr><td>(Probabilistic Latent Semantic Analysis, PLSA)\u5ef6\u4f38\u767c\u5c55\u800c\u4f86\uff0c\u800c\u6a5f\u7387\u5f0f\u6f5b\u85cf\u8a9e\u610f\u5206\u6790\u53c8</td></tr><tr><td>\u662f\u7531\u6f5b\u85cf\u8a9e\u610f\u5206\u6790(Latent Semantic Analysis, LSA)\u767c\u5c55\u800c\u4f86\u3002\u4e0a\u8ff0\u4e09\u500b\u6a21\u578b\u90fd\u662f\u5c6c\u65bc\u6f5b</td></tr><tr><td>\u85cf\u4e3b\u984c\u6a21\u578b(Latent Topic Model)\uff0c\u7531\u65bc N \u9023\u6a21\u578b\u6240\u9762\u81e8\u7684\u7f3a\u4e4f\u9577\u8ddd\u96e2\u8cc7\u8a0a\u548c\u8cc7\u6599\u7a00\u758f\u554f</td></tr><tr><td>\u984c\uff0c\u800c\u6f5b\u85cf\u4e3b\u984c\u6a21\u578b\u5247\u662f\u89e3\u6c7a\u554f\u984c\u591a\u7a2e\u65b9\u6cd5\u7684\u5176\u4e2d\u4e4b\u4e00\u3002\u5176\u6982\u5ff5\u70ba\u4f7f\u7528\u975e\u76e3\u7763\u5f0f\u5b78\u7fd2\u65b9</td></tr><tr><td>\u6cd5(Unsupervised Training)\u4f86\u627e\u51fa\u96b1\u542b\u65bc\u6587\u4ef6\u6216\u6587\u7ae0\u4e2d\u7684\u6700\u4e3b\u8981\u7684\u4e3b\u984c\u8a9e\u610f\u8cc7\u8a0a\u3002</td></tr><tr><td>\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u4e0d\u540c\u65bc\u6a5f\u7387\u5f0f\u6f5b\u85cf\u8a9e\u610f\u5206\u6790\u7684\u5730\u65b9\u5728\u65bc\u5f9e\u6587\u4ef6\u5230\u4e3b\u984c\u4e4b\u9593\u591a\u4e86\u4e00\u5c64</td></tr><tr><td>\u7684\u72c4\u5f0f\u5206\u5e03(Dirichlet Distribution)\uff0c\u4f7f\u5f97\u6a21\u578b\u53c3\u6578\u6578\u91cf\u4e0d\u6703\u56e0\u70ba\u8a9e\u6599\u589e\u52a0\u800c\u5927\u5e45\u5ea6\u7684\u589e</td></tr><tr><td>\u52a0\uff0c\u540c\u6642\u5c0d\u65bc\u51fa\u73fe\u5728\u8a9e\u6599\u5eab\u5916\u7684\u6587\u4ef6\u4e5f\u53ef\u4ee5\u5f9e\u72c4\u5f0f\u5206\u4f48\u4e2d\u53d6\u51fa\u4e00\u500b\u6700\u9069\u5408\u6b64\u6587\u4ef6\u7684\u6f5b\u85cf</td></tr><tr><td>\u4e3b\u984c\u6a5f\u7387\u5206\u4f48\u3002\u7531\u65bc\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u662f\u85c9\u7531\u9006\u5411\u901a\u904e\u6587\u4ef6\u5efa\u7acb\u751f\u6210\u6a21\u578b\uff0c\u56e0\u6b64\u8981\u5148\u7406\u89e3\u6f5b</td></tr><tr><td>\u85cf\u72c4\u5f0f\u5206\u4f48\u662f\u5982\u4f55\u7522\u751f\u4e00\u7bc7\u6587\u7ae0\u7684\u3002</td></tr><tr><td>\u5047\u8a2d\u8a9e\u6599\u5eab M 2.\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u5075\u6e2c\u5668</td></tr><tr><td>\u96d6\u7136\u5075\u6e2c\u5f0f\u65b9\u6cd5(Detection Based)\u5728\u591a\u8a9e\u74b0\u5883\u4e0b\u5c0d\u65bc\u4e0d\u540c\u8a9e\u8a00\u540c\u97f3\u6a19\u4e4b\u767c\u97f3\u4ecd\u7136\u5177</td></tr><tr><td>\u6709\u9ad8\u5f37\u5065\u6027\u4e0d\u81f3\u65bc\u6df7\u6dc6\uff0c\u4f46\u662f\u5f80\u5f80\u4e0d\u540c\u8a9e\u8a00\u7684\u8a9e\u8005\u5c0d\u65bc\u76f8\u540c\u97f3\u6a19\u4e4b\u767c\u97f3\u8b8a\u7570\u4ecd\u7136\u6703\u4f7f\u5f97</td></tr><tr><td>\u767c\u97f3\u4e8b\u4ef6\u7522\u751f\u6df7\u6dc6\uff0c\u6709\u9452\u65bc\u6b64\u73fe\u8c61\u96e3\u4ee5\u4f7f\u7528\u77ed\u8ddd\u96e2\u7684\u8a0a\u865f\u4f86\u89e3\u6c7a\uff0c\u56e0\u6b64\u6211\u5011\u4f7f\u7528\u9577\u8ddd\u96e2</td></tr><tr><td>\u8a5e\u5f59\u8a9e\u610f\u8cc7\u8a0a\u4f86\u5354\u52a9\u5075\u6e2c\u51fa\u6df7\u6dc6\u7684\u554f\u984c\u3002\u4e26\u5c07\u6703\u767c\u8072\u6df7\u6dc6\u7684\u8072\u5b78\u6a21\u578b\u4ee5\u53ca\u6027\u8cea\u76f8\u540c\u7684\u8072</td></tr><tr><td>\u5b78\u6a21\u578b\u9032\u884c\u5408\u4f75\u3002\u4e0d\u540c\u65bc\u4e09\u9023\u97f3\u7d20\u6a21\u578b(Tri-Phone)\u7684\u72c0\u614b\u805a\u985e(State-Tying)\u6839\u64da\u77ed\u8ddd\u96e2\u7684 2003 \u5e74\u6240 \u8cc7\u6599\u76f8\u4f3c\u5ea6\u5408\u4f75\uff0c\u6211\u5011\u85c9\u7531\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u64f7\u53d6\u9577\u8ddd\u96e2\u8a5e\u5f59\u8a9e\u610f\u8cc7\u8a0a\uff0c\u4f8b\u5982\u89f8\u767c\u8a5e\u5c0d\uff0c\u4ee5</td></tr><tr><td>\u63d0\u51fa\u7684\uff0c\u6700\u521d\u662f\u7528\u65bc\u6587\u7ae0\u548c\u6587\u672c\u7684\u4e3b\u984c\u5075\u6e2c\u3002\u72c4\u5f0f\u5206\u4f48\u6a21\u578b\u6709\u4e00\u500b\u5148\u6c7a\u689d\u4ef6\uff1a\u8a5e\u888b\u5047\u8a2d \u53ca\u4f7f\u7528\u4e86\u767c\u97f3\u8a9e\u8a00\u5b78\u7684\u5b9a\u7fa9\u5c0d\u5206\u88c2\u7684\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u9032\u884c\u8072\u5b78\u6a21\u578b\u7684\u5408\u4f75\u3002</td></tr><tr><td>(Bag of Words Assumption)\uff0c\u4e5f\u5c31\u662f\u4e0d\u8003\u616e\u8a5e\u5f59(Word)\u5728\u6587\u7ae0\u4e2d\u7684\u51fa\u73fe\u9806\u5e8f\u548c\u6587\u6cd5\u95dc\u4fc2\uff0c</td></tr><tr><td>\u53ea\u8003\u616e\u55ae\u4e00\u8a5e\u5f59\u5728\u7279\u5b9a\u6587\u7ae0\u4e2d\u4e4b\u51fa\u73fe\u6b21\u6578\u3002\u5176\u6240\u4f7f\u7528\u4e4b\u539f\u7406\u70ba\u67d0\u4e9b\u8a5e\u5f59\u5728\u7279\u5b9a\u4e3b\u984c\u4e0b\u51fa \u7531\u65bc\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u5177\u6709\u8a5e\u888b\u5047\u8a2d\u7684\u524d\u63d0\u4e0b\uff0c\u5176\u6240\u89c0\u5bdf\u5230\u7684\u8cc7\u6599\u9577\u5ea6\u8db3\u5920\u5305\u542b\u9577\u8ddd\u96e2\u7684\u8a5e</td></tr><tr><td>\u73fe\u4e4b\u6a5f\u7387\u548c\u6b21\u6578\u8f03\u9ad8\uff0c\u56e0\u6b64\u72c4\u5f0f\u5206\u4f48\u7684\u6a21\u578b\u5efa\u7acb\u65b9\u5f0f\u70ba\u7d71\u8a08\u5404\u500b\u8a5e\u5f59(Word)\u5728\u6587\u672c\u4e2d\u51fa \u5f59\u8a9e\u610f\u8cc7\u8a0a\u3002\u56e0\u70ba\u8a9e\u97f3\u4e8b\u4ef6\u548c\u8a9e\u97f3\u5c6c\u6027\u7684\u76f8\u4e92\u95dc\u4fc2\u4e5f\u662f\u5c6c\u65bc\u968e\u5c64\u5316\u67b6\u69cb\uff0c\u56e0\u6b64\u6839\u64da\u5176\u8072</td></tr><tr><td>\u73fe\u7684\u6b21\u6578\u4f86\u8a08\u7b97\u3002\u7531\u65bc\u6b64\u65b9\u6cd5\u5728\u6587\u672c\u548c\u6587\u7ae0\u5206\u985e\u53ef\u4ee5\u53d6\u5f97\u76f8\u7576\u597d\u7684\u6210\u6548\uff0c\u56e0\u6b64\u88ab\u5ee3\u6cdb\u7684 \u5b78\u6a21\u578b\u7684\u76f8\u4e92\u95dc\u4fc2\u5c0d\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u4e4b\u67b6\u69cb\u91cd\u65b0\u5efa\u69cb\u5f8c\u4e4b\u5716\u578b\u8868\u793a\u6cd5\u5982\u5716\u4e8c \uff0c\u5716\u5f62\u4e2d\u53c3</td></tr><tr><td>\u4f7f\u7528\u65bc\u4e3b\u984c\u5075\u6e2c\u548c\u4e3b\u984c\u5206\u985e\u7684\u61c9\u7528\u4e0a\u3002 \u6578\u6240\u4ee3\u8868\u4e4b\u610f\u7fa9\u5982\u8868\u4e00\u3002</td></tr><tr><td>\u5728\u591a\u8a9e\u74b0\u5883\u4e0b\uff0c\u56e0\u70ba\u4e0d\u540c\u8a9e\u8a00\u7684\u8a9e\u8005\u9593\u4e4b\u767c\u97f3\u8b8a\u5316\u5e45\u5ea6\u6703\u76f8\u7576\u7684\u5927\uff0c\u4e5f\u56e0\u6b64\u82e5\u662f\u6839 \u5728\u9019\u88e1\u5c07\u6bcf\u4e00\u6bb5\u8a9e\u53e5(Utterance)\u8996\u70ba\u4e00\u500b\u6587\u4ef6(Document)\uff0c\u56e0\u6b64\u6839\u64da\u6f5b\u85cf\u5f0f\u72c4\u5f0f\u5206</td></tr><tr><td>\u64da\u4ee5\u5f80\u7684\u8072\u5b78\u6a21\u578b\u53ea\u4f7f\u7528\u77ed\u671f\u5167(Short-term)\u7684\u8cc7\u6599\u4f86\u8fa8\u8b58\u6240\u80fd\u63d0\u5347\u7684\u6548\u80fd\u5e45\u5ea6\u6709\u9650\uff0c\u800c \u4f48\u5b9a\u7fa9\u5247\u53ef\u4ee5\u5f97\u5230\u7279\u5b9a\u767c\u97f3\u4e8b\u4ef6\u8207\u8a9e\u610f\u4e0a\u7684\u76f8\u5c0d\u95dc\u4fc2\u3002\u800c\u806f\u5408\u6a5f\u7387\u5206\u4f48\u70ba</td></tr><tr><td>\u4e14\u5728\u767c\u97f3\u8b8a\u7570\u7522\u751f\u7684\u72c0\u6cc1\u4e0b\u4e5f\u96e3\u4ee5\u53ea\u4f7f\u7528\u8a0a\u865f\u4e0a\u77ed\u671f\u7684\u8cc7\u6599\u4f86\u52a0\u4ee5\u8b58\u5225\u3002\u4f46\u8a9e\u97f3\u8a0a\u865f\u7684 p(M|\u03b1 M , \u03b1 P</td></tr><tr><td>\u6642\u8b8a\u6027\u76f8\u7576\u7684\u5927\uff0c\u56e0\u6b64\u5728\u8a0a\u865f\u9762\u4e00\u6b21\u4f7f\u7528\u8f03\u9577\u8cc7\u6599\u7684\u65b9\u6cd5\u96e3\u5ea6\u4e5f\u9ad8\u3002\u6240\u4ee5\u672c\u6587\u6839\u64da\u8a9e\u6599</td></tr><tr><td>\u6a19\u8a18\u4f7f\u7528\u72c4\u5f0f\u5206\u4f48\u5c07\u6574\u53e5\u7684\u8cc7\u8a0a\u4e5f\u4e00\u4f75\u8003\u616e\u4ee5\u63d0\u5347\u5c0d\u767c\u97f3\u8b8a\u7570\u4e4b\u5f37\u5065\u6027\u3002</td></tr></table>",
                "text": "\u4e2d\u6709 K \u500b\u4e3b\u984c\uff0cT1,T2,T3,\u2026.Tk\uff0c\u4e26\u4e14\u6709 V \u500b\u5b57\u5f59\uff0c\u7576\u96a8\u6a5f\u9078\u53d6\u4e00\u500b \u4e3b\u984c Ti \u7684\u6642\u5019\uff0c\u4ee5 Ti \u70ba\u4e3b\u984c\u7684\u6587\u7ae0\u5247\u6709\u4e00\u7684\u5e8f\u5217\u6587\u5b57\uff0c\u800c\u9019\u4e9b\u6587\u5b57\u8207 Ti \u6709\u95dc\u9023\uff0c\u4e26\u4e14 \u6709\u4e00\u500b\u6a5f\u7387\u503c\u4ee3\u8868\u5728\u4e3b\u984c Ti \u4e0b\u6642\u6bcf\u500b\u6587\u5b57\u6240\u51fa\u73fe\u4e4b\u6a5f\u7387\u3002\u800c\u9078\u64c7\u5176\u4ed6\u4e3b\u984c\u6642\u5f8c\u4e5f\u6703\u6709 \u76f8\u540c\u7684\u53c3\u6578\u4f86\u63cf\u8ff0\u8a72\u4e3b\u984c\u3002\u6b64\u6642\u9650\u5b9a\u6587\u6a94\u9577\u5ea6\u70ba N\uff0c\u4e0d\u505c\u7684\u6311\u9078\u6587\u5b57\u76f4\u5230\u6578\u91cf\u5230 N \u5f8c\uff0c \u4fbf\u53ef\u4ee5\u85c9\u7531\u5c0d\u61c9\u7684\u53c3\u6578\u5f97\u5230\u8a72\u5efa\u7acb\u6587\u4ef6\u5c0d\u65bc\u5404\u4e3b\u984c\u7684\u76f8\u95dc\u6027\u3002",
                "type_str": "table"
            },
            "TABREF2": {
                "html": null,
                "num": null,
                "content": "<table><tr><td>\u5206\u5e03 \u67d0\u6bb5\u8a9e\u53e5\u7684\u767c\u97f3\u65b9\u6cd5\u767c\u751f\u4e4b\u6a5f\u7387 \u6240\u6709\u8a9e\u8a00\u4e0b\u4e4b\u8072\u5b78\u6a21\u578b\u6a5f\u7387 \u67d0\u6bb5\u8a9e\u53e5\u7684\u767c\u97f3\u90e8\u4f4d\u767c\u751f\u4e4b\u6a5f\u7387 \u8072\u5b78\u6a21\u578b(phone model) \u8a9e\u6599\u5eab \u67d0\u6bb5\u8a9e\u53e5\u7684\u8072\u5b78\u6a21\u578b\u96c6\u5408 \u8a9e\u8a00 \u767c\u97f3\u90e8\u4f4d(Place) \u767c\u97f3\u65b9\u6cd5(Manner) \u6839\u64da\u5f0f 4.1 \u8981\u8a08\u7b97\u7684\u53c3\u6578\u70ba \u03b1M, \u03b1P ,\u03b2\uff0c\u4f46\u7531\u65bc\u7528\u4f86\u4f30\u7b97\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u53c3\u6578\u7684\u6700\u5927\u671f\u671b\u6f14 \u03b2 \u03b8M \u03b8P W M N L ZP ZM \u7b97\u6cd5(Expectation-maximization algorithm, EM algorithm)\u4e00\u6b21\u53ea\u80fd\u4f30\u6e2c\u5169\u500b\u53c3\u6578\uff0c\u800c\u6839\u64da \u767c\u97f3\u8a9e\u8a00\u5b78\u4e4b\u5b9a\u7fa9\u767c\u97f3\u65b9\u6cd5\u548c\u767c\u97f3\u90e8\u4f4d\u5169\u4e8b\u4ef6\u70ba\u4e92\u76f8\u7368\u7acb(independent)\uff0c\u56e0\u6b64\u6211\u5011\u53ef\u4ee5 \u5c07\u5176\u62c6\u6210 \u03b1M\u3001\u03b2 \u548c \u03b1P \u3001\u03b2 \u5169\u500b\u90e8\u5206\u5206\u958b\u4f30\u6e2c\u3002 \u800c\u62c6\u958b\u5f8c\u5206\u5225\u7684\u806f\u5408\u6a5f\u7387\u5247\u5206\u5225\u70ba\u70ba\u5f0f 4.2 \u8207\u5f0f 4.3 \u6240\u793a p(M|\u03b1 M , \u03b2) = \u222b p(\u03b8 M |\u03b1 M ) {\u220f p(Z M |\u03b8 M )p(w|Z M , L, \u03b2) N n=1 } d\u03b8 M (\u5f0f 4.2) p(M|\u03b1 P , \u03b2) = \u222b p(\u03b8 P |\u03b1 P ) {\u220f p(Z P |\u03b8 P )p(w|Z P , L, \u03b2) N n=1 } d\u03b8 P (\u5f0f 4.3) \u4e4b\u5f8c\u6211\u5011\u53ef\u4ee5\u7531 \u03b2 \u5f97\u5230\u6bcf\u500b\u4e3b\u984c\u4e0b\u6240\u6709\u97f3\u7d20\u7684\u51fa\u73fe\u6a5f\u7387\uff0c\u800c\u9032\u800c\u5f97\u5230\u5206\u985e\u904e\u5f8c\u7684\u97f3\u7d20\u96c6 \u5408\u3002\u5728\u539f\u59cb\u7684\u72c4\u5f0f\u5206\u4f48\u4e2d\u6703\u767c\u751f\u82e5\u55ae\u4e00\u6587\u4ef6\u904e\u77ed\u6703\u56e0\u70ba\u6709\u6548\u8cc7\u8a0a\u904e\u5c11\u800c\u4f7f\u5f97\u6a21\u578b\u8a13\u7df4\u904e \u7a0b\u7121\u6cd5\u6536\u6582\u6216\u8005\u662f\u5f71\u97ff\u5230\u7d50\u679c\u3002\u4f46\u5728\u6211\u5011\u7684\u7814\u7a76\u4e2d\uff0c\u8a9e\u53e5\u4e2d\u7684\u6bcf\u4e00\u500b\u97f3\u7d20\u5c0d\u61c9\u5230\u6f5b\u85cf\u72c4 \u5f0f\u5206\u4f48\u90fd\u53ef\u4ee5\u8996\u70ba\u5177\u6709\u8cc7\u8a0a\u7684\u55ae\u8a5e\uff0c\u56e0\u6b64\u5373\u4f7f\u53ea\u6709 2-4 \u500b\u5b57\u8a5e\u7684\u77ed\u53e5\u7684\u8a9e\u53e5\u4e5f\u5177\u6709\u8db3\u5920 \u7684\u8cc7\u8a0a\u4f86\u52a0\u4ee5\u5224\u5b9a\u5176\u7d44\u6210\u3002 (\u4e09)\u8a9e\u97f3\u4e8b\u4ef6\u964d\u7dad\u8207\u5408\u4f75\u8072\u5b78\u6a21\u578b\u4e4b\u9078\u64c7 1.\u8a9e\u97f3\u4e8b\u4ef6\u964d\u7dad \u5728\u672c\u6587\u4e2d\u5c07\u4e00\u6bb5\u8a9e\u53e5\u8996\u70ba\u4e00\u500b\u6587\u4ef6\uff0c\u56e0\u6b64\u6839\u64da\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u4e4b\u7269\u7406\u610f\u7fa9\uff1a\u82e5\u67d0\u500b \u5b57\u8a5e(Word)\u5f9e\u5c6c\u65bc\u67d0\u500b\u4e3b\u984c\uff0c\u5247\u7576\u67d0\u6587\u4ef6\u5c6c\u65bc\u67d0\u500b\u7279\u5b9a\u4e3b\u984c\u7684\u6642\u5019\uff0c\u5247\u5f9e\u5c6c\u65bc\u67d0\u500b\u4e3b\u984c \u7684\u5b57\u8a5e\u51fa\u73fe\u6b21\u6578\u6703\u8f03\u9ad8\u3002\u5c07\u4e3b\u984c\u5c0d\u61c9\u5230\u7684\u5247\u662f\u5b57\u8a5e(Word)\u3002\u56e0\u70ba\u5728\u7279\u5b9a\u7684\u8a9e\u8a00\u4e0b\uff0c\u82e5\u4ee5 \u5b57\u8a5e\u70ba\u55ae\u4f4d\uff0c\u6709\u4e9b\u97f3\u7d20\u7d93\u5e38\u6027\u7684\u6703\u51fa\u73fe\u5728\u4e00\u8d77\uff0c\u56e0\u6b64\u672c\u6587\u5c07\u539f\u72c4\u5f0f\u5206\u4f48\u4e4b\u4e3b\u984c\u6578\u8a2d\u5b9a\u70ba \u5b57\u8a5e\u6578\u91cf\u3002 \u4f46\u7531\u65bc\u5b57\u8a5e\u6578\u91cf\u904e\u591a\uff0c\u800c\u4e14\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u4e4b\u904b\u7b97\u6642\u9593\u8207\u4e3b\u984c\u6578 N \u6210\u6b63\u6bd4\uff0c\u82e5\u5c07\u6240 \u6709\u53ef\u80fd\u51fa\u73fe\u7684\u5b57\u8a5e\u6578\u91cf\u8a2d\u5b9a\u70ba\u4e3b\u984c\u6578\uff0c\u5176\u4e3b\u984c\u6578\u904e\u591a\u4e0d\u50c5\u5728\u904b\u7b97\u6642\u9593\u4e0a\u4e0d\u5141\u8a31\uff0c\u4e5f\u56e0\u70ba \u76ee\u6a19\u4e4b\u96c6\u5408\u904e\u5927\uff0c\u8a9e\u6599\u6703\u9762\u81e8\u56b4\u91cd\u4e0d\u8db3\u4e4b\u60c5\u6cc1\uff0c\u56e0\u6b64\u5be6\u969b\u4e0a\u4e26\u4e0d\u53ef\u884c\u3002\u56e0\u6b64\u70ba\u4e86\u89e3\u6c7a\u6b64 \u554f\u984c\uff0c\u6211\u5011\u5c07\u5b57\u7684\u7d44\u6210\u97f3\u7d20\u6839\u64da\u570b\u969b\u97f3\u6a19\u96c6\u5408\u4e4b\u5b9a\u7fa9\uff0c\u5c07\u6bcf\u500b\u97f3\u7d20\u62c6\u89e3\u6210\u767c\u97f3\u65b9\u6cd5 (Manner)\u8207\u767c\u97f3\u4f4d\u7f6e(Place)\uff0c\u800c\u767c\u97f3\u65b9\u6cd5\u548c\u767c\u97f3\u4f4d\u7f6e\u5728\u9019\u88e1\u5373\u662f\u8a9e\u97f3\u4e8b\u4ef6\u3002 2.\u5408\u4f75\u8072\u5b78\u6a21\u578b\u4e4b\u9078\u64c7 \u672c\u6587\u6839\u64da\u570b\u969b\u97f3\u6a19\u96c6\u5408\u5b9a\u7fa9\u5c07\u767c\u97f3\u90e8\u4f4d(Place)\u5206\u70ba 13 \u985e\uff0c\u800c\u767c\u97f3\u65b9\u6cd5(Manner)\u5b9a \u70ba 6 \u985e\uff0c\u800c\u6bcd\u97f3\u5247\u7531\u820c\u9762\u524d\u5f8c\u5171 5 \u985e\u3001\u820c\u9762\u9ad8\u4f4e\u5171 7 \u985e\u3001\u5507\u5f62\u5171 2 \u985e\u3002\u820c\u9762\u524d\u5f8c\u70ba\u524d (Front)\u3001\u6b21\u524d(Near-front)\u3001\u592e (Central)\u3001\u6b21\u5f8c(Near-back)\u3001\u5f8c (Back)\u3002\u820c\u9762\u9ad8\u4f4e\u70ba\u9589(Close)\u3001 \u6b21\u9589(Near-close) \u3001\u534a\u9589(Close-mid) \u3001\u4e2d (Mid) \u3001\u534a\u958b(Open-mid) \u3001\u6b21\u958b(Near-open) \u3001\u958b (Open) \u3002 \u8123\u5f62\u70ba\u5713\u5507(Rounded)\u8207\u975e\u5713\u5507(Unrounded)\u3002 \u6211\u5011\u6703\u5148\u5c07\u767c\u97f3\u65b9\u6cd5\u548c\u767c\u97f3\u90e8\u4f4d\u4f7f\u7528\u4e0d\u540c\u7684\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u5075\u6e2c\u5668\u5206\u5225\u5075\u6e2c\u4e26\u5206\u7fa4\uff0c \u6700\u5f8c\u518d\u5c07\u767c\u97f3\u90e8\u4f4d\u76f8\u540c\u4f46\u767c\u97f3\u65b9\u6cd5\u4e0d\u540c\u4ee5\u53ca\u767c\u97f3\u90e8\u4f4d\u4e0d\u540c\u4f46\u767c\u97f3\u65b9\u6cd5\u76f8\u540c\u7684\u97f3\u7d20\u8996\u70ba \u4e0d\u540c\u5206\u7fa4\uff0c\u63db\u53e5\u8a71\u8aaa\u5247\u662f\u53ea\u7559\u4e0b\u767c\u97f3\u90e8\u4f4d\u8207\u767c\u97f3\u65b9\u6cd5\u7686\u5206\u985e\u518d\u4e00\u8d77\u7684\u97f3\u7d20\u9032\u884c\u5408\u4f75\u3002 \u4e94\u3001\u5be6\u9a57\u8a2d\u8a08\u8207\u5206\u6790 (\u4e00) \u5be6\u9a57\u8a9e\u6599\u8207\u5de5\u5177 \u53f0\u8a9e\u5be6\u9a57\u8a9e\u6599\u4f7f\u7528\u826f\u654f\u96c4\u535a\u58eb\u6240\u9304\u88fd\u4e4b\u8a9e\u6599\uff0c\u8a9e\u6599\u70ba 16kHz, 16bit \u4e4b\u9ea5\u514b\u98a8\u8a9e\u6599\u5171 \u6bcf\u6b21\u4f4d\u79fb\u55ae\u4f4d(Shift)\u70ba 10ms\u3002\u96b1\u85cf\u5f0f\u99ac\u53ef\u592b\u6a21\u578b\u6bcf\u500b\u72c0\u614b(State)\u7559\u4e0b 16 \u500b\u8def\u5f91\uff0c\u6700\u5f8c \u518d\u53d6\u524d 10 \u540d\u3002\u6240\u6709\u8a9e\u6599\u7686\u7121\u6642\u9593\u6a19\u8a18\uff0c\u6642\u9593\u65b7\u9ede\u4f7f\u7528 Baum-Welch algorithms \u8a08\u7b97\u3002 (\u4e8c)\u5be6\u9a57\u9805\u76ee 1.\u8a55\u4f30\u65b9\u5f0f \u8981\u5206\u6790\u8a9e\u97f3\u8fa8\u8b58\u7684\u6b63\u78ba\u7387\u5fc5\u9808\u6e96\u78ba\u7684\u8fa8\u8b58\u51fa\u6b63\u78ba\u7684\u5b57\u8a5e\u3002\u8fa8\u8b58\u7d50\u679c\u8207\u8a9e\u6599\u6a19\u8a18\u4e92 \u76f8\u6bd4\u8f03\u5f8c\uff0c\u7d50\u679c\u8207\u6a19\u8a18\u5b8c\u5168\u76f8\u7b26\u70ba\u8fa8\u8b58\u6b63\u78ba(Correct)\uff0c\u8207\u6a19\u8a18\u4e0d\u540c\u7684\u932f\u8aa4\u5247\u6839\u64da\u5b9a\u7fa9\u5206 \u985e\u6210\u4e0b\u5217\u5e7e\u7a2e\u932f\u8aa4\uff1a \u5176\u4e2d N \u70ba\u8a9e\u6599\u6a19\u8a18\u5167\u6240\u6709\u7684\u97f3\u7d20\u7e3d\u6578\uff0cS \u70ba\u53d6\u4ee3\u932f\u8aa4\u6578\u91cf\uff0cD \u70ba\u522a\u9664\u932f\u8aa4\u6578\u91cf\uff0cI \u70ba\u63d2 \u5165\u932f\u8aa4\u6578\u91cf\uff0cC \u70ba\u8fa8\u8b58\u6b63\u78ba\u5b57\u8a5e\u6578\u91cf\uff0cC=N-D-S\u3002 2.\u591a\u8a9e\u74b0\u5883\u4e0b\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u5408\u4f75\u8072\u5b78\u6a21\u578b\u9078\u64c7\u4e4b\u9a57\u8b49 \u70ba\u4e86\u9a57\u8b49\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u5408\u4f75\u8072\u5b78\u6a21\u578b\u5728\u591a\u8a9e\u74b0\u5883\u4e0b\u4e4b\u6548\u80fd\uff0c\u56e0\u6b64\u6211\u5011\u540c\u6a23\u5206\u5225\u5c0d\u672a \u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u3001\u5df2\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u548c\u7531\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u5408\u4f75\u8072\u5b78\u6a21\u578b\u5728\u570b\u53f0\u82f1\u4e09\u8a9e \u74b0\u5883\u4e0b\u9032\u884c\u9a57\u8b49\u3002\u6211\u5011\u5c07\u6703\u5206\u5225\u4f7f\u7528\u5df2\u591a\u8a9e\u8072\u5b78\u6a21\u578b\u8fa8\u8b58\u4e09\u8a9e\u6df7\u5408\u3001\u570b\u8a9e\u3001\u53f0\u8a9e\u548c\u82f1\u8a9e \u5be6\u9a57\u8cc7\u6599\u3002\u4ee5\u9a57\u8b49\u5728\u6c92\u6709\u8a9e\u8a00\u8fa8\u8b58\u7cfb\u7d71\u4e0b\u591a\u8a9e\u8072\u5b78\u6a21\u578b\u5c0d\u65bc\u6bcf\u4e00\u7a2e\u8a9e\u8a00\u4e4b\u6548\u80fd\u3002 \u5be6\u9a57\u74b0\u5883\u548c\u5de5\u5177\u8207\u55ae\u4e00\u8a9e\u8a00\u9032\u884c\u4e4b\u5be6\u9a57\u76f8\u540c\uff0c\u8a13\u7df4\u8a9e\u6599\u548c\u4e09\u8a9e\u6df7\u5408\u4e4b\u6e2c\u8a66\u8cc7\u6599\u70ba\u5c07 TCC300\u3001TIMIT \u548c\u6881\u654f\u96c4\u535a\u58eb\u6240\u9304\u88fd\u4e4b\u53f0\u8a9e\u8a9e\u6599\u6df7\u5408\u4f7f\u7528\uff0c\u5176\u5be6\u55ae\u8a9e\u6e2c\u8a66\u8cc7\u6599\u5247\u548c\u4e0a \u8ff0\u8a55\u4f30\u65b9\u5f0f\u6240\u9032\u884c\u7684\u5be6\u9a57\u4f7f\u7528\u76f8\u540c\u7684\u6e2c\u8a66\u8a9e\u6599\u3002\u8a9e\u6599\u5167\u55ae\u4e00\u8a9e\u53e5\u53ea\u6709\u4e00\u7a2e\u8a9e\u8a00\uff0c\u4e5f\u5c31\u662f \u4e0d\u505a\u55ae\u4e00\u8a9e\u53e5\u591a\u7a2e\u8a9e\u8a00\u6df7\u5408\u4e4b\u5be6\u9a57\u3002\u6240\u6709\u8a9e\u8a00\u7684\u97f3\u7d20\u7686\u4ee5 IPA \u4f86\u8868\u793a\u3002 (1)\u570b\u53f0\u82f1\u4e09\u8a9e\u6df7\u5408\u5be6\u9a57 \u7d50\u679c\u5982\u5716\u4e09\u6240\u793a\uff0c\u5728\u591a\u8a9e\u74b0\u5883\u4e0b\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u5408\u4f75\u7684\u8072\u5b78\u6a21\u578b\u5728 Top5 \u6642\u5019\u6709 47.86%\u7684\u6700\u9ad8\u6e96\u78ba\u7387\uff0c\u4e14\u6574\u9ad4\u6e96\u78ba\u7387\u7686\u9ad8\u65bc\u5176\u4ed6\u5169\u7a2e\u8072\u5b78\u6a21\u578b\u3002\u5728 Top5 \u6642\u7684\u63d2\u5165\u932f\u8aa4\uff0c \u672c\u6587\u63d0\u51fa\u4e4b\u65b9\u6cd5\u8f03\u5df2\u805a\u5408\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u591a 0.24%\uff0c\u4f46\u53d6\u4ee3\u932f\u8aa4\u548c\u522a\u9664\u932f\u8aa4\u5247\u8f03\u5df2\u805a\u5408\u4e09 \u9023\u97f3\u7d20\u6a21\u578b\u5206\u5225\u5c11\u4e86 1.02%\u548c 0.74%\uff0c\u56e0\u6b64\u6574\u9ad4\u7684\u6e96\u78ba\u7387\u8f03\u5df2\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u591a\u4e86 1.52%\u3002 (2)\u570b\u8a9e\u5be6\u9a57 \u5982\u5716\u56db\u6240\u793a\uff0c\u672a\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u5728\u591a\u8a9e\u74b0\u5883\u4e0b\u8fa8\u8b58\u570b\u8a9e\u6709\u6700\u9ad8\u7684\u6e96\u78ba\u7387\u3002\u800c\u6709\u7d93 \u904e\u6a21\u578b\u5408\u4f75\u7684\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u548c\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u9078\u64c7\u8072\u5b78\u6a21\u578b\u64c7\u662f\u6b63\u78ba\u7387\u5dee\u8ddd\u4e0d\u5927\uff0c\u4f46 \u5169\u8005\u7686\u4f4e\u65bc\u672a\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u3002\u800c\u672a\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u932f\u8aa4\u7387\u6539\u5584\u4e3b\u8981\u96c6\u4e2d\u5728\u53d6\u4ee3\u932f \u8aa4\u3002\u6f5b\u5728\u72c4\u5f0f\u5206\u4f48\u548c\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u7684\u6bd4\u8f03\u5728\u63d2\u5165\u932f\u8aa4\u7565\u9ad8\u800c\u522a\u9664\u932f\u8aa4\u4f4e\u5247\u662f\u8207\u672c\u6587 \u524d\u5217\u55ae\u8a9e\u74b0\u5883\u4e0b\u4e4b\u5be6\u9a57\u76f8\u540c\u3002\u56e0\u6b64\u63a8\u6e2c\u6709\u53ef\u80fd\u662f\u5728\u9032\u884c\u591a\u8a9e\u6a21\u578b\u5408\u4f75\u6642\u5f8c\u570b\u8a9e\u7684\u97f3\u6a19\u5408 \u4f75\u4e0a\u51fa\u73fe\u554f\u984c\u6216\u8005\u662f\u56e0\u70ba\u8a13\u7df4\u8a9e\u6599\u904e\u5c11\u800c\u5c0e\u81f4\u6a21\u578b\u63cf\u8ff0\u4e0d\u5920\u5168\u9762\uff0c\u56e0\u6b64\u5728\u591a\u8a9e\u74b0\u5883\u4e0b\u7522 \u751f\u4e86\u56b4\u91cd\u7684\u6a21\u578b\u6df7\u6dc6\u3002 42.88% 45.06% 46.94% 48.08% 48.99% 38.37% 40.75% 42.42% 43.47% 44.04% 38.95% 40.64% 42.07% 43.23% 44.44% 0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% Top1 Top2 Top3 Top4 Top5 Accuracy Triphone Tied Triphone LDA Tied Triphone \u5716\u4e94\u3001\u591a\u8a9e\u8072\u5b78\u6a21\u578b\u8fa8\u8b58\u53f0\u8a9e\u4e4b\u8fa8\u8b58\u7d50\u679c (4)\u82f1\u8a9e\u5be6\u9a57 \u5716\u516d\u3001\u591a\u8a9e\u8072\u5b78\u6a21\u578b\u8fa8\u8b58\u82f1\u8a9e\u4e4b\u8fa8\u8b58\u7d50\u679c 31.67% 37.21% 41.17% 43.40% 45.21% 48.00% 50.73% 52.81% 53.02% \u516d\u3001\u7d50\u8ad6\u8207\u672a\u4f86\u7814\u7a76\u767c\u5c55\u65b9\u5411 60.00% 51.00% 48.58% 44.56% 50.00% \u7531\u65bc\u76ee\u524d\u7db2\u8def\u8207\u4ea4\u901a\u7684\u767c\u9054\uff0c\u4f7f\u5f97\u5168\u7403\u5316\u6210\u70ba\u5fc5\u7136\u7684\u8da8\u52e2\uff0c\u800c\u591a\u8a9e\u8fa8\u8b58\u5728\u9019\u500b\u793e\u6703 44.23% 38.67% \u4e5f\u6108\u4f86\u6108\u986f\u5f97\u91cd\u8981\u3002\u4f46\u6709\u8a9e\u8a00\u8fa8\u8b58\u7684\u591a\u8a9e\u8fa8\u8b58\u5b58\u5728\u8457\u932f\u8aa4\u758a\u52a0\u7684\u554f\u984c\u3002\u4e0d\u4f7f\u7528\u8a9e\u8a00\u8fa8\u8b58 38.44% 0.00% 10.00% 20.00% 30.00% 40.00% Top1 Top2 Top3 Top4 Top5 \u7684\u591a\u8a9e\u8fa8\u8b58\u65b9\u6cd5\u88ab\u63d0\u51fa\u7528\u4f86\u89e3\u6c7a\u6b64\u554f\u984c\uff0c\u4f46\u4e0d\u4f7f\u7528\u8a9e\u8a00\u8fa8\u8b58\u7684\u65b9\u6cd5\u6709\u4e0d\u540c\u8a9e\u8a00\u9593\u7684\u8072\u5b78 \u6a21\u578b\u9593\u5bb9\u6613\u6df7\u6dc6\u7684\u554f\u984c\u5b58\u5728\uff0c\u800c\u672c\u6587\u63d0\u51fa\u4f7f\u7528\u6f5b\u5728\u72c4\u5f0f\u5206\u4f48\u4f86\u9032\u884c\u8072\u5b78\u6a21\u578b\u5408\u4f75\u4e4b\u9078\u64c7\u3002 Accuracy Triphone Tied Triphone LDA Tied Triphone 0.00% Top1 Top2 Top3 Top4 Top5 Triphone Tied Triphone LDA Tied Triphone \u6240\u6709\u8a9e\u8a00\u97f3\u7d20\u7686\u4ee5 IPA \u8868\u793a\uff0c\u4ee5\u9054\u5230\u53c3\u6578\u5171\u901a\u4e4b\u76ee\u7684\u3002\u4e26\u4e14\u5c07\u97f3\u7d20\u5c0d\u61c9\u5230\u767c\u97f3\u90e8\u4f4d\u548c\u767c \u97f3\u65b9\u6cd5\u4ee5\u6e1b\u5c11\u6578\u91cf\uff0c\u4e26\u4e14\u9054\u5230\u6e1b\u5c11\u904b\u7b97\u91cf\u4e4b\u76ee\u7684\uff0c\u4f7f\u5f97\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u5075\u6e2c\u5668\u5f97\u4ee5\u904b\u7528\u9577 \u8ddd\u96e2\u8a5e\u5f59\u8a9e\u610f\u8cc7\u8a0a\uff0c\u5c07\u5e38\u5e38\u5148\u5f8c\u6210\u5c0d\u51fa\u73fe\u7684\u97f3\u7d20\u9032\u884c\u5408\u4f75\uff0c\u4ee5\u6e1b\u5c11\u8072\u5b78\u6a21\u578b\u7684\u6df7\u6dc6\u3002 \u5be6\u9a57\u7d50\u679c\u986f\u793a\uff0c\u7531\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u6240\u9078\u64c7\u5408\u4f75\u7684\u8072\u5b78\u6a21\u578b\u548c\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u4ee5\u53ca\u672a \u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u76f8\u6bd4\u5728\u55ae\u8a9e\u74b0\u5883\u4e0b\u8fa8\u8b58\u570b\u8a9e\u6700\u9ad8\u6709 10.16%\u7684\u6e96\u78ba\u7387\u6539\u5584\uff0c\u800c\u8fa8\u8b58\u82f1 \u8a9e\u5247\u6709 4.23%\u7684\u6e96\u78ba\u7387\u6539\u5584\u3002\u5728\u591a\u8a9e\u74b0\u5883\u4e0b\u6df7\u5408\u8fa8\u8b58\u570b\u53f0\u82f1\u4e09\u8a9e\u6df7\u5408\u7684\u60c5\u6cc1\u4e0b\u6709 0.24% \u7684\u6e96\u78ba\u5ea6\u6539\u5584\uff0c\u8fa8\u8b58\u82f1\u8a9e\u6709 3.16%\u7684\u6e96\u78ba\u5ea6\u6539\u5584\u3002 \u672c\u6587\u6240\u63d0\u51fa\u4e4b\u65b9\u6cd5\u96d6\u7136\u5728\u591a\u6578\u7684\u60c5\u6cc1\u4e0b\u90fd\u53ef\u4ee5\u7372\u5f97\u6e96\u78ba\u7387\u7684\u6539\u5584\uff0c\u4f46\u662f\u6574\u9ad4\u8fa8\u8b58\u7387 \u4ecd\u7136\u504f\u4f4e\uff0c\u591a\u8a9e\u8fa8\u8b58\u76f8\u8f03\u65bc\u55ae\u8a9e\u8fa8\u8b58\u7684\u8072\u5b78\u6a21\u578b\u6578\u91cf\u6703\u96a8\u8457\u8a9e\u8a00\u6578\u91cf\u6210\u500d\u6578\u6210\u9577\uff0c\u800c\u8072 \u5b78\u6a21\u578b\u6578\u91cf\u6108\u591a\u5247\u9700\u8981\u66f4\u591a\u7684\u8a13\u7df4\u8a9e\u6599\u4f86\u8a13\u7df4\u3002\u56e0\u6b64\u591a\u8a9e\u8fa8\u8b58\u7d93\u5e38\u9762\u81e8\u8a9e\u6599\u4e0d\u8db3\u7684\u554f\u984c\uff0c \u96d6\u7136\u7d93\u904e\u6a21\u578b\u5408\u4f75\u5f8c\u9a0e\u8072\u5b78\u6a21\u578b\u6578\u91cf\u4ecd\u7136\u76f8\u7576\u9f90\u5927\u3002\u672c\u6587\u6240\u63d0\u51fa\u4e4b\u65b9\u6cd5\u6700\u7d42\u5408\u4f75\u5f8c\u7684\u8072 126000 \u53e5\uff0c\u6a19\u8a18\u70ba ForPA\uff0c\u5176\u4e2d\u5171\u6709\u97fb\u6bcd 9 \u96b1\u85cf\u99ac\u53ef\u592b\u8072\u5b78\u6a21\u578b\u8a13\u7df4\u4f7f\u7528 39 \u7dad\u7684\u6885\u723e\u5012\u983b\u8b5c\u7cfb\u6578\uff0c\u97f3\u6846(frame)\u5927\u5c0f\u70ba 20ms\uff0c (1)\u53d6\u4ee3\u932f\u8aa4(Substitution Errors)\uff1a\u5c07\u6b63\u78ba\u7684\u97f3\u7d20\u66ff\u63db\u6210\u5176\u4ed6\u97f3\u7d20\u3002 (2)\u522a\u9664\u932f\u8aa4(Deletion Errors)\uff1a\u6c92\u6709\u5c07\u8a72\u8fa8\u8b58\u7684\u97f3\u7d20\u8fa8\u8b58\u51fa\u4f86\u3002 (3)\u63d2\u5165\u932f\u8aa4(Insertion Errors)\uff1a\u672c\u4f86\u6c92\u6709\u7684\u97f3\u7d20\u537b\u984d\u5916\u8fa8\u8b58\u51fa\u4f86\u3002 \u70ba\u4e86\u8a55\u4f30\u672c\u7cfb\u7d71\u4e4b\u6548\u80fd\uff0c\u6211\u5011\u5c07\u5206\u958b\u5206\u6790\u53d6\u4ee3\u932f\u8aa4\u7387\u3001\u522a\u9664\u932f\u8aa4\u7387\u3001\u63d2\u5165\u932f\u8aa4\u7387\u4ee5\u53ca\u5b57 \u932f\u8aa4\u7387(Word Error Rate, WER)\u548c\u6e96\u78ba\u5ea6(Accuracy)\u3002\u8a08\u7b97\u516c\u5f0f\u5982\u4e0b\u5f0f\uff1a Substitution Errors Rate = (\u5f0f 5.1) Deletion Errors Rate = (\u5f0f 5.2) Insertion Errors Rate = \u56e0\u6b64\u53ef\u4ee5\u9a57\u8b49\u672c\u6587\u6240\u63d0\u51fa\u4e4b\u65b9\u6cd5\u5728\u591a\u8a9e\u74b0\u5883\u4e0b\u4ecd\u7136\u6709\u8f03\u4f73\u7684\u6548\u80fd\u3002 34.88% 38.96% 41.80% 43.43% 44.73% 36.23% 40.33% 43.05% 44.83% 46.34% 37.89% 42.09% 44.89% 60.00% \u5716\u56db\u3001\u591a\u8a9e\u8072\u5b78\u6a21\u578b\u8fa8\u8b58\u570b\u8a9e\u4e4b\u8fa8\u8b58\u7d50\u679c \u5b78\u6a21\u578b\u6578\u91cf\u9060\u5927\u65bc\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\uff0c\u56e0\u6b64\u9700\u8981\u66f4\u591a\u7684\u8a13\u7df4\u8a9e\u6599\u3002\u672a\u4f86\u6211\u5011\u6703\u6301\u7e8c\u7684\u6536 \u672c\u6587\u6240\u63d0\u51fa\u4e4b\u65b9\u6cd5\u5728\u591a\u8a9e\u74b0\u5883\u4e0b\u4ee5\u8fa8\u8b58\u82f1\u8a9e\u6e96\u78ba\u5ea6\u63d0\u5347\u7387\u9060\u9ad8\u65bc\u570b\u8a9e\u548c\u53f0\u8a9e\uff0c\u5982\u5716 \u516d\u6240\u793a\uff0c\u5728 Top5 \u6642\u6e96\u78ba\u5ea6\u8f03\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u9ad8 3.16%\uff0c\u8207\u672a\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u76f8\u6bd4 \u96c6\u5927\u91cf\u7684\u8a9e\u6599\uff0c\u8b93\u8a13\u7df4\u8cc7\u6599\u66f4\u70ba\u5b8c\u5584\uff0c\u4ee5\u6539\u5584\u8a9e\u6599\u4e0d\u8db3\u7684\u554f\u984c\u3002 (3)\u53f0\u8a9e\u5be6\u9a57 47.86% \u5247\u662f\u9ad8 5.98%\u3002\u5982\u8868 5.9 \u6240\u793a\uff0c\u5728 Top5 \u60c5\u6cc1\u4e0b\uff0c\u53d6\u4ee3\u932f\u8aa4\u76f8\u8f03\u65bc\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u6709 \u76ee\u524d\u6240\u63d0\u51fa\u4e4b\u65b9\u6cd5\u53ea\u4f7f\u7528\u9577\u8ddd\u96e2\u8a5e\u5f59\u8a9e\u610f\u8cc7\u8a0a\u4f86\u9032\u884c\u5408\u4f75\uff0c\u56e0\u6b64\u7576\u53e5\u5b50\u9577\u5ea6\u8f03\u77ed\u7684 46.45% 10.00% 20.00% 30.00% 40.00% 50.00% 3.2%\u7684\u6539\u5584\uff0c\u522a\u9664\u932f\u8aa4\u5247\u662f\u6709 0.63%\u7684\u6539\u5584\uff0c\u4f46\u63d2\u5165\u932f\u8aa4\u5247\u662f\u8f03\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u9ad8 \u6642\u5019\u6e96\u78ba\u5ea6\u6703\u6709\u76f8\u7576\u7a0b\u5ea6\u7684\u4e0b\u964d\uff0c\u56e0\u6b64\u672a\u4f86\u82e5\u53ef\u4ee5\u540c\u6642\u8003\u616e\u77ed\u8ddd\u96e2\u7684\u8cc7\u6599\u7279\u6027\uff0c\u4f8b\u5982\u4e09 \u591a\u8a9e\u8072\u5b78\u6a21\u578b\u8fa8\u8b58\u53f0\u8a9e\u7684\u74b0\u5883\u4e0b\uff0c\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u9078\u64c7\u4e4b\u8072\u5b78\u6a21\u578b\u6e96\u78ba\u5ea6\u5728 Top5 \u6642 0.61%\u3002\u56e0\u6b64\u53ef\u4ee5\u770b\u51fa\u672c\u6587\u63d0\u51fa\u4e4b\u65b9\u6cd5\u5728\u591a\u8a9e\u74b0\u5883\u4e0b\u8fa8\u8b58\u82f1\u6587\u53ef\u4ee5\u6e1b\u5c11\u53d6\u4ee3\u932f\u8aa4\u548c\u522a\u9664 \u9023\u97f3\u7d20\u6a21\u578b\u805a\u5408\u6642\u6240\u4f7f\u7528\u7684\u99ac\u5f0f\u8ddd\u96e2\uff0c\u6216\u8a31\u53ef\u4ee5\u540c\u6642\u5728\u77ed\u53e5\u548c\u9577\u53e5\u90fd\u53d6\u5f97\u8f03\u4f73\u7684\u7d50\u679c\u3002 \u7565\u9ad8\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b 0.21%\uff0c\u800c\u9ad8\u672a\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b 7.81%\uff0c\u5982\u5716\u4e94\u6240\u793a\u3002\u5728 Top5 \u932f\u8aa4\uff0c\u800c\u6574\u9ad4\u7684\u6e96\u78ba\u7387\u4e5f\u6709\u6240\u63d0\u5347\u3002 \u6642\u53d6\u4ee3\u932f\u8aa4\u8f03\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u4f4e 0.23%\u3001\u522a\u9664\u932f\u8aa4\u591a 0.02%\u800c\u63d2\u5165\u932f\u8aa4\u5247\u662f\u76f8\u540c\uff0c\u6574 Accuracy \u9ad4\u770b\u4f86\u4ecd\u7565\u512a\u65bc\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u3002\u5728 5.2.2 \u7684\u55ae\u8a9e\u74b0\u5883\u4e0b\u53f0\u8a9e\u8072\u5b78\u6a21\u578b\u5be6\u9a57\u4e4b\u7d50\u679c\u986f \u793a\u6f5b\u85cf\u72c4\u5f0f\u5206\u4f48\u9078\u64c7\u7684\u8072\u5b78\u6a21\u578b\u6e96\u78ba\u7387\u7565\u4f4e\u65bc\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\uff0c\u800c\u5728\u591a\u8a9e\u74b0\u5883\u4e0b\u4e4b\u6e96 \u78ba\u7387\u96d6\u7136\u7565\u6709\u6539\u5584\uff0c\u4f46\u4f9d\u7136\u8207\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u5dee\u8ddd\u4e0d\u5927\u3002\u56e0\u6b64\u6211\u5011\u63a8\u6e2c\u672c\u6587\u6240\u63d0\u51fa\u7684 \u65b9\u6cd5\u53ef\u80fd\u5728\u6211\u5011\u6240\u4f7f\u7528\u7684\u53f0\u8a9e\u8a9e\u6599\u74b0\u5883\u4e0b\u6548\u80fd\u6539\u5584\u6709\u9650\uff0c\u4f46\u5728\u591a\u8a9e\u7684\u60c5\u6cc1\u4e0b\u4ecd\u7136\u53ef\u4ee5\u7565 \u9ad8\u65bc\u805a\u985e\u4e09\u9023\u97f3\u7d20\u6a21\u578b\u3002 31.14% 34.46% 36.19% 37.01% 38.05% 37.15% 39.19% 40.80% 40.15% 43.19% 44.03% 50.00% \u81f4\u8b1d 42.35% 39.79% 36.49% 40.00% \u672c\u7814\u7a76\u627f\u8499\u4e2d\u83ef\u6c11\u570b\u570b\u5bb6\u79d1\u5b78\u59d4\u54e1\u6703\u7d93\u8cbb(99-2221-E-415-006)\u652f\u6301\u65b9\u5f97\u4ee5\u5b8c\u6210\uff0c\u7279 33.59% \u5225\u611f\u8b1d\u3002 (\u5f0f 5.3) Word Error Rate = + + (\u5f0f 5.4) Accuracy = \u2212 (\u5f0f 5.5) \u5716\u4e09\u3001\u4e09\u7a2e\u8072\u5b78\u6a21\u578b\u5728\u570b\u53f0\u82f1\u6df7\u5408\u4e0b\u4e4b\u8fa8\u8b58\u7d50\u679c 0.00% Top1 Top2 Top3 Top4 Top5 Triphone Tied Triphone LDA Tied Triphone 10.00% 20.00% 30.00% Accuracy \u53c3\u8003\u6587\u737b</td></tr></table>",
                "text": "\u7a2e\u3001\u8072\u6bcd 18 \u7a2e\u548c\u9f3b\u97f3\u5c3e\u8072\u6bcd 5 \u7a2e\u3002\u82f1\u6587\u4f7f \u7528\u8a9e\u6599\u70ba\u6210\u5927\u9304\u88fd\u7684\u9ea5\u514b\u98a8\u8a9e\u6599\u5171 808 \u53e5\u3002\u570b\u8a9e\u5be6\u9a57\u8a9e\u6599\u5f9e TCC300 \u4e2d\u9078\u51fa 16kHz, 16bit \u4e4b\u9ea5\u514b\u98a8\u8a9e\u6599\u5171 2676 \u53e5\u3002\u82f1\u6587\u8a9e\u6599\u4f7f\u7528 TIMIT\uff0c\u8a9e\u6599\u70ba 16kHz, 16bit \u652f\u9ea5\u514b\u98a8\u8a9e\u6599\u5171 4620 \u53e5\u3002\u7279\u5fb5\u4f7f\u7528\u6885\u723e\u5012\u983b\u8b5c\u7cfb\u6578(Mel-scale Frequency Cepstral Coefficients, MFCC)\u3001 \u96b1\u85cf\u99ac\u53ef\u592b(HMM)\u8072\u5b78\u6a21\u578b\u8a13\u7df4\u548c\u8072\u5b78\u6a21\u578b\u5408\u4f75\u90e8\u5206\u5247\u662f\u4f7f\u7528\u82f1\u570b\u528d\u6a4b\u5927\u5b78 HTK toolkit \u4f86\u5efa\u7acb\u3002\u6f5b\u85cf\u5f0f\u72c4\u5f0f\u5206\u4f48\u6a21\u578b\u8a13\u7df4\u5247\u662f\u4ee5\u539f\u4f5c\u8005 Blei et al.\u7684 ToolKit \u70ba\u57fa\u790e\u4f86\u9032 \u884c\u4fee\u6539\u3002",
                "type_str": "table"
            }
        }
    }
}