File size: 54,032 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
{
    "paper_id": "O15-3006",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:10:05.190194Z"
    },
    "title": "Automating Behavior Coding for Distressed Couples Interactions Based on Stacked Sparse Autoencoder Framework using Speech-acoustic Features",
    "authors": [
        {
            "first": "\u9673\u67cf\u8ed2",
            "middle": [
                "\uf02a"
            ],
            "last": "\u3001\u674e\u7948\u5747",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Tsing Hua University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Po-Hsuan",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Tsing Hua University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Chi-Chun",
            "middle": [],
            "last": "Lee",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Tsing Hua University",
                "location": {}
            },
            "email": "cclee@ee.nthu.edu.tw"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Traditional way of conducting analyses of human behaviors is through manual observation. For example in couple therapy studies, human raters observe sessions of interaction between distressed couples and manually annotate the behaviors of each spouse using established coding manuals. Clinicians then analyze these annotated behaviors to understand the effectiveness of treatment that each couple receives. However, this manual observation approach is very time consuming, and the subjective nature of the annotation process can result in unreliable annotation. Our work aims at using machine learning approach to automate this process, and by using signal processing technique, we can bring in quantitative evidence of human behavior. Deep learning is the current state-of-art machine learning technique. This paper proposes to use stacked sparse autoencoder (SSAE) to reduce the dimensionality of the acoustic-prosodic features used in order to identify the key higher-level features. Finally, we use logistic regression (LR) to perform classification on recognition of high and low rating of six different codes. The method achieves an overall accuracy of 75% over 6 codes (husband's average accuracy of 74.9%, wife's average accuracy of 75%), compared to the previously-published study of 74.1% (husband's average accuracy of 75%, wife's average accuracy of 73.2%) (Black et al., 2013), a total improvement of 0.9%. Our proposed method achieves a higher classification rate by using much fewer number of features (10 times less than the previous work (Black et al., 2013)).",
    "pdf_parse": {
        "paper_id": "O15-3006",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Traditional way of conducting analyses of human behaviors is through manual observation. For example in couple therapy studies, human raters observe sessions of interaction between distressed couples and manually annotate the behaviors of each spouse using established coding manuals. Clinicians then analyze these annotated behaviors to understand the effectiveness of treatment that each couple receives. However, this manual observation approach is very time consuming, and the subjective nature of the annotation process can result in unreliable annotation. Our work aims at using machine learning approach to automate this process, and by using signal processing technique, we can bring in quantitative evidence of human behavior. Deep learning is the current state-of-art machine learning technique. This paper proposes to use stacked sparse autoencoder (SSAE) to reduce the dimensionality of the acoustic-prosodic features used in order to identify the key higher-level features. Finally, we use logistic regression (LR) to perform classification on recognition of high and low rating of six different codes. The method achieves an overall accuracy of 75% over 6 codes (husband's average accuracy of 74.9%, wife's average accuracy of 75%), compared to the previously-published study of 74.1% (husband's average accuracy of 75%, wife's average accuracy of 73.2%) (Black et al., 2013), a total improvement of 0.9%. Our proposed method achieves a higher classification rate by using much fewer number of features (10 times less than the previous work (Black et al., 2013)).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "\u4eba\u8207\u4eba\u4e4b\u9593\u4ea4\u8ac7\u4e92\u52d5\uff0c\u5e38\u900f\u904e\u8a9e\u8a00\u50b3\u9054\u5f7c\u6b64\u7684\u60f3\u6cd5\uff0c\u4e26\u5728\u9019\u4ea4\u8ac7\u904e\u7a0b\u4e2d\u5f97\u77e5\u96d9\u65b9\u7684\u884c\u70ba \u53cd\u61c9\u3002\u5229\u7528\u4eba\u70ba\u89c0\u5bdf\u4f86\u5206\u6790\u96d9\u65b9\u884c\u70ba\u53cd\u61c9\uff0c\u9019\u90e8\u5206\u6700\u65e9\u5e38\u61c9\u7528\u5728\u5fc3\u7406\u5b78\u548c\u7cbe\u795e\u5b78\u65b9\u9762 (O'Brian et al., 1994) \u3002\u4eba\u70ba\u884c\u70ba\u89c0\u5bdf\u76f8\u7576\u7684\u6210\u529f\u7814\u7a76\u5728\u89aa\u5bc6\u95dc\u4fc2 (Karney & Bradbury, 1995) (Gonzaga et al., 2007) \uff0c\u5373\u592b\u59bb\u7684\u884c\u70ba\u662f\u5f71\u97ff\u89aa\u5bc6\u95dc\u4fc2\u7a0b\u5ea6\u7684\u56e0\u7d20\u4e4b\u4e00\u3002\u7136\u800c\u7528\u65bc \u4eba\u70ba\u89c0\u5bdf\u884c\u70ba\u7684\u65b9\u5f0f\u5b58\u5728\u4e00\u4e9b\u56f0\u96e3\uff0c\u4e00\u65b9\u9762\u592a\u6d88\u8017\u6642\u9593\uff0c\u53e6\u4e00\u9762\u4e5f\u6d6a\u8cbb\u6210\u672c\u3002 \u5982\u679c\u80fd\u900f\u904e\u96fb\u8166\u5de5\u7a0b\u7684\u65b9\u5f0f\u4f86\u53d6\u4ee3\u4eba\u70ba\u89c0\u5bdf\u5c07\u5927\u5927\u63d0\u5347\u6548\u7387\uff0c\u900f\u904e\u4f4e\u5c64\u63cf\u8ff0\u6620\u5c04\u9ad8 \u5c64\u63cf\u8ff0\u4f86\u9810\u6e2c\u4eba\u985e\u884c\u70ba (Schuller et al., 2007) \uff0c\u9019\u9805\u7814\u7a76\u9818\u57df\u662f\u6b63\u5728\u4e0d\u65b7\u767c\u5c55\u7684\u4e00\u90e8\u5206\u3002 \u4eba\u985e\u884c\u70ba\u4fe1\u865f\u8655\u7406(Behavioral Signal Processing, BSP)\u76ee\u7684\u5728\u5e6b\u52a9\u9023\u63a5\u4fe1\u865f\u79d1\u5b78\u548c\u884c\u70ba\u8655 \u7406\u7684\u65b9\u6cd5\uff0c\u5efa\u7acb\u5728\u50b3\u7d71\u7684\u4fe1\u865f\u8655\u7406\u7814\u7a76\uff0c\u5982\u8a9e\u97f3\u8b58\u5225\uff0c\u9762\u624b\u90e8\u8ffd\u8e64\u7b49\u7b49\u3002\u76f8\u95dc\u986f\u8457 BSP \u7814\u7a76\u5df2\u767c\u7522\u65bc\u4ee5\u4eba\u70ba\u4e2d\u5fc3\u7684\u63d0\u53d6\u97f3\u983b\uff0c\u8996\u983b\u4fe1\u865f\uff0c\u4f86\u5206\u6790\u5be6\u969b\u4e0a\u4eba\u985e\u884c\u70ba\u6216\u662f\u60c5\u611f\u65b9\u9762 (Burkhardt et al., 2009; Devillers & Campbell, 2011 )\u3002 \u900f\u904e\u8a9e\u97f3\u7279\u5fb5\u5efa\u69cb\u57fa\u65bc\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u6f14\u7b97\u6cd5\u4e4b 109 \u5a5a\u59fb\u6cbb\u7642\u4e2d\u592b\u59bb\u4e92\u52d5\u884c\u70ba\u91cf\u8868\u81ea\u52d5\u5316\u8a55\u5206\u7cfb\u7d71 \u672c\u8ad6\u6587\u5229\u7528 BSP \u7684\u57fa\u672c\u601d\u8def\u61c9\u7528\u5728\u5a5a\u59fb\u6cbb\u7642\u8cc7\u6599\u5eab\u4e0a\u9762 (Christensen et al., 2004) \uff0c \u5a5a\u59fb\u6cbb\u7642\u8cc7\u6599\u5eab\u6703\u8a73\u7d30\u8aaa\u660e\u5728\u7b2c\u4e8c\u7ae0\u3002\u9019\u500b\u8cc7\u6599\u5eab\u7d00\u9304\u4e86\u592b\u59bb\u5728\u4e00\u6bb5\u5c0d\u8a71\u4e2d\u8ac7\u8ff0\u4e86\u4ed6\u5011 \u6240\u9078\u64c7\u5a5a\u59fb\u4e2d\u7684\u554f\u984c\u3002\u8a55\u5206\u8005\u5728\u6839\u64da\u4ed6\u5011\u4e00\u6bb5\u8a71\u7684\u7a2e\u7a2e\u884c\u70ba\u6839\u64da\u4e0d\u540c\u884c\u70ba\u91cf\u8868\u9032\u884c\u8a55\u5206 (\u5e7d\u9ed8\u884c\u70ba\u3001\u60b2\u50b7\u884c\u70ba\u7b49\u7b49)\u3002 \u5ef6\u7e8c\u4e0a\u7bc7\u8ad6\u6587\u7684\u7814\u7a76\u5167\u5bb9\u4f86\u81ea\u52d5\u5316\u5206\u6790\u592b\u59bb\u4e00\u6bb5\u5c0d\u8a71\u7684\u884c\u70ba\u5206\u6578 (Black et al., 2013) ",
                "cite_spans": [
                    {
                        "start": 77,
                        "end": 99,
                        "text": "(O'Brian et al., 1994)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 120,
                        "end": 145,
                        "text": "(Karney & Bradbury, 1995)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 146,
                        "end": 168,
                        "text": "(Gonzaga et al., 2007)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 279,
                        "end": 302,
                        "text": "(Schuller et al., 2007)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 462,
                        "end": 486,
                        "text": "(Burkhardt et al., 2009;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 487,
                        "end": 513,
                        "text": "Devillers & Campbell, 2011",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 593,
                        "end": 619,
                        "text": "(Christensen et al., 2004)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 744,
                        "end": 764,
                        "text": "(Black et al., 2013)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u7dd2\u8ad6",
                "sec_num": "1."
            },
            {
                "text": "\u5716 1. \u81ea\u7de8\u78bc\u5668 112 \u9673\u67cf\u8ed2\u8207\u674e\u7948\u5747 \u5f9e\u5716 1\uff0c\u8f38\u5165\u503c \uff0c 1,2, \u2026 , \uff0c \u2208 \uff0c\u96b1\u85cf\u5c64(hidden layer)\u4e2d\u7684 \uff0c 1,2, \u2026 , \uff0c \u2208 \uff0c\u6b0a\u91cd\u77e9\u9663(weight matrix) \u2208 \uff0c\u504f\u79fb\u5411\u91cf(bias vector) \u2208 \u3002\u7531\u9019\u4e9b\u56e0 \u5b50(factor)\u69cb\u6210\u6fc0\u6d3b\u51fd\u6578(activation function)\uff0c\u5982\u5f0f(1)\u3002 (1) \u5176\u4e2d 1/ 1 \u70ba sigmoid function \u3002\u8f38\u51fa\u503c \uff0c 1,2, \u2026 , , \u2208 \uff0c \u6b0a\u91cd\u77e9\u9663 \u2208 \uff0c\u504f\u79fb\u5411\u91cf \u2208 \uff0c\u81ea\u7de8\u78bc\u5668\u8f38\u51fa\u70ba\u5f0f(2):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u7dd2\u8ad6",
                "sec_num": "1."
            },
            {
                "text": "(2) ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "\u7dd2\u8ad6",
                "sec_num": "1."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u70ba \u4e86 \u8981 \u6c42 \u5f97 \u6b0a \u91cd \u77e9 \u9663 \u548c \uff0c \u504f \u79fb \u5411 \u91cf \u548c \uff0c \u5047 \u8a2d \u4e00 \u500b \u6a23 \u672c \u96c6 \u70ba , , , \u2026 , \uff0c\u6709 m \u7d44\u6a23\u672c\uff0c \u70ba\u6a23\u672c\u8f38\u5165\u7279\u5fb5\u503c\uff0c \u70ba\u5c0d\u61c9\u6a19\u7c64\u503c\uff0c\u5229 \u7528\u4ee3\u50f9\u51fd\u6578(cost function)\uff0c\u5982\u5f0f(3)\u3002 , 1 1 2 2 ,",
                        "eq_num": "(3)"
                    }
                ],
                "section": "\u7dd2\u8ad6",
                "sec_num": "1."
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Scalable training of L 1-regularized log-linear Models",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Andrew",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 24th international conference on Machine learning",
                "volume": "",
                "issue": "",
                "pages": "33--40",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andrew, G., & Gao, J. (2007). Scalable training of L 1-regularized log-linear Models. In Proceedings of the 24th international conference on Machine learning. ACM, 33-40.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Toward automating a human behavioral coding system for married couples' interactions using speech acoustic features",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Black",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Katsamanis",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Baucom",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Lammert",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Christensen",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Georgiou",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Narayanan",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Speech Communication",
                "volume": "55",
                "issue": "1",
                "pages": "1--21",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Black, M., Katsamanis, A., Baucom, B., Lee, C., Lammert, A., Christensen, A., Georgiou, P., & Narayanan, S. (2013). Toward automating a human behavioral coding system for married couples' interactions using speech acoustic features. Speech Communication, 55(1), 1-21.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Detecting real life anger",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Burkhardt",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Polzehl",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Stegmann",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Metze",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Huber",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc. IEEE Int'l Conf. Acous., Speech, and Signal Processing",
                "volume": "",
                "issue": "",
                "pages": "4761--4764",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Burkhardt, F., Polzehl, T., Stegmann, J., Metze, F., & Huber, R. (2009). Detecting real life anger. In Proc. IEEE Int'l Conf. Acous., Speech, and Signal Processing, 4761-4764.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Couple and individual adjustment for 2 years following a randomized clinical trial comparing traditional versus integrative behavioral couple therapy",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Christensen",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "C"
                        ],
                        "last": "Atkins",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Yi",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "H"
                        ],
                        "last": "Baucom",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "H"
                        ],
                        "last": "George",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "J. Consult. Clin. Psychol",
                "volume": "72",
                "issue": "",
                "pages": "176--191",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christensen, A., Atkins, D.C., Yi, J., Baucom, D.H., & George, W.H. (2004). Couple and individual adjustment for 2 years following a randomized clinical trial comparing traditional versus integrative behavioral couple therapy. J. Consult. Clin. Psychol, 72, 176-191.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Integrative behavioral couple therapy",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Christensen",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [
                            "S"
                        ],
                        "last": "Jacobson",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Babcock",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Clinical Handbook of Marital Therapy",
                "volume": "",
                "issue": "",
                "pages": "31--64",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christensen, A., Jacobson, N.S., & Babcock, J.C. (1995). Integrative behavioral couple therapy. In: Jacobsen, N.S., Gurman, A.S. (Eds.), Clinical Handbook of Marital Therapy, second ed. Guilford Press, New York, 31-64.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Special issue of computer speech and language on affective speech in real-life interactions",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Devillers",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Campbell",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Comput. Speech Lang",
                "volume": "25",
                "issue": "",
                "pages": "1--3",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Devillers, L., & Campbell, N. (2011). Special issue of computer speech and language on affective speech in real-life interactions. Comput. Speech Lang., 25, 1-3.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Similarity, convergence, and relationship satisfaction in dating and married couples",
                "authors": [
                    {
                        "first": "G",
                        "middle": [
                            "C"
                        ],
                        "last": "Gonzaga",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Campos",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Bradbury",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "J.Personal. Soc. Psychol",
                "volume": "93",
                "issue": "",
                "pages": "34--48",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gonzaga, G.C., Campos, B., & Bradbury, T. (2007). Similarity, convergence, and relationship satisfaction in dating and married couples. J.Personal. Soc. Psychol., 93, 34-48.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Couples interaction rating system 2 (CIRS2)., University of California",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Heavey",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Gill",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Christensen",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Heavey, C., Gill, D., & Christensen, A. (2002). Couples interaction rating system 2 (CIRS2)., University of California, Los Angeles. Los Angeles, CA, USA.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Reducing the Dimensionality of Data with Neural Networks",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Hinton",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Science",
                "volume": "",
                "issue": "5786",
                "pages": "504--507",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hinton, G. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786), 504-507.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Hinton",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Dahl",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mohamed",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Jaitly",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "IEEE Signal Process. Mag",
                "volume": "29",
                "issue": "6",
                "pages": "82--97",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hinton, G., Deng, L., Yu, D., Dahl,G., Mohamed, A., Jaitly, N., et al. (2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag., 29(6), 82-97.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Couples interaction study: Social support interaction rating system",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Christensen",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jones, J., & Christensen, A. (1998). Couples interaction study: Social support interaction rating system. University of California, Los Angeles. Los Angeles, CA, USA.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "The longitudinal course of marital quality and stability: A review of theory, methods, and research",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Karney",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [
                            "N"
                        ],
                        "last": "Bradbury",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Psychol. Bull",
                "volume": "118",
                "issue": "",
                "pages": "3--34",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Karney, B.R., & Bradbury, T.N. (1995). The longitudinal course of marital quality and stability: A review of theory, methods, and research. Psychol. Bull, 118, 3-34.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Reliability and diagnostic efficacy of parent's reports regarding children's exposure to martial aggression",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "O'brian",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "S"
                        ],
                        "last": "John",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Margolin",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Erel",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Violence and Victims",
                "volume": "9",
                "issue": "1",
                "pages": "45--62",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "O'Brian, M.,John, R.S., Margolin, G., & Erel, O. (1994). Reliability and diagnostic efficacy of parent's reports regarding children's exposure to martial aggression. Violence and Victims, 9(1), 45-62.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Distributed machine learning and sparse representations",
                "authors": [
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Obst",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Neurocomputing",
                "volume": "124",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Obst, O. (2014). Distributed machine learning and sparse representations. Neurocomputing, 124, 1.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Machine recognition of Hand written Characters using neural networks",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Perwej",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Chaturvedi",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "International Journal of Computer Applications",
                "volume": "14",
                "issue": "2",
                "pages": "6--9",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Perwej, Y., & Chaturvedi, A. (2011). Machine recognition of Hand written Characters using neural networks. International Journal of Computer Applications, 14(2), 6-9.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "The layer-wise method and the backpropagation hybrid approach to learning a feedforward neural network",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Rubanov",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "IEEE Trans. Neural Netw",
                "volume": "11",
                "issue": "2",
                "pages": "295--305",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rubanov, N. (2000). The layer-wise method and the backpropagation hybrid approach to learning a feedforward neural network. IEEE Trans. Neural Netw., 11(2), 295-305.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "The relevance of feature type for automatic classification of emotional user states: Low level descriptors and functionals",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Schuller",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Batliner",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Seppi",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Steidl",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Vogt",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Wagner",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc. Interspeech",
                "volume": "",
                "issue": "",
                "pages": "2253--2256",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Schuller, B., Batliner, A., Seppi, D., Steidl, S., Vogt, T., Wagner, J., et al. (2007). The relevance of feature type for automatic classification of emotional user states: Low level descriptors and functionals. In Proc. Interspeech, Antwerp, Belgium, 2253-2256.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Comparison of Regularization Methods for ImageNet Classification with Deep Convolutional Neural Networks. AASRI Procedia",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Smirnov",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Timoshenko",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Andrianov",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "6",
                "issue": "",
                "pages": "89--94",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Smirnov, E., Timoshenko, D., & Andrianov, S. (2014). Comparison of Regularization Methods for ImageNet Classification with Deep Convolutional Neural Networks. AASRI Procedia, 6, 89-94.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF1": {
                "num": null,
                "html": null,
                "content": "<table><tr><td/><td colspan=\"5\">\u900f\u904e\u8a9e\u97f3\u7279\u5fb5\u5efa\u69cb\u57fa\u65bc\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u6f14\u7b97\u6cd5\u4e4b \u900f\u904e\u8a9e\u97f3\u7279\u5fb5\u5efa\u69cb\u57fa\u65bc\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u6f14\u7b97\u6cd5\u4e4b \u900f\u904e\u8a9e\u97f3\u7279\u5fb5\u5efa\u69cb\u57fa\u65bc\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u6f14\u7b97\u6cd5\u4e4b</td><td>113 \u9673\u67cf\u8ed2\u8207\u674e\u7948\u5747 115 \u9673\u67cf\u8ed2\u8207\u674e\u7948\u5747 117</td></tr><tr><td/><td colspan=\"5\">\u5a5a\u59fb\u6cbb\u7642\u4e2d\u592b\u59bb\u4e92\u52d5\u884c\u70ba\u91cf\u8868\u81ea\u52d5\u5316\u8a55\u5206\u7cfb\u7d71 \u5a5a\u59fb\u6cbb\u7642\u4e2d\u592b\u59bb\u4e92\u52d5\u884c\u70ba\u91cf\u8868\u81ea\u52d5\u5316\u8a55\u5206\u7cfb\u7d71 \u5a5a\u59fb\u6cbb\u7642\u4e2d\u592b\u59bb\u4e92\u52d5\u884c\u70ba\u91cf\u8868\u81ea\u52d5\u5316\u8a55\u5206\u7cfb\u7d71</td></tr><tr><td colspan=\"6\">\u4e00\u6bb5\u8a9e\u97f3\u7d93\u904e\u9810\u8655\u7406\uff0c\u964d\u4f4e\u96dc\u8a0a\u5f71\u97ff\uff0c\u624d\u4e0d\u6703\u5f71\u97ff\u4e4b\u5f8c\u7684\u7279\u5fb5\u64f7\u53d6\uff0c\u800c\u9019\u90e8\u5206\u9810\u8655\u7406\u5728 \u4e0a\u7bc7\u8ad6\u6587\u5df2\u7d93\u88ab\u8655\u7406\u904e\u4e86 (Black et al., 2013)\u3002\u672c\u7bc7\u8ad6\u6587\u6539\u8b8a\u7279\u5fb5\u64f7\u53d6\u65b9\u6cd5\uff0c\u9019\u90e8\u5206\u4e0b\u4e00 \u8868 3. 28 \u7a2e\u7279\u5fb5\u503c\u548c 7 \u7a2e functionals LLDs Functionals \u8868 4. 1st hidden unit \u5206\u6790\u4e08\u592b\u548c\u592a\u592a\u5c0d\u61c9\u5230 6 \u7a2e\u884c\u70ba\u7684\u6e96\u78ba\u7387\uff0c\u7c97\u9ad4\u5b57\u70ba\u8f03\u9ad8\u7684 \u6700\u5f8c\u4e00\u5c64\u7684\u7bc0\u9ede\u6578\u6211\u5011\u8a2d\u70ba 150\uff0c\u5982\u8868 6\uff0c\u5f97\u5230\u6700\u5f8c\u7684\u6e96\u78ba\u7387\u3002\u4f7f\u7528\u7684\u758a\u4ee3\u6b21\u6578\u70ba \u6e96\u78ba 20 \u6b21\uff0c\u03c1 0.1\uff0c\u03bb 0.0001\uff0c\u03b2 1\u3002</td></tr><tr><td colspan=\"6\">\u7ae0\u6703\u4ecb\u7d39\u3002\u5982\u5716 3\uff0c\u6b63\u898f\u5316\u5f8c\u7684\u7279\u5fb5\u503c\uff0c\u4e00\u7a2e\u884c\u70ba\u5305\u542b 372 \u7b46 10 \u5206\u9418\u6703\u8a71(session)\uff0c\u5206 \u70ba\u6709\u6a19\u7c64\u6578\u64da(labeled data)\u548c\u6c92\u6709\u6a19\u7c64\u6578\u64da(unlabeled data)\uff0c\u6c92\u6709\u6a19\u7c64\u6578\u64da\u5229\u7528\u7a00\u758f\u81ea\u7de8 \u78bc\u5668\u4f86\u8a13\u7df4\u7db2\u7d61\u53c3\u6578\uff0c\u8a13\u7df4\u597d\u5f8c\u518d\u628a 140 \u7b46\u6709\u6a19\u7c64\u6578\u64da\u5206\u70ba\u8a13\u7df4\u8cc7\u6599\u548c\u6e2c\u8a66\u8cc7\u6599\uff0c\u8f38\u5165 \u81ea\u8a13\u7df4\u597d\u7684\u7db2\u7d61\u53c3\u6578\uff0c\u7522\u751f\u65b0\u7684\u4e00\u7d44\u7279\u5fb5\u3002\u65b0\u7684\u4e00\u7d44\u7279\u5fb5\u70ba\u4e0b\u4e00\u5c64\u8f38\u5165\u503c\uff0c\u91cd\u8907\u5229\u7528\u5716 3 \u67b6\u69cb\u53ef\u4ee5\u7522\u751f\u66f4\u591a\u5c64\u3002\u6211\u5011\u5e0c\u671b\u65b0\u7684\u7279\u5fb5\u503c\u5c0d\u65bc\u884c\u70ba\u5206\u6578\u5c07\u6709\u66f4\u597d\u7684\u8868\u793a\uff0c\u4e0b\u9762\u7ae0\u7bc0 1. MFCC[0-14] 2. MFB[0-7] 3. F0normlog 4. VAD(speech/no speech) 1. Mean 1 st hidden unit Rated Spouse Acc (%) Bla (%) Pos (%) Neg (%) Sad (%) Hum (%) Avg \u8868 6. 3rd hidden unit \u5206\u6790\u4e08\u592b\u548c\u592a\u592a\u5c0d\u61c9\u5230 6 \u7a2e code \u7684\u6e96\u78ba\u7387\u548c\u4e4b\u524d\u7814\u7a76\u6e96\u78ba\u7387 (%) \u6bd4\u8f03 2. Median 3. Standard deviation 4. Skewness 100 Husband 67.9 76.4 65.7 78.6 52.9 61.4 67.2 Wife 70 73.6 65 74.3 58.6 59.3 66.8 Husband 72.9 76.4 71.4 82.1 57.1 67.1 71.2 1 st Hidden Layer 2 nd Hidden Layer 3 rd Rated Acc Bla Pos Neg Sad Hum Avg Hidden Layer Spouse (%) (%) (%) (%) (%) (%) (%)</td></tr><tr><td>\u6703\u8b49\u660e\u4e4b\u3002 200 300 200</td><td>5. Intensity Wife 150</td><td colspan=\"3\">71.4 Husband 80 82.9</td><td>5. Kurtosis 77.1 64.9 78.6 73.6 84.3 59.3 73.6 74.9 65.7 57.9 70</td></tr><tr><td colspan=\"3\">4. \u5be6\u9a57\u8a2d\u8a08\u548c\u7d50\u679c 6. Jitter Husband 77.1 Wife</td><td>77.9</td><td>80</td><td>6. Max position 82.9 58.6 83.6 72.9 81.4 65 72.1</td><td>67.1 67.9 75 72.6</td></tr><tr><td colspan=\"6\">7. Jitter of Jitter Wife 75.7 Previous method 300 Husband 78.6 72.9 72.1 84.3 60 7. Min position 82.1 71.4 78.6 58.6 4.1 \u7279\u5fb5\u503c 500 \u5982\u5716 4\uff0c\u5229\u7528\u539f\u672c LLDs\uff0c\u5728\u4e09\u7a2e\u5c0d\u8a71\u5340\u9593\u88e1(speaker domain)\uff0c\u4e08\u592b\u6642\u9593\u5340\u9593(husband\u3001 63.6 71.4 73.2 71.7 8. Shimmer Husband 70 78.6 68.6 82.9 55 62.1 69.5 (Black et al., 2013) Wife 77.9 84.3 74.3 80 66.4 67.1 75</td></tr><tr><td colspan=\"6\">, H)\u3001\u592a\u592a\u6642\u9593\u5340\u9593(wife\u3001W)\u548c\u4e0d\u5206\u4eba\u6642\u9593\u5340\u9593(full\u3001F)\u6240\u8aaa\u7684\u53e5\u5b50\uff0c\u5207\u5272\u6210\u4ee5 20%\u53e5\u5b50 \u503c\uff0c\u6700\u5f8c\u5f97\u5230 \u548c \u3002 4.2 \u8cc7\u6599 Wife 74.3 82.1 69.3 80.7 58.6 62.9 71.3 4.4 \u5be6\u9a57\u7d50\u679c\u6bd4\u8f03 \u5716 2. \u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668 3.3 \u5be6\u9a57\u67b6\u69cb \u6211\u5011\u4f7f\u7528 3 \u5c64\u96b1\u85cf\u5c64\u7684 SSAE \u4f5c\u70ba\u975e\u76e3\u7763\u5b78\u7fd2\u7684\u67b6\u69cb\uff0c\u4f86\u5f9e\u4f4e\u5c64\u7d1a\u7279\u5fb5(low level feature) \u8a13\u7df4\u6210\u9ad8\u5c64\u7d1a\u7279\u5fb5(high level feature)\uff0c\u7136\u5f8c\u7528 LR \u4f86\u76e3\u7763\u5b78\u7fd2\u4f5c\u8fa8\u8b58\uff0c\u672c\u5be6\u9a57\u7b2c\u4e00\u5c64\u7a00\u758f \u81ea\u7de8\u78bc\u5668\u67b6\u69cb\u5982\u5716 3\u3002 \u70ba\u4e00\u500b\u6642\u9593\u5340\u9593\uff0c\u5207\u5272\u5b8c\u5f8c\u5408\u6210\u4e00\u500b\u884c\u5411\u91cf\uff0c\u884c\u5411\u91cf\u7684\u7279\u5fb5\u503c\uff0c\u518d\u7d93\u7531\u5982\u8868 3 \u6240\u5217\u7684 7 \u7531\u539f\u672c\u8cc7\u6599\u5eab 569 \u7b46\u5c0d\u8a71\u3001117 \u5c0d\u592b\u59bb\uff0c\u7d93\u7531\u4e0a\u7bc7\u8ad6\u6587\u9810\u8655\u7406\u904e\u5f8c(Black et al., 2013)\uff0c\u7522 Husband 75 77.9 69.3 84.3 58.6 65.7 71.8 \u6211\u5011\u6240\u4f7f\u7528\u4e09\u7a2e\u4e0d\u540c\u5c64\u7684\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u548c\u4e4b\u524d\u7684\u8ad6\u6587\u6574\u9ad4\u5e73\u5747\u6e96\u78ba\u7387\u7d50\u679c\u5982\u8868 7\u3002 1000 \u7a2e functionals \u8655\u7406\u904e\u5f8c\uff0c\u7522\u751f\u6700\u5f8c 2940 \u500b\u7279\u5fb5\u503c\u3002\u5728\u8f38\u5165 SSAE \u4ee5\u524d\uff0c\u6211\u5011\u628a\u9019\u4e9b\u7279\u5fb5 \u751f\u6700\u5f8c\u7684 372 \u7b46\u5c0d\u8a71\u3001104 \u5c0d\u592b\u59bb\u3002\u5728 372 \u7b46\u5c0d\u8a71\u88e1\u9762\u4e08\u592b\u548c\u592a\u592a\u90fd\u6703\u88ab\u8a55\u5206\u5230\uff0c\u5c0d\u61c9 Wife 72.1 79.3 69.3 80 53.6 62.9 69.5 \u8868 7. \u6574\u9ad4\u5e73\u5747\u6b63\u78ba\u7387\u5c0d\u65bc\u56db\u7a2e\u4e0d\u540c\u65b9\u6cd5 \u503c\u6b63\u898f\u5316\u5728 0 \u548c 1 \u7684\u5340\u9593\u3002\u8a73\u7d30\u7684\u7279\u5fb5\u503c\u5167\u5bb9\u53ef\u53c3\u8003 (Black et al., 2013) \u3002 \u5728 6 \u7a2e\u884c\u70ba\u6e96\u5247\uff0c\u6211\u5011\u9078\u64c7\u524d 20%\u7684\u5206\u6578\u548c\u5f8c 20%\u7684\u5206\u6578\u7684\u5c0d\u8a71\u7576\u4f5c\u5be6\u9a57\u7684\u8fa8\u8b58\uff0c\u5171 140 \u7b46\u5c0d\u8a71\uff1a\u5169\u7a2e\u6a19\u7c64\u503c 0 \u548c 1\uff0c1 \u70ba\u5c0d\u61c9\u5230\u9ad8\u5206\uff0c0 \u70ba\u5c0d\u61c9\u5230\u4f4e\u5206\u3002\u800c\u5728\u9019\u4e9b\u53d6\u51fa\u4f86\u88ab\u9810\u6e2c \u7684\u5c0d\u8a71\u88e1\uff0c\u592b\u59bb\u6578\u4ecb\u65bc 68 \u5230 77 \u5c0d\uff0c\u5229\u7528\u9019\u4e9b\u884c\u70ba\u5c0d\u61c9\u5230\u592b\u59bb\u5c0d\u6578\u4f86\u4f5c\u4ea4\u53c9\u9a57\u8b49\uff0c1 \u5c0d Previous Husband 78.6 72.9 72.1 84.3 60 71.4 73.2 Method Avg(%) method(Black et al., 2013) Wife 77.9 84.3 74.3 80 66.4 67.1 75 Previous (Black et al., 2013) 74.1</td></tr><tr><td colspan=\"6\">\u800c\u70ba\u4e86\u8b93\u8f38\u5165\u7279\u5fb5\u503c\u66f4\u6709\u6548\u7684\u6b78\u985e\u7fa4\u96c6\u4e26\u4e14\u4e0d\u540c\u7279\u5fb5\u4e4b\u9593\u7684\u5340\u9694\u660e\u986f\uff0c \u592b\u59bb\u4f5c\u9a57\u8b49\uff0c\u5176\u9918\u5c0d\u6578\u4f5c\u8a13\u7df4\uff0c\u91cd\u8907\u5faa\u74b0 6 \u7a2e\u884c\u70ba\u5c0d\u61c9\u5230\u7684\u592b\u59bb\u5c0d\u6578\u4f86\u4f5c\u9a57\u8b49\u3002 SSAE One Layer 72.2</td><td>, \u52a0</td></tr><tr><td colspan=\"6\">\u5165\u7a00\u758f\u9805(sparsity term)\u5982\u5f0f(4)\uff0c\u53d6\u540d\u70ba\u7a00\u758f\u7de8\u78bc\u5668(sparse autoencoder) (Obst, 2014)\u3002 \u8868 5. 2nd hidden unit \u5206\u6790\u4e08\u592b\u548c\u592a\u592a\u5c0d\u61c9\u5230 6 \u7a2e code \u7684\u6e96\u78ba\u7387\uff0c\u7c97\u9ad4\u5b57\u70ba\u8f03\u9ad8\u7684 Two Layers 72.3</td></tr><tr><td colspan=\"6\">, \u5f8c\u7684\u8868\u73fe\uff0c\u5206\u5225\u662f\u96b1\u85cf\u5c64\u7bc0\u9ede(hidden units)\u3001\u8a08\u7b97\u640d\u5931\u51fd\u6578(cost function)\u7684\u758a\u4ee3\u6b21\u6578\u548c\u4e09 , || \u5176 \u4e2d log 1 log \uff0c \u70ba \u7a00 \u758f \u53c3 \u6578 (sparsity parameter) \uff0c \uff0c \u70ba\u63a7\u5236\u7a00\u758f\u9805(sparsity term)\u7684\u53c3\u6578\uff0cq \u70ba\u96b1\u85cf\u5c64\u7684\u7bc0\u9ede\u6578\u3002 300 100 Husband 75 78.6 68.6 83.6 57.9 67.9 71.9 \u2211 \u5728\u9019\u5be6\u9a57\u88e1\uff0c\u6211\u5011\u7528 SSAE \u4f86\u4f5c\u70ba\u975e\u76e3\u7763\u5b78\u7fd2\uff0cLR \u4f86\u76e3\u7763\u5b78\u7fd2\u9810\u6e2c\uff0c\u7559\u4e00\u5c0d\u592b\u59bb\u6cd5\u5247 (leave-one-couple-out)\u7684\u65b9\u5f0f\u4f86\u4f5c\u4ea4\u53c9\u9a57\u8b49\u3002\u4e00\u958b\u59cb\u5148\u7528\u8caa\u5a6a\u8a13\u7df4\u7b97\u6cd5(greedy layerwise) \u9010\u5c64\u9810\u5b78\u7fd2(pre-training)\uff0c\u8a13\u7df4\u5b8c\u53c3\u6578\u521d\u59cb\u503c\u8f38\u5165\u81f3 SSAE\uff0cSSAE \u6709\u4e94\u500b\u56e0\u5b50\u6703\u5f71\u97ff\u6700 1 st Hidden Layer Layer Spouse (%) (%) (%) (%) (%) (%) (%) Hidden Rated Acc Bla Pos Neg Sad Hum Avg 2 nd (4) 4.3 \u5be6\u9a57\u8a2d\u5b9a \u6e96\u78ba\u7387 Three Layers 75.0</td></tr><tr><td colspan=\"6\">\u500b\u8d85\u53c3\u6578(hyper-parameters)\u70ba\u03bb\u3001\u03c1\u3001\u03b2\uff0c\u03bb\u70ba\u6b0a\u91cd\u8870\u6e1b\u53c3\u6578(weight decay parameter)\uff0c\u03c1\u70ba\u7a00 Wife 71.4 80.7 72.9 77.1 58.6 62.9 70.6 3.2 \u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668(Stacked Sparse Autoencoder) \u758f\u53c3\u6578(sparsity parameter)\uff0c\u03b2\u70ba\u63a7\u5236\u7a00\u758f\u9805(sparsity term)\u7684\u53c3\u6578\uff0c\u9019\u4e9b\u53c3\u6578\u5728\u7b2c\u4e09\u7ae0\u6709\u4ecb 200 Husband 77.1 77.1 71.4 83.6 57.9 69.3 72.7 \u7531\u591a\u500b\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u9010\u5c64\u8a13\u7df4\u5f8c\uff0c\u5806\u758a\u7d44\u6210\u7684\u67b6\u69cb\u70ba\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668(Stacked Sparse Autoencoder)\uff0c\u5982\u5716 2\uff0c\u6bcf\u4e00\u5c64\u7684\u7de8\u78bc\u5f8c\u8f38\u51fa\u70ba\u4e0b\u4e00\u5c64\u7684\u8f38\u5165\u3002\u5f9e\u5716 2 \u53ef\u770b\u51fa\uff0c\u8f38\u5165\u5c64(Input \u7d39\u904e\u3002\u6211\u5011\u5148\u7528 1 \u5c64\u96b1\u85cf\u5c64\u4f86\u6e2c\u8a66\u6e96\u78ba\u7387\uff0c\u5982\u8868 4\u3002\u900f\u904e\u6539\u8b8a\u4e0d\u540c\u7684\u96b1\u85cf\u5c64\u7bc0\u9ede\u6578\uff0c\u6839 \u64da\u6e96\u78ba\u7387\u4f86\u6c7a\u5b9a\u6211\u5011\u4e0b\u4e00\u5c64\u6240\u4f7f\u7528\u7684\u96b1\u85cf\u5c64\u7bc0\u9ede\u6578\u3002 Wife 72.1 82.1 72 77.1 62.1 65.7 71.9 5. \u7d50\u8ad6</td></tr><tr><td colspan=\"6\">layer)\u7d93\u7531\u7b2c\u4e00\u500b\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u8a13\u7df4\u5b8c\u4e4b\u5f8c\u5f97\u5230\u7b2c\u4e00\u96b1\u85cf\u5c64(Hidden layer1)\u7684 n \u500b\u7bc0\u9ede\uff0c \u7531\u9019 n \u500b\u7bc0\u9ede\u5728\u7d93\u904e\u7b2c\u4e8c\u500b\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u8a13\u7df4\u5f97\u5230\u7b2c\u4e8c\u96b1\u85cf\u5c64(Hidden layer2)\u7684 p \u500b\u7bc0\u9ede\uff0c \u6bcf\u5c64\u7684\u96b1\u85cf\u5c64\u7bc0\u9ede\u53ef\u8996\u70ba\u7531\u4e0a\u4e00\u5c64\u7522\u751f\u65b0\u7684\u4e00\u7d44\u7279\u5fb5\uff0c\u900f\u904e\u9019\u6a23\u9010\u5c64\u8a13\u7df4\u53ef\u4ee5\u8a13\u7df4\u66f4\u591a \u5c64\u3002 \u6211\u5011\u5be6\u9a57\u63a1\u7528\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668(Stacked Sparse Autoencoder, SSAE)\uff0c\u5e0c\u671b\u900f\u904e SSAE \u5f97\u5230\u597d\u7684\u7279\u5fb5\u8868\u793a\u65b9\u5f0f\uff0c\u6700\u5f8c\u7d93\u7531\u5206\u985e\u5668\u7522\u751f\u66f4\u597d\u7684\u6e96\u78ba\u7387\u3002 \u5716 4. \u5be6\u9a57\u7279\u5fb5\u63d0\u53d6\u67b6\u69cb 300 Husband 73.6 76.4 72.1 84.3 58.6 67.1 72 \u73fe\u4eca\u5b58\u5728\u8d8a\u4f86\u8d8a\u591a\u8cc7\u6599\u5eab\uff0c\u5982\u4f55\u5feb\u901f\u4e14\u6e96\u78ba\u9810\u6e2c\u8cc7\u6599\uff0c\u662f\u8fd1\u4f86\u7814\u7a76\u7684\u71b1\u9580\u8b70\u984c\u3002\u5728\u9019\u7bc7 \u5982\u8868 4 \u53ef\u5f97\u77e5\uff0c\u96b1\u85cf\u5c64\u6578\u76ee\u70ba 300 \u7684\u6642\u5019\uff0c\u4e08\u592b\u548c\u592a\u592a\u88ab\u8a55\u5206\u7684 6 \u7a2e\u884c\u70ba\u5e73\u5747\u6e96\u78ba Wife 72.9 80.7 71.4 76.4 55 70 71.3 \u8ad6\u6587\u4e2d\uff0c\u6211\u5011\u63d0\u51fa\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u6539\u8b8a\u7279\u5fb5\u63d0\u53d6\u7684\u65b9\u6cd5\u548c\u4ee5\u70ba\u4e3b\u9ad4\u67b6\u69cb\uff0c\u4f86\u6bd4\u8f03\u548c\u4e4b \u7387\u70ba\u6700\u9ad8\uff0c\u4f7f\u7528\u7684\u758a\u4ee3\u6b21\u6578\u70ba 15 \u6b21\uff0c\u03c1 0.1\uff0c\u03bb 0.002\uff0c\u03b2 2\u3002 \u63a5\u4e0b\u4f86\u6e2c\u8a66\u4e8c\u5c64\u96b1\u85cf\u5c64\u7684\u6e96\u78ba\u7387\uff0c\u7b2c\u4e00\u5c64\u96b1\u85cf\u6578\u5df2\u7d93\u6c7a\u5b9a\u597d\u4e86\uff0c\u6211\u5011\u6e2c\u8a66\u7684\u7b2c\u4e8c\u5c64 Previous method Husband 78.6 72.9 72.1 84.3 60 71.4 \u524d\u7814\u7a76\u7684\u6e96\u78ba\u7387\uff0c\u76ee\u7684\u5728\u85c9\u7531\u964d\u4f4e\u7279\u5fb5\u6578\u91cf\uff0c\u63d0\u5347\u8a0a\u606f\u7684\u542b\u91cf\u7684\u65b9\u5f0f\uff0c\u627e\u5230\u76f8\u5c0d\u95dc\u9375\u7684 73.2 \u7279\u5fb5\uff0c\u4f86\u9054\u5230\u66f4\u597d\u7684\u6e96\u78ba\u7387\u4e26\u6e1b\u5c11\u8a13\u7df4\u6642\u9593\u3002\u6700\u5f8c\u7d50\u679c\u4e5f\u8b49\u660e\u4e86\u5229\u7528\u975e\u76e3\u7763\u5b78\u7fd2\u4f86\u8a13\u7df4 \u96b1\u85cf\u5c64\u7bc0\u9ede\u6578\uff0c\u5982\u8868 5\u3002\u5f9e\u8868\u4e2d\u5f97\u77e5\uff0c\u7b2c\u4e8c\u5c64\u96b1\u85cf\u5c64\u7684\u7bc0\u9ede\u6578\u70ba 200 \u7684\u6642\u5019\uff0c\u6e96\u78ba\u7387\u70ba (Black et al., 2013) Wife 77.9 84.3 74.3 80 66.4 67.1 75 \u51fa\u65b0\u7684\u4e00\u7d44\u7279\u5fb5\u503c\uff0c\u7d93\u7531\u76e3\u7763\u5b78\u7fd2\u4f5c\u5206\u985e\uff0c\u6e96\u78ba\u7387\u8f03\u4e4b\u524d\u7814\u7a76\u4f86\u7684\u597d\uff0c\u63d0\u51fa\u65b0\u7684\u65b9\u6cd5\u6574 \u6700\u9ad8\uff0c\u4f7f\u7528\u7684\u758a\u4ee3\u6b21\u6578\u70ba 15 \u6b21\uff0c\u03c1 0.1\uff0c\u03bb 0.0001\uff0c\u03b2 1\u3002 \u9ad4\u5e73\u5747\u70ba 75%\u9ad8\u65bc\u820a\u7684\u7814\u7a76 74.1%\uff0c\u63d0\u5347 0.9%\u3002</td></tr></table>",
                "text": "\u7531\u8868 7 \u4e2d\u53ef\u5f97\u77e5 3 \u5c64\u7684 SSAE \u8f03\u4e4b\u524d\u7814\u7a76\u63d0\u9ad8 0.9%\u3002\u4e4b\u524d\u7814\u7a76\u4f7f\u7528 40479 \u500b\u7279\u5fb5\u503c\u4f86\u4f5c \u9810\u6e2c\uff0c\u800c\u6211\u5011\u4f7f\u7528 2940 \u500b\u7279\u5fb5\u503c\uff0c\u7406\u8ad6\u4e0a\u770b\u4f86\u8f03\u591a\u7684\u7279\u5fb5\u503c\u76f8\u5c0d\u65bc\u6e96\u78ba\u7387\u6703\u8f03\u9ad8\uff0c\u4f46\u900f \u904e\u6df1\u5ea6\u5b78\u7fd2\u7684\u65b9\u5f0f\uff0c\u964d\u4f4e\u6578\u64da\u7684\u7dad\u5ea6\uff0c\u627e\u51fa\u76f8\u5c0d\u95dc\u9375\u7684\u7279\u5fb5\uff0c\u5c0d\u65bc\u6e96\u78ba\u7387\u7684\u63d0\u5347\u662f\u6709\u5e6b \u52a9\u7684\uff0c\u5f9e\u8868 7 \u4e2d\u770b\u4f86\u96d6\u7136\u8a13\u7df4 1 \u5c64\u548c 2 \u5c64\u6e96\u78ba\u7387\u8868\u73fe\u6c92\u6709\u6bd4\u8f03\u597d\uff0c\u5728\u4f7f\u7528 3 \u5c64\u4e4b\u5f8c\u5c31\u6709 \u597d\u7684\u8868\u73fe\uff0c\u6b64\u8ad6\u9ede\u7531\u6b64\u53ef\u8b49\u3002",
                "type_str": "table"
            }
        }
    }
}