File size: 54,032 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 |
{
"paper_id": "O15-3006",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:10:05.190194Z"
},
"title": "Automating Behavior Coding for Distressed Couples Interactions Based on Stacked Sparse Autoencoder Framework using Speech-acoustic Features",
"authors": [
{
"first": "\u9673\u67cf\u8ed2",
"middle": [
"\uf02a"
],
"last": "\u3001\u674e\u7948\u5747",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Tsing Hua University",
"location": {}
},
"email": ""
},
{
"first": "Po-Hsuan",
"middle": [],
"last": "Chen",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Tsing Hua University",
"location": {}
},
"email": ""
},
{
"first": "Chi-Chun",
"middle": [],
"last": "Lee",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Tsing Hua University",
"location": {}
},
"email": "cclee@ee.nthu.edu.tw"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Traditional way of conducting analyses of human behaviors is through manual observation. For example in couple therapy studies, human raters observe sessions of interaction between distressed couples and manually annotate the behaviors of each spouse using established coding manuals. Clinicians then analyze these annotated behaviors to understand the effectiveness of treatment that each couple receives. However, this manual observation approach is very time consuming, and the subjective nature of the annotation process can result in unreliable annotation. Our work aims at using machine learning approach to automate this process, and by using signal processing technique, we can bring in quantitative evidence of human behavior. Deep learning is the current state-of-art machine learning technique. This paper proposes to use stacked sparse autoencoder (SSAE) to reduce the dimensionality of the acoustic-prosodic features used in order to identify the key higher-level features. Finally, we use logistic regression (LR) to perform classification on recognition of high and low rating of six different codes. The method achieves an overall accuracy of 75% over 6 codes (husband's average accuracy of 74.9%, wife's average accuracy of 75%), compared to the previously-published study of 74.1% (husband's average accuracy of 75%, wife's average accuracy of 73.2%) (Black et al., 2013), a total improvement of 0.9%. Our proposed method achieves a higher classification rate by using much fewer number of features (10 times less than the previous work (Black et al., 2013)).",
"pdf_parse": {
"paper_id": "O15-3006",
"_pdf_hash": "",
"abstract": [
{
"text": "Traditional way of conducting analyses of human behaviors is through manual observation. For example in couple therapy studies, human raters observe sessions of interaction between distressed couples and manually annotate the behaviors of each spouse using established coding manuals. Clinicians then analyze these annotated behaviors to understand the effectiveness of treatment that each couple receives. However, this manual observation approach is very time consuming, and the subjective nature of the annotation process can result in unreliable annotation. Our work aims at using machine learning approach to automate this process, and by using signal processing technique, we can bring in quantitative evidence of human behavior. Deep learning is the current state-of-art machine learning technique. This paper proposes to use stacked sparse autoencoder (SSAE) to reduce the dimensionality of the acoustic-prosodic features used in order to identify the key higher-level features. Finally, we use logistic regression (LR) to perform classification on recognition of high and low rating of six different codes. The method achieves an overall accuracy of 75% over 6 codes (husband's average accuracy of 74.9%, wife's average accuracy of 75%), compared to the previously-published study of 74.1% (husband's average accuracy of 75%, wife's average accuracy of 73.2%) (Black et al., 2013), a total improvement of 0.9%. Our proposed method achieves a higher classification rate by using much fewer number of features (10 times less than the previous work (Black et al., 2013)).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "\u4eba\u8207\u4eba\u4e4b\u9593\u4ea4\u8ac7\u4e92\u52d5\uff0c\u5e38\u900f\u904e\u8a9e\u8a00\u50b3\u9054\u5f7c\u6b64\u7684\u60f3\u6cd5\uff0c\u4e26\u5728\u9019\u4ea4\u8ac7\u904e\u7a0b\u4e2d\u5f97\u77e5\u96d9\u65b9\u7684\u884c\u70ba \u53cd\u61c9\u3002\u5229\u7528\u4eba\u70ba\u89c0\u5bdf\u4f86\u5206\u6790\u96d9\u65b9\u884c\u70ba\u53cd\u61c9\uff0c\u9019\u90e8\u5206\u6700\u65e9\u5e38\u61c9\u7528\u5728\u5fc3\u7406\u5b78\u548c\u7cbe\u795e\u5b78\u65b9\u9762 (O'Brian et al., 1994) \u3002\u4eba\u70ba\u884c\u70ba\u89c0\u5bdf\u76f8\u7576\u7684\u6210\u529f\u7814\u7a76\u5728\u89aa\u5bc6\u95dc\u4fc2 (Karney & Bradbury, 1995) (Gonzaga et al., 2007) \uff0c\u5373\u592b\u59bb\u7684\u884c\u70ba\u662f\u5f71\u97ff\u89aa\u5bc6\u95dc\u4fc2\u7a0b\u5ea6\u7684\u56e0\u7d20\u4e4b\u4e00\u3002\u7136\u800c\u7528\u65bc \u4eba\u70ba\u89c0\u5bdf\u884c\u70ba\u7684\u65b9\u5f0f\u5b58\u5728\u4e00\u4e9b\u56f0\u96e3\uff0c\u4e00\u65b9\u9762\u592a\u6d88\u8017\u6642\u9593\uff0c\u53e6\u4e00\u9762\u4e5f\u6d6a\u8cbb\u6210\u672c\u3002 \u5982\u679c\u80fd\u900f\u904e\u96fb\u8166\u5de5\u7a0b\u7684\u65b9\u5f0f\u4f86\u53d6\u4ee3\u4eba\u70ba\u89c0\u5bdf\u5c07\u5927\u5927\u63d0\u5347\u6548\u7387\uff0c\u900f\u904e\u4f4e\u5c64\u63cf\u8ff0\u6620\u5c04\u9ad8 \u5c64\u63cf\u8ff0\u4f86\u9810\u6e2c\u4eba\u985e\u884c\u70ba (Schuller et al., 2007) \uff0c\u9019\u9805\u7814\u7a76\u9818\u57df\u662f\u6b63\u5728\u4e0d\u65b7\u767c\u5c55\u7684\u4e00\u90e8\u5206\u3002 \u4eba\u985e\u884c\u70ba\u4fe1\u865f\u8655\u7406(Behavioral Signal Processing, BSP)\u76ee\u7684\u5728\u5e6b\u52a9\u9023\u63a5\u4fe1\u865f\u79d1\u5b78\u548c\u884c\u70ba\u8655 \u7406\u7684\u65b9\u6cd5\uff0c\u5efa\u7acb\u5728\u50b3\u7d71\u7684\u4fe1\u865f\u8655\u7406\u7814\u7a76\uff0c\u5982\u8a9e\u97f3\u8b58\u5225\uff0c\u9762\u624b\u90e8\u8ffd\u8e64\u7b49\u7b49\u3002\u76f8\u95dc\u986f\u8457 BSP \u7814\u7a76\u5df2\u767c\u7522\u65bc\u4ee5\u4eba\u70ba\u4e2d\u5fc3\u7684\u63d0\u53d6\u97f3\u983b\uff0c\u8996\u983b\u4fe1\u865f\uff0c\u4f86\u5206\u6790\u5be6\u969b\u4e0a\u4eba\u985e\u884c\u70ba\u6216\u662f\u60c5\u611f\u65b9\u9762 (Burkhardt et al., 2009; Devillers & Campbell, 2011 )\u3002 \u900f\u904e\u8a9e\u97f3\u7279\u5fb5\u5efa\u69cb\u57fa\u65bc\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u6f14\u7b97\u6cd5\u4e4b 109 \u5a5a\u59fb\u6cbb\u7642\u4e2d\u592b\u59bb\u4e92\u52d5\u884c\u70ba\u91cf\u8868\u81ea\u52d5\u5316\u8a55\u5206\u7cfb\u7d71 \u672c\u8ad6\u6587\u5229\u7528 BSP \u7684\u57fa\u672c\u601d\u8def\u61c9\u7528\u5728\u5a5a\u59fb\u6cbb\u7642\u8cc7\u6599\u5eab\u4e0a\u9762 (Christensen et al., 2004) \uff0c \u5a5a\u59fb\u6cbb\u7642\u8cc7\u6599\u5eab\u6703\u8a73\u7d30\u8aaa\u660e\u5728\u7b2c\u4e8c\u7ae0\u3002\u9019\u500b\u8cc7\u6599\u5eab\u7d00\u9304\u4e86\u592b\u59bb\u5728\u4e00\u6bb5\u5c0d\u8a71\u4e2d\u8ac7\u8ff0\u4e86\u4ed6\u5011 \u6240\u9078\u64c7\u5a5a\u59fb\u4e2d\u7684\u554f\u984c\u3002\u8a55\u5206\u8005\u5728\u6839\u64da\u4ed6\u5011\u4e00\u6bb5\u8a71\u7684\u7a2e\u7a2e\u884c\u70ba\u6839\u64da\u4e0d\u540c\u884c\u70ba\u91cf\u8868\u9032\u884c\u8a55\u5206 (\u5e7d\u9ed8\u884c\u70ba\u3001\u60b2\u50b7\u884c\u70ba\u7b49\u7b49)\u3002 \u5ef6\u7e8c\u4e0a\u7bc7\u8ad6\u6587\u7684\u7814\u7a76\u5167\u5bb9\u4f86\u81ea\u52d5\u5316\u5206\u6790\u592b\u59bb\u4e00\u6bb5\u5c0d\u8a71\u7684\u884c\u70ba\u5206\u6578 (Black et al., 2013) ",
"cite_spans": [
{
"start": 77,
"end": 99,
"text": "(O'Brian et al., 1994)",
"ref_id": "BIBREF12"
},
{
"start": 120,
"end": 145,
"text": "(Karney & Bradbury, 1995)",
"ref_id": "BIBREF11"
},
{
"start": 146,
"end": 168,
"text": "(Gonzaga et al., 2007)",
"ref_id": "BIBREF6"
},
{
"start": 279,
"end": 302,
"text": "(Schuller et al., 2007)",
"ref_id": "BIBREF16"
},
{
"start": 462,
"end": 486,
"text": "(Burkhardt et al., 2009;",
"ref_id": "BIBREF2"
},
{
"start": 487,
"end": 513,
"text": "Devillers & Campbell, 2011",
"ref_id": "BIBREF5"
},
{
"start": 593,
"end": 619,
"text": "(Christensen et al., 2004)",
"ref_id": "BIBREF3"
},
{
"start": 744,
"end": 764,
"text": "(Black et al., 2013)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "\u7dd2\u8ad6",
"sec_num": "1."
},
{
"text": "\u5716 1. \u81ea\u7de8\u78bc\u5668 112 \u9673\u67cf\u8ed2\u8207\u674e\u7948\u5747 \u5f9e\u5716 1\uff0c\u8f38\u5165\u503c \uff0c 1,2, \u2026 , \uff0c \u2208 \uff0c\u96b1\u85cf\u5c64(hidden layer)\u4e2d\u7684 \uff0c 1,2, \u2026 , \uff0c \u2208 \uff0c\u6b0a\u91cd\u77e9\u9663(weight matrix) \u2208 \uff0c\u504f\u79fb\u5411\u91cf(bias vector) \u2208 \u3002\u7531\u9019\u4e9b\u56e0 \u5b50(factor)\u69cb\u6210\u6fc0\u6d3b\u51fd\u6578(activation function)\uff0c\u5982\u5f0f(1)\u3002 (1) \u5176\u4e2d 1/ 1 \u70ba sigmoid function \u3002\u8f38\u51fa\u503c \uff0c 1,2, \u2026 , , \u2208 \uff0c \u6b0a\u91cd\u77e9\u9663 \u2208 \uff0c\u504f\u79fb\u5411\u91cf \u2208 \uff0c\u81ea\u7de8\u78bc\u5668\u8f38\u51fa\u70ba\u5f0f(2):",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "\u7dd2\u8ad6",
"sec_num": "1."
},
{
"text": "(2) ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "\u7dd2\u8ad6",
"sec_num": "1."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u70ba \u4e86 \u8981 \u6c42 \u5f97 \u6b0a \u91cd \u77e9 \u9663 \u548c \uff0c \u504f \u79fb \u5411 \u91cf \u548c \uff0c \u5047 \u8a2d \u4e00 \u500b \u6a23 \u672c \u96c6 \u70ba , , , \u2026 , \uff0c\u6709 m \u7d44\u6a23\u672c\uff0c \u70ba\u6a23\u672c\u8f38\u5165\u7279\u5fb5\u503c\uff0c \u70ba\u5c0d\u61c9\u6a19\u7c64\u503c\uff0c\u5229 \u7528\u4ee3\u50f9\u51fd\u6578(cost function)\uff0c\u5982\u5f0f(3)\u3002 , 1 1 2 2 ,",
"eq_num": "(3)"
}
],
"section": "\u7dd2\u8ad6",
"sec_num": "1."
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Scalable training of L 1-regularized log-linear Models",
"authors": [
{
"first": "G",
"middle": [],
"last": "Andrew",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Gao",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of the 24th international conference on Machine learning",
"volume": "",
"issue": "",
"pages": "33--40",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Andrew, G., & Gao, J. (2007). Scalable training of L 1-regularized log-linear Models. In Proceedings of the 24th international conference on Machine learning. ACM, 33-40.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Toward automating a human behavioral coding system for married couples' interactions using speech acoustic features",
"authors": [
{
"first": "M",
"middle": [],
"last": "Black",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Katsamanis",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Baucom",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Lammert",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Christensen",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Georgiou",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Narayanan",
"suffix": ""
}
],
"year": 2013,
"venue": "Speech Communication",
"volume": "55",
"issue": "1",
"pages": "1--21",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Black, M., Katsamanis, A., Baucom, B., Lee, C., Lammert, A., Christensen, A., Georgiou, P., & Narayanan, S. (2013). Toward automating a human behavioral coding system for married couples' interactions using speech acoustic features. Speech Communication, 55(1), 1-21.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Detecting real life anger",
"authors": [
{
"first": "F",
"middle": [],
"last": "Burkhardt",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Polzehl",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Stegmann",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Metze",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Huber",
"suffix": ""
}
],
"year": 2009,
"venue": "Proc. IEEE Int'l Conf. Acous., Speech, and Signal Processing",
"volume": "",
"issue": "",
"pages": "4761--4764",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Burkhardt, F., Polzehl, T., Stegmann, J., Metze, F., & Huber, R. (2009). Detecting real life anger. In Proc. IEEE Int'l Conf. Acous., Speech, and Signal Processing, 4761-4764.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Couple and individual adjustment for 2 years following a randomized clinical trial comparing traditional versus integrative behavioral couple therapy",
"authors": [
{
"first": "A",
"middle": [],
"last": "Christensen",
"suffix": ""
},
{
"first": "D",
"middle": [
"C"
],
"last": "Atkins",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Yi",
"suffix": ""
},
{
"first": "D",
"middle": [
"H"
],
"last": "Baucom",
"suffix": ""
},
{
"first": "W",
"middle": [
"H"
],
"last": "George",
"suffix": ""
}
],
"year": 2004,
"venue": "J. Consult. Clin. Psychol",
"volume": "72",
"issue": "",
"pages": "176--191",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christensen, A., Atkins, D.C., Yi, J., Baucom, D.H., & George, W.H. (2004). Couple and individual adjustment for 2 years following a randomized clinical trial comparing traditional versus integrative behavioral couple therapy. J. Consult. Clin. Psychol, 72, 176-191.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Integrative behavioral couple therapy",
"authors": [
{
"first": "A",
"middle": [],
"last": "Christensen",
"suffix": ""
},
{
"first": "N",
"middle": [
"S"
],
"last": "Jacobson",
"suffix": ""
},
{
"first": "J",
"middle": [
"C"
],
"last": "Babcock",
"suffix": ""
}
],
"year": 1995,
"venue": "Clinical Handbook of Marital Therapy",
"volume": "",
"issue": "",
"pages": "31--64",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christensen, A., Jacobson, N.S., & Babcock, J.C. (1995). Integrative behavioral couple therapy. In: Jacobsen, N.S., Gurman, A.S. (Eds.), Clinical Handbook of Marital Therapy, second ed. Guilford Press, New York, 31-64.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Special issue of computer speech and language on affective speech in real-life interactions",
"authors": [
{
"first": "L",
"middle": [],
"last": "Devillers",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Campbell",
"suffix": ""
}
],
"year": 2011,
"venue": "Comput. Speech Lang",
"volume": "25",
"issue": "",
"pages": "1--3",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Devillers, L., & Campbell, N. (2011). Special issue of computer speech and language on affective speech in real-life interactions. Comput. Speech Lang., 25, 1-3.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Similarity, convergence, and relationship satisfaction in dating and married couples",
"authors": [
{
"first": "G",
"middle": [
"C"
],
"last": "Gonzaga",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Campos",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Bradbury",
"suffix": ""
}
],
"year": 2007,
"venue": "J.Personal. Soc. Psychol",
"volume": "93",
"issue": "",
"pages": "34--48",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gonzaga, G.C., Campos, B., & Bradbury, T. (2007). Similarity, convergence, and relationship satisfaction in dating and married couples. J.Personal. Soc. Psychol., 93, 34-48.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Couples interaction rating system 2 (CIRS2)., University of California",
"authors": [
{
"first": "C",
"middle": [],
"last": "Heavey",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Gill",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Christensen",
"suffix": ""
}
],
"year": 2002,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Heavey, C., Gill, D., & Christensen, A. (2002). Couples interaction rating system 2 (CIRS2)., University of California, Los Angeles. Los Angeles, CA, USA.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Reducing the Dimensionality of Data with Neural Networks",
"authors": [
{
"first": "G",
"middle": [],
"last": "Hinton",
"suffix": ""
}
],
"year": 2006,
"venue": "Science",
"volume": "",
"issue": "5786",
"pages": "504--507",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hinton, G. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786), 504-507.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups",
"authors": [
{
"first": "G",
"middle": [],
"last": "Hinton",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Dahl",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Mohamed",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Jaitly",
"suffix": ""
}
],
"year": 2012,
"venue": "IEEE Signal Process. Mag",
"volume": "29",
"issue": "6",
"pages": "82--97",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hinton, G., Deng, L., Yu, D., Dahl,G., Mohamed, A., Jaitly, N., et al. (2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag., 29(6), 82-97.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Couples interaction study: Social support interaction rating system",
"authors": [
{
"first": "J",
"middle": [],
"last": "Jones",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Christensen",
"suffix": ""
}
],
"year": 1998,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jones, J., & Christensen, A. (1998). Couples interaction study: Social support interaction rating system. University of California, Los Angeles. Los Angeles, CA, USA.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "The longitudinal course of marital quality and stability: A review of theory, methods, and research",
"authors": [
{
"first": "B",
"middle": [
"R"
],
"last": "Karney",
"suffix": ""
},
{
"first": "T",
"middle": [
"N"
],
"last": "Bradbury",
"suffix": ""
}
],
"year": 1995,
"venue": "Psychol. Bull",
"volume": "118",
"issue": "",
"pages": "3--34",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Karney, B.R., & Bradbury, T.N. (1995). The longitudinal course of marital quality and stability: A review of theory, methods, and research. Psychol. Bull, 118, 3-34.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Reliability and diagnostic efficacy of parent's reports regarding children's exposure to martial aggression",
"authors": [
{
"first": "M",
"middle": [],
"last": "O'brian",
"suffix": ""
},
{
"first": "R",
"middle": [
"S"
],
"last": "John",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Margolin",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Erel",
"suffix": ""
}
],
"year": 1994,
"venue": "Violence and Victims",
"volume": "9",
"issue": "1",
"pages": "45--62",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "O'Brian, M.,John, R.S., Margolin, G., & Erel, O. (1994). Reliability and diagnostic efficacy of parent's reports regarding children's exposure to martial aggression. Violence and Victims, 9(1), 45-62.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Distributed machine learning and sparse representations",
"authors": [
{
"first": "O",
"middle": [],
"last": "Obst",
"suffix": ""
}
],
"year": 2014,
"venue": "Neurocomputing",
"volume": "124",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Obst, O. (2014). Distributed machine learning and sparse representations. Neurocomputing, 124, 1.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Machine recognition of Hand written Characters using neural networks",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Perwej",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Chaturvedi",
"suffix": ""
}
],
"year": 2011,
"venue": "International Journal of Computer Applications",
"volume": "14",
"issue": "2",
"pages": "6--9",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Perwej, Y., & Chaturvedi, A. (2011). Machine recognition of Hand written Characters using neural networks. International Journal of Computer Applications, 14(2), 6-9.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "The layer-wise method and the backpropagation hybrid approach to learning a feedforward neural network",
"authors": [
{
"first": "N",
"middle": [],
"last": "Rubanov",
"suffix": ""
}
],
"year": 2000,
"venue": "IEEE Trans. Neural Netw",
"volume": "11",
"issue": "2",
"pages": "295--305",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rubanov, N. (2000). The layer-wise method and the backpropagation hybrid approach to learning a feedforward neural network. IEEE Trans. Neural Netw., 11(2), 295-305.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "The relevance of feature type for automatic classification of emotional user states: Low level descriptors and functionals",
"authors": [
{
"first": "B",
"middle": [],
"last": "Schuller",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Batliner",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Seppi",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Steidl",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Vogt",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Wagner",
"suffix": ""
}
],
"year": 2007,
"venue": "Proc. Interspeech",
"volume": "",
"issue": "",
"pages": "2253--2256",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Schuller, B., Batliner, A., Seppi, D., Steidl, S., Vogt, T., Wagner, J., et al. (2007). The relevance of feature type for automatic classification of emotional user states: Low level descriptors and functionals. In Proc. Interspeech, Antwerp, Belgium, 2253-2256.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Comparison of Regularization Methods for ImageNet Classification with Deep Convolutional Neural Networks. AASRI Procedia",
"authors": [
{
"first": "E",
"middle": [],
"last": "Smirnov",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Timoshenko",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Andrianov",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "6",
"issue": "",
"pages": "89--94",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Smirnov, E., Timoshenko, D., & Andrianov, S. (2014). Comparison of Regularization Methods for ImageNet Classification with Deep Convolutional Neural Networks. AASRI Procedia, 6, 89-94.",
"links": null
}
},
"ref_entries": {
"TABREF1": {
"num": null,
"html": null,
"content": "<table><tr><td/><td colspan=\"5\">\u900f\u904e\u8a9e\u97f3\u7279\u5fb5\u5efa\u69cb\u57fa\u65bc\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u6f14\u7b97\u6cd5\u4e4b \u900f\u904e\u8a9e\u97f3\u7279\u5fb5\u5efa\u69cb\u57fa\u65bc\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u6f14\u7b97\u6cd5\u4e4b \u900f\u904e\u8a9e\u97f3\u7279\u5fb5\u5efa\u69cb\u57fa\u65bc\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u6f14\u7b97\u6cd5\u4e4b</td><td>113 \u9673\u67cf\u8ed2\u8207\u674e\u7948\u5747 115 \u9673\u67cf\u8ed2\u8207\u674e\u7948\u5747 117</td></tr><tr><td/><td colspan=\"5\">\u5a5a\u59fb\u6cbb\u7642\u4e2d\u592b\u59bb\u4e92\u52d5\u884c\u70ba\u91cf\u8868\u81ea\u52d5\u5316\u8a55\u5206\u7cfb\u7d71 \u5a5a\u59fb\u6cbb\u7642\u4e2d\u592b\u59bb\u4e92\u52d5\u884c\u70ba\u91cf\u8868\u81ea\u52d5\u5316\u8a55\u5206\u7cfb\u7d71 \u5a5a\u59fb\u6cbb\u7642\u4e2d\u592b\u59bb\u4e92\u52d5\u884c\u70ba\u91cf\u8868\u81ea\u52d5\u5316\u8a55\u5206\u7cfb\u7d71</td></tr><tr><td colspan=\"6\">\u4e00\u6bb5\u8a9e\u97f3\u7d93\u904e\u9810\u8655\u7406\uff0c\u964d\u4f4e\u96dc\u8a0a\u5f71\u97ff\uff0c\u624d\u4e0d\u6703\u5f71\u97ff\u4e4b\u5f8c\u7684\u7279\u5fb5\u64f7\u53d6\uff0c\u800c\u9019\u90e8\u5206\u9810\u8655\u7406\u5728 \u4e0a\u7bc7\u8ad6\u6587\u5df2\u7d93\u88ab\u8655\u7406\u904e\u4e86 (Black et al., 2013)\u3002\u672c\u7bc7\u8ad6\u6587\u6539\u8b8a\u7279\u5fb5\u64f7\u53d6\u65b9\u6cd5\uff0c\u9019\u90e8\u5206\u4e0b\u4e00 \u8868 3. 28 \u7a2e\u7279\u5fb5\u503c\u548c 7 \u7a2e functionals LLDs Functionals \u8868 4. 1st hidden unit \u5206\u6790\u4e08\u592b\u548c\u592a\u592a\u5c0d\u61c9\u5230 6 \u7a2e\u884c\u70ba\u7684\u6e96\u78ba\u7387\uff0c\u7c97\u9ad4\u5b57\u70ba\u8f03\u9ad8\u7684 \u6700\u5f8c\u4e00\u5c64\u7684\u7bc0\u9ede\u6578\u6211\u5011\u8a2d\u70ba 150\uff0c\u5982\u8868 6\uff0c\u5f97\u5230\u6700\u5f8c\u7684\u6e96\u78ba\u7387\u3002\u4f7f\u7528\u7684\u758a\u4ee3\u6b21\u6578\u70ba \u6e96\u78ba 20 \u6b21\uff0c\u03c1 0.1\uff0c\u03bb 0.0001\uff0c\u03b2 1\u3002</td></tr><tr><td colspan=\"6\">\u7ae0\u6703\u4ecb\u7d39\u3002\u5982\u5716 3\uff0c\u6b63\u898f\u5316\u5f8c\u7684\u7279\u5fb5\u503c\uff0c\u4e00\u7a2e\u884c\u70ba\u5305\u542b 372 \u7b46 10 \u5206\u9418\u6703\u8a71(session)\uff0c\u5206 \u70ba\u6709\u6a19\u7c64\u6578\u64da(labeled data)\u548c\u6c92\u6709\u6a19\u7c64\u6578\u64da(unlabeled data)\uff0c\u6c92\u6709\u6a19\u7c64\u6578\u64da\u5229\u7528\u7a00\u758f\u81ea\u7de8 \u78bc\u5668\u4f86\u8a13\u7df4\u7db2\u7d61\u53c3\u6578\uff0c\u8a13\u7df4\u597d\u5f8c\u518d\u628a 140 \u7b46\u6709\u6a19\u7c64\u6578\u64da\u5206\u70ba\u8a13\u7df4\u8cc7\u6599\u548c\u6e2c\u8a66\u8cc7\u6599\uff0c\u8f38\u5165 \u81ea\u8a13\u7df4\u597d\u7684\u7db2\u7d61\u53c3\u6578\uff0c\u7522\u751f\u65b0\u7684\u4e00\u7d44\u7279\u5fb5\u3002\u65b0\u7684\u4e00\u7d44\u7279\u5fb5\u70ba\u4e0b\u4e00\u5c64\u8f38\u5165\u503c\uff0c\u91cd\u8907\u5229\u7528\u5716 3 \u67b6\u69cb\u53ef\u4ee5\u7522\u751f\u66f4\u591a\u5c64\u3002\u6211\u5011\u5e0c\u671b\u65b0\u7684\u7279\u5fb5\u503c\u5c0d\u65bc\u884c\u70ba\u5206\u6578\u5c07\u6709\u66f4\u597d\u7684\u8868\u793a\uff0c\u4e0b\u9762\u7ae0\u7bc0 1. MFCC[0-14] 2. MFB[0-7] 3. F0normlog 4. VAD(speech/no speech) 1. Mean 1 st hidden unit Rated Spouse Acc (%) Bla (%) Pos (%) Neg (%) Sad (%) Hum (%) Avg \u8868 6. 3rd hidden unit \u5206\u6790\u4e08\u592b\u548c\u592a\u592a\u5c0d\u61c9\u5230 6 \u7a2e code \u7684\u6e96\u78ba\u7387\u548c\u4e4b\u524d\u7814\u7a76\u6e96\u78ba\u7387 (%) \u6bd4\u8f03 2. Median 3. Standard deviation 4. Skewness 100 Husband 67.9 76.4 65.7 78.6 52.9 61.4 67.2 Wife 70 73.6 65 74.3 58.6 59.3 66.8 Husband 72.9 76.4 71.4 82.1 57.1 67.1 71.2 1 st Hidden Layer 2 nd Hidden Layer 3 rd Rated Acc Bla Pos Neg Sad Hum Avg Hidden Layer Spouse (%) (%) (%) (%) (%) (%) (%)</td></tr><tr><td>\u6703\u8b49\u660e\u4e4b\u3002 200 300 200</td><td>5. Intensity Wife 150</td><td colspan=\"3\">71.4 Husband 80 82.9</td><td>5. Kurtosis 77.1 64.9 78.6 73.6 84.3 59.3 73.6 74.9 65.7 57.9 70</td></tr><tr><td colspan=\"3\">4. \u5be6\u9a57\u8a2d\u8a08\u548c\u7d50\u679c 6. Jitter Husband 77.1 Wife</td><td>77.9</td><td>80</td><td>6. Max position 82.9 58.6 83.6 72.9 81.4 65 72.1</td><td>67.1 67.9 75 72.6</td></tr><tr><td colspan=\"6\">7. Jitter of Jitter Wife 75.7 Previous method 300 Husband 78.6 72.9 72.1 84.3 60 7. Min position 82.1 71.4 78.6 58.6 4.1 \u7279\u5fb5\u503c 500 \u5982\u5716 4\uff0c\u5229\u7528\u539f\u672c LLDs\uff0c\u5728\u4e09\u7a2e\u5c0d\u8a71\u5340\u9593\u88e1(speaker domain)\uff0c\u4e08\u592b\u6642\u9593\u5340\u9593(husband\u3001 63.6 71.4 73.2 71.7 8. Shimmer Husband 70 78.6 68.6 82.9 55 62.1 69.5 (Black et al., 2013) Wife 77.9 84.3 74.3 80 66.4 67.1 75</td></tr><tr><td colspan=\"6\">, H)\u3001\u592a\u592a\u6642\u9593\u5340\u9593(wife\u3001W)\u548c\u4e0d\u5206\u4eba\u6642\u9593\u5340\u9593(full\u3001F)\u6240\u8aaa\u7684\u53e5\u5b50\uff0c\u5207\u5272\u6210\u4ee5 20%\u53e5\u5b50 \u503c\uff0c\u6700\u5f8c\u5f97\u5230 \u548c \u3002 4.2 \u8cc7\u6599 Wife 74.3 82.1 69.3 80.7 58.6 62.9 71.3 4.4 \u5be6\u9a57\u7d50\u679c\u6bd4\u8f03 \u5716 2. \u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668 3.3 \u5be6\u9a57\u67b6\u69cb \u6211\u5011\u4f7f\u7528 3 \u5c64\u96b1\u85cf\u5c64\u7684 SSAE \u4f5c\u70ba\u975e\u76e3\u7763\u5b78\u7fd2\u7684\u67b6\u69cb\uff0c\u4f86\u5f9e\u4f4e\u5c64\u7d1a\u7279\u5fb5(low level feature) \u8a13\u7df4\u6210\u9ad8\u5c64\u7d1a\u7279\u5fb5(high level feature)\uff0c\u7136\u5f8c\u7528 LR \u4f86\u76e3\u7763\u5b78\u7fd2\u4f5c\u8fa8\u8b58\uff0c\u672c\u5be6\u9a57\u7b2c\u4e00\u5c64\u7a00\u758f \u81ea\u7de8\u78bc\u5668\u67b6\u69cb\u5982\u5716 3\u3002 \u70ba\u4e00\u500b\u6642\u9593\u5340\u9593\uff0c\u5207\u5272\u5b8c\u5f8c\u5408\u6210\u4e00\u500b\u884c\u5411\u91cf\uff0c\u884c\u5411\u91cf\u7684\u7279\u5fb5\u503c\uff0c\u518d\u7d93\u7531\u5982\u8868 3 \u6240\u5217\u7684 7 \u7531\u539f\u672c\u8cc7\u6599\u5eab 569 \u7b46\u5c0d\u8a71\u3001117 \u5c0d\u592b\u59bb\uff0c\u7d93\u7531\u4e0a\u7bc7\u8ad6\u6587\u9810\u8655\u7406\u904e\u5f8c(Black et al., 2013)\uff0c\u7522 Husband 75 77.9 69.3 84.3 58.6 65.7 71.8 \u6211\u5011\u6240\u4f7f\u7528\u4e09\u7a2e\u4e0d\u540c\u5c64\u7684\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u548c\u4e4b\u524d\u7684\u8ad6\u6587\u6574\u9ad4\u5e73\u5747\u6e96\u78ba\u7387\u7d50\u679c\u5982\u8868 7\u3002 1000 \u7a2e functionals \u8655\u7406\u904e\u5f8c\uff0c\u7522\u751f\u6700\u5f8c 2940 \u500b\u7279\u5fb5\u503c\u3002\u5728\u8f38\u5165 SSAE \u4ee5\u524d\uff0c\u6211\u5011\u628a\u9019\u4e9b\u7279\u5fb5 \u751f\u6700\u5f8c\u7684 372 \u7b46\u5c0d\u8a71\u3001104 \u5c0d\u592b\u59bb\u3002\u5728 372 \u7b46\u5c0d\u8a71\u88e1\u9762\u4e08\u592b\u548c\u592a\u592a\u90fd\u6703\u88ab\u8a55\u5206\u5230\uff0c\u5c0d\u61c9 Wife 72.1 79.3 69.3 80 53.6 62.9 69.5 \u8868 7. \u6574\u9ad4\u5e73\u5747\u6b63\u78ba\u7387\u5c0d\u65bc\u56db\u7a2e\u4e0d\u540c\u65b9\u6cd5 \u503c\u6b63\u898f\u5316\u5728 0 \u548c 1 \u7684\u5340\u9593\u3002\u8a73\u7d30\u7684\u7279\u5fb5\u503c\u5167\u5bb9\u53ef\u53c3\u8003 (Black et al., 2013) \u3002 \u5728 6 \u7a2e\u884c\u70ba\u6e96\u5247\uff0c\u6211\u5011\u9078\u64c7\u524d 20%\u7684\u5206\u6578\u548c\u5f8c 20%\u7684\u5206\u6578\u7684\u5c0d\u8a71\u7576\u4f5c\u5be6\u9a57\u7684\u8fa8\u8b58\uff0c\u5171 140 \u7b46\u5c0d\u8a71\uff1a\u5169\u7a2e\u6a19\u7c64\u503c 0 \u548c 1\uff0c1 \u70ba\u5c0d\u61c9\u5230\u9ad8\u5206\uff0c0 \u70ba\u5c0d\u61c9\u5230\u4f4e\u5206\u3002\u800c\u5728\u9019\u4e9b\u53d6\u51fa\u4f86\u88ab\u9810\u6e2c \u7684\u5c0d\u8a71\u88e1\uff0c\u592b\u59bb\u6578\u4ecb\u65bc 68 \u5230 77 \u5c0d\uff0c\u5229\u7528\u9019\u4e9b\u884c\u70ba\u5c0d\u61c9\u5230\u592b\u59bb\u5c0d\u6578\u4f86\u4f5c\u4ea4\u53c9\u9a57\u8b49\uff0c1 \u5c0d Previous Husband 78.6 72.9 72.1 84.3 60 71.4 73.2 Method Avg(%) method(Black et al., 2013) Wife 77.9 84.3 74.3 80 66.4 67.1 75 Previous (Black et al., 2013) 74.1</td></tr><tr><td colspan=\"6\">\u800c\u70ba\u4e86\u8b93\u8f38\u5165\u7279\u5fb5\u503c\u66f4\u6709\u6548\u7684\u6b78\u985e\u7fa4\u96c6\u4e26\u4e14\u4e0d\u540c\u7279\u5fb5\u4e4b\u9593\u7684\u5340\u9694\u660e\u986f\uff0c \u592b\u59bb\u4f5c\u9a57\u8b49\uff0c\u5176\u9918\u5c0d\u6578\u4f5c\u8a13\u7df4\uff0c\u91cd\u8907\u5faa\u74b0 6 \u7a2e\u884c\u70ba\u5c0d\u61c9\u5230\u7684\u592b\u59bb\u5c0d\u6578\u4f86\u4f5c\u9a57\u8b49\u3002 SSAE One Layer 72.2</td><td>, \u52a0</td></tr><tr><td colspan=\"6\">\u5165\u7a00\u758f\u9805(sparsity term)\u5982\u5f0f(4)\uff0c\u53d6\u540d\u70ba\u7a00\u758f\u7de8\u78bc\u5668(sparse autoencoder) (Obst, 2014)\u3002 \u8868 5. 2nd hidden unit \u5206\u6790\u4e08\u592b\u548c\u592a\u592a\u5c0d\u61c9\u5230 6 \u7a2e code \u7684\u6e96\u78ba\u7387\uff0c\u7c97\u9ad4\u5b57\u70ba\u8f03\u9ad8\u7684 Two Layers 72.3</td></tr><tr><td colspan=\"6\">, \u5f8c\u7684\u8868\u73fe\uff0c\u5206\u5225\u662f\u96b1\u85cf\u5c64\u7bc0\u9ede(hidden units)\u3001\u8a08\u7b97\u640d\u5931\u51fd\u6578(cost function)\u7684\u758a\u4ee3\u6b21\u6578\u548c\u4e09 , || \u5176 \u4e2d log 1 log \uff0c \u70ba \u7a00 \u758f \u53c3 \u6578 (sparsity parameter) \uff0c \uff0c \u70ba\u63a7\u5236\u7a00\u758f\u9805(sparsity term)\u7684\u53c3\u6578\uff0cq \u70ba\u96b1\u85cf\u5c64\u7684\u7bc0\u9ede\u6578\u3002 300 100 Husband 75 78.6 68.6 83.6 57.9 67.9 71.9 \u2211 \u5728\u9019\u5be6\u9a57\u88e1\uff0c\u6211\u5011\u7528 SSAE \u4f86\u4f5c\u70ba\u975e\u76e3\u7763\u5b78\u7fd2\uff0cLR \u4f86\u76e3\u7763\u5b78\u7fd2\u9810\u6e2c\uff0c\u7559\u4e00\u5c0d\u592b\u59bb\u6cd5\u5247 (leave-one-couple-out)\u7684\u65b9\u5f0f\u4f86\u4f5c\u4ea4\u53c9\u9a57\u8b49\u3002\u4e00\u958b\u59cb\u5148\u7528\u8caa\u5a6a\u8a13\u7df4\u7b97\u6cd5(greedy layerwise) \u9010\u5c64\u9810\u5b78\u7fd2(pre-training)\uff0c\u8a13\u7df4\u5b8c\u53c3\u6578\u521d\u59cb\u503c\u8f38\u5165\u81f3 SSAE\uff0cSSAE \u6709\u4e94\u500b\u56e0\u5b50\u6703\u5f71\u97ff\u6700 1 st Hidden Layer Layer Spouse (%) (%) (%) (%) (%) (%) (%) Hidden Rated Acc Bla Pos Neg Sad Hum Avg 2 nd (4) 4.3 \u5be6\u9a57\u8a2d\u5b9a \u6e96\u78ba\u7387 Three Layers 75.0</td></tr><tr><td colspan=\"6\">\u500b\u8d85\u53c3\u6578(hyper-parameters)\u70ba\u03bb\u3001\u03c1\u3001\u03b2\uff0c\u03bb\u70ba\u6b0a\u91cd\u8870\u6e1b\u53c3\u6578(weight decay parameter)\uff0c\u03c1\u70ba\u7a00 Wife 71.4 80.7 72.9 77.1 58.6 62.9 70.6 3.2 \u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668(Stacked Sparse Autoencoder) \u758f\u53c3\u6578(sparsity parameter)\uff0c\u03b2\u70ba\u63a7\u5236\u7a00\u758f\u9805(sparsity term)\u7684\u53c3\u6578\uff0c\u9019\u4e9b\u53c3\u6578\u5728\u7b2c\u4e09\u7ae0\u6709\u4ecb 200 Husband 77.1 77.1 71.4 83.6 57.9 69.3 72.7 \u7531\u591a\u500b\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u9010\u5c64\u8a13\u7df4\u5f8c\uff0c\u5806\u758a\u7d44\u6210\u7684\u67b6\u69cb\u70ba\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668(Stacked Sparse Autoencoder)\uff0c\u5982\u5716 2\uff0c\u6bcf\u4e00\u5c64\u7684\u7de8\u78bc\u5f8c\u8f38\u51fa\u70ba\u4e0b\u4e00\u5c64\u7684\u8f38\u5165\u3002\u5f9e\u5716 2 \u53ef\u770b\u51fa\uff0c\u8f38\u5165\u5c64(Input \u7d39\u904e\u3002\u6211\u5011\u5148\u7528 1 \u5c64\u96b1\u85cf\u5c64\u4f86\u6e2c\u8a66\u6e96\u78ba\u7387\uff0c\u5982\u8868 4\u3002\u900f\u904e\u6539\u8b8a\u4e0d\u540c\u7684\u96b1\u85cf\u5c64\u7bc0\u9ede\u6578\uff0c\u6839 \u64da\u6e96\u78ba\u7387\u4f86\u6c7a\u5b9a\u6211\u5011\u4e0b\u4e00\u5c64\u6240\u4f7f\u7528\u7684\u96b1\u85cf\u5c64\u7bc0\u9ede\u6578\u3002 Wife 72.1 82.1 72 77.1 62.1 65.7 71.9 5. \u7d50\u8ad6</td></tr><tr><td colspan=\"6\">layer)\u7d93\u7531\u7b2c\u4e00\u500b\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u8a13\u7df4\u5b8c\u4e4b\u5f8c\u5f97\u5230\u7b2c\u4e00\u96b1\u85cf\u5c64(Hidden layer1)\u7684 n \u500b\u7bc0\u9ede\uff0c \u7531\u9019 n \u500b\u7bc0\u9ede\u5728\u7d93\u904e\u7b2c\u4e8c\u500b\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u8a13\u7df4\u5f97\u5230\u7b2c\u4e8c\u96b1\u85cf\u5c64(Hidden layer2)\u7684 p \u500b\u7bc0\u9ede\uff0c \u6bcf\u5c64\u7684\u96b1\u85cf\u5c64\u7bc0\u9ede\u53ef\u8996\u70ba\u7531\u4e0a\u4e00\u5c64\u7522\u751f\u65b0\u7684\u4e00\u7d44\u7279\u5fb5\uff0c\u900f\u904e\u9019\u6a23\u9010\u5c64\u8a13\u7df4\u53ef\u4ee5\u8a13\u7df4\u66f4\u591a \u5c64\u3002 \u6211\u5011\u5be6\u9a57\u63a1\u7528\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668(Stacked Sparse Autoencoder, SSAE)\uff0c\u5e0c\u671b\u900f\u904e SSAE \u5f97\u5230\u597d\u7684\u7279\u5fb5\u8868\u793a\u65b9\u5f0f\uff0c\u6700\u5f8c\u7d93\u7531\u5206\u985e\u5668\u7522\u751f\u66f4\u597d\u7684\u6e96\u78ba\u7387\u3002 \u5716 4. \u5be6\u9a57\u7279\u5fb5\u63d0\u53d6\u67b6\u69cb 300 Husband 73.6 76.4 72.1 84.3 58.6 67.1 72 \u73fe\u4eca\u5b58\u5728\u8d8a\u4f86\u8d8a\u591a\u8cc7\u6599\u5eab\uff0c\u5982\u4f55\u5feb\u901f\u4e14\u6e96\u78ba\u9810\u6e2c\u8cc7\u6599\uff0c\u662f\u8fd1\u4f86\u7814\u7a76\u7684\u71b1\u9580\u8b70\u984c\u3002\u5728\u9019\u7bc7 \u5982\u8868 4 \u53ef\u5f97\u77e5\uff0c\u96b1\u85cf\u5c64\u6578\u76ee\u70ba 300 \u7684\u6642\u5019\uff0c\u4e08\u592b\u548c\u592a\u592a\u88ab\u8a55\u5206\u7684 6 \u7a2e\u884c\u70ba\u5e73\u5747\u6e96\u78ba Wife 72.9 80.7 71.4 76.4 55 70 71.3 \u8ad6\u6587\u4e2d\uff0c\u6211\u5011\u63d0\u51fa\u5806\u758a\u7a00\u758f\u81ea\u7de8\u78bc\u5668\u6539\u8b8a\u7279\u5fb5\u63d0\u53d6\u7684\u65b9\u6cd5\u548c\u4ee5\u70ba\u4e3b\u9ad4\u67b6\u69cb\uff0c\u4f86\u6bd4\u8f03\u548c\u4e4b \u7387\u70ba\u6700\u9ad8\uff0c\u4f7f\u7528\u7684\u758a\u4ee3\u6b21\u6578\u70ba 15 \u6b21\uff0c\u03c1 0.1\uff0c\u03bb 0.002\uff0c\u03b2 2\u3002 \u63a5\u4e0b\u4f86\u6e2c\u8a66\u4e8c\u5c64\u96b1\u85cf\u5c64\u7684\u6e96\u78ba\u7387\uff0c\u7b2c\u4e00\u5c64\u96b1\u85cf\u6578\u5df2\u7d93\u6c7a\u5b9a\u597d\u4e86\uff0c\u6211\u5011\u6e2c\u8a66\u7684\u7b2c\u4e8c\u5c64 Previous method Husband 78.6 72.9 72.1 84.3 60 71.4 \u524d\u7814\u7a76\u7684\u6e96\u78ba\u7387\uff0c\u76ee\u7684\u5728\u85c9\u7531\u964d\u4f4e\u7279\u5fb5\u6578\u91cf\uff0c\u63d0\u5347\u8a0a\u606f\u7684\u542b\u91cf\u7684\u65b9\u5f0f\uff0c\u627e\u5230\u76f8\u5c0d\u95dc\u9375\u7684 73.2 \u7279\u5fb5\uff0c\u4f86\u9054\u5230\u66f4\u597d\u7684\u6e96\u78ba\u7387\u4e26\u6e1b\u5c11\u8a13\u7df4\u6642\u9593\u3002\u6700\u5f8c\u7d50\u679c\u4e5f\u8b49\u660e\u4e86\u5229\u7528\u975e\u76e3\u7763\u5b78\u7fd2\u4f86\u8a13\u7df4 \u96b1\u85cf\u5c64\u7bc0\u9ede\u6578\uff0c\u5982\u8868 5\u3002\u5f9e\u8868\u4e2d\u5f97\u77e5\uff0c\u7b2c\u4e8c\u5c64\u96b1\u85cf\u5c64\u7684\u7bc0\u9ede\u6578\u70ba 200 \u7684\u6642\u5019\uff0c\u6e96\u78ba\u7387\u70ba (Black et al., 2013) Wife 77.9 84.3 74.3 80 66.4 67.1 75 \u51fa\u65b0\u7684\u4e00\u7d44\u7279\u5fb5\u503c\uff0c\u7d93\u7531\u76e3\u7763\u5b78\u7fd2\u4f5c\u5206\u985e\uff0c\u6e96\u78ba\u7387\u8f03\u4e4b\u524d\u7814\u7a76\u4f86\u7684\u597d\uff0c\u63d0\u51fa\u65b0\u7684\u65b9\u6cd5\u6574 \u6700\u9ad8\uff0c\u4f7f\u7528\u7684\u758a\u4ee3\u6b21\u6578\u70ba 15 \u6b21\uff0c\u03c1 0.1\uff0c\u03bb 0.0001\uff0c\u03b2 1\u3002 \u9ad4\u5e73\u5747\u70ba 75%\u9ad8\u65bc\u820a\u7684\u7814\u7a76 74.1%\uff0c\u63d0\u5347 0.9%\u3002</td></tr></table>",
"text": "\u7531\u8868 7 \u4e2d\u53ef\u5f97\u77e5 3 \u5c64\u7684 SSAE \u8f03\u4e4b\u524d\u7814\u7a76\u63d0\u9ad8 0.9%\u3002\u4e4b\u524d\u7814\u7a76\u4f7f\u7528 40479 \u500b\u7279\u5fb5\u503c\u4f86\u4f5c \u9810\u6e2c\uff0c\u800c\u6211\u5011\u4f7f\u7528 2940 \u500b\u7279\u5fb5\u503c\uff0c\u7406\u8ad6\u4e0a\u770b\u4f86\u8f03\u591a\u7684\u7279\u5fb5\u503c\u76f8\u5c0d\u65bc\u6e96\u78ba\u7387\u6703\u8f03\u9ad8\uff0c\u4f46\u900f \u904e\u6df1\u5ea6\u5b78\u7fd2\u7684\u65b9\u5f0f\uff0c\u964d\u4f4e\u6578\u64da\u7684\u7dad\u5ea6\uff0c\u627e\u51fa\u76f8\u5c0d\u95dc\u9375\u7684\u7279\u5fb5\uff0c\u5c0d\u65bc\u6e96\u78ba\u7387\u7684\u63d0\u5347\u662f\u6709\u5e6b \u52a9\u7684\uff0c\u5f9e\u8868 7 \u4e2d\u770b\u4f86\u96d6\u7136\u8a13\u7df4 1 \u5c64\u548c 2 \u5c64\u6e96\u78ba\u7387\u8868\u73fe\u6c92\u6709\u6bd4\u8f03\u597d\uff0c\u5728\u4f7f\u7528 3 \u5c64\u4e4b\u5f8c\u5c31\u6709 \u597d\u7684\u8868\u73fe\uff0c\u6b64\u8ad6\u9ede\u7531\u6b64\u53ef\u8b49\u3002",
"type_str": "table"
}
}
}
} |