File size: 142,903 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 |
{
"paper_id": "O15-1011",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:09:57.366414Z"
},
"title": "\u878d\u5408\u591a\u7a2e\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def\u8072\u5b78\u6a21\u578b\u8207\u5206\u985e\u6280\u8853\u65bc\u83ef\u8a9e\u932f\u8aa4\u767c\u97f3\u6aa2 \u6e2c\u4e4b\u7814\u7a76 Exploring Combinations of Various Deep Neural Network based Acoustic Models and Classification Techniques for Mandarin Mispronunciation Detection",
"authors": [
{
"first": "Yao-Chi",
"middle": [],
"last": "\u8a31\u66dc\u9e92",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Ming-Han",
"middle": [],
"last": "Hsu",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Hsiao-Tsung",
"middle": [],
"last": "Yang",
"suffix": "",
"affiliation": {},
"email": "mh_yang@ntnu.edu.tw"
},
{
"first": "Yuwen",
"middle": [],
"last": "Hung",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Yao-Ting",
"middle": [],
"last": "Hsiung",
"suffix": "",
"affiliation": {},
"email": "ywhsiung@cycu.edu.tw"
},
{
"first": "Berlin",
"middle": [],
"last": "Sung",
"suffix": "",
"affiliation": {},
"email": "sungtc@ntnu.edu.tw"
},
{
"first": "",
"middle": [],
"last": "Chen",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c(mispronunciation detection)\u70ba\u96fb\u8166\u8f14\u52a9\u767c\u97f3\u8a13\u7df4(computer assisted pronunciation training, CAPT)\u7814\u7a76\u4e2d\u5341\u5206\u91cd\u8981\u7684\u4e00\u500b\u74b0\u7bc0\uff0c\u5176\u76ee\u7684\u662f\u56de\u994b\u7d66\u8a9e\u8a00\u5b78\u7fd2\u8005\u662f\u5426\u5728 \u5176\u8b80\u8aa6\u4e00\u6bb5\u8a71\u4e2d\u7684\u51fa\u73fe\u932f\u8aa4\u767c\u97f3\u3002\u4e00\u822c\u800c\u8a00\uff0c\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u6d41\u7a0b\u53ef\u5206\u70ba\u5169\u90e8\u5206\uff1a1)\u524d\u7aef \u7279\u5fb5\u64f7\u53d6\u6a21\u7d44\uff0c\u57fa\u65bc\u5b78\u7fd2\u8005\u6240\u5ff5\u8aa6\u7684\u97f3\u7d20\u6216\u8a9e\u53e5\u6bb5\u843d\u548c\u8072\u5b78\u6a21\u578b(acoustic model)\u7684\u6bd4\u5c0d \u4ee5\u64f7\u53d6\u5c0d\u61c9\u7684\u5177\u6709\u9451\u5225\u6027\u4e4b\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff1b2)\u5f8c\u7aef\u5206\u985e\u6a21\u7d44\uff0c\u57fa\u65bc\u6240\u6c42\u5f97\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff0c \u5224\u65b7\u97f3\u7d20\u6216\u8a9e\u53e5\u6bb5\u843d\u6240\u6b78\u5c6c\u985e\u5225(\u6b63\u78ba\u767c\u97f3\u6216\u932f\u8aa4\u767c\u97f3)\u3002\u5728\u672c\u7bc7\u8ad6\u6587\u5ef6\u7e8c\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c \u7814\u7a76\u800c\u4e3b\u8981\u6709\u4e09\u9805\u8ca2\u737b\uff1a1)\u6bd4\u8f03\u4e26\u7d50\u5408\u7576\u524d\u57fa\u65bc\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def(deep neural networks, DNN)\u8207\u647a\u7a4d\u985e\u795e\u7d93\u7db2\u8def(convolutional neuron networks, CNN)\u4e4b\u5148\u9032\u7684\u8072\u5b78\u6a21\u578b\u4ee5\u7522\u751f \u66f4\u5177\u9451\u5225\u6027\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff1b2)\u6211\u5011\u6bd4\u8f03\u4e26\u7d50\u5408\u4e0d\u540c\u5206\u985e\u65b9\u6cd5\uff0c\u4ee5\u671f\u80fd\u9054\u5230\u66f4\u4f73\u7684\u767c\u97f3\u6aa2 \u6e2c\u8868\u73fe\uff1b3)\u91dd\u5c0d\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u6240\u5305\u62ec\u7684\u6a21\u7d44\uff0c\u9032\u884c\u4e00\u7cfb\u5217\u5ee3\u6cdb\u4e14\u6df1\u5165\u7684\u5be6\u9a57\u5206\u6790\u8207\u8a0e\u8ad6\u3002 \u5f9e\u4e00\u5957\u4ee5\u83ef\u8a9e\u505a\u70ba\u7b2c\u4e8c\u8a9e\u5b78\u7fd2\u76ee\u6a19\u8a9e\u8a00\u7684\u5927\u91cf\u8a9e\u6599\u5eab\u4e4b\u5be6\u9a57\u7d50\u679c\u986f\u793a\uff0c\u6211\u5011\u6240\u63d0\u51fa\u878d\u5408 \u591a\u7a2e\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def\u8072\u5b78\u6a21\u578b\u8207\u5206\u985e\u6280\u8853\u7684\u65b9\u6cd5\u7684\u78ba\u80fd\u8f03\u57fa\u790e\u65b9\u6cd5\u6709\u986f\u8457\u7684\u6548\u80fd\u63d0\u5347\u3002 \u95dc\u9375\u5b57\uff1a\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u3001\u81ea\u52d5\u8a9e\u97f3\u8fa8\u8b58\u3001\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def\u3001\u647a\u7a4d\u985e\u795e\u7d93\u7db2\u8def",
"pdf_parse": {
"paper_id": "O15-1011",
"_pdf_hash": "",
"abstract": [
{
"text": "\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c(mispronunciation detection)\u70ba\u96fb\u8166\u8f14\u52a9\u767c\u97f3\u8a13\u7df4(computer assisted pronunciation training, CAPT)\u7814\u7a76\u4e2d\u5341\u5206\u91cd\u8981\u7684\u4e00\u500b\u74b0\u7bc0\uff0c\u5176\u76ee\u7684\u662f\u56de\u994b\u7d66\u8a9e\u8a00\u5b78\u7fd2\u8005\u662f\u5426\u5728 \u5176\u8b80\u8aa6\u4e00\u6bb5\u8a71\u4e2d\u7684\u51fa\u73fe\u932f\u8aa4\u767c\u97f3\u3002\u4e00\u822c\u800c\u8a00\uff0c\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u6d41\u7a0b\u53ef\u5206\u70ba\u5169\u90e8\u5206\uff1a1)\u524d\u7aef \u7279\u5fb5\u64f7\u53d6\u6a21\u7d44\uff0c\u57fa\u65bc\u5b78\u7fd2\u8005\u6240\u5ff5\u8aa6\u7684\u97f3\u7d20\u6216\u8a9e\u53e5\u6bb5\u843d\u548c\u8072\u5b78\u6a21\u578b(acoustic model)\u7684\u6bd4\u5c0d \u4ee5\u64f7\u53d6\u5c0d\u61c9\u7684\u5177\u6709\u9451\u5225\u6027\u4e4b\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff1b2)\u5f8c\u7aef\u5206\u985e\u6a21\u7d44\uff0c\u57fa\u65bc\u6240\u6c42\u5f97\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff0c \u5224\u65b7\u97f3\u7d20\u6216\u8a9e\u53e5\u6bb5\u843d\u6240\u6b78\u5c6c\u985e\u5225(\u6b63\u78ba\u767c\u97f3\u6216\u932f\u8aa4\u767c\u97f3)\u3002\u5728\u672c\u7bc7\u8ad6\u6587\u5ef6\u7e8c\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c \u7814\u7a76\u800c\u4e3b\u8981\u6709\u4e09\u9805\u8ca2\u737b\uff1a1)\u6bd4\u8f03\u4e26\u7d50\u5408\u7576\u524d\u57fa\u65bc\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def(deep neural networks, DNN)\u8207\u647a\u7a4d\u985e\u795e\u7d93\u7db2\u8def(convolutional neuron networks, CNN)\u4e4b\u5148\u9032\u7684\u8072\u5b78\u6a21\u578b\u4ee5\u7522\u751f \u66f4\u5177\u9451\u5225\u6027\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff1b2)\u6211\u5011\u6bd4\u8f03\u4e26\u7d50\u5408\u4e0d\u540c\u5206\u985e\u65b9\u6cd5\uff0c\u4ee5\u671f\u80fd\u9054\u5230\u66f4\u4f73\u7684\u767c\u97f3\u6aa2 \u6e2c\u8868\u73fe\uff1b3)\u91dd\u5c0d\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u6240\u5305\u62ec\u7684\u6a21\u7d44\uff0c\u9032\u884c\u4e00\u7cfb\u5217\u5ee3\u6cdb\u4e14\u6df1\u5165\u7684\u5be6\u9a57\u5206\u6790\u8207\u8a0e\u8ad6\u3002 \u5f9e\u4e00\u5957\u4ee5\u83ef\u8a9e\u505a\u70ba\u7b2c\u4e8c\u8a9e\u5b78\u7fd2\u76ee\u6a19\u8a9e\u8a00\u7684\u5927\u91cf\u8a9e\u6599\u5eab\u4e4b\u5be6\u9a57\u7d50\u679c\u986f\u793a\uff0c\u6211\u5011\u6240\u63d0\u51fa\u878d\u5408 \u591a\u7a2e\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def\u8072\u5b78\u6a21\u578b\u8207\u5206\u985e\u6280\u8853\u7684\u65b9\u6cd5\u7684\u78ba\u80fd\u8f03\u57fa\u790e\u65b9\u6cd5\u6709\u986f\u8457\u7684\u6548\u80fd\u63d0\u5347\u3002 \u95dc\u9375\u5b57\uff1a\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u3001\u81ea\u52d5\u8a9e\u97f3\u8fa8\u8b58\u3001\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def\u3001\u647a\u7a4d\u985e\u795e\u7d93\u7db2\u8def",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "(CNN), and compare their effectiveness for the extraction of discriminative pronunciation detection features. Second, we experiment with different types of classification methods and propose a novel integration of DNN-and CNN-based decision scores at the back-end. Third, we provide an extensive set of empirical evaluations on the aforementioned two modules and associated methods based on a recently compiled corpus for learning Mandarin Chinese as the second language. The experimental results reveal the performance utility of our approach in relation to several existing baselines. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "\u793a\u70ba\u7b2c \u5c64\uff0c\u8868\u793a\u6709 + 1\u5c64\u7684\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def\uff0c\u6b64\u524d\u994b\u904b\u7b97\u53ef\u4ee5\u8868\u793a\u70ba\uff1a \u2113 \uff1d ( \u2113 )\uff1d (W \u2113 \u2113\u22121 + \u2113 ) , ( \u2113 = 0, 1, 2, 3, \u2026 , ) (1) ( ) = 1 1 + exp (\u2212 ) , 0 < ( ) < 1 (2) \u5f0f(1)\u4e2d\uff0c \u2113 \u2208 \u2115\uff0c\u70ba\u7b2c\u2113\u5c64\u7684\u795e\u7d93\u5143\u6578\u91cf\u3002 \u2113 \u2208 \u211d \u2113 \u00d71 \uff0cW \u2113 \u2208 \u211d \u2113 \u00d7 \u2113\u22121 \uff0c \u2113 \u2208 \u211d \u2113 \u00d71 \uff0c \u2113 \u70ba\u7b2c\u2113\u5c64\u7684\u8f38\u51fa\u5411\u91cf\uff0cW \u2113 \u70ba\u7b2c\u2113\u5c64\u7684\u6b0a\u91cd\u77e9\u9663\uff0c\u901a\u5e38\u63a1\u53d6\u96a8\u6a5f\u521d\u59cb\u5316(",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "40 million people worldwide study Chinese",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "\"40 million people worldwide study Chinese,\" http://english.people.com.cn/90001/90782/90872/7112508.html .",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "A DNN-based acoustic modeling of tonal language and its application to Mandarin pronunciation training",
"authors": [
{
"first": "W",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Qian",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Soong",
"suffix": ""
}
],
"year": 2013,
"venue": "Proc. ICASSP",
"volume": "",
"issue": "",
"pages": "3230--3234",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W. Hu, Y. Qian, and F. Soong, \"A DNN-based acoustic modeling of tonal language and its application to Mandarin pronunciation training,\" in Proc. ICASSP, pp. 3230-3234, 2013.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Deep neural networks for acoustic modeling in speech recognition",
"authors": [
{
"first": "G",
"middle": [],
"last": "Hinton",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "G",
"middle": [
"E"
],
"last": "Dahl",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Mohamed",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Jaitly",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Senior",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Vanhoucke",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Sainath",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Kingsbury",
"suffix": ""
}
],
"year": 2012,
"venue": "IEEE Signal Processing Magazine",
"volume": "29",
"issue": "6",
"pages": "82--97",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G. Hinton, L. Deng, G.E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Ngu- yen, T. Sainath, and B. Kingsbury, \"Deep neural networks for acoustic modeling in speech recognition,\" IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, Nov. 2012.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Practical recommendations for gradient-based ttraining of deep architectures",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Bengio",
"suffix": ""
}
],
"year": 2013,
"venue": "Neural Networks: Tricks of the Trade",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y. Bengio, \"Practical recommendations for gradient-based ttraining of deep architectures,\" Neural Networks: Tricks of the Trade, K.R. Muller, G. Montavon, and G.B. Orr, eds., Springer 2013.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Learning representations by backpropagating errors",
"authors": [
{
"first": "D",
"middle": [
"E"
],
"last": "Rumelhart",
"suffix": ""
},
{
"first": "G",
"middle": [
"E"
],
"last": "Hinton",
"suffix": ""
},
{
"first": "R",
"middle": [
"J"
],
"last": "Williams",
"suffix": ""
}
],
"year": 1986,
"venue": "Nature",
"volume": "323",
"issue": "",
"pages": "533--536",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. E. Rumelhart, G.E. Hinton, and R. J. Williams, \"Learning representations by back- propagating errors,\" Nature, 1986, vol. 323, pp. 533-536.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition",
"authors": [
{
"first": "O",
"middle": [],
"last": "Hamid",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Mohamed",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Penn",
"suffix": ""
}
],
"year": 2012,
"venue": "Proc. ICASSP",
"volume": "",
"issue": "",
"pages": "4277--4280",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn, \"Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition,\" in Proc. ICASSP, pp. 4277-4280, 2012.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Deep convolutional neural networks for LVCSR",
"authors": [
{
"first": "T",
"middle": [
"N"
],
"last": "Sainath",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Mohamed",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Kingsbury",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Ramabhadran",
"suffix": ""
}
],
"year": 2013,
"venue": "Proc. ICASSP",
"volume": "",
"issue": "",
"pages": "8614--8618",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "T. N. Sainath, A. Mohamed, B. Kingsbury, and B. Ramabhadran, \"Deep convolutional neural networks for LVCSR,\" in Proc. ICASSP, pp. 8614-8618, 2013.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Maximum F1-score discriminative training criterion for automatic mispronunciation detection",
"authors": [
{
"first": "H",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Silamu",
"suffix": ""
}
],
"year": 2015,
"venue": "IEEE Trans. Audio, Speech, and Language Processing",
"volume": "23",
"issue": "5",
"pages": "787--797",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Huang, H. Xu, X. Wang, and W. Silamu, \"Maximum F1-score discriminative training criterion for automatic mispronunciation detection,\" IEEE Trans. Audio, Speech, and Language Processing, vol. 23, no. 5 pp. 787-797, April. 2015.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Automatic detection of phone-level mispronunciation for language learning",
"authors": [
{
"first": "H",
"middle": [],
"last": "Franco",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Neumeyer",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Ramos",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Bratt",
"suffix": ""
}
],
"year": 1999,
"venue": "Proc. Eurospeech",
"volume": "",
"issue": "",
"pages": "851--854",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Franco, L. Neumeyer, M. Ramos, and H. Bratt, \"Automatic detection of phone-level mispronunciation for language learning,\" in Proc. Eurospeech, pp. 851-854, 1999.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Phone-level pronunciation scoring and assessment for interactive language learning",
"authors": [
{
"first": "S",
"middle": [],
"last": "Witt",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Young",
"suffix": ""
}
],
"year": 2000,
"venue": "Speech Communication",
"volume": "30",
"issue": "2-3",
"pages": "95--108",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Witt and S. Young, \"Phone-level pronunciation scoring and assessment for interactive language learning,\" Speech Communication, vol. 30, no. 2-3, pp. 95-108, 2000.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Automatic mispronunciation detection for Mandarin",
"authors": [
{
"first": "F",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "F",
"middle": [
"K"
],
"last": "Soong",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Chu",
"suffix": ""
},
{
"first": "R",
"middle": [
"H"
],
"last": "Wang",
"suffix": ""
}
],
"year": 2008,
"venue": "Proc. ICASSP",
"volume": "",
"issue": "",
"pages": "5077--5080",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. Zhang, C. Huang, F. K. Soong, M. Chu, and R. H. Wang, \"Automatic mispronunciation detection for Mandarin,\" in Proc. ICASSP, pp. 5077-5080, 2008.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Improved approaches of modeling and detecting error patterns with empirical analysis for computer-aided pronunciation training",
"authors": [
{
"first": "Y",
"middle": [
"B"
],
"last": "Wang",
"suffix": ""
},
{
"first": "L",
"middle": [
"S"
],
"last": "Lee",
"suffix": ""
}
],
"year": 2012,
"venue": "Proc. ICASSP",
"volume": "",
"issue": "",
"pages": "5049--5052",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y.B. Wang and L.S. Lee, \"Improved approaches of modeling and detecting error patterns with empirical analysis for computer-aided pronunciation training,\" in Proc. ICASSP, pp. 5049-5052, 2012.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Pronunciation error detection method based on error rule clustering using a decision tree",
"authors": [
{
"first": "A",
"middle": [],
"last": "Ito",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Lim",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Suzuki",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Makino",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. EuroSpeech",
"volume": "",
"issue": "",
"pages": "173--176",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ito, A., Lim, Y., Suzuki, M., Makino, S., \"Pronunciation error detection method based on error rule clustering using a decision tree\", in Proc. EuroSpeech, pp. 173-176, 2005.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Automatic pronunciation error detection: an acoustic-phonetic approach",
"authors": [
{
"first": "K",
"middle": [],
"last": "Truong",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Neri",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Cuchiarini",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Strik",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. of the InSTIL/ICALL Symposium",
"volume": "",
"issue": "",
"pages": "135--138",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. Truong, A. Neri, C. Cuchiarini, and H. Strik, \"Automatic pronunciation error detection: an acoustic-phonetic approach,\" in Proc. of the InSTIL/ICALL Symposium, pp. 135-138, 2004.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "A new method for mispronunciation detection using support vector machine based on pronunciation space models",
"authors": [
{
"first": "S",
"middle": [],
"last": "Wei",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "R",
"middle": [
"H"
],
"last": "Wang",
"suffix": ""
}
],
"year": 2009,
"venue": "Speech Communication",
"volume": "51",
"issue": "10",
"pages": "896--905",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Wei, G. Hu, Y. Hu, and R. H. Wang, \"A new method for mispronunciation detection using support vector machine based on pronunciation space models,\" Speech Communi- cation., vol. 51, no. 10, pp. 896-905, 2009.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Improved mispronunciation detection with deep neural network trained acoustic models and transfer learning based logistic regression classifiers",
"authors": [
{
"first": "W",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Qian",
"suffix": ""
},
{
"first": "F",
"middle": [
"K"
],
"last": "Soong",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": 2015,
"venue": "Speech Communication",
"volume": "67",
"issue": "",
"pages": "154--166",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W. Hu, Y. Qian, F. K. Soong, and Y. Wang, \"Improved mispronunciation detection with deep neural network trained acoustic models and transfer learning based logistic regres- sion classifiers,\" Speech Communication, vol. 67, pp. 154-166, 2015.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Automatic text-independent pronunciation scoring of foreign language student speech",
"authors": [
{
"first": "L",
"middle": [],
"last": "Neumeyer",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Franco",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Weintraub",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Price",
"suffix": ""
}
],
"year": 1996,
"venue": "Proc. Int. Conf. Spoken Lang. Process",
"volume": "",
"issue": "",
"pages": "1457--1460",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. Neumeyer, H. Franco, M. Weintraub, and P. Price, \"Automatic text-independent pro- nunciation scoring of foreign language student speech,\" in Proc. Int. Conf. Spoken Lang. Process., pp. 1457-1460, 1996.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Automatic pronunciation scoring using learning to rank and DP-based score segmentation",
"authors": [
{
"first": "L",
"middle": [
"Y"
],
"last": "Chen",
"suffix": ""
},
{
"first": "J",
"middle": [
"S R"
],
"last": "Jang",
"suffix": ""
}
],
"year": 2010,
"venue": "Proc. Interspeech",
"volume": "",
"issue": "",
"pages": "761--764",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. Y. Chen and J. S. R. Jang, \"Automatic pronunciation scoring using learning to rank and DP-based score segmentation,\" in Proc. Interspeech, pp. 761-764, 2010.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Improvement in automatic pronunciation scoring using additional basic scores and learning to rank",
"authors": [
{
"first": "L",
"middle": [
"Y"
],
"last": "Chen",
"suffix": ""
},
{
"first": "J",
"middle": [
"S R"
],
"last": "Jang",
"suffix": ""
}
],
"year": 2012,
"venue": "Proc. Interspeech",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. Y. Chen and J. S. R. Jang, \"Improvement in automatic pronunciation scoring using additional basic scores and learning to rank,\" in Proc. Interspeech, 2012.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Automatic pronunciation scoring with score combination by learning to rank and class-normalized DP-based quantization",
"authors": [
{
"first": "L",
"middle": [
"Y"
],
"last": "Chen",
"suffix": ""
},
{
"first": "J",
"middle": [
"S R"
],
"last": "Jang",
"suffix": ""
}
],
"year": 2015,
"venue": "IEEE Trans. Audio, Speech, and Language Processing",
"volume": "23",
"issue": "11",
"pages": "787--797",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. Y. Chen and J. S. R. Jang, \"Automatic pronunciation scoring with score combination by learning to rank and class-normalized DP-based quantization,\" IEEE Trans. Audio, Speech, and Language Processing, vol. 23, no. 11 pp. 787-797, November. 2015.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "An application of pretrained deep neural networks to large vocabulary speech recognition",
"authors": [
{
"first": "N",
"middle": [],
"last": "Jaitly",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Senior",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Vanhoucke",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, \"An application of pretrained deep neural networks to large vocabulary speech recognition,\" submitted for publication.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "New types of deep neural network learning for speech recognition and related applications: An overview",
"authors": [
{
"first": "L",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Hinton",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Kingsbury",
"suffix": ""
}
],
"year": 2013,
"venue": "Proc. ICASSP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. Deng, G. Hinton, and B. Kingsbury, \"New types of deep neural network learning for speech recognition and related applications: An overview,\" in Proc. ICASSP, 2013.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "The use of DBN-HMMs for mispronunciation detection and diagnosis in L2 English to support computer-aided pronunciation training",
"authors": [
{
"first": "X",
"middle": [],
"last": "Qian",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Meng",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Soong",
"suffix": ""
}
],
"year": 2012,
"venue": "Proc. Interspeech",
"volume": "",
"issue": "",
"pages": "775--778",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "X. Qian, H. Meng, and F. Soong, \"The use of DBN-HMMs for mispronunciation detec- tion and diagnosis in L2 English to support computer-aided pronunciation training,\" in Proc. Interspeech, pp. 775-778, 2012.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Acoustic model optimization for automatic pronunciation quality assessment",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Ke",
"suffix": ""
}
],
"year": 2014,
"venue": "Proc. ICMFI",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y. Ke. \"Acoustic model optimization for automatic pronunciation quality assessment,\" in Proc. ICMFI, 2014.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "ImageNet classification with deep convolutional neural networks",
"authors": [
{
"first": "A",
"middle": [],
"last": "Krizhevsky",
"suffix": ""
},
{
"first": "I",
"middle": [],
"last": "Sutskever",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Hinton",
"suffix": ""
}
],
"year": 2012,
"venue": "Proc. Neural Information and Processing Systems",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Krizhevsky, I. Sutskever, and G. Hinton, \"ImageNet classification with deep convo- lutional neural networks,\" Proc. Neural Information and Processing Systems, 2012.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Convolutional neural networks for speech recognition",
"authors": [
{
"first": "O",
"middle": [],
"last": "Hamid",
"suffix": ""
},
{
"first": "A",
"middle": [
"R"
],
"last": "Mohamed",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Penn",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Yu",
"suffix": ""
}
],
"year": 2014,
"venue": "IEEE/ACM Trans. Audio, Speech, Lang. Process",
"volume": "22",
"issue": "10",
"pages": "1533--1545",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "O. Abdel-Hamid, A.R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, \"Convolutional neural networks for speech recognition,\" IEEE/ACM Trans. Audio, Speech, Lang. Pro- cess., vol. 22, no. 10, pp. 1533-1545, Oct. 2014.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Convolutional networks for images, speech, and time series",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Le Cun",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Bengio",
"suffix": ""
}
],
"year": 1995,
"venue": "The Handbook of Brain Theory and Neural Networks, M. A. Arbib",
"volume": "",
"issue": "",
"pages": "255--258",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y. Le Cun and Y. Bengio, \"Convolutional networks for images, speech, and time series,\" in The Handbook of Brain Theory and Neural Networks, M. A. Arbib, Ed. Cambridge, MA: MIT Press, pp. 255-258, 1995.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Exploring hierarchical speech representations using a deep convolutional neural network",
"authors": [
{
"first": "D",
"middle": [],
"last": "Hau",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2011,
"venue": "Proc. UKCI",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Hau and K. Chen, \"Exploring hierarchical speech representations using a deep con- volutional neural network,\" in Proc. UKCI, 2011.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Automatic speech recognition -a deep learning approach",
"authors": [
{
"first": "D",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Deng",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Yu and L. Deng, \"Automatic speech recognition -a deep learning approach\", Springer, 2014.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Deep neural networks for acoustic modeling in speech recognition",
"authors": [
{
"first": "G",
"middle": [],
"last": "Hinton",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "G",
"middle": [
"E"
],
"last": "Dahl",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Mohamed",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Jaitly",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Senior",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Vanhoucke",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Sainath",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Kingsbury",
"suffix": ""
}
],
"year": 2012,
"venue": "IEEE Signal Processing Magazine",
"volume": "29",
"issue": "6",
"pages": "82--97",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G. Hinton, L. Deng, G.E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Ngu- yen, T. Sainath, and B. Kingsbury, \"Deep neural networks for acoustic modeling in speech recognition,\" IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, Nov. 2012.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Phone recognition with the mean-covariance restricted boltzmann machine",
"authors": [
{
"first": "G",
"middle": [
"E"
],
"last": "Dahl",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Ranzato",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Mohamed",
"suffix": ""
},
{
"first": "G",
"middle": [
"E"
],
"last": "Hinton",
"suffix": ""
}
],
"year": 2010,
"venue": "Advances in Neural Information Processing Systems",
"volume": "23",
"issue": "",
"pages": "469--477",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G. E. Dahl, M. Ranzato, A. Mohamed, and G. E. Hinton, \"Phone recognition with the mean-covariance restricted boltzmann machine,\" in Advances in Neural Information Processing Systems 23, J. Lafferty, C. K. I. Williams, J. ShaweTaylor, R.S. Zemel, and A. Culotta, Eds. Cambridge, MA: MIT Press, pp. 469-477, 2010.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Deep boltzmann machines",
"authors": [
{
"first": "R",
"middle": [],
"last": "Salakhutdinov",
"suffix": ""
},
{
"first": "G",
"middle": [
"E"
],
"last": "Hinton",
"suffix": ""
}
],
"year": 2009,
"venue": "Proc. AISTATS",
"volume": "",
"issue": "",
"pages": "448--455",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Salakhutdinov and G.E. Hinton, \"Deep boltzmann machines,\" in Proc. AISTATS, pp. 448-455, 2009.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Unsupervised feature learning for audio classification using convolutional deep belief networks",
"authors": [
{
"first": "H",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Pham",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Largman",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Ng",
"suffix": ""
}
],
"year": 2009,
"venue": "Advances in Neural Information Processing Systems",
"volume": "22",
"issue": "",
"pages": "1096--1104",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Lee, P. Pham, Y. Largman, and A. Ng, \"Unsupervised feature learning for audio clas- sification using convolutional deep belief networks,\" in Advances in Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds. Cambridge, MA: MIT Press, pp. 1096-1104, 2009.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Understanding how deep belief networks perform acoustic modelling",
"authors": [
{
"first": "A",
"middle": [],
"last": "Mohamed",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Hinton",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Penn",
"suffix": ""
}
],
"year": 2012,
"venue": "Proc. ICASSP",
"volume": "",
"issue": "",
"pages": "4273--4276",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Mohamed, G. Hinton, and G. Penn, \"Understanding how deep belief networks per- form acoustic modelling,\" in Proc. ICASSP, pp. 4273-4276, 2012.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Context-dependent pretrained deep neural networks for large-vocabulary speech recognition",
"authors": [
{
"first": "G",
"middle": [],
"last": "Dahl",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Acero",
"suffix": ""
}
],
"year": 2012,
"venue": "IEEE Trans. Audio Speech Lang. Processing",
"volume": "20",
"issue": "1",
"pages": "30--42",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G. Dahl, D. Yu, L. Deng, and A. Acero, \"Context-dependent pretrained deep neural net- works for large-vocabulary speech recognition,\" IEEE Trans. Audio Speech Lang. Pro- cessing, vol. 20, no. 1, pp. 30-42, Jan. 2012.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Deep belief networks using discriminative features for phone recognition",
"authors": [
{
"first": "A",
"middle": [],
"last": "Mohamed",
"suffix": ""
},
{
"first": "T",
"middle": [
"N"
],
"last": "Sainath",
"suffix": ""
},
{
"first": "G",
"middle": [
"E"
],
"last": "Dahl",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Ramabhadran",
"suffix": ""
},
{
"first": "G",
"middle": [
"E"
],
"last": "Hinton",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Picheny",
"suffix": ""
}
],
"year": 2011,
"venue": "Proc. ICASSP",
"volume": "",
"issue": "",
"pages": "5060--5063",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Mohamed, T. N. Sainath, G. E. Dahl, B. Ramabhadran, G. E. Hinton, and M. Picheny, \"Deep belief networks using discriminative features for phone recognition,\" in Proc. ICASSP, pp. 5060-5063, 2011.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Receptive fields, binocular in teraction, and functional architecture in the cat's visual cortex",
"authors": [
{
"first": "D",
"middle": [
"H"
],
"last": "Hubel",
"suffix": ""
},
{
"first": "T",
"middle": [
"N"
],
"last": "Wiesel",
"suffix": ""
}
],
"year": 1962,
"venue": "J. Physiology (London)",
"volume": "160",
"issue": "",
"pages": "106--154",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. H. Hubel and T. N. Wiesel, \"Receptive fields, binocular in teraction, and functional architecture in the cat's visual cortex,\" J. Physiology (London), vol. 160, pp. 106-154, 1962.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Notes on convolutional neural networks",
"authors": [
{
"first": "J",
"middle": [],
"last": "Bouvrie",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Bouvrie, \"Notes on convolutional neural networks,\" 2006.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Evaluation of pooling operations in convolutional architectures for object recognition",
"authors": [
{
"first": "D",
"middle": [],
"last": "Scherer",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Muller",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Behnke",
"suffix": ""
}
],
"year": 2010,
"venue": "Proc. ICANN",
"volume": "",
"issue": "",
"pages": "92--101",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Scherer, A. Muller, and S. Behnke, \"Evaluation of pooling operations in convolutional architectures for object recognition,\" in Proc. ICANN, pp. 92-101, 2010.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Python -scikit-learn",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Python -scikit-learn. http://scikit-learn.org/dev/index.html",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Discriminatively trained acoustic model for improving mispronunciation detection and diagnosis in computer-aided pronunciation training (CAPT)",
"authors": [
{
"first": "X",
"middle": [],
"last": "Qian",
"suffix": ""
},
{
"first": "H",
"middle": [
"M"
],
"last": "Meng",
"suffix": ""
},
{
"first": "F",
"middle": [
"K"
],
"last": "Soong",
"suffix": ""
}
],
"year": 2010,
"venue": "Proc. Interspeech",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "X. Qian, H. M. Meng, and F. K. Soong, \"Discriminatively trained acoustic model for improving mispronunciation detection and diagnosis in computer-aided pronunciation training (CAPT),\" in Proc. Interspeech, 2010.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "CDF-matching for automatic tone error detection in Mandarin CALL system",
"authors": [
{
"first": "S",
"middle": [],
"last": "Wei",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Q",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": 2007,
"venue": "Proc. ICASSP",
"volume": "",
"issue": "",
"pages": "205--208",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Wei, H. Wang, Q. Liu, and R. Wang, \"CDF-matching for automatic tone error detection in Mandarin CALL system,\" in Proc. ICASSP, pp. 205-208, 2007.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Automatic tone assessment of non-native Mandarin speakers",
"authors": [
{
"first": "J",
"middle": [],
"last": "Cheng",
"suffix": ""
}
],
"year": 2013,
"venue": "Proc. Interspeech",
"volume": "",
"issue": "",
"pages": "1299--1302",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Cheng, \"Automatic tone assessment of non-native Mandarin speakers,\" in Proc. Inter- speech, pp. 1299-1302, 2013.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "The kaldi speech recognition toolkit",
"authors": [
{
"first": "D",
"middle": [],
"last": "Povey",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Ghoshal",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Boulianne",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Burget",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Glembek",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Goel",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Hannemann",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Motl\u00b4\u0131cek",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Qian",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Schwarz",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Silovsky",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Stemmer",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Vesely",
"suffix": ""
}
],
"year": 2011,
"venue": "Proc. IEEE ASRU",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, P. Motl\u00b4\u0131cek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely, \"The kaldi speech recognition toolkit,\" in Proc. IEEE ASRU, 2011.",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"num": null,
"type_str": "table",
"html": null,
"content": "<table><tr><td>\u8f38\u51fa\u767c\u97f3\u6aa2\u6e2c\u5206\u6578\u5c0d\u61c9\u4e4b\u6392\u5e8f\u53d6\u8abf\u548c\u5e73\u5747\u505a\u70ba\u7d50\u5408\u5f8c\u7684\u5206\u985e\u7d50\u679c\uff1b\u6700\u5f8c\uff0c\u5728\u7b2c\u516d\u5c0f\u7bc0\uff0c</td></tr><tr><td>\u6211\u5011\u63d0\u51fa\u7d50\u8ad6\u8207\u4e00\u4e9b\u672a\u4f86\u53ef\u80fd\u7684\u7814\u7a76\u65b9\u5411\u3002</td></tr><tr><td>\u4e8c\u3001 \u76f8\u95dc\u7814\u7a76</td></tr><tr><td>\u4e00\u3001 \u7dd2\u8ad6 \u73fe\u4eca\u5168\u7403\u5316\u7684\u6642\u4ee3\u88e1\uff0c\u7cbe\u901a\u5169\u7a2e\u6216\u5169\u7a2e\u4ee5\u4e0a\u7684\u8a9e\u8a00\u4e0d\u50c5\u662f\u512a\u52e2\u66f4\u662f\u5fc5\u8981\u7684\u80fd\u529b\u3002\u5728 \u5341\u5e7e\u5e74\u4ee5\u524d\uff0c\u82f1\u8a9e\u9084\u662f\u570b\u969b\u901a\u7528\u7684\u8a9e\u8a00\uff1b\u4f46\u8fd1\u5e74\u4f86\uff0c\u7531\u65bc\u4e2d\u570b\u5e02\u5834\u7684\u5feb\u901f\u767c\u5c55\uff0c\u5168\u7403\u83ef \u8a9e\u5b78\u7fd2\u71b1\u6f6e\u5e2d\u6372\u800c\u4f86\uff0c\u5b78\u7fd2\u83ef\u8a9e\u7684\u4eba\u6578\u9810\u4f30\u5df2\u7d93\u8d85\u904e\u4e00\u5104\uff0c\u5728\u8a31\u591a\u975e\u83ef\u8a9e\u8a9e\u7cfb\u7684\u4e9e\u6d32\u3001 \u6b50\u6d32\u4ee5\u53ca\u7f8e\u6d32\u570b\u5bb6\uff0c\u83ef\u8a71\u5df2\u7d93\u9010\u6f38\u6210\u70ba\u4e00\u7a2e\u5fc5\u9808\u5b78\u7fd2\u7684\u8a9e\u8a00[1][2]\u3002\u8a9e\u8a00\u5b78\u7fd2\u53c8\u5206\u70ba\u807d (listening)\u800c\u672c\u7bc7\u8ad6\u6587\u5c07\u805a\u7126\u5728\u5982\u4f55\u6539\u5584\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u4e4b\u6548\u80fd\u3002\u76ee\u524d\uff0c\u5728\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684\u8a55\u4f30\u65b9\u5f0f \u5728\u5927\u591a\u6578\u7684\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7814\u7a76\u4e2d\u5e7e\u4e4e\u90fd\u662f\u4ee5\u81ea\u52d5\u8a9e\u97f3\u8fa8\u8b58\u70ba\u524d\u7aef\uff0c\u800c\u5c07\u5f8c\u7aef\u8996\u70ba\u5206 \u4e2d\uff0c\u53ec\u56de\u7387(recall)\u548c\u7cbe\u6e96\u5ea6(precision)\u7684\u66f2\u7dda\u8207\u63a5\u6536\u8005\u64cd\u4f5c\u7279\u5fb5\u66f2\u7dda(receiver operating characteristic curve, ROC)\u662f\u6700\u5e38\u88ab\u63a1\u7528\u4f86\u8a55\u4f30\u6548\u80fd\u4e4b\u512a\u52a3\u3002\u6211\u5011\u8a8d\u70ba\u76f8\u8f03\u65bc\u6b63\u78ba\u767c\u97f3\u6aa2 \u6e2c(correct pronunciation detection)\uff0c\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u5c0d\u65bc\u5b78\u7fd2\u8005\u800c\u8a00\u662f\u8f03\u70ba\u91cd\u8981\uff1b\u6240\u4ee5\uff0c\u672c \u7bc7\u8ad6\u6587\u5f8c\u7e8c\u5728\u53ec\u56de\u7387\u548c\u7cbe\u6e96\u5ea6\u66f2\u7dda\u7684\u8a55\u4f30\u5be6\u9a57\u4e2d\uff0c\u6211\u5011\u5c07\u96c6\u4e2d\u8a0e\u8ad6\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684\u6548\u80fd \u8868\u73fe\u3002 \u81ea\u52d5\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684\u7814\u7a76\u5927\u90e8\u5206\u662f\u57fa\u65bc\u73fe\u6709\u7684\u8a9e\u97f3\u8fa8\u8b58\u6280\u8853\u800c\u767c\u5c55\uff0c\u5e0c\u671b\u80fd\u9054\u5230\u50cf \u5c08\u696d\u8a9e\u8a00\u6559\u5e2b\u4e00\u6a23\u5730\u7d66\u4e88\u8a9e\u8a00\u5b78\u7fd2\u8005\u6240\u5ff5\u8aa6\u8a9e\u53e5\u9069\u7576\u7684\u767c\u97f3\u8a55\u4f30\u3002\u5728\u672c\u8ad6\u6587\u4e2d\uff0c\u6211\u5011\u5c07 \u8a9e\u97f3\u8fa8\u8b58\u6a21\u7d44\u8996\u70ba\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7cfb\u7d71\u7684\u524d\u7aef(front-end)\uff0c\u800c \u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c(\u5206\u985e)\u6a21\u7d44\u8996\u70ba \u7cfb\u7d71\u7684\u5f8c\u7aef(back-end)\u3002\u524d\u7aef\u7684\u8a9e\u97f3\u8fa8\u8b58\u6a21\u7d44\u5982\u679c\u80fd\u85c9\u7531\u8072\u5b78\u6a21\u578b\u7684\u4f7f\u7528\uff0c\u7522\u751f\u97f3\u6846 (frame)\u6216\u8005\u6bb5\u843d(segment)\u5c64\u6b21\u7684\u4e8b\u5f8c\u6a5f\u7387\u4f86\u505a\u70ba\u5177\u9451\u5225\u6027\u7684\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff0c\u5247\u5f8c\u7aef\u5075\u6e2c \u932f\u8aa4\u767c\u97f3\u6642\u5c31\u80fd\u57fa\u65bc\u9019\u4e9b\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\u4f86\u7cbe\u6e96\u5730\u5224\u65b7\u5b78\u7fd2\u8005\u7684\u767c\u97f3\u6b63\u78ba\u8207\u5426\u3002\u56e0\u6b64\uff0c\u8a9e \u97f3\u8fa8\u8b58\u6a21\u7d44\u4e2d\u8072\u5b78\u6a21\u578b\u6240\u7522\u751f\u7684\u56de\u994b\u5c07\u662f\u6211\u5011\u8a55\u65b7\u767c\u97f3\u597d\u58de\u8207\u5426\u7684\u91cd\u8981\u4f9d\u64da\u3002\u5728\u8a9e\u97f3\u8fa8 \u8b58\u7814\u7a76\u4e0a\uff0c\u6709\u5225\u65bc\u50b3\u7d71\u4f7f\u7528\u6885\u723e\u5012\u983b\u8b5c\u4fc2\u6578(mel-frequency cepstral coefficients, MFCC)\u4e4b \u8a9e\u97f3\u7279\u5fb5\u7684\u9ad8\u65af\u6df7\u5408\u6a21\u578b-\u96b1\u85cf\u5f0f\u99ac\u53ef\u592b\u6a21\u578b(gaussian mixture model-hidden markov model, GMM-HMM)\u7684\u8072\u5b78\u6a21\u578b\uff0c\u8fd1\u5e74\u4f86\u7531\u65bc\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5[3][4][5]\u8207\u96fb\u8166\u786c\u9ad4\u7684\u9032 \u6b65\uff0c\u8a13\u7df4\u591a\u96b1\u85cf\u5c64(hidden layers)\u53ca\u5927\u91cf\u8f38\u51fa\u795e\u7d93\u5143(neurons)\u985e\u795e\u7d93\u7db2\u8def\u7684\u65b9\u6cd5\u4e5f\u66f4\u6709\u6548 \u7387\u5728\u5b78\u8853\u754c\u8207\u5be6\u52d9\u754c\u6fc0\u8d77\u4e86\u6df1\u5c64\u5b78\u7fd2(deep learning)\u7684\u6d6a\u6f6e\uff0c\u985b\u8986\u4e86\u5e7e\u5341\u5e74\u4f86\u7684\u7814\u7a76\u751f \u614b\u3002\u8a31\u591a\u5b78\u8005\u8207\u5be6\u52d9\u5bb6\u7814\u7a76\u5c07\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def(deep neural networks, DNN)\u7576\u4f5c\u8a9e\u97f3\u8fa8\u8b58 \u7684\u8072\u5b78\u6a21\u578b\u7684\u91cd\u8981\u7d44\u6210\uff0c\u53d6\u4ee3\u50b3\u7d71 GMM \u7684\u89d2\u8272\u4f86\u8a08\u7b97\u6bcf\u500b\u97f3\u6846\u6240\u5c0d\u61c9 HMM \u72c0\u614b\u7684\u89c0 \u6e2c\u6a5f\u7387(observation probability)\u6216\u76f8\u4f3c\u5ea6\u503c(likelihood)\u3002\u96d6\u7136 DNN \u5728\u8a9e\u97f3\u8fa8\u8b58\u9818\u57df\u5df2\u7d93 \u6709\u76f8\u7576\u512a\u7570\u7684\u6548\u679c\uff0c\u4f46\u4e5f\u6709\u8a31\u591a\u7814\u7a76\u6307\u51fa\u647a\u7a4d\u985e\u795e\u7d93\u7db2\u8def(convolutional neuron networks, CNN)\u5728\u97f3\u7d20\u8fa8\u8b58[6]\u4ee5\u53ca\u5927\u8a5e\u5f59\u9023\u7e8c\u8a9e\u97f3\u8fa8\u8b58[7]\u7684\u4efb\u52d9\u4e0a\u7684\u8868\u73fe\u66f4\u512a\u65bc DNN\uff1b\u9019\u53ef\u6b78 \u529f\u65bc CNN \u80fd\u5f9e\u8a9e\u97f3\u7279\u5fb5\u4e2d\u64f7\u53d6\u51fa\u767c\u97f3\u4e2d\u7d30\u5fae\u7684\u4f4d\u79fb\u4e0d\u8b8a(shift invariance)\u7684\u7279\u6027\u3002\u900f\u904e CNN \u4f86\u505a\u70ba\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\u7684\u64f7\u53d6\u6a21\u7d44\uff0c\u671f\u671b\u80fd\u5920\u5f9e\u4e0d\u540c\u570b\u5bb6\u7684\u83ef\u8a9e\u5b78\u7fd2\u8005\u4e4b\u767c\u97f3\u8a0a\u865f \u4e2d\u6c42\u53d6\u51fa\u5c0d\u767c\u97f3\u6aa2\u6e2c\u6709\u5e6b\u52a9\u3001\u5177\u9451\u5225\u6027\u7684\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5(\u80fd\u63d0\u4f9b\u66f4\u5177\u9451\u5225\u529b\u7684\u4e8b\u5f8c\u6a5f\u7387 \u4f86\u5e6b\u52a9\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c)\uff0c\u63d0\u5347\u81ea\u52d5\u6aa2\u6e2c\u932f\u8aa4\u767c\u97f3\u7684\u80fd\u529b\u3002\u672c\u7bc7\u8ad6\u6587\u5c0d\u65bc\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7814 \u7a76\u6709\u4e09\u9805\u4e3b\u8981\u8ca2\u737b\uff1a\u9996\u5148\uff0c\u6211\u5011\u6bd4\u8f03\u4e26\u7d50\u5408\u7576\u524d\u57fa\u65bc\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def(DNN)\u8207\u647a\u7a4d\u985e\u795e \u7d93\u7db2\u8def(CNN)\u4e4b\u5148\u9032\u7684\u8072\u5b78\u6a21\u578b\u4ee5\u7522\u751f\u66f4\u5177\u9451\u5225\u6027\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff1b\u518d\u8005\uff0c\u6211\u5011\u6bd4\u8f03\u4e26\u7d50 \u5408\u4e0d\u540c\u5206\u985e\u65b9\u6cd5\uff0c\u4ee5\u671f\u80fd\u9054\u5230\u66f4\u4f73\u7684\u767c\u97f3\u6aa2\u6e2c\u8868\u73fe\uff1b\u6700\u5f8c\uff0c\u91dd\u5c0d\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u4e4b\u69cb\u6210\u6a21 \u7d44\uff0c\u9032\u884c\u4e00\u7cfb\u5217\u5ee3\u6cdb\u4e14\u6df1\u5165\u7684\u5be6\u9a57\u5206\u6790\u8207\u8a0e\u8ad6\u3002 \u985e\u554f\u984c[8]\u3002\u4f8b\u5982\uff0cFranco \u7b49\u4eba[9]\u4f7f\u7528\u6bcd\u8a9e\u8005\u7684 HMM \u4e4b\u5c0d\u6578\u76f8\u4f3c\u5ea6\u503c(log-likelihood)\u8207 \u975e\u6bcd\u8a9e\u8005\u7684 HMM \u4e4b\u5c0d\u6578\u76f8\u4f3c\u5ea6\u503c\u8a08\u7b97\u6bd4\u503c\uff0c\u7a31\u70ba\u5c0d\u6578\u76f8\u4f3c\u5ea6\u6bd4\u503c(log-likelihood ratio, LLR)\uff0c\u8a72\u8ad6\u6587\u7684\u5be6\u9a57\u986f\u793a\u4f7f\u7528\u5c0d\u6578\u76f8\u4f3c\u5ea6\u6bd4\u503c(LLR)\u5c0d\u65bc\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u4e4b\u8868\u73fe\u52dd\u904e\u76f4\u63a5 \u4f7f\u7528\u5c0d\u6578\u76f8\u4f3c\u5ea6\u503c\u3002Witt \u7b49\u4eba[10]\u63d0\u51fa GOP \u4f5c\u70ba\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u4e4b\u8a55\u4f30\u65b9\u5f0f\uff0c\u8a72\u65b9\u6cd5\u57fa \u65bc\u8072\u5b78\u6a21\u578b\u6240\u7522\u751f\u7684\u4e8b\u5f8c\u6a5f\u7387(posterior probability)\u5c0d\u97f3\u7d20\u5c64\u6b21\u7684\u767c\u97f3\u8a08\u7b97\u8a55\u4f30\u5206\u6578\uff0c\u4e26 \u8a02\u5b9a\u9580\u6abb\u503c(threshold)\u4f86\u5340\u5206\u6b63\u78ba\u767c\u97f3\u8207\u932f\u8aa4\u767c\u97f3\uff1b\u9678\u7e8c\u4e5f\u6709\u5176\u5b83\u7814\u7a76\u662f\u57fa\u65bc GOP \u7684\u65b9 \u6cd5\u9032\u884c\u6539\u826f[11][12]\u3002\u53e6\u4e00\u65b9\u9762\uff0cHuang \u7b49\u4eba[8]\u5c07\u9451\u5225\u5f0f\u8a13\u7df4\u61c9\u7528\u5728 GOP \u4f30\u6e2c\uff0c\u4ee5\u6700\u5c0f \u5927\u5316 F \u5ea6\u91cf(F-measure)\u70ba\u76ee\u6a19\u4f5c\u9451\u5225\u5f0f\u8a13\u7df4\u3002Ito \u7b49\u4eba[13]\u4f7f\u7528\u6c7a\u7b56\u6a39(decision tree)\u7684\u65b9 \u6cd5\u4e26\u91dd\u5c0d\u4e0d\u540c\u932f\u8aa4\u767c\u97f3\u7684\u60c5\u6cc1\u5b9a\u7fa9\u5404\u81ea\u7684\u9580\u6abb\u503c\u4f86\u9032\u884c\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\uff1b\u8a72\u8ad6\u6587\u7684\u5be6\u9a57\u8b49 \u660e\u5176\u6548\u679c\u52dd\u904e\u6240\u6709\u767c\u97f3\u5171\u7528\u76f8\u540c\u7684\u9580\u6abb\u503c\u3002Truong \u7b49\u4eba[14]\u6bd4\u8f03\u6c7a\u7b56\u6a39\u8207\u7dda\u6027\u9451\u5225\u5206\u6790 (linear discriminant analysis, LDA)\u7528\u65bc\u8377\u862d\u8a9e\u5b78\u7fd2\u8005\u7684\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u4efb\u52d9\u3002\u5ee3\u7fa9\u4e0a\u4f86\u770b\uff0c GOP \u4e5f\u5c6c\u65bc\u4e00\u7a2e\u4e8c\u5143\u5206\u985e\u7684\u65b9\u6cd5\uff0c\u4f46 GOP \u53ea\u6709\u8003\u616e\u5230\u76ee\u6a19(\u6b63\u78ba)\u97f3\u7d20\u8207\u5b83\u7684\u6df7\u6dc6\u97f3\u7d20 \u7684\u5c0d\u6578\u76f8\u4f3c\u5ea6\u503c\u3002\u6709\u9452\u65bc\u6b64\uff0cWei \u7b49\u4eba[15]\u4f7f\u7528\u76ee\u6a19\u97f3\u7d20\u8207\u5176\u5b83\u6240\u6709\u97f3\u7d20\u7684\u5c0d\u6578\u76f8\u4f3c\u5ea6 \u503c\u505a\u70ba\u8f38\u5165\u5206\u985e\u5668\u7684\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff0c\u4e26\u5c07 SVM \u505a\u70ba\u5206\u985e\u5668\u4f86\u8fa8\u8a8d\u97f3\u7d20\u7279\u5fb5\u5c0d\u61c9\u7684\u8f38\u51fa \u70ba\u6b63\u78ba\u767c\u97f3\u6216\u932f\u8aa4\u767c\u97f3\u6a19\u8a18\u3002\u4f46\u9664\u4e86\u6bcf\u4e00\u500b\u97f3\u7d20\u7684\u5c0d\u6578\u76f8\u4f3c\u5ea6\u503c\u4f86\u4f5c\u70ba\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff0c Hu \u7b49\u4eba[16]\u4e0d\u53ea\u4f7f\u7528[15]\u63d0\u51fa\u7684\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff0c\u9084 \u984d\u5916\u5730\u5c07\u76ee\u6a19\u97f3\u7d20\u8207\u5176\u5b83\u97f3\u7d20\u7684\u5c0d\u6578 \u76f8\u4f3c\u5ea6\u6bd4\u503c\u52a0\u5165\u6210\u70ba\u984d\u5916\u8f38\u5165\u7684\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff0c\u4e26\u4f7f\u7528\u7279\u6b8a\u7d50\u69cb\u7684\u908f\u8f2f\u8ff4\u6b78\u4f86\u9032\u884c\u932f\u8aa4 \u767c\u97f3\u6aa2\u6e2c\uff0c\u8a72\u7d50\u69cb\u900f\u904e\u5171\u4eab\u96b1\u85cf\u5c64\u4f86\u89e3\u6c7a\u90e8\u5206\u97f3\u7d20\u8cc7\u6599\u7a00\u758f(data sparse)\u7684\u554f\u984c\u3002\u4e0d\u540c\u65bc [16]\u7684\u8ca2\u737b\uff0c\u6211\u5011\u8a8d\u70ba\u85c9\u7531\u826f\u597d\u7684\u8072\u5b78\u6a21\u578b\u7522\u751f\u4e4b\u4e8b\u5f8c\u6a5f\u7387\u800c\u5f97\u7684\u5177\u9451\u5225\u6027\u767c\u97f3\u6aa2\u6e2c\u7279 \u5fb5\uff0c\u61c9 \u6709\u52a9\u65bc\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684\u6548\u679c\uff1b\u56e0\u6b64\uff0c\u672c\u8ad6\u6587\u5c07\u805a\u7126\u65bc\u524d\u7aef\u8072\u5b78\u6a21\u578b\u7684\u6bd4\u8f03\u8207\u878d\u5408\u3002 \u4e0a\u8ff0\u7684\u65b9\u6cd5\u7686\u662f\u904b\u7528\u8072\u5b78\u6a21\u578b\u6240\u64f7\u53d6\u7684\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\u9032\u884c\u932f\u8aa4\u767c\u97f3\u7684\u6aa2\u6e2c\uff0c\u9664\u4e86\u5c07 \u97f3\u7d20\u6216\u8a9e\u53e5\u5206\u985e\u70ba\u6b63\u78ba\u767c\u97f3\u8207\u932f\u8aa4\u767c\u97f3\u5916\uff0c\u4e5f\u6709\u7814\u7a76\u8457\u91cd\u5728\u8a55\u65b7\u8a9e\u53e5\u7684\u767c\u97f3\u54c1\u8cea\u3002 Neumeyer \u7b49\u4eba[17]\u4f7f\u7528 HMM \u8a08\u7b97\u51fa\u5c0d\u6578\u76f8\u4f3c\u5ea6\u503c\u8207\u5f37\u5236\u5c0d\u4f4d(forced alignment)\u5f8c\u7684\u97f3 \u7d20\u767c\u97f3\u6301\u7e8c\u6642\u9593(duration)\u8cc7\u8a0a\uff0c\u4e26\u64da\u6b64\u5c0d\u975e\u6bcd\u8a9e\u5b78\u7fd2\u8005\u8a9e\u53e5\u5c64\u6b21\u7684\u767c\u97f3\u54c1\u8cea\u9032\u884c\u8a55\u4f30\u3002 Chen \u7b49\u4eba[18][19][20]\u63d0\u51fa\u8a5e\u5c64\u6b21\u7684\u767c\u97f3\u54c1\u8cea\u8a55\u4f30\uff0c\u5171\u5206\u6210 5 \u500b\u7b49\u7d1a\u4f86\u5340\u5206\u767c\u97f3\u7684\u54c1\u8cea\uff0c \u4e26\u4f7f\u7528\u8cc7\u8a0a\u6aa2\u7d22\u7684\u6392\u5e8f\u5b78\u7fd2\u6cd5(learning to rank)\u4f86\u7d50\u5408\u4e0d\u540c\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\u7528\u65bc\u767c\u97f3\u54c1\u8cea \u8a55\u4f30\uff1b\u5176\u4e2d\uff0c\u5728[20]\u6bd4\u8f03\u5404\u985e\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\u7684\u5f71\u97ff\u529b\u8207 4 \u7a2e\u97f3\u7d20\u5c64\u6b21\u8f49\u63db\u5230\u8a5e\u5c64\u6b21\u7684\u767c \u97f3\u6aa2\u6e2c\u7279\u5fb5\u8f49\u63db\u65b9\u6cd5\u3002 \u8b8a\u6027\u3002\u5176\u6b21\uff0cDNN \u5ffd\u7565\u4e86\u8f38\u5165\u7684\u62d3\u64b2(topological)\u7d50\u69cb\uff0c\u5b83\u7684\u8f38\u5165\u7279\u5fb5\u53ef\u4ee5\u4ee5\u4efb\u4f55\u9806\u5e8f \u8f38\u5165\u7db2\u8def\uff0c\u800c\u4e0d\u5f71\u97ff\u6700\u5f8c\u7684\u6548\u80fd[21]\uff1b\u7136\u800c\u8a9e\u97f3\u8a0a\u865f\u6240\u5c0d\u61c9\u7684\u983b\u8b5c\u5167\u5bb9\u8457\u5be6\u542b\u6709\u8c50\u5bcc\u7684 \u95dc\u806f\u6027\uff0c\u800c\u80fd\u5920\u5584\u7528\u983b\u8b5c\u7684\u5c40\u90e8\u76f8\u95dc\u6027\u800c\u5efa\u7acb\u6a21\u578b\u7684 CNN \u5728\u8a31\u591a\u4efb\u52d9\u4e0a\u7684\u6548\u679c\u90fd\u660e\u986f \u512a\u65bc DNN[25][26][27][28]\u3002\u56e0\u6b64\uff0c\u672c\u8ad6\u6587\u5c07\u878d\u5408\u5169\u8005\u7684\u512a\u9ede\uff0c\u4e26\u63a2\u8a0e\u5169\u7a2e\u985e\u795e\u7d93\u7db2\u8def\u6240 \u8a13\u7df4\u7684\u8072\u5b78\u6a21\u578b(DNN-HMM \u8207 CNN-HMM)\u5c0d\u65bc\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684\u6548\u679c\u3002 \u4e09\u3001 \u8072\u5b78\u6a21\u578b \u800c\u5728\u8072\u5b78\u6a21\u578b\u65b9\u9762\uff0c\u8207\u50b3\u7d71 GMM-(conventional filter)\u6cbf\u8457\u983b\u8b5c\u7684\u6642\u9593\u8207\u983b\u7387\u6383\u63cf\uff0c\u4ee5\u8f03\u5c11\u7684\u53c3\u6578\u6578\u91cf\u6355\u6349\u5230\u983b\u8b5c\u5e73\u79fb\u7684\u4e0d 3.1 \u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def</td></tr><tr><td>\u672c\u7bc7\u8ad6\u6587\u7684\u5b89\u6392\u5982\u4e0b\uff1a\u7b2c\u4e8c\u5c0f\u7bc0\u5c07\u4ecb\u7d39\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u76f8\u95dc\u7814\u7a76\u7684\u767c\u5c55\u8fd1\u6cc1\uff1b\u7b2c\u4e09\u5c0f</td></tr><tr><td>\u7bc0\u5247\u662f\u4ecb\u7d39\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u524d\u7aef\u6a21\u7d44\u7684\u8072\u5b78\u6a21\u578b\uff0c\u5206\u5225\u6709 GMM\u3001DNN \u8207 CNN \u4e09\u7a2e\u6a21\u578b</td></tr><tr><td>\u8207 HMM \u7684\u7d50\u5408\uff1b\u7b2c\u56db\u5c0f\u7bc0\u4ecb\u7d39\u4e09\u7a2e\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684\u65b9\u6cd5\uff0c\u5206\u5225\u662f\u767c\u97f3\u512a\u52a3\u7a0b\u5ea6</td></tr><tr><td>(goodness of pronunciation, GOP)\u3001\u652f\u6301\u5411\u91cf\u6a5f(support vector machine, SVM)\u8207\u908f\u8f2f\u8ff4\u6b78</td></tr><tr><td>(logistic regression, LR)\uff1b\u7b2c\u4e94\u5c0f\u7bc0\u5247\u662f\u5206\u6790\u4e0d\u540c\u8072\u5b78\u6a21\u578b(DNN-HMM \u548c CNN-HMM)\u5728</td></tr><tr><td>\u4e0d\u540c\u5206\u985e\u5668(GOP\u3001SVM \u548c LR)\u4e2d\u7684\u8868\u73fe\uff0c\u8207\u5c07\u5169\u7a2e\u8072\u5b78\u6a21\u578b\u7d93\u904e\u5206\u985e\u5668 LR \u6240\u7522\u751f\u7684</td></tr><tr><td>\u767c\u97f3\u6aa2\u6e2c\u5206\u6578\u503c\u4f5c\u7dda\u6027\u7d44\u5408\u5f8c\u7684\u7d50\u679c\uff0c\u4ee5\u53ca\u57fa\u65bc CNN \u8072\u5b78\u6a21\u578b\u5728\u4e0d\u540c\u5206\u985e\u5668\u6240\u7522\u751f\u7684</td></tr></table>",
"text": "Keywords\uff1aMispronunciation detection, Automatic Speech Recognition, Deep Neural Networks, Convolutional Neural Networks \u3001\u8aaa(speaking)\u3001\u8b80(reading)\u548c\u5beb(writing)\u7b49\u56db\u985e\u5b78\u7fd2\u9762\u5411\u3002\u96a8\u8457\u7b2c\u4e8c\u5916\u8a9e\u5b78\u7fd2 \u8005(second language learner)\u7684\u4eba\u6578\u8207\u65e5\u4ff1\u589e\uff0c\u83ef\u8a9e\u5e2b\u8cc7\u7684\u9700\u6c42\u4e5f\u8d8a\u4f86\u8d8a\u5927\uff1b\u5c24\u5176\u5728\u8a9e\u8a00 \u5b78\u7fd2\u4e2d\uff0c\u8aaa\u8207\u5beb\u7684\u5c0d\u932f\u5f80\u5f80\u9700\u8981\u900f\u904e\u5c08\u696d\u7684\u8a9e\u8a00\u6559\u5e2b\u4f86\u8a55\u65b7\uff0c\u4f46\u8a9e\u8a00\u6559\u5e2b\u7684\u4eba\u6578\u9060\u9060\u4e0d \u53ca\u83ef\u8a9e\u5b78\u7fd2\u8005\u6578\u91cf\u3002\u56e0\u6b64\uff0c\u96fb\u8166\u8f14\u52a9\u8a9e\u8a00\u5b78\u7fd2(computer assisted language learning, CALL)\u7684\u7814\u7a76\u9818\u57df\u8d8a\u4f86\u8d8a\u91cd\u8981\uff0c\u672c\u7bc7\u8ad6\u6587\u5c07\u5c08\u6ce8\u6b64\u7814\u7a76\u9818\u57df\u6709\u95dc\u65bc\u96fb\u8166 \u8f14 \u52a9 \u767c \u97f3 \u8a13 \u7df4 (computer assisted pronunciation training, CAPT)-\u300c\u8aaa\u300d\u7684\u6280\u8853\u767c\u5c55\u8207\u63a2\u8a0e\u3002 \u5716\u4e00\u3001\u81ea\u52d5\u767c\u97f3\u6aa2\u6e2c\u4e4b\u6d41\u7a0b \u4e00 \u822c \u800c \u8a00 \uff0c \u96fb \u8166 \u8f14 \u52a9 \u767c \u97f3 \u8a13 \u7df4 (CAPT) \u5305 \u62ec \u5169 \u500b \u90e8 \u5206 \uff1a \u5206 \u5225 \u662f \u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c (mispronunciation detection)\u8207\u932f\u8aa4\u767c\u97f3\u8a3a\u65b7(mispronunciation diagnosis)\u3002\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c \u7cfb\u7d71\u662f\u8acb\u5b78\u7fd2\u8005\u8b80\u8aa6\u53e3\u8aaa\u6559\u6750\uff0c\u91dd\u5c0d\u5b78\u7fd2\u8005\u5ff5\u8aa6\u7684\u9304\u97f3\uff0c\u6a19\u8a18\u5b78\u7fd2\u8005\u7684\u767c\u97f3\u662f\u6b63\u78ba\u767c\u97f3 (correct pronunciation)\u6216\u932f\u8aa4\u767c\u97f3(mispronunciation)\uff0c\u6a19\u8a18\u7684\u76ee\u6a19\u53ef\u4ee5\u662f\u97f3\u7d20(phone)\u5c64\u6b21 \u6216\u8a5e(word)\u5c64\u6b21\uff1b\u932f\u8aa4\u767c\u97f3\u8a3a\u65b7\u662f\u7576\u7cfb\u7d71\u5075\u6e2c\u5230\u4f7f\u7528\u8005\u7684\u767c\u97f3\u51fa\u73fe\u932f\u8aa4\u6642\u7d66\u4e88\u6709\u5e6b\u52a9\u7684 \u56de\u994b\uff0c\u5047\u8a2d\u6559\u6750\u984c\u76ee\u70ba\u300c\u5e2b\u7bc4(shi1 fan4)\u300d \uff0c\u4f46\u5b78\u7fd2\u8005\u5ff5\u6210\u300c\u5403\u7bc4(chi1 fan4)\u300d \uff0c\u7cfb\u7d71\u9664\u4e86 \u5224\u65b7\u51fa\u5b78\u7fd2\u8005\u6709\u932f\u8aa4\u767c\u97f3\u4e4b\u5916\uff0c\u9084\u53ef\u4ee5\u56de\u994b\u5b78\u7fd2\u8005\u5ff5\u7684 \u300c\u5e2b(shi1)\u300d \u53ef\u80fd\u5ff5\u6210 \u300c\u5403(chi1)\u300d\u3002 HMM \u76f8\u6bd4\uff0cDNN-HMM \u5728\u8a9e\u97f3\u8fa8\u8b58\u6e96\u78ba\u7387\u4e0a\u5df2 \u88ab\u8b49\u5be6\u80fd\u6709\u986f\u8457\u7684\u6548\u80fd\u63d0\u5347[21][22]\uff0c\u9019 \u4e3b\u8981\u53ef\u80fd\u6b78\u529f\u65bc DNN \u80fd\u5920\u6a21\u64ec\u4efb\u610f\u7684\u51fd\u6578\uff0c\u80fd \u66ff\u8a9e\u97f3\u8a0a\u865f\u6240\u5167\u542b\u7684\u8907\u96dc\u5c0d\u61c9\u95dc\u4fc2\u5efa\u7acb\u6a21\u578b\uff0c\u8868\u9054\u80fd\u529b\u6bd4 GMM \u66f4\u5f37\u3002\u512a\u826f\u7684\u4e8b\u5f8c\u6a5f\u7387 \u860a\u85cf\u8c50\u5bcc\u7684\u767c\u97f3\u9451\u5225\u6027\u8cc7\u8a0a\uff0c\u4f7f\u5f97\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684\u6548\u679c\u66f4\u597d\uff0c\u6709\u8a31\u591a DNN-HMM \u61c9\u7528 \u5728 CAPT \u7684\u6548\u679c\u5df2\u88ab\u9a57\u8b49\u52dd\u904e\u50b3\u7d71\u7684 GMM-HMM[2][16][23]\uff0c\u56e0\u6b64\u8072\u5b78\u6a21\u578b\u5728\u8a08\u7b97\u4e8b \u5f8c\u6a5f\u7387\u7684\u4efb\u52d9\u4e2d\u626e\u6f14\u8457\u975e\u5e38\u95dc\u9375\u7684\u89d2\u8272[24]\uff0c\u800c\u57fa\u65bc\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def\u7684\u8072\u5b78\u6a21\u578b\u8a08\u7b97\u800c \u5f97\u5c0d\u767c\u97f3\u6aa2\u6e2c\u6709\u5e6b\u52a9\u7684\u4e8b\u5f8c\u6a5f\u7387\u53ef\u4f7f GOP \u8207\u5176\u5b83\u5206\u985e\u5668\u9054\u5230\u6700\u4f73\u7684\u6aa2\u6e2c\u6548\u679c\u3002\u76f8\u8f03\u65bc DNN\uff0cCNN \u88ab\u8996\u70ba\u662f\u53e6\u4e00\u7a2e\u66f4\u6709\u6548\u7387\u7684\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def\uff0c\u53ef\u7528\u65bc\u64f7\u53d6\u8a9e\u97f3\u8a0a\u865f\u4e2d\u7684\u983b \u8b5c\u8b8a\u5316\u7684\u4f4d\u79fb\u4e0d\u8b8a\u6027\u4e26\u4e14\u80fd\u91dd\u5c0d\u983b\u8b5c\u7684\u76f8\u95dc\u6027\u5efa\u7acb\u6a21\u578b[6][7] \u3002CNN \u8207 DNN \u4e0d\u540c\u5728\u65bc\uff1a \u795e\u7d93\u5143\u9593\u7684\u9023\u63a5\u4e0d\u662f\u5168\u9023\u63a5\u7684(fully-connected)\u4ee5\u53ca\u540c\u4e00\u5c64\u7684\u67d0\u4e9b\u795e\u7d93\u5143\u9593\u6703\u5171\u4eab\u9023\u63a5 \u7684\u6b0a\u91cd(weight sharing)\u3002Sainath \u7b49\u4eba[7]\u63d0\u51fa CNN \u4f5c\u70ba\u8072\u5b78\u6a21\u578b\u66f4\u52dd\u65bc DNN \u7684\u539f\u56e0\u662f \u56e0\u70ba\u4ed6\u5011\u8a8d\u70ba DNN \u6709\u5169\u9805\u7f3a\u9ede\u3002\u9996\u5148\uff0cDNN \u7684\u67b6\u69cb\u4e2d\u6c92\u6709\u660e\u78ba\u5730\u8655\u7406\u8a9e\u97f3\u8a0a\u865f\u4e2d\u7684\u4e0d \u8b8a\u7279\u5fb5\u7684\u529f\u80fd\uff0c\u4f8b\u5982\u4e0d\u540c\u8a9e\u8005\u8aaa\u8a71\u65b9\u5f0f\u4e0d\u540c\uff0c\u5728\u983b\u8b5c\u4e0a\u6703\u6709\u7d30\u5fae\u7684\u4f4d\u79fb\u3002DNN \u9700\u8981\u904b \u7528\u5404\u7a2e\u8a9e\u8005\u8abf\u9069(speaker adaptation)\u6280\u8853\u4f86\u964d\u4f4e\u7279\u5fb5\u7684\u8b8a\u5316\uff0cDNN \u540c\u6642\u9700\u8981\u5de8\u5927\u7684\u7db2\u8def \u898f \u6a21 \u53ca \u5927 \u91cf \u7684 \u8a13 \u7df4 \u6a23 \u672c (training sample) \u4f86 \u9054 \u5230 \u9019\u4ef6\u4e8b\uff1b \u4f46 CNN \u80fd\u900f\u904e\u647a\u7a4d\u6838"
},
"TABREF1": {
"num": null,
"type_str": "table",
"html": null,
"content": "<table><tr><td>\u2206W \u2113 = \u2022 ( \u2113\u22121 ) \u2032 \u2113 = log (O| ) ( ) \u2211 (O| ) ( ) =1 \u63a5\u8457\u5c31\u53ef\u4ee5\u5efa\u7acb\u97f3\u7d20\u5c64\u6b21\u7684\u97f3\u7d20\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff0c\u6211\u5011\u5b9a\u7fa9\u76ee\u6a19\u767c\u97f3\u7684\u97f3\u7d20 \u6240\u5c0d\u61c9\u7684 (4) \u5c0d\u61c9\u7684\u8f38\u51fa\u4e4b\u6a5f\u7387\u4e0d\u6703\u70ba 1\uff0c\u4e26\u5b9a\u7fa9\u51fd\u6578 \u70ba\u6700\u5c0f\u5316\u4ea4\u53c9\u71b5\u76ee\u6a19\u51fd\u6578\u5982\u5f0f(19)\uff0c\u63a5\u8457\u4f7f\u7528 \u97f3\u8207\u932f\u8aa4\u767c\u97f3\uff0c\u96d9\u97f3\u7bc0\u6bcf\u500b\u8a9e\u53e5\u7531 2 \u500b\u4e2d\u6587\u5b57\u7d44\u6210\uff0c\u610f\u5373\u6bcf\u500b\u8a9e\u53e5\u53ef\u62c6\u89e3\u6210 4 \u500b\u97f3\u7d20\uff0c \u56db\u7684\u5be6\u9a57\u4e2d\u89c0\u5bdf\u5230\uff0c\u82e5\u80fd\u7d66\u4e88\u5206\u985e\u5668\u66f4\u591a\u7684\u4e8b\u5f8c\u6a5f\u7387\u505a\u70ba\u7279\u5fb5\uff0c\u5c07\u53ef\u4ee5\u5f97\u5230\u66f4\u597d\u7684\u932f\u8aa4 \u6578\u210e(. )\u53ef\u8868\u793a\u70ba\uff1a \u8ddf\u96d9\u97f3\u7bc0\u7686\u56e0\u70ba\u6a21\u578b\u7684\u7d50\u5408\u4f7f\u5f97 EER \u8207 AUC \u7684\u8868\u73fe\u90fd\u6709\u6240\u63d0\u5347\u3002\u96d6\u7136 DNN-LR \u8207 (10) \u2245 log (O| ) max =1,2,\u2026, , \u2260 (O| ) (11) \u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5 \u53ef\u4ee5\u8868\u793a\u70ba\u5f0f(16)\uff1a = [LPP( 1 , O ), LPP( 2 , O ), \u2026 , LPP( , O ), (16) \u96a8\u6a5f\u68af\u5ea6\u4e0b\u964d\u6cd5\u4f86\u6700\u5c0f\u5316\u76ee\u6a19\u51fd\u6578 \uff0c\u5982\u5f0f(20)\uff1a = \u2211 \u2211 ( ( | ) \u2212 ) \u2022 (20) \u4f46\u662f\u4e0d\u4ee3\u8868\u6bcf\u500b\u8a9e\u53e5\u7684\u97f3\u7d20\u90fd\u662f\u5ff5\u932f\uff0c\u56e0\u6b64\u8a9e\u53e5\u5c64\u6b21\u7684\u932f\u8aa4\u6a23\u672c\u61c9\u8a72\u8981\u53c3\u8003\u97f3\u7d20\u5c64\u6b21\u90a3 \u6b04\uff0c\u540c\u6a23\u7684\u9053\u7406\u4e5f\u5957\u7528\u5728\u55ae\u97f3\u7bc0\u8a9e\u6599\u5eab\u3002\u55ae\u97f3\u7bc0\u8a9e\u6599\u5eab\u4e2d\uff0c\u7537\u5973\u8a9e\u6599\u7684\u6bd4\u4f8b\u70ba 21:34\uff0c \u6bcd\u8a9e\u70ba\u83ef\u8a9e(L1)\u7684\u8a9e\u6599\u7686\u70ba\u53f0\u7063\u4eba\u53e3\u97f3\u6240\u9304\u88fd\uff0c\u975e\u6bcd\u8a9e\u7684\u83ef\u8a9e\u5b78\u7fd2\u8005(L2)\u6536\u9304\u7684\u53e3\u97f3\u5305 \u767c\u97f3\u6aa2\u6e2c\u7d50\u679c\u3002 \u6574\u9ad4\u800c\u8a00\uff0c\u96d9\u97f3\u7bc0\u7684\u8868\u73fe\u7686\u4e0d\u5982\u55ae\u97f3\u7bc0\uff0c\u539f\u56e0\u6709\u5169\u9ede\uff1a\u9996\u5148\uff0c\u9032\u884c\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u524d\uff0c \u5fc5\u9808\u5148\u900f\u904e\u8072\u5b78\u6a21\u578b\u4f86\u64f7\u53d6\u4e8b\u5f8c\u6a5f\u7387\u505a\u70ba\u6aa2\u6e2c\u7528\u7684\u7279\u5fb5\uff1b\u800c\u8072\u5b78\u6a21\u578b\u7686\u662f\u7528\u767c\u97f3\u6b63\u78ba\u7684 \u210e( ) = 2 \u2022 iRank ( ( )) \u2022 iRank ( ( CNN-LR \u5404\u81ea\u4f7f\u7528\u7684\u7d50\u679c\u4e26\u7121\u660e\u986f\u7684\u5dee\u7570\uff0c\u4f46\u7d50\u5408\u6642\u7684\u6548\u679c\u537b\u51fa\u4e4e\u610f\u6599\uff0c\u9019\u8868\u793a\u4e0d\u540c\u7684 )) iRank ( ( )) + iRank ( ( )) \u8072\u5b78\u6a21\u578b\u7522\u751f\u7684\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\u53ef\u80fd\u5177\u6709\u4e92\u88dc\u6027\u3002\u5e0c\u671b\u5728\u672a\u4f86\u7684\u7814\u7a76\u4e2d\u53ef\u4ee5\u4f7f\u7528\u66f4\u597d\u7684\u8072 (25) \u5b78\u6a21\u578b\u7279\u5fb5(\u5982\u9451\u5225\u5f0f\u8a13\u7df4\u5f8c\u7684\u8072\u5b78\u6a21\u578b\u6240\u7522\u751f\u7684\u7279\u5fb5)\uff0c\u9664\u4e86\u8072\u5b78\u6a21\u578b\u6240\u63d0\u4f9b\u7684\u76f8\u4f3c\u5ea6 LPR( 1 , , O ), LPR( 2 , , O ), \u2026 , LPR( , , O )] =1 =1 \u62ec\u7f8e\u570b\u3001\u74dc\u5730\u99ac\u62c9\u3001\u8d8a\u5357\u3001\u97d3\u570b\u3001\u65e5\u672c\u3001\u897f\u73ed\u7259\u3001\u963f\u6839\u5ef7\u7b49 23 \u570b\u7684\u5b78\u7fd2\u8005\u53e3\u97f3\uff0c\u55ae\u97f3 \u8a9e\u53e5\u8a13\u7df4\u800c\u6210\uff0c\u4f46\u662f\u5f37\u5236\u5c0d\u4f4d\u7684\u97f3\u7d20\u908a\u754c(boundary)\u662f\u6839\u64da\u6b63\u78ba\u8a9e\u53e5\u6240\u8a13\u7df4\u7684\u8072\u5b78\u6a21\u578b \u503c\u7279\u5fb5\u5916\uff0c\u672a\u4f86\u5617\u8a66\u52a0\u5165\u97fb\u5f8b(prosodic)\u7279\u5fb5\u4e26\u63a2\u8a0e\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7d50\u679c\u7684\u5f71\u97ff\uff1b\u53e6\u4e00\u65b9\u9762</td></tr><tr><td>random initial)\u4f86 \u7576\u4f5c\u7db2\u8def\u521d\u59cb\u7684\u6b0a\u91cdW\u3002\u8fd1\u5e74\u4f86\u6709\u5b78\u8005\u63d0\u51fa\u900f\u904e\u9650\u5236\u6027\u6ce2\u8332\u66fc\u6a5f(restricted boltzmann machine, RBM)\u7684\u975e\u76e3\u7763\u5f0f\u9810\u8a13\u7df4(unsupervised pre-training)[31][32][31][33]\uff0c\u9010\u5c64\u5f80\u4e0a\u9810 \u8a13\u7df4(pre-training)DNN \u7684\u53c3\u6578\u3002\u5f85\u9810\u8a13\u7df4\u5b8c\u7562\u5f8c\uff0c\u57fa\u65bc\u9810\u8a13\u7df4\u53c3\u6578\u518d\u9032\u884c\u76e3\u7763\u5f0f\u8a13\u7df4\uff0c \u53d6\u4ee3\u50b3\u7d71\u96a8\u6a5f\u521d\u59cb\u5316\u53c3\u6578\u7684\u65b9\u6cd5\u4f86\u6539\u5584\u8a9e\u97f3\u8fa8\u8b58\u7684\u6b63\u78ba\u7387[34][35][36]\uff0c\u6211\u5011\u6bcf\u5c64 DNN \u53c3\u6578\u7686\u4f7f\u7528 RBM \u4f86\u9810\u8a13\u7df4\u6b0a\u91cd\u7684\u521d\u59cb\u503c\uff0c \u2113\u22121 \u70ba\u7b2c\u2113-1\u5c64\u7684\u8f38\u51fa\u5411\u91cf\uff0c \u2113 \u70ba\u7b2c\u2113\u5c64\u7684 \u504f\u79fb\u91cf\u5411\u91cf\u3002 0 \uff1d \u2208 \u211d 0 \u00d71 \u8868\u793a\u70ba\u8f38\u5165\u8a9e\u97f3\u97f3\u6846\u5c0d\u61c9\u4e4b\u8a9e\u97f3\u7279\u5fb5\u6216\u8207\u76f8\u9130\u97f3\u6846\u5c0d\u61c9\u4e4b \u8a9e\u97f3\u7279\u5fb5\u6240\u4e32\u63a5\u800c\u6210\u7684\u7279\u5fb5\uff0c 0 \u70ba\u7279\u5fb5\u7684\u7dad\u5ea6\u3002\u5f0f(2)\u4e2d\uff0c ( )\u70ba sigmoid \u51fd\u6578\uff0c\u5176\u503c\u57df \u7bc4\u570d\u5728 0 \u5230 1 \u4e4b\u9593\u3002 DNN \u904b\u7528\u65bc\u985e\u5225(\u5982\u97f3\u7d20\u72c0\u614b\u6216\u66f4\u5c0f\u55ae\u4f4d)\u4e8b\u5f8c\u6a5f\u7387\u9810\u6e2c\u554f\u984c\u4e0a\u6642\uff0c\u6bcf\u4e00\u500b\u8f38\u51fa\u795e \u7d93\u5143\u90fd\u8868\u793a\u4e00\u7a2e\u985e\u5225\uff0c\u7e3d\u5171\u53ef\u5206\u70ba\u210b\u985e\uff0c\u8868\u793a\u70ba \u2208 {1, \u2026 , \u210b}\uff0c\u5247\u7b2c \u500b\u8f38\u51fa\u795e\u7d93\u5143\u7684\u503c \u8868\u793a\u8f38\u5165\u8a9e\u97f3\u97f3\u6846\u5c0d\u61c9\u8a9e\u97f3\u7279\u5fb5 \u5c0d\u61c9\u5230\u985e\u5225 \u7684\u6a5f\u7387 ( | )\uff0c\u5047\u8a2d\u8f38\u51fa\u5411\u91cf \u6eff\u8db3 \u591a\u9805\u5f0f\u5206\u4f48(multinomial distribution)\uff0c\u90a3\u9ebc \u9700\u8981\u6eff\u8db3 \u2265 0\u53ca\u2211 \u210b =1 = 1\uff0c\u53ef\u4ee5\u900f\u904e\u8edf \u5f0f\u6700\u5927\u5316(softmax)\u505a\u5230\uff0c\u5982\uff1a = softmax( , ) = exp( ) \u2211 exp( ) \u210b =1 (3) \u5728\u8a13\u7df4\u968e\u6bb5\uff0c\u9996\u5148\u5c0d\u6bcf\u500b\u8f38\u5165\u8a9e\u97f3\u97f3\u6846\u5c0d\u61c9\u7684\u7279\u5fb5\u505a\u5f37\u5236\u5c0d\u9f4a\uff0c\u7522\u751f\u72c0\u614b\u6a19\u7c64(state label) \u7684\u5e8f\u5217\uff0c\u9019\u4e9b\u6a19\u7c64\u7528\u65bc\u76e3\u7763\u5f0f\u8a13\u7df4\u4f86\u6700\u5c0f\u5316\u4ea4\u53c9\u71b5(cross entropy)\u76ee\u6a19\u51fd\u6578\u2212 \u2211 log \uff0c \u64ad\u6f14\u7b97\u6cd5(back-propagation)[24]\u4f7f\u7528\u96a8\u6a5f\u68af\u5ea6\u4e0b\u964d(stochastic gradient descent algorithm) \u4f86\u6700\u5c0f\u5316\u76ee\u6a19\u51fd\u6578\uff0c\u5247\u6bcf\u500b\u6b0a\u91cd\u77e9\u9663W\u7684\u66f4\u65b0\u53ef\u900f\u904e\u5f0f(4)\uff1a = log (O| ) ( ) (O) (9) LPR( , , O ) = LPP( , O ) \u2212 LPP( , O ) (15) = \u2212 ( ) (19) \u5176\u4e2d\u5f0f(18)\u7684 = {0, 1}\uff0c0 \u8868\u793a\u932f\u8aa4\u767c\u97f3\uff0c1 \u8868\u793a\u767c\u97f3\u6b63\u78ba\uff0c \u4f7f\u5f97\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5 \u96d9\u97f3\u7bc0\u8a9e\u6599\u5eab\u53ca\u55ae\u97f3\u7bc0\u8a9e\u6599\u5eab\u5169\u90e8\u5206\uff0c\u5982\u8868\u4e00\u6240\u793a\u3002\u96d9\u97f3\u7bc0\u8a9e\u6599\u5eab\u4e2d\uff0c\u7537\u5973\u8a9e\u6599\u7684\u6bd4\u4f8b \u767c\u97f3\uff0c\u800c\u975e\u6bcd\u8a9e\u7684\u83ef\u8a9e\u5b78\u7fd2\u8005(L2)\u7684\u8a9e\u6599\u5305\u542b\u65e5\u672c\u53ca\u97d3\u570b\u5169\u7a2e\u5916\u570b\u53e3\u97f3\uff0c\u6536\u9304\u4e86\u6b63\u78ba\u767c SVM \u8f38\u51fa\u5206\u6578\u7531\u4f4e\u5230\u9ad8\u6392\u540d\uff0c\u4e5f\u5c31\u662f\u5f9e\u932f\u8aa4\u767c\u97f3\u6392\u5230\u767c\u97f3\u6b63\u78ba\uff0c\u56e0\u6b64\u5b9a\u7fa9\u8abf\u548c\u5e73\u5747\u51fd \u70ba 2:3\uff0c\u6bcd\u8a9e\u70ba\u83ef\u8a9e(L1)\u7684\u8a9e\u6599\u5168\u662f\u53f0\u7063\u8a9e\u8005\u6240\u9304\u88fd\uff0c\u53ea\u6536\u9304\u6b63\u78ba\u7684\u767c\u97f3\uff0c\u6c92\u6709\u932f\u8aa4\u7684 \u6578(harmonic mean)\uff0c\u6211\u5011\u5b9a\u7fa9iRank ( ( )) \u8868\u793a\u6210\u7279\u5fb5 \u5728\u6e2c\u8a66\u96c6\u7684\u5206\u985e\u5668 \u610f\u7fa9\u662f\u8981\u6700\u5c0f\u5316 DNN \u9810\u6e2c\u7684 softmax \u8f38\u51fa\u8207\u5176\u5c0d\u61c9\u7684\u53c3\u8003\u6a19\u7c64 \u7684\u5dee\u7570\u3002\u5047\u8a2d\u53cd\u5411\u50b3 \u5716\u4e09\u3001\u647a\u7a4d\u985e\u795e\u7d93\u7db2\u8def\u4e4b\u7279\u5fb5\u67b6\u69cb 3.2 \u647a\u7a4d\u795e\u7d93\u7db2\u8def CNN \u7531\u6578\u7d44\u7684\u647a\u7a4d\u5c64(convolution layers)\u548c\u6c60\u5316\u5c64(pooling layers)\u6240\u7d44\u6210\uff0c\u647a\u7a4d\u5c64\u548c \u6c60\u5316\u5c64\u7684\u904b\u7b97\u5206\u5225\u7a31\u70ba\u647a\u7a4d(convolution)\u53ca\u6c60\u5316(pooling)\u3002\u647a\u7a4d\u5c64\u900f\u904e\u647a\u7a4d\u6838\u6383\u63cf\u8f38\u5165 \u7684\u7279\u5fb5\u5716\uff0c\u647a\u7a4d\u6838\u5c31\u50cf\u662f\u751f\u7269\u8996\u89ba\u795e\u7d93\u7684\u611f\u53d7\u5340[37]\uff0c\u6bcf\u4e00\u500b\u647a\u7a4d\u6838\u80fd\u5920\u7372\u53d6\u8f38\u5165\u7279\u5fb5 \u7684\u5c40\u90e8\u7279\u5fb5\uff1b\u800c\u6c60\u5316\u76ee\u6a19\u662f\u5c07\u647a\u7a4d\u5c64\u7684\u7279\u5fb5\u505a\u964d\u7dad\u3002\u5df2\u77e5\u8f38\u5165\u7684\u8a9e\u97f3\u7279\u5fb5\u5e8f\u5217\uff0c\u7576\u8a08\u7b97 \u97f3\u6846 \u6642\uff0c\u9700\u5de6\u53f3\u5404\u53d6 \u500b\u97f3\u6846\uff0c\u6240\u7d44\u6210\u7684\u7279\u5fb5\u5716(feature maps)\u77e9\u9663\u8868\u793a\u70ba \uff0c\u647a\u7a4d\u904b\u7b97 \u5f8c\u7684\u985e\u5225\u7279\u5fb5\u5716\u8868\u793a\u70baQ ( = 1 ,2 , \u2026 , )\uff0c\u7531 \u500b\u647a\u7a4d\u7279\u5fb5\u5716\u6240\u7d44\u6210\uff0c\u5247\u647a\u7a4d\u904b\u7b97\u53ef\u4ee5\u8996 \u70ba\u900f\u904e\u6b0a\u91cd\u77e9\u9663W , ( = 1 , \u2026 , ; = 1 , \u2026 , )\uff0c\u5c07\u8f38\u5165\u7279\u5fb5 \u6620\u5c04\u5230\u647a\u7a4d\u7279\u5fb5Q \u7684\u77e9 \u9663\u4e58\u6cd5\uff0c\u5982\u5f0f(5)\u8868\u793a\uff1a = [ \u2212C , \u2026 , \u22121 , , \u2026 , +1 , +C ] Q = ( * W , + ), ( = 1,2, \u2026 , ) (5) \u5176\u4e2d * \u8868\u793a\u70ba\u647a\u7a4d\u904b\u7b97\uff0cW , \u70ba\u5c07\u7b2c \u500b\u8f38\u5165\u7279\u5fb5\u6620\u5c04\u5230\u7b2c \u500b\u647a\u7a4d\u7279\u5fb5\u7684\u5340\u57df\u6b0a\u91cd\u77e9\u9663\uff0c \u70ba\u504f\u79fb\u91cf\u3002\u66f4\u591a\u7684\u7d30\u7bc0\u8acb\u53c3\u8003[26]\u3002\u647a\u7a4d\u5c64\u4e2d\u7684\u6b0a\u91cd\u540c\u6a23\u80fd\u900f\u904e\u53cd\u5411\u50b3\u64ad\u4f86\u5b78\u7fd2[38]\u3002 \u647a\u7a4d\u5c64\u8207\u5168\u9023\u63a5\u96b1\u85cf\u5c64\u7684\u5dee\u5225\u6709\u5169\u9ede\uff1a1)\u647a\u7a4d\u5c64\u53ea\u5f9e\u5c40\u90e8\u611f\u53d7\u91ce\u63a5\u6536\u5340\u57df\u7684\u8f38\u5165\u7279\u5fb5\uff0c \u63db\u53e5\u8a71\u8aaa\uff0c\u647a\u7a4d\u5c64\u7684\u6bcf\u500b\u5143\u7d20\u90fd\u8868\u793a\u8f38\u5165\u7684\u5340\u57df\u7279\u5fb5\u30022)\u647a\u7a4d\u5c64\u4e2d\u7684\u6bcf\u500b\u647a\u7a4d\u7279\u5fb5\u53ef\u4ee5 \u8996\u70ba\u7279\u5fb5\u5716\uff0c\u5716\u4e2d\u7684\u6bcf\u500b\u5143\u7d20\u90fd\u5171\u4eab\u76f8\u540c\u7684\u6b0a\u91cd\uff0c\u4f46\u5b83\u5011\u5404\u81ea\u662f\u6fc3\u7e2e\u81ea\u524d\u4e00\u5c64\u4e4b\u4e0d\u540c\u5340 \u57df\u7684\u7279\u5fb5\u800c\u4f86\u3002\u63a5\u4e0b\u4f86\u662f\u6c60\u5316\u7684\u90e8\u5206\uff0c\u6c60\u5316\u5c64\u662f\u5f9e\u647a\u7a4d\u5c64\u7522\u751f\u5c0d\u61c9\u7684\u6c60\u5316\u5c64\uff0c\u6bcf\u4e00\u500b\u6c60 \u5316\u7279\u5fb5\u5716\u90fd\u662f\u7531\u524d\u4e00\u5c64\u647a\u7a4d\u5c64\u7684\u647a\u7a4d\u7279\u5fb5\u5716\u505a\u6c60\u5316\u904b\u7b97\u800c\u4f86\uff0c\u56e0\u6b64\u6c60\u5316\u7279\u5fb5\u5716\u7684\u6578\u91cf\u4e5f \u6703\u8207\u647a\u7a4d\u7279\u5fb5\u5716\u7684\u6578\u91cf\u76f8\u540c\uff0c\u4e5f\u5177\u5099\u647a\u7a4d\u7279\u5fb5\u6240\u5305\u542b\u7684\u7684\u5340\u57df\u4e0d\u8b8a\u6027(local invariance)\u7684 \u7279\u6027\uff0c\u6c60\u5316\u904b\u7b97\u5206\u6210\u6700\u5927\u6c60\u5316(max-pooling)\u53ca\u5e73\u5747\u6c60\u5316(average-pooling)\u5169\u7a2e\uff0c\u4ee5\u6700\u5927\u6c60 \u5316\u6700\u591a\u4eba\u4f7f\u7528[39]\u3002\u5f71\u50cf\u8655\u7406\u4e2d\u6240\u4f7f\u7528\u7684 CNN\uff0c\u5176\u6c60\u5316\u7a97(pooling window)\u4e0d\u6703\u4e92\u76f8\u91cd \u758a\uff0c\u6c60\u5316\u7a97\u4e4b\u9593\u5f7c\u6b64\u4e26\u6392\u6c92\u6709\u7a7a\u9699\uff1b\u5728\u672c\u7bc7\u8ad6\u6587\u4e2d\uff0c\u6211\u5011\u7684\u6c60\u5316\u904b\u7b97\u4e5f\u63a1\u53d6\u9019\u6a23\u7684\u505a\u6cd5\u3002 \u56db\u3001 \u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c 4.1 \u767c\u97f3\u512a\u52a3\u7a0b\u5ea6(goodness of pronunciation, GOP) GOP \u662f\u66ff\u6bcf\u4e00\u8a5e\u5f59\u6240\u5305\u542b\u7684\u6bcf\u4e00\u500b\u97f3\u7d20\u5efa\u7acb\u4e00\u500b\u8a55\u4f30\u5206\u6578\uff0c\u4e26\u5236\u5b9a\u4e00\u500b\u9580\u6abb\u503c\u4f86 \u5340\u5206\u8a72\u97f3\u7d20\u662f\u5426\u767c\u97f3\u6b63\u78ba\u3002\u800c\u6211\u5011\u57fa\u65bc\u8a9e\u97f3\u8fa8\u8b58\u8072\u5b78\u6a21\u578b\u6240\u7d66\u4e88\u7684\u5c0d\u6578\u76f8\u4f3c\u5ea6\u503c\u4f86\u8a08\u7b97 GOP\uff0c\u82e5\u5df2\u77e5\u8a9e\u97f3\u6bb5\u843d\u7684\u8a9e\u97f3\u7279\u5fb5\u5e8f\u5217O\u5728\u5176\u76ee\u6a19(\u6b63\u78ba)\u767c\u97f3\u70ba\u97f3\u7d20 \u4e4b\u5c0d\u6578\u4e8b\u5f8c\u6a5f\u7387 log ( |O)\u5728(\u672c\u8ad6\u6587\u4e2d\u8a9e\u97f3\u7279\u5fb5\u5e8f\u5217O\u662f\u70ba\u57fa\u65bc MFCC \u6216 mel-filter bank \u8f38\u51fa\u7684\u8a9e\u97f3\u7279 \u5fb5\u6240\u69cb\u6210)\uff0c\u5247 GOP \u7684\u516c\u5f0f\u53ef\u4ee5\u5b9a\u7fa9\u6210\uff1a GOP( , O) = log ( |O) (8) \u7531\u65bc\u7121\u6cd5\u7aae\u8209\u8a9e\u53e5\u5c0d\u61c9\u7684\u6240\u6709\u8a9e\u97f3\u8a0a\u865f\uff0c\u6211\u5011\u7121\u6cd5\u5c0d\u8a9e\u97f3\u6bb5\u843d\u5c0d\u61c9\u7279\u5fb5\u5e8f\u5217O\u5efa\u7acb\u6a5f\u7387 \u6a21\u578b\uff0c\u56e0\u6b64\u5f0f(8)\u53ef\u85c9\u7531\u8c9d\u5f0f\u5b9a\u7406\u5c07\u4e8b\u5f8c\u6a5f\u7387\u8f49\u63db\u6210\u76f8\u4f3c\u5ea6\u503c (O| )\u4e58\u4e0a\u4e8b\u524d\u6a5f\u7387 ( ) \u9664\u4ee5\u7279\u5fb5\u5e8f\u5217O\u7684\u6a5f\u7387\uff0c\u5982 \u5f0f(9)\u6240\u793a\u3002\u800c\u5f0f(9)\u7684\u4e8b\u524d\u6a5f\u7387 (O)\u53ef\u4ee5\u8f49\u63db\u6210\u5c07\u6240\u6709\u97f3\u7d20\u7684 \u5c0d\u6578\u76f8\u4f3c\u5ea6\u503c\u52a0\u7e3d\u3002\u5982\u5f0f(10)\u7684\u5206\u6bcd\u9805\uff0c\u5e38\u6578 \u8868\u793a\u76ee\u6a19\u8a9e\u8a00\u4e2d\u97f3\u7d20\u7684\u7e3d\u6578\u91cf\uff0c\u5728\u932f\u8aa4 \u767c\u97f3\u6aa2\u6e2c\u7684\u4efb\u52d9\u4e2d\u4e0d\u61c9\u53d7\u5230\u97f3\u7d20\u672c\u8eab\u5728\u8a13\u7df4\u8cc7\u6599\u4e2d\u7684\u6578\u91cf\u5f71\u97ff\uff0c\u6240\u4ee5\u6211\u5011\u5047\u8a2d\u6240\u6709\u97f3\u7d20 \u7684\u4e8b\u524d\u6a5f\u7387\u7686\u76f8\u7b49( ( ) = ( ))\uff0c\u4e14\u5f0f(10)\u7684\u5206\u6bcd\u9805\u7d04\u7b49\u65bc\u97f3\u7d20 \u7684\u76f8\u4f3c\u5ea6\u503c\u53d6\u6700\u5927\u503c\uff0c \u56e0\u6b64\u5f0f(10)\u53ef\u4ee5\u88ab\u7c21\u5316\u6210\u5f0f(11)\u3002\u63a5\u8457\u5728\u5b9a\u7fa9\u9580\u6abb\u503c \u4f86\u9810\u6e2c\u767c\u97f3\u662f\u5426\u6b63\u78ba\uff1a GOP( , O) > { (12) \u5176\u4e2d\u5f0f(11)\u7684\u76f8\u4f3c\u5ea6\u503c (O| )\u5728\u8a9e\u53e5\u4e2d\u90fd\u6703\u6a6b\u8de8\u6578\u500b\u97f3\u6846\uff0c\u56e0\u6b64\u6211\u5011\u5c07\u97f3\u7d20 \u7684\u8d77\u59cb\u6642 \u9593 \u5230\u7d50\u675f\u6642\u9593 \u53d6\u5e73\u5747\uff0c\u56e0\u6b64\u97f3\u7d20 \u7684\u76f8\u4f3c\u5ea6\u503c\u53ef\u4ee5\u5beb\u6210\uff1a log (O| ) = 1 \u2212 + 1 \u2211 log ( | ) = (13) \u5728 GOP \u767c\u97f3\u7684\u8a55\u4f30\u65b9\u6cd5\u4e2d\uff0c\u53ef\u4ee5\u57fa\u65bc\u8072\u5b78\u6a21\u578b\u7684\u4e8b\u5f8c\u6a5f\u7387(\u53ef\u8996\u70ba\u4e00\u7a2e\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5) \u4f86\u9032\u884c\u8a08\u7b97\uff0c\u4e26\u900f\u904e\u9580\u6abb\u503c \u4f86\u5206\u8fa8\u767c\u97f3\u6b63\u78ba\u8207\u5426\u3002\u56e0\u6b64\uff0c\u6211\u5011\u53ef\u76f4\u89ba\u5730\u5c07 GOP \u770b\u6210\u662f \u4e00\u7a2e\u5206\u985e\u5668\uff0c\u4f46\u56e0\u70ba GOP \u53ea\u6709\u89c0\u6e2c\u76ee\u6a19\u767c\u97f3(\u6b63\u78ba)\u7684\u97f3\u7d20 \u7684\u4e8b\u5f8c\u6a5f\u7387\uff0c\u4e0b\u4e00\u5c0f\u7bc0\u5c07\u900f \u904e\u89c0\u6e2c\u5176\u5b83\u975e\u76ee\u6a19\u97f3\u7d20\u7684\u4e8b\u5f8c\u6a5f\u7387\u4e26\u4f7f\u7528\u4e0d\u540c\u7684\u5206\u985e\u6280\u8853\u4f86\u6539\u5584 GOP \u7684\u4e0d\u8db3\u3002 4.2 \u5206\u985e\u5668(Classifier) \u6b64\u5c0f\u7bc0\u5c07\u8a0e\u8ad6\u5169\u7a2e\u5206\u985e\u5668(SVM \u8207 LR)\u88ab\u5be6\u969b\u904b\u7528\u65bc\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684\u4f5c\u6cd5\u3002\u7121\u8ad6\u662f SVM \u6216\u662f LR \u5206\u985e\u5668\uff0c\u90fd\u9700\u8981\u8f38\u5165\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5 \u8207\u5c0d\u61c9\u7684 2 \u7a2e\u8f38\u51fa\u7d50\u679c{ , \u2133}\u4f5c\u70ba \u8a13\u7df4\u7684\u6a23\u672c\uff0c\u5176\u4e2d \u4ee3\u8868\u6b63\u78ba\u767c\u97f3\uff0c\u2133\u4ee3\u8868\u932f\u8aa4\u767c\u97f3\uff0c \u8868\u793a\u7b2c \u500b\u8a9e\u53e5\u7684\u7b2c \u500b\u97f3\u7d20 \u7684\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\uff0c \u8868\u793a\u8a72\u7279\u5fb5\u5c0d\u61c9\u7684\u76ee\u6a19\u767c\u97f3\u7684(\u6b63\u78ba)\u97f3\u7d20\u3002\u8f38\u5165\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5 \u7531\u5c0d\u6578\u97f3\u7d20\u4e8b\u5f8c\u6a5f\u7387(log phone posterior, LPP)[11][17]\u8207\u5c0d\u6578\u4e8b\u5f8c\u6a5f\u7387\u6bd4\u503c(log posterior ratio, LPR)[16]\u6240\u7d44\u5408\u800c\u6210\uff0c\u6211\u5011\u63a5\u7e8c 4.1 \u5c0f\u7bc0\u6240\u63d0\u53ca\u7684\u4e8b\u5f8c\u6a5f\u7387\u8a08\u7b97\u5f0f(13)\uff0c\u5c0d\u65bc\u4efb\u610f \u97f3\u7d20 \u6211\u5011\u5c07 LPP \u5b9a\u7fa9\u6210\uff1a LPP( , O ) = log ( |O ) (14) \u9664\u6b64\u4e4b\u5916\u6211\u5011\u9084\u9700\u8981\u77e5\u9053\u76ee\u6a19\u767c\u97f3(\u6b63\u78ba)\u7684\u97f3\u7d20 \u8207\u5176\u5b83\u4efb\u610f\u97f3\u7d20 \u7684\u6bd4\u503c\uff0c\u4e5f\u5c31\u662f LPR\uff0c\u5176\u516c\u5f0f\u53ef\u4ee5\u5b9a\u7fa9\u6210\uff1a LPP( , O ) \u6703\u7b49\u65bcLPP( 1 , O ), LPP( 2 , O ), \u2026 , LPP( , O ) \u7684\u5176\u4e2d\u4e00\u9805\uff0c\u4e14\u97f3\u7d20 \u2206 = \u2022 \u7bc0 L1 \u53ca L2 \u7686\u6536\u9304\u4e86\u6b63\u78ba\u8207\u932f\u8aa4\u7684\u767c\u97f3\uff0c\u55ae\u97f3\u7bc0\u4e2d\u6bcf\u500b\u8a9e\u53e5\u90fd\u662f\u4e00\u500b\u4e2d\u6587\u5b57\uff0c\u6bcf\u500b\u4e2d \u800c\u5f97\uff0c\u56e0\u6b64\u932f\u8aa4\u767c\u97f3\u7684\u5f37\u5236\u5c0d\u4f4d\u7d50\u679c\u5c07\u7121\u6cd5\u9810\u671f\uff1b\u9019\u6a23\u7684\u60c5\u6cc1\u5728\u55ae\u97f3\u7bc0\u4e2d\u4e5f\u6703\u767c\u751f\uff0c\u4e14 \u5e0c\u671b\u63a2\u7a76\u4e0d\u540c\u7d50\u5408\u65b9\u5f0f\u8207\u5404\u5f0f\u5206\u985e\u6280\u8853\u5728\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684\u8868\u73fe\uff0c\u4e26 \u4e14\u66f4\u8a73\u7d30\u8207\u5ee3\u6cdb\u5730\u63a2 (21) \u6587\u5b57\u53ef\u62c6\u89e3\u6210 2 \u500b\u97f3\u7d20\u3002\u5169\u7a2e\u8a9e\u6599\u5eab\u5728\u8a13\u7df4\u8072\u5b78\u6a21\u578b\u6642\uff0c\u90fd\u53ea\u4f7f\u7528\u8a9e\u53e5\u5b8c\u5168\u6b63\u78ba\u7684\u6a23\u672c \u5728\u96d9\u97f3\u7bc0\u6216\u591a\u97f3\u7bc0\u7684\u8a9e\u53e5\u4e2d\u5c07\u6703\u66f4\u56b4\u91cd\u3002\u7b2c\u4e8c\u500b\u53ef\u80fd\u7684\u539f\u56e0\u5247\u662f\u96d9\u97f3\u7bc0\u7684\u8cc7\u6599\u91cf\u76f8\u8f03\u65bc \u8a0e\u5404\u7a2e\u8072\u5b78\u6a21\u578b\u6240\u64f7\u53d6\u7684\u767c\u97f3\u7279\u5fb5\u4e4b\u512a\u7f3a\u9ede\u3002 ( = 1, 2, 3, \u2026 , )\u7684\u5176\u4e2d\u4e00\u9805\u7b49\u65bc\u97f3\u7d20 \u6642\uff0cLPR( , , O )\u6703\u70ba 0\u3002\u800c 4.1 \u7bc0\u63d0\u5230\u7684 GOP \u8a55\u4f30\u503c\u7b49\u540c\u65bc\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5 \u5f0f(21)\u4e2d\u7684\u53c3\u6578 \u70ba\u6b0a\u91cd \u66f4\u65b0\u6642\u7684\u5b78\u7fd2\u7387\uff0c\u5b78\u7fd2\u7387\u5c07\u96a8\u8457\u66f4\u65b0\u7684\u6b21\u6578\u9032\u884c\u8abf\u6574\uff0c\u7d93\u904e \u4f86\u8a13\u7df4\u8072\u5b78\u6a21\u578b\uff0c\u800c\u5728\u8a13\u7df4\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u6a21\u578b\u6642\u5247\u6703\u4f7f\u7528\u932f\u8aa4\u767c\u97f3\u8207\u6b63\u78ba\u7684\u8a9e\u53e5\uff0c\u4ee5\u97f3 \u55ae\u97f3\u7bc0\u9084\u8981\u5c11\u8a31\u591a\uff0c\u56e0\u6b64\u4e00\u4e9b\u8f03\u7279\u5225\u7684\u932f\u8aa4\u767c\u97f3\u4e26\u672a\u5728\u8a13\u7df4\u8cc7\u6599\u4e2d\u51fa\u73fe\u3002 \u5f8c\u534a\u90e8\u7684\u5176\u4e2d\u4e00\u500b\u7dad\u5ea6\u4e4b\u5012\u6578\uff1b\u56e0\u6b64\u3002\u5229\u7528\u7279\u5fb5 \u8a13\u7df4\u51fa\u7684\u5206\u985e\u5668\u5c07\u6703\u6bd4 GOP \u64c1\u6709\u66f4\u591a\u95dc\u65bc\u767c\u97f3\u7684\u8a0a\u606f\u3002\u63a5\u8457\u5c07\u4ecb\u7d39\u672c\u8ad6\u6587\u5617\u8a66\u6bd4 \u8f03\u7684\u5169\u7a2e\u5206\u985e\u5668\u3002 LR \u88ab\u5ee3\u6cdb\u5229\u7528\u5728\u4e8c\u985e\u5206\u985e\u554f\u984c\u7684\u4efb\u52d9\u4e2d[16][18]\uff0c\u5229\u7528 sigmoid \u7684\u7279\u6027\u4f86\u8868\u793a\u8cc7\u6599 \u7684\u5206\u4f48\uff0c\u4f46\u5728\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684\u4efb\u52d9\u4e2d\uff0c\u4e0d\u540c\u97f3\u7d20\u61c9\u8a72\u4f7f\u7528\u4e0d\u540c\u7684 LR \u5206\u985e\u5668\uff0c\u82e5\u5c07\u6240\u6709 \u97f3\u7d20\u6df7\u5728\u4e00\u8d77\u9032\u884c\u8ff4\u6b78\u5206\u6790\u53ef\u80fd\u5c0e\u81f4\u904e\u5ea6\u6df7\u6dc6\u3002\u4ee5\u4e0b\u5148\u4ecb\u7d39\u5206\u985e\u5668 LR \u5c0d\u6b63\u78ba\u767c\u97f3\u3001\u932f \u8aa4\u767c\u97f3\u6a23\u672c\u7684\u6a5f\u7387\u8868\u793a\u5982\u5f0f(17)\uff1a ( | ) = ( ) (\u2133| ) = 1 \u2212 ( | ) (17) (. )\u70ba sigmoid \u51fd\u6578\uff0c ( | )\u70ba\u5df2\u77e5\u6709\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5 \u4e0b\u767c\u751f \u7684\u6a5f\u7387\uff0c (\u2133| ) \u70ba\u5df2\u77e5\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5 \u767c\u751f\u2133\u7684\u6a5f\u7387\uff0c \u5247\u662f\u900f\u904e\u5b78\u7fd2\u4f86\u66f4\u65b0\u7684\u6b0a\u91cd(weight)\uff0c\u4e0d\u540c \u8a9e\u53e5\u4e2d\u76f8\u540c\u7684\u97f3\u7d20\u4e5f\u6703\u4f7f\u7528\u76f8\u540c\u7684\u6b0a\u91cd\uff0c\u63a5\u8457\u5b9a\u7fa9\u76f8\u4f3c\u5ea6\u503c\u51fd\u6578 \uff1a = \u220f \u220f ( | ) (\u2133| ) 1\u2212 =1 =1 (18) \u8868\u4e00\u3001\u55ae\u97f3\u7bc0\u8a9e\u6599\u5eab\u8207\u96d9\u97f3\u7bc0\u8a9e\u6599\u5eab\u4e4b\u5167\u5bb9 -\u55ae\u97f3\u7bc0 \u96d9\u97f3\u7bc0 \u6bcd\u8a9e(L1) \u7b2c\u4e8c\u5916\u8a9e(L2) L1 L2 L1 L2 \u4eba\u6578(\u4eba) 62 63 115 40 \u97f3\u7d20\u5c64\u6b21 \u6b63\u78ba\u767c\u97f3(T) \u97f3\u7d20\u5c64\u6b21 \u6b63\u78ba\u767c\u97f3(F) T F T F T F T F \u6642\u9593(\u5c0f\u6642) 9.32 1.04 13.79 9.03 3.97 0 0.89 0.94 \u8a9e\u53e5\u6578(\u53e5) 37,976 4,827 50,856 32,726 10,384 0 1,994 2,003 \u97f3\u7d20\u6578\u91cf(\u500b) 76,638 4,976 119,512 36,862 38,939 0 12,449 2,539 \u6578\u6b21\u66f4\u65b0\u5f8c\u76f4\u5230\u6b0a\u91cd \u7684\u6539\u8b8a\u904e\u5c0f\u5247\u6536\u6582\uff0c\u63a5\u8457\u7576\u8f38\u5165\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\u70ba \u6642\uff0c\u8a72\u6bb5 \u767c\u97f3\u70ba\u6b63\u78ba\u767c\u97f3\u7684\u6a5f\u7387\u5247\u70ba ( | ) = ( )\u3002 SVM[15]\u662f\u4e00\u7a2e\u6548\u80fd\u8868\u73fe\u826f\u597d\u7684\u5206\u985e\u5668\uff0c\u4ed6\u53ef\u4ee5\u900f\u904e\u5c07\u7279\u5fb5\u8f49\u63db\u5230\u66f4\u9ad8\u7dad\u5ea6\u7684\u7a7a\u9593 \u4f86\u89e3\u6c7a\u8cc7\u6599\u7dda\u6027\u4e0d\u53ef\u5206\u7684\u554f\u984c\uff0c\u6211\u5011\u5b9a\u7fa9\u51fd\u6578s(. )\u7528\u4f86\u8868\u793a SVM \u7d66\u4e88\u7279\u5fb5\u7684 \u6c7a\u7b56 \u503c\uff0c\u4e26\u5c07s( )\u4ee3\u5165 sigmoid \u51fd\u6578 (. )\u7528\u4ee5\u8868\u793a\u6b63\u78ba\u767c\u97f3\u7684\u6a5f\u7387 ( | ) = (s( ))\u3002 \u672c\u7bc7\u8ad6\u6587\u4f7f\u7528 python \u7684\u73fe\u6709\u6a21\u7d44\"scikit-learn[40]\"\u6240\u63d0\u4f9b\u7684 SVM \u8207 LR \u5de5\u5177\uff0c\u6838\u5fc3\u51fd\u6578 \u70ba\u5f91\u5411\u57fa\u51fd\u6578\u6838(radial basis function kernel)\u3002 \u4e94\u3001 \u5be6\u9a57 \u6bcf\u7a2e\u8a9e\u8a00\u7684\u932f\u8aa4\u53ef\u5206\u6210\u4e09\u7a2e\uff1a\u66ff\u63db(substitution)\u3001\u63d2\u5165(insertion)\u3001\u522a\u9664(deletion)[41]\u3002 \u5c0d\u83ef\u8a9e\u4f86\u8aaa\uff0c\u6bcf\u500b\u5b57(character)\u90fd\u5c6c\u65bc\u4e00\u500b\u97f3\u7bc0\uff0c\u800c\u6bcf\u500b\u97f3\u7bc0\u53c8\u53ef\u62c6\u6210\u4e09\u500b\u90e8\u5206\uff1a\u8072\u6bcd (initial)\u3001\u97fb\u6bcd(final)\u3001\u8072\u8abf(tone)\u3002\u5c0d\u65bc\u6709\u83ef\u8a9e\u57fa\u790e\u77e5\u8b58\u7684\u5b78\u7fd2\u8005\u800c\u8a00\u4e26\u4e0d\u6613\u767c\u751f\u63d2\u5165 \u53ca\u522a\u9664\u7684\u932f\u8aa4\uff0c\u4f46\u83ef\u8a9e\u662f\u4e00\u7a2e\u8072\u8abf\u8a9e\u8a00(tonal language)\uff0c\u8072\u8abf\u7684\u767c\u97f3\u76f8\u8f03\u65bc\u8072\u6bcd\u3001\u97fb\u6bcd \u5247\u66f4\u5bb9\u6613\u5ff5\u932f\u3002[8][42][43] \u7684\u7814\u7a76\u4e0d\u63a2\u7a76\u8072\u8abf\u7684\u5f71\u97ff\uff0c\u800c\u672c\u8ad6\u6587\u5c07\u8072\u8abf\u4f9d\u9644\u5728\u97fb\u6bcd\u4e4b \u5f8c\uff0c\u4e5f\u5c31\u662f\u4e00\u500b\u97f3\u7bc0\u53ef\u62c6\u6210\u8072\u6bcd\u53ca\u8072\u8abf\u97fb\u6bcd(tonal final)\u5169\u500b\u97f3\u7d20\u3002 5.1 \u8a9e\u6599\u5eab \u65b9\u5f0f\uff0c\u5728\u6b64\u6211\u5011\u57fa\u65bc\u6bcf\u500b\u97f3\u7d20\u5728\u4e0d\u540c\u5206\u985e\u5668\u4e4b\u7d50\u679c\u7684\u6392\u540d\uff0c\u4e26\u5c0d\u6392\u540d\u7d50\u679c\u8a08\u7b97\u8abf\u548c\u5e73\u5747 \u6211\u5011\u7684\u8a9e\u6599\u5eab\u4f7f\u7528\u81fa\u7063\u5e2b\u7bc4\u5927\u5b78\u9081\u5411\u9802\u5c16\u5927\u5b78\u8a08\u756b\u7684\u83ef\u8a9e\u5b78\u7fd2\u8005\u53e3\u8a9e\u8a9e\u6599\u5eab\uff0c\u5206\u6210 \u8868\u4e8c\u3001\u55ae\u97f3\u7bc0\u8207\u96d9\u97f3\u7bc0\u5728\u4e0d\u540c HMM \u7684\u5b57\u932f\u8aa4\u7387(character error rate, CER)\u8207\u97f3\u7d20\u932f \u8aa4\u7387(phone error rate, PER) ASR performance \u55ae\u97f3\u7bc0 (%) \u96d9\u97f3\u7bc0 (%) CER PER CER PER L1 L2 L1 L2 L1 L2 L1 L2 GMM 66.53 80.16 46.00 58.70 55.83 57.29 39.66 39.45 DNN 22.25 37.11 13.34 24.71 15.62 24.37 10.20 16.46 CNN(a) 21.17 36.32 12.76 24.23 16.06 22.61 10.37 14.95 CNN(b) 20.15 36.05 12.01 24.32 17.16 24.37 11.89 16.08 \u7d20\u5c64\u6b21\u7684\u767c\u97f3\u4f86\u8a13\u7df4\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u6a21\u578b\u3002 5.2 \u5be6\u9a57\u8a2d\u5b9a \u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7cfb\u7d71\u7684\u512a\u52a3\u8207\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u7684\u8868\u73fe\u606f\u606f\u76f8\u95dc\uff0c\u56e0\u6b64\u6211\u5011\u5148\u5206\u6790\u8a9e\u97f3\u8fa8 \u8b58\u7cfb\u7d71\u7684\u8868\u73fe\u3002\u6211\u5011\u5c07\u8a9e\u6599\u5eab\u4e2d\u7684\u6b63\u78ba\u767c\u97f3\u5206\u6210\u8a13\u7df4\u96c6(training set) \u3001\u767c\u5c55\u96c6(development set)\u8207\u6e2c\u8a66\u96c6(test set)\uff0c\u4f7f\u7528\u9ad8\u65af\u6df7\u5408\u6a21\u578b\u91dd\u5c0d\u8a13\u7df4\u96c6\u4f86\u5b78\u7fd2\u8a9e\u97f3\u8a0a\u865f\u7684\u5206\u4f48\uff0c\u4ee5\u53ca\u57fa\u65bc GMM-\u6587\u7684\u76ee\u7684\u70ba\u97f3\u7d20\u5c64\u6b21\u7684\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\uff0c\u56e0\u6b64\u6211\u5011\u5c07\u9078\u64c7\u5c0d\u65bc\u83ef\u8a9e\u5b78\u7fd2\u8005(L2)\u4e14\u97f3\u7d20\u932f \u8aa4\u7387\u8f03\u4f4e\u7684\u8072\u5b78\u6a21\u578b\u505a\u70ba\u7522\u751f\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u6240\u9700\u7684\u7279\u5fb5\u3002 5.3 \u5be6\u9a57\u7d50\u679c \u5716\u56db\u6211\u5011\u6bd4\u8f03\u4e86\u8072\u5b78\u6a21\u578b DNN\u3001CNN \u5206\u5225\u4f7f\u7528 GOP\u3001SVM\u3001LR \u7b49\u5206\u985e\u5668\u6240\u7522\u751f \u7684 6 \u7a2e\u7d50\u679c\uff0c\u6bcf\u7a2e\u7d50\u679c\u90fd\u662f\u7531\u4e0d\u540c\u5206\u985e\u5668\u6240\u7522\u751f\u7684\u8f38\u51fa\u5206\u6578\u4e26\u900f\u904e\u8abf\u6574\u9580\u6abb\u503c\u4f86\u7e6a\u88fd\u5716 \u56db\u3001\u4e94\u8207\u516d\u7684 Recall-Precision \u66f2\u7dda\uff0c\u6211\u5011\u5c07\u66f2\u7dda\u4e2d\u53ec\u56de\u7387\u8207\u7cbe\u6e96\u5ea6\u76f8\u540c\u7684\u9ede\u4f5c\u70ba\u8a55\u4f30\u6a19 \u6e96\u3002\u5176\u4e2d\u53ec\u56de\u7387\u8207\u7cbe\u6e96\u5ea6\u6240\u986f\u793a\u7684\u6578\u503c\u662f\u5c0d\u65bc\u932f\u8aa4\u767c\u97f3\u7684\u6a23\u672c\u6240\u505a\u7684\u8a08\u7b97\uff0c\u7531\u65bc\u767c\u97f3 \u6b63\u78ba\u7684\u6a23\u672c\u6578\u591a\u904e\u65bc\u932f\u8aa4\u7684\u767c\u97f3\uff0c\u56e0\u6b64\u5728\u672c\u8ad6\u6587\u7684\u5be6\u9a57\u4e2d\u5c07\u4e0d\u984d\u5916\u63a2\u8a0e\u6b63\u78ba\u767c\u97f3\u7684 Recall-Precision \u66f2\u7dda\u3002\u9996\u5148\u5206\u6790\u55ae\u97f3\u7bc0\u7684\u90e8\u5206(\u5716\u56db\u5de6)\uff0c\u5728\u5206\u985e\u5668 GOP\u3001SVM\u3001LR \u4f7f \u8072\u5b78\u6a21\u578b DNN \u8207 CNN \u5728\u5206\u985e\u5668 LR \u4e0b\u5404\u81ea\u7684\u8868\u73fe\u8207\u7d50\u5408\u5f8c\u7684\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u4e4b\u8868 \u73fe\u5982\u5716\u4e94\uff0c\u6211\u5011\u5c07 CNN-LR \u7684\u5206\u985e\u6a5f\u7387\u51fd\u6578\u5b9a\u7fa9\u6210 (. )\uff0cDNN-LR \u7684\u5206\u985e\u6a5f\u7387\u51fd\u6578 \u5b9a\u7fa9\u6210 (. )\uff0c\u5ef6\u7e8c 4.2 \u5c0f\u7bc0\u7684\u7279\u5fb5 \uff0c\u5176\u4e2d ( )\u3001 ( )\u53ef\u4ee5\u8868\u793a\u6210\uff1a ( ) = (( ) ) (22) ( ) = (( ) ) (23) \u6b0a\u91cd \u6703\u56e0\u70ba\u8072\u5b78\u6a21\u578b\u7684\u4e0d\u540c\u800c\u4f7f\u7528\u4e0d\u540c\u7684\u6b0a\u91cd( \u8207 )\uff0c \u8868\u793a\u5c0d\u61c9\u97f3\u7d20 \u7684\u6b0a\u91cd\uff0c\u5728 4.2 \u5c0f\u7bc0\u6709\u8aaa\u660e \u7684\u8a13\u7df4\u65b9\u5f0f\u4ee5\u53ca\u63d0\u5230\u6bcf\u500b\u97f3\u7d20\u61c9\u5206\u958b\u8a13\u7df4\uff0c\u56e0\u70ba\u5404\u97f3\u7d20 \u7684\u5c0d\u932f\u60c5\u6cc1\u5404\u6709\u4e0d\u540c\uff0c\u61c9\u907f\u514d\u5728\u540c\u4e00\u5206\u985e\u5668\u4e2d\u7522\u751f\u4e0d\u5fc5\u8981\u7684\u6df7\u6dc6\u3002\u63a5\u8457\u6211\u5011\u5728\u5b9a\u7fa9\u4e00\u500b \u53c3\u6578\u03bb\uff0c\u5176\u503c\u57df\u70ba0 \u2264 \u2264 1\uff0c\u8a72\u53c3\u6578\u7528\u4f86\u7dda\u6027\u7d50\u5408 \u8207 \u7684\u7d50\u679c\uff1a ( ) = \u2022 ( ) + (1 \u2212 ) \u2022 ( ) (24) ( )\u5247\u70ba\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u6a21\u578b DNN-LR \u8207 CNN-LR \u8f38\u51fa\u5206\u6578\u7684\u7d50\u5408\uff0c\u5982\u540c 4.1 \u5c0f\u7bc0\u7684 \u5f0f(8)\u5b9a\u7fa9\u9580\u6abb\u503c \u4f86\u6c7a\u5b9a\u767c\u97f3\u70ba\u6b63\u78ba\u6216\u932f\u8aa4\uff0c\u5728\u5716\u4e94\u7684\u5be6\u9a57\u4e2d\u6211\u5011\u5c07\u03bb\u8a2d\u5b9a\u70ba 0.5\uff0c\u4e26\u8abf \u6574\u9580\u6abb\u503c \u756b\u51fa\u5716\u4e94\u7684\u66f2\u7dda\uff0c\u5f9e\u5716\u4e94(\u5de6)\u55ae\u97f3\u7bc0\u5be6\u9a57\u4e2d\u53ef\u4ee5\u89c0\u5bdf\u5230\u7dda\u6027\u7d50\u5408\u5169\u7a2e\u7279\u5fb5\u6240 \u7522\u751f\u7684\u6a5f\u7387\u503c\u5c07\u53ef\u4ee5\u5f97\u5230\u4e0d\u932f\u7684\u6210\u6548\uff0c\u7531 DNN-LR \u7684 63.81%\u9032\u6b65\u81f3\u7dda\u6027\u7d50\u5408\u5f8c\u7684 67.23%\u7d04\u6709 3.42%\u7684\u9032\u6b65\uff0c\u800c\u96d9\u97f3\u7bc0(\u5716\u4e94\u53f3)\u7d93\u904e\u7dda\u6027\u7d50\u5408\u5f8c\u5f9e 54.47%\u5230 55.98%\u5f97\u5230 1.51%\u7684\u9032\u6b65\u3002 \u63a5\u8457\u5728\u5716\u516d\u4e2d\u6211\u5011\u5c07\u63a2\u8a0e\u4f7f\u7528 CNN \u8072\u5b78\u6a21\u578b\u6240\u64f7\u53d6\u7684\u7279\u5fb5\u5728\u4e0d\u540c\u5206\u985e\u5668(SVM\u3001 LR)\u7d50\u5408\u7684\u6548\u679c\uff0c\u7531\u65bc\u4e0d\u540c\u5206\u985e\u5668\u7684\u8f38\u51fa\u503c\u57df\u4e26\u4e0d\u4e00\u81f4\uff0c\u6240\u4ee5\u6211\u5011\u4e0d\u4f7f\u7528\u5f0f(24)\u7684\u7d50\u5408 \u56e0\u6b64\u51fd\u6578\u210e(. )\u7684\u8f38\u51fa\u5206\u6578\u5982\u540c\u51fd\u6578 (. )\u548c (. )\uff0c\u8d8a\u9ad8\u8868\u793a\u6b63\u78ba\u767c\u97f3\u3001\u8d8a\u4f4e\u8868\u793a\u932f\u8aa4\u767c\u97f3\uff0c \u51fd\u6578\u210e(. )\u8207iRank(. )\u7684\u503c\u57df\u70ba1~ \uff0c\u5e38\u6578 \u8868\u793a\u6e2c\u8a66\u96c6\u7684\u97f3\u7d20\u5c64\u6b21\u6a23\u672c\u6578\u3002\u5f9e\u5716\u516d(\u5de6)\u53ef \u4ee5\u767c\u73fe\u8072\u5b78\u6a21\u578b CNN \u4e4b\u7279\u5fb5\u7528\u65bc\u5206\u985e\u5668 SVM \u8207 LR \u4e4b\u7d50\u5408\u5728\u55ae\u97f3\u7bc0\u7684\u8868\u73fe(65.21%)\u4e0d \u5982\u5716\u4e94(\u5de6)(27)\uff1a TPR = TP (TP + FN) (26) FPR = FP (FP + TN) (27) \u66f2\u7dda\u4e0b\u9762\u7a4d(AUC)\u4e4b\u6bd4\u8f03 -TP TN FP FN AUC (%) DNN 921 185 61 301 80.90 CNN 925 186 60 297 81.18 C+D 940 189 57 282 82.58 \u5716\u516b\u3001\u96d9\u97f3\u7bc0\u5728\u5206\u985e\u5668 LR \u5728\u4e0d\u540c\u8072\u5b78 \u6a21\u578b\u7684 ROC \u66f2\u7dda CNN 9,569 2,880 821 2,698 84.02 C+D 9,821 2,967 734 2,446 86.70 \u5716\u4e03\u3001\u55ae\u97f3\u7bc0\u5728\u5206\u985e\u5668 LR \u5728\u4e0d\u540c\u8072\u5b78 \u6a21\u578b\u7684 ROC \u66f2\u7dda \u7528\u4e0d\u540c\u8072\u5b78\u6a21\u578b(CNN \u8207 \u5716\u4e94\u3001\u6bd4\u8f03\u96d9\u97f3\u7bc0(\u5de6\u5074)\u8207\u55ae\u97f3\u7bc0(\u53f3\u5074)\u5f9e\u4e0d\u540c HMM \u64f7\u53d6\u51fa\u7684\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5 \u4f7f\u7528 LR \u5206\u985e\u5668\u8207\u4e0d\u540c HMM \u767c\u97f3\u6aa2\u6e2c\u4e4b LR \u5206\u985e\u5668\u8f38\u51fa\u5206\u6578\u7684\u7dda\u6027\u7d44\u5408(M/DS-C+D-LR)\u4e4b Recall-Precision \u66f2\u7dda \u7121\u8ad6\u662f\u55ae\u97f3\u7bc0\u6216\u96d9\u97f3\u7bc0\u4e2d\uff0c\u53ef\u4ee5\u89c0\u5bdf\u5230\u5206\u985e\u5668 LR \u7684\u8868\u73fe\u7686\u512a\u65bc SVM\uff1b\u6211\u5011\u4f7f\u7528 \u8072\u5b78\u6a21\u578b DNN \u7522\u751f\u7684\u6aa2\u6e2c\u7279\u5fb5\u6240\u8a13\u7df4\u7684\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u6a21\u578b\u5728\u55ae\u97f3\u7bc0\u8a13\u7df4\u8cc7\u6599\u4e2d\u9032\u884c\u6e2c \u8868\u4e09\u3001\u55ae\u97f3\u7bc0\u5728\u5206\u985e\u5668 LR \u5728\u4e0d\u540c\u8072\u5b78\u6a21 \u81f4\u8b1d \u578b\u7684 ROC \u7a7a\u9593\u503c(TP\u3001TN\u3001FP \u8207 FN)\u8207 \u8a66(test on train set)\uff0c\u6703\u767c\u73fe\u5206\u985e\u5668 SVM \u7684\u6a21\u578b\u5c0d\u65bc\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684 Recall-Precision \u76f8 \u540c\u6642\u53ef\u4ee5\u9054\u5230 99.49%\uff0c\u800c\u5206\u985e\u5668 LR \u5247\u662f 86.73%\uff0c\u4f46\u662f\u63db\u5230\u6e2c\u8a66\u8cc7\u6599\u6642\u5247\u662f LR \u8868\u73fe \u672c\u8ad6\u6587\u4e4b\u7814\u7a76\u627f\u8499\u6559\u80b2\u90e8-\u570b\u7acb\u81fa\u7063\u5e2b\u7bc4\u5927\u5b78\u9081\u5411\u9802\u5c16\u5927\u5b78\u8a08\u756b(104-2911-I-003-301) \u66f2\u7dda\u4e0b\u9762\u7a4d(AUC)\u4e4b\u6bd4\u8f03 \u8207\u884c\u653f\u9662\u79d1\u6280\u90e8\u7814\u7a76\u8a08\u756b(MOST 104-2221-E-003-018-MY3, MOST 103-2221-E-003-016-\u52dd\u904e SVM\u3002\u6211\u5011\u5c0d\u65bc SVM \u6548\u679c\u4e0d\u5982 LR \u5206\u985e\u5668\u7684\u73fe\u8c61\u6709\u5169\u7a2e\u89e3\u91cb\uff1a1)\u7531\u4e0a\u8ff0\u73fe\u8c61\u53ef\u89c0 MY2, NSC 103-2911-I-003-301)\u4e4b\u7d93\u8cbb\u652f\u6301\uff0c\u8b39\u6b64\u81f4\u8b1d\u3002 \u5bdf\u5230 SVM \u767c\u751f\u904e\u5ea6\u64ec\u5408\u7684\u73fe\u8c61\uff0c\u4f7f\u5f97\u8f49\u63db\u5230\u6e2c\u8a66\u8cc7\u6599\u9032\u884c\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u6642\u7684\u8868\u73fe\u4e0d\u5982 -TP TN FP AUC FN (%) \u9810\u671f\uff1b2)\u6211\u5011\u4f7f\u7528\u7684 SVM \u6838\u5fc3\u51fd\u6578\u6703\u5c07\u7279\u5fb5\u8f49\u63db\u5230\u8f03\u9ad8\u7684\u7dad\u5ea6\u4ee5\u4fbf\u9032\u884c\u7dda\u6027\u8ff4\u6b78\u5206\u6790\uff0c \u53ef\u80fd\u8f49\u63db\u7684\u65b9\u6cd5\u4e26\u4e0d\u5b8c\u5168\u9069\u7528\u65bc\u6e2c\u8a66\u8cc7\u6599\u3002\u56e0\u6b64\uff0c\u6211\u5011\u5728\u63a5\u4e0b\u4f86\u7684\u5be6\u9a57\u5c07\u63a2\u8a0e\u5206\u985e\u5668 LR \u5728\u4e0d\u540c\u8072\u5b78\u6a21\u578b\u4ee5\u53ca\u4e0d\u540c\u6aa2\u6e2c\u6a21\u578b\u4e4b\u8f38\u51fa\u5206\u6578\u5728\u7dda\u6027\u7d44\u5408\u4e0a\u7684\u8868\u73fe\u3002 DNN 9,609 2,896 805 2,658 84.42 \u4e03\u3001 \u53c3\u8003\u6587\u737b</td></tr></table>",
"text": "\u5176\u4e2d \u70ba\u5b78\u7fd2\u7387(learning rate)\uff0c \u2113 \u70ba\u7b2c\u2113\u5c64\u7684\u932f\u8aa4\u8a0a\u865f(error signal)\u3002 HMM \u6240\u6821\u6e96\u7684\u6587\u5b57\u8207\u97f3\u6846\u4e4b\u5c0d\u61c9\u95dc\u4fc2\u4f86\u85c9\u7531 DNN-HMM \u8207 CNN-DNN-HMM \u5b78\u7fd2\u8a9e\u97f3\u8a0a\u865f\u7684\u5206\u4f48\uff0c\u70ba\u4e86\u63cf\u8ff0\u65b9\u4fbf\uff0c\u5c07\u8072\u5b78\u6a21\u578b GMM-HMM\u3001DNN-HMM \u8207 CNN-DNN-HMM \u7c21\u7a31\u70ba GMM\u3001DNN \u8207 CNN\u3002\u767c\u5c55\u96c6\u76ee\u7684\u5728\u65bc\u985e\u795e\u7d93\u7db2\u8def\u7b49\u76f8\u95dc\u7684\u6a21\u578b\u5728 \u8a13\u7df4\u6642\u5bb9\u6613\u767c\u751f\u904e\u5ea6\u64ec\u5408(over fitting)\uff0c\u56e0\u6b64\u6211\u5011\u5207\u51fa\u4e00\u584a\u767c\u5c55\u96c6\u4f86\u5f15\u5c0e\u6a21\u578b\u5728\u8a13\u7df4\u6642 \u4e0d\u8981\u904e\u5ea6\u50be\u5411\u8a13\u7df4\u96c6\u3002\u63a5\u8457\u518d\u4f7f\u7528 GMM\u3001DNN \u8207 CNN \u6240\u8a13\u7df4\u51fa\u7684\u8a9e\u97f3\u8fa8\u8b58\u5668\u5c0d\u6e2c\u8a66 \u96c6\u9032\u884c\u8fa8\u8b58\uff0c\u8fa8\u8b58\u7d50\u679c\u5982\u8868\u4e8c\u3002 \u6211\u5011\u57fa\u65bc Kaldi \u8a9e\u97f3\u8fa8\u8b58\u5de5\u5177[44]\uff0c\u5c07\u83ef\u8a9e\u5b78\u7fd2\u8005\u767c\u97f3\u7684\u8a9e\u97f3\u8a0a\u865f\u5207\u6210\u97f3\u6846\u5f8c\uff0c\u9130 \u8fd1\u7684\u6578\u500b\u97f3\u6846\u6574\u5408\u6210\u9130\u8fd1\u97f3\u7a97(context window)\uff0c\u901a\u5e38\u63a1\u7528\u524d\u5f8c\u5404 5 \u500b\u97f3\u6846\uff0c\u7e3d\u5171 11 \u500b \u97f3\u6846\u4f86\u7576\u4f5c\u4e00\u500b\u9130\u8fd1\u97f3\u7a97\u7684\u5927\u5c0f\uff0c\u5f9e\u97f3\u7a97\u7684\u8a9e\u97f3\u8a0a\u865f\u62bd\u53d6\u51fa 13 \u7dad\u7684 MFCC \u7279\u5fb5\u52a0\u4e0a 3 \u7dad\u5ea6\u7684\u97f3\u8abf(pitch)\uff0c\u4e26\u5c0d 16 \u7dad\u8a9e\u97f3\u7279\u5fb5\u53d6\u76f8\u5c0d\u7684\u4e00\u7686\u5dee\u91cf\u4fc2\u6578(delta coefficient)\u548c\u4e8c\u7686 \u5dee\u91cf\u4fc2\u6578(acceleration coefficient)\u7576\u4f5c DNN \u7684\u8f38\u5165\u7279\u5fb5\u3002\u5148\u900f\u904e GMM \u5c0d\u8a9e\u97f3\u7279\u5fb5\u8a13\u7df4 \u55ae\u9023\u97f3\u7d20(monophone)\u7684\u8072\u5b78\u6a21\u578b\uff0c\u55ae\u97f3\u7bc0\u8207\u96d9\u97f3\u7bc0\u8a9e\u6599\u5eab\u4e2d\u7686\u6709 183 \u500b\u55ae\u9023\u97f3\u7d20(\u8072\u6bcd \u6709 24 \u500b\uff0c\u8072\u8abf\u97fb\u6bcd\u6709 159 \u500b)\uff0c\u63a5\u8457\u4fdd\u7559 GMM \u8a08\u7b97\u51fa\u4f86\u7684\u521d\u59cb\u6a5f\u7387\u3001\u8f49\u79fb\u6a5f\u7387\u8207\u5f37\u5236 \u5c0d\u9f4a\u7684\u8cc7\u8a0a\uff0c\u53d6\u4ee3 GMM\uff0c\u8a13\u7df4\u7522\u751f\u6bcf\u500b\u97f3\u6846\u6240\u5c0d\u61c9 HMM \u72c0\u614b\u7684\u6a5f\u7387\uff0c\u518d\u6839\u64da\u5f37 \u5716\u56db\u3001\u6bd4\u8f03\u55ae\u97f3\u7bc0(\u5de6\u5074)\u8207\u96d9\u97f3\u7bc0(\u53f3\u5074)\u5f9e\u4e0d\u540c HMM \u8403\u53d6\u51fa\u7684\u7279\u5fb5\u4f7f\u7528\u4e0d\u540c \u5206\u985e\u5668\u4e4b Recall-Precision \u66f2\u7dda \u5236\u5c0d\u9f4a\u7684\u8cc7\u8a0a\u53d6\u5f97\u6bcf\u500b\u97f3\u7d20\u6240\u5c0d\u61c9\u5230\u97f3\u6846\u6578\u91cf\uff0c\u4f86\u8a08\u7b97\u6bcf\u500b\u97f3\u7d20\u7684\u4e8b\u5f8c\u6a5f\u7387\uff0c\u7576\u4f5c HMM \u7684\u89c0\u6e2c\u6a5f\u7387\u3002\u5728 CNN \u7684\u8f38\u5165\u7279\u5fb5\u8a2d\u5b9a\u65b9\u9762\uff0c\u6211\u5011\u4f7f\u7528\u5f9e\u6885\u723e\u983b\u8b5c\u4fc2\u6578(mel-scale frequency spectral coefficients, MFSC)\u53d6\u5f97\u7684\u5c0d\u6578\u80fd\u91cf\u7279\u5fb5\u4e26\u900f\u904e\u6ffe\u6ce2\u5668\u7d44(filter banks) \u6240\u7522\u751f\u7684 40 \u7dad\u8f38\u51fa\u4f5c\u70ba CNN \u7684\u8f38\u5165\u8a9e\u97f3\u7279\u5fb5\uff0c\u9130\u8fd1\u97f3\u7a97\u6211\u5011\u63a1\u7528\u524d\u5f8c\u5404 5 \u500b\u97f3\u6846\uff0c \u5171\u542b 11 \u500b\u97f3\u6846\uff0c\u6bcf\u500b\u97f3\u6846\u7686\u70ba 40 \u7dad\u7684 filter banks \u8f38\u51fa\u52a0\u4e0a 3 \u7dad\u5ea6\u97f3\u8abf\u7279\u5fb5\uff0c\u4e26\u5c0d 43 \u7dad\u8a9e\u97f3\u7279\u5fb5\u53d6\u76f8\u5c0d\u7684\u4e00\u7686\u5dee\u91cf\u4fc2\u6578(delta coefficient)\u548c\u4e8c\u7686\u5dee\u91cf\u4fc2\u6578(acceleration coefficient)\uff0c\u5247\u8f38\u5165\u7684\u8a9e\u97f3\u7279\u5fb5\u5c31\u6703\u5f97\u5230 11 \u500b 129 \u7dad\u7684\u7279\u5fb5\u5411\u91cf\u3002\u6211\u5011\u8b93 CNN \u6cbf\u8457\u7279\u5fb5\u983b \u7387\u8ef8\u505a\u647a\u7a4d\uff0c\u4e26\u4f7f\u7528 2 \u5c64\u7684 CNN\uff0c\u53d6\u4ee3 DNN \u4f5c\u70ba\u7279\u5fb5\u62bd\u53d6\u7684\u5de5\u5177\uff0c\u4f7f\u7d93\u904e\u7db2\u8def\u5f97\u5230\u7684 \u4e8b\u5f8c\u6a5f\u7387\u5bcc\u542b\u767c\u97f3\u9451\u5225\u529b\u7684\u8cc7\u8a0a\u3002 CNN(a)\u548c(b)\u4f7f\u7528 40 \u7dad\u5ea6 filter banks \u7279\u5fb5\u52a0\u4e0a 3 \u7dad\u5ea6\u97f3\u8abf\u7279\u5fb5\u3002\u5728 DNN \u8207 CNN \u7684\u96b1\u85cf\u5c64\u6578\u91cf\u8207\u5404\u5c64\u795e\u7d93\u5143\u6578\u91cf\u7684\u9078\u64c7\u4e2d\uff0cDNN \u4f7f\u7528\u57fa\u672c\u7684 4 \u5c64\u96b1\u85cf\u5c64\uff0c\u5404\u5c64\u6709 1024 \u500b\u795e\u7d93\u5143\uff1bCNN(a)\u4f7f\u7528 2 \u7d44 CNN \u5c64\u52a0\u4e0a 2 \u5c64\u5404\u6709 512 \u500b\u795e\u7d93\u5143\u7684 DNN \u96b1\u85cf \u5c64\uff1bCNN(b)\u4f7f\u7528 2 \u7d44 CNN \u5c64\u52a0\u4e0a 2 \u5c64\u5404\u6709 1024 \u500b\u795e\u7d93\u5143\u7684 DNN \u96b1\u85cf\u5c64\u3002\u7531\u65bc\u672c\u8ad6 DNN)\u6240\u7522\u751f\u7684\u767c\u97f3\u6aa2\u6e2c\u7279\u5fb5\u4e0a\u7684\u8868\u73fe\u5341\u5206\u63a5\u8fd1\u3002\u82e5\u6bd4\u8f03\u5728 DNN \u8072\u5b78\u6a21\u578b\u4e2d\u4e0d\u540c\u5206\u985e\u5668\u7684\u6539\u5584\uff0cLR \u5247\u662f\u52dd\u904e GOP \u7d04 12.60%\u7684\u5927\u5e45\u5ea6\u6539\u9032\u3002\u5728\u96d9 \u97f3\u7bc0\u4e2d\u6574\u9ad4\u8868\u73fe\u4e0d\u5982\u55ae\u97f3\u7bc0\u4f86\u7684\u512a\u79c0\uff0cGOP \u7684\u66f2\u7dda\u5728 DNN \u8207 CNN \u4e2d\u53ea\u5f97\u5230 36.03%\u8207 35.15%\uff0c\u662f\u975e\u5e38\u4e0d\u53ef\u9760\u7684\u5206\u985e\u5668\uff0c\u4f46\u662f\u96d9\u97f3\u7bc0(\u5716\u56db\u53f3)\u7684 DNN \u8072\u5b78\u6a21\u578b\u5728\u5206\u985e\u5668 LR \u4e2d \u7684\u8868\u73fe\u76f8\u8f03\u65bc GOP \u63d0\u5347\u7d04 18.44%\uff0c\u9032\u6b65\u7684\u5e45\u5ea6\u6bd4\u55ae\u97f3\u7bc0\u66f4\u70ba\u5287\u70c8\uff0c\u56e0\u6b64\u6211\u5011\u53ef\u4ee5\u5f9e\u5716 \u7684\u4e0d\u540c\u7279\u5fb5\u7528\u65bc\u5206\u985e\u5668 LR \u4e4b\u7d50\u5408(67.23%)\u3002\u96d9\u97f3\u7bc0\u7684\u8868\u73fe\u5247\u662f\u76f8\u53cd\uff0c\u5728\u5206 \u985e\u5668 SVM \u8207 LR \u7d50\u5408\u7684\u6210\u6548\u52dd\u904e\u6a21\u578b DNN \u8207 CNN \u7684\u7d50\u5408\uff0c\u7d50\u679c\u5206\u5225\u70ba 58.54%(\u5982\u5716 \u516d\u53f3)\u8207 55.98%(\u5982\u5716\u4e94\u53f3)\u3002 \u9664\u4e86\u63a2\u8a0e\u5728 Recall-Precision \u66f2\u7dda\u7684\u8868\u73fe\u5916\uff0c\u6211\u5011\u4e5f\u5728\u5716\u4e03\u8207\u5716\u516b\u500b\u5225\u5217\u51fa\u55ae\u97f3\u7bc0 \u8207\u96d9\u97f3\u7bc0\u5728 ROC \u66f2\u7dda\u4e0a\u7684\u8868\u73fe\uff0c\u800c ROC \u7a7a\u9593\u503c\u500b\u6578\u53ef\u5206\u70ba\u56db\u7a2e\uff1a\u771f\u967d\u6027(true positive, TP)\uff1a\u7cfb\u7d71\u63a8\u6e2c\u70ba\u6b63\u78ba\u767c\u97f3\uff0c\u5be6\u969b\u4e0a\u4e5f\u662f\u6b63\u78ba\u767c\u97f3\uff1b\u771f\u9670\u6027(true negative, TN)\uff1a\u7cfb\u7d71\u63a8\u6e2c \u70ba\u932f\u8aa4\u767c\u97f3\uff0c\u5be6\u969b\u4e0a\u4e5f\u662f\u932f\u8aa4\u767c\u97f3\uff1b\u507d\u967d\u6027(false positive, FP)\uff1a\u7cfb\u7d71\u63a8\u6e2c\u70ba\u6b63\u78ba\u767c\u97f3\uff0c \u5be6\u969b\u4e0a\u70ba\u932f\u8aa4\u767c\u97f3\uff1b\u507d\u9670\u6027(false negative, FN)\uff1a\u7cfb\u7d71\u63a8\u6e2c\u70ba\u932f\u8aa4\u767c\u97f3\uff0c\u5be6\u969b\u4e0a\u70ba\u6b63\u78ba\u767c \u97f3\uff0c\u800c\u5716\u4e03\u8207\u5716\u516b\u7686\u662f\u85c9\u7531\u8abf\u6574\u9580\u6abb\u503c\u5f97\u5230\u4e0d\u540c\u7684\u771f\u967d\u6027\u7387(true positive rate, TPR)\u8207\u507d \u967d\u6027\u7387(false positive rate, FPR)\u6240\u7e6a\u88fd\u800c\u6210\u7684\u66f2\u7dda\uff0cTPR \u8207 FPR \u7684\u8a08\u7b97\u65b9\u5f0f\u5982\u5f0f(26)\u8207\u5f0f \u55ae\u97f3\u7bc0\u66f2\u7dda\u4e0b\u9762\u7a4d(area under the curve of ROC, AUC)\u986f\u793a\u65bc\u8868\u4e09\uff0c\u5be6\u9a57\u4e2d\u7684 AUC \u662f\u4f7f \u7528\u68af\u5f62\u6cd5(trapezoid method)\u6c42\u5f97\uff0c\u5f9e DNN \u7d50\u5408 CNN \u7684\u6a21\u578b(\u5982\u8868\u4e09\u7684 C+D)\u4e4b\u8868\u73fe\u4f86 \u770b\uff0cTP \u8207 TN \u90fd\u6709\u6240\u63d0\u5347\uff0c\u800c FP \u8207 FN \u4e5f\u6709\u660e\u986f\u7684\u4e0b\u964d\uff0cAUC \u7684\u90e8\u5206\u76f8\u8f03 DNN \u7684 84.42%\u5247\u9032\u6b65\u4e86 2.28%\u9054\u5230\u7d04 86.70%\uff0c\u5f9e\u5716\u4e03\u4e2d\u53ef\u4ee5\u6e05\u695a\u770b\u5230 DNN \u8207 CNN \u7d50\u5408\u4e4b\u8072 \u5b78\u6a21\u578b\u7684\u8868\u73fe\u512a\u65bc CNN \u8207 DNN \u5404\u81ea\u4f7f\u7528\uff1b\u6211\u5011\u5c07\u5716\u4e03\u5de6\u4e0a\u8207\u53f3\u4e0b\u4e4b\u5c0d\u89d2\u7dda\u76f8\u9023\u6c42\u51fa \u5716\u516d\u3001\u6bd4\u8f03\u96d9\u97f3\u7bc0(\u5de6\u5074)\u8207\u55ae\u97f3\u7bc0(\u53f3\u5074)\u5f9e CNN-DNN \u8403\u53d6\u51fa\u7684\u7279\u5fb5\u4f7f\u7528\u4e0d\u540c \u5206\u985e\u5668(SVM \u8207 LR)\u8f38\u51fa\u5206\u6578\u7684\u7dda\u6027\u7d44\u5408(M/DS-CNN-SVM+LR)\u4e4b Recall-Precision \u66f2\u7dda TPR \u8207\u5047 FPR \u76f8\u52a0\u8da8\u8fd1\u65bc 1 \u7684\u9ede\uff0c\u8a72\u9ede\u6240\u8868\u793a\u7684 FPR \u7a31\u4f5c\u76f8\u7b49\u932f\u8aa4\u7387(equal error rate, EER)\uff0c\u5728\u8868\u4e09\u7684 ROC \u7a7a\u9593\u503c\u500b\u6578(TP\u3001TN\u3001FP\u3001FN)\u662f\u5229\u7528\u8a72\u9ede\u6c42\u5f97\uff1b\u5716\u4e03\u53ef\u4ee5\u767c\u73fe DNN \u7684 EER \u70ba 21.67%\uff0c\u800c\u7d93\u904e\u7d50\u5408\u7684\u6a21\u578b(\u5982\u5716\u4e03\u7684 C+D)\u53ef\u964d\u4f4e\u81f3 19.94%\u3002\u5728\u8868\u56db \u8207\u5716\u516b\u5247\u662f\u986f\u793a\u96d9\u97f3\u7bc0\u7684 ROC \u7a7a\u9593\u503c\u500b\u6578\u3001ROC \u66f2\u7dda\u8207 EER\uff0c\u5716\u516b\u53ef\u4ee5\u767c\u73fe DNN \u7684 EER \u70ba 24.30%\uff0c\u800c\u7d93\u904e\u7d50\u5408\u7684\u6a21\u578b(\u5982\u5716\u516b\u7684 C+D)\u53ef\u964d\u4f4e\u81f3 23.08%\uff1b\u8868\u56db\u5728 AUC \u7684 \u90e8\u5206\u53ef\u4ee5\u89c0\u5bdf\u5230\u6a21\u578b\u7d50\u5408\u5f8c\u5f9e CNN \u7684 80.90%\u9032\u6b65\u5230 82.58%\u3002 \u516d\u3001 \u7d50\u8ad6\u8207\u672a\u4f86\u7814\u7a76\u5c55\u671b \u672c\u8ad6\u6587\u63a2\u8a0e\u5169\u7a2e\u8072\u5b78\u6a21\u578b(DNN \u548c CNN)\u4ee5\u53ca\u5b83\u5011\u7684\u7d50\u5408\u5c0d\u65bc\u767c\u97f3\u6aa2\u6e2c\u6548\u80fd\u7684\u5f71\u97ff\u3002 \u53e6\u4e00\u65b9\u9762\uff0c\u5f9e\u5be6\u9a57\u7d50\u679c\u53ef\u4ee5\u767c\u73fe\uff0c\u672c\u8ad6\u6587\u6240\u4f7f\u7528\u7684\u4e09\u7a2e\u5206\u985e\u65b9\u6cd5(GOP\u3001SVM \u548c LR)\u4e2d \u7121\u8ad6\u662f\u55ae\u97f3\u7bc0\u6216\u96d9\u97f3\u7bc0\u7686\u4ee5 LR \u8868\u73fe\u6700\u4f73\u3002\u96d6\u7136 DNN-LR \u8207 CNN-LR \u5169\u7a2e\u932f\u8aa4\u767c\u97f3\u6aa2 \u6e2c\u6a21\u578b\u4e4b\u8868\u73fe\u5341\u5206\u76f8\u8fd1\uff0c\u4f46\u7d93\u904e\u7c21\u55ae\u7684\u7dda\u6027\u7d44\u5408\u5f8c\u4f9d\u7136\u53ef\u4ee5\u5728\u55ae\u97f3\u7bc0\u932f\u8aa4\u767c\u97f3\u6aa2\u6e2c\u7684\u53ec \u56de\u7387\u8207\u7cbe\u6e96\u5ea6\u76f8\u540c\u6642\u5f97\u5230 3.42%\u7684\u9032\u6b65\u4e26\u9054\u5230 67.23%\u7684\u8868\u73fe\uff1b\u540c\u6642\uff0c\u5728\u96d9\u97f3\u7bc0\u932f\u8aa4\u767c\u97f3 \u6aa2\u6e2c\u4e0a\uff0c\u7d93\u904e\u7dda\u6027\u7d44\u5408\u5f8c\u4e5f\u5f97\u5230 1.51%\u7684\u9032\u6b65\u4e26\u63d0\u5347\u81f3 55.98%\u3002\u800c ROC \u66f2\u7dda\u5728\u55ae\u97f3\u7bc0 \u8868\u56db\u3001\u96d9\u97f3\u7bc0\u5728\u5206\u985e\u5668 LR \u5728\u4e0d\u540c\u8072\u5b78\u6a21 \u578b\u7684 ROC \u7a7a\u9593\u503c(TP\u3001TN\u3001FP \u8207 FN)\u8207"
}
}
}
} |