File size: 55,703 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:06:26.634731Z"
    },
    "title": "OCAST4 Shared Tasks: Ensembled Stacked Classification for Offensive and Hate Speech in Arabic Tweets",
    "authors": [
        {
            "first": "Hafiz",
            "middle": [],
            "last": "Hassaan Saeed",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Information Technology University",
                "location": {
                    "country": "Pakistan"
                }
            },
            "email": "hassaan.saeed@itu.edu.pk"
        },
        {
            "first": "Toon",
            "middle": [],
            "last": "Calders",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Antwerp",
                "location": {
                    "country": "Belgium"
                }
            },
            "email": "toon.calders@uantwerpen.be"
        },
        {
            "first": "Faisal",
            "middle": [],
            "last": "Kamiran",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Information Technology University",
                "location": {
                    "country": "Pakistan"
                }
            },
            "email": "faisal.kamiran@itu.edu.pk"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this paper, we describe our submission for the OCAST4 2020 shared tasks on offensive language and hate speech detection in the Arabic language. Our solution builds upon combining a number of deep learning models using pre-trained word vectors. To improve the word representation and increase word coverage, we compare a number of existing pre-trained word embeddings and finally concatenate the two empirically best among them. To avoid under-as well as over-fitting, we train each deep model multiple times, and we include the optimization of the decision threshold into the training process. The predictions of the resulting models are then combined into a tuned ensemble by stacking a classifier on top of the predictions by these base models. We name our approach \"ESOTP\" (Ensembled Stacking classifier over Optimized Thresholded Predictions of multiple deep models). The resulting ESOTP-based system ranked 6th out of 35 on the shared task of Offensive Language detection (sub-task A) and 5th out of 30 on Hate Speech Detection (sub-task B).",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this paper, we describe our submission for the OCAST4 2020 shared tasks on offensive language and hate speech detection in the Arabic language. Our solution builds upon combining a number of deep learning models using pre-trained word vectors. To improve the word representation and increase word coverage, we compare a number of existing pre-trained word embeddings and finally concatenate the two empirically best among them. To avoid under-as well as over-fitting, we train each deep model multiple times, and we include the optimization of the decision threshold into the training process. The predictions of the resulting models are then combined into a tuned ensemble by stacking a classifier on top of the predictions by these base models. We name our approach \"ESOTP\" (Ensembled Stacking classifier over Optimized Thresholded Predictions of multiple deep models). The resulting ESOTP-based system ranked 6th out of 35 on the shared task of Offensive Language detection (sub-task A) and 5th out of 30 on Hate Speech Detection (sub-task B).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Social media platforms have become a widely-used mode of communication among individuals or groups from diverse backgrounds. With the increasing freedom of expression in user-generated content on these platforms, the menace of offensive and hate speech is also on the rise (Santosh and Aravind, 2019), causing adverse effects on users and society at large (Lee and Kim, 2015) . Because of this menace, the identification of offensive or hateful statements towards individuals or groups has become a priority nowadays and many social media companies have already invested millions for building automated systems to detect offensive language and hate speech (Gamb\u00e4ck and Sikdar, 2017) . In this paper, we address the task of offensive language and hate speech detection in the Arabic language by presenting our contributions to two shared tasks (A and B) in OCAST4 2020. The objective in shared subtask A is to identify offensive language whereas the objective in shared subtask B is to identify hate speech in the given tweets. We developed a common methodology for both tasks, and executed the classification pipeline twice, once for each of both subtasks. As a first attempt, we applied classical text classification techniques including Na\u00efve Bayes, Logistic Regression, Support Vector Machines, and Random Forests based on the traditional encoding of the tweets as TF.IDF vectors. Subsequently, more advanced deep learning techniques using pre-trained word embeddings were applied and compared to the classical techniques. Both approaches were compared empirically, showing superior performance for the deep models. The superiority of the deep models motivated further exploration in the direction of deep learning. We compared a number of pre-trained word-level embeddings available for Arabic language processing, and in the end, concatenated the two empirically best performing pre-trained word-level embeddings. Using this combined embedding, several network architec-tures and ways of pre-processing were tried out, and the resulting models were combined in a tuned ensemble as follows. The different deep networks were trained and optimized several times, saving their predictions for both tasks. Finally, a classifier was stacked on top of these predictions to combine them in one ensemble. The resulting classifier was further fine-tuned, therefore, we name our approach \"ESOTP\" which stands for Ensembled Stacking classifier over Optimized Thresholded Predictions of multiple deep models.",
                "cite_spans": [
                    {
                        "start": 356,
                        "end": 375,
                        "text": "(Lee and Kim, 2015)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 656,
                        "end": 682,
                        "text": "(Gamb\u00e4ck and Sikdar, 2017)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Hate speech detection has been studied extensively in recent years, especially for highly-resourced languages like English. (Yin et al., 2009) were among the first ones to apply supervised machine learning approaches in hate speech detection. They applied Support Vector Machines to detect harassment in posts from famous social platforms like MySpace. Similarly, (Warner and Hirschberg, 2012) trained a Support Vector Machine classifier on word ngrams and used it to detect hate speech. In recent years, (Waseem and Hovy, 2016) showed that character n-grams are better than word n-grams as predictive features for hate speech detection. Their best performing model was a Gradient Boosted Decision Trees classifier trained on word embeddings learned using LSTMs. There exists, however, very little literature on the problem of Hate Speech detection in Arabic. Some of the few works are discussed next. (Magdy et al., 2015 ) collected a large number of Arabic tweets and trained a Support Vector Machine classifier to predict if a user supports or opposes ISIS. (Mubarak et al., 2017) proposed a methodology for the detection of profane tweets by using an automatically created and expanded list of obscene and offensive words. (Haidar et al., 2017 ) proposed a multilingual system that detects cyberbullying attacks in both English and Arabic texts. They scrapped the data from Facebook and Twitter. The data collected from Facebook was kept for validating the system. Their proposed system was a multilingual cyberbullying detection system and two machine learning models Naive Bayes and Support Vector Machine were used in it. In another related work, (Albadi et al., 2018) prepared the first publicly available Arabic dataset that was especially annotated for religious hate speech detection. They also developed multiple classifiers using lexicon-based, n-gram-based, and deep learning approaches. They found a simple Recurrent Neural Network (RNN) architecture with Gated Recurrent Units (GRU) and pre-trained word embeddings to be the best performing model for the detection of religious hate speech in Arabic. (Mohaouchane et al., 2019) compared multiple deep models including CNN, BLSTM with Attention, BLSTM and Combined CNN-LSTM for detecting offensive language in Arabic. They showed that CNN-LSTM achieved best recall scores whereas CNN achieved highest f1 scores in 5fold cross validation. Recently, (Chowdhury et al., 2019) proposed ARHNET to detect religious hate speech in Arabic by using word embeddings and social network graphs with deep learning models and improved the classification scores than (Albadi et al., 2018) . The overview of OSACT4 Arabic Offensive Language Detection Shared Task is discussed by (Mubarak et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 124,
                        "end": 142,
                        "text": "(Yin et al., 2009)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 364,
                        "end": 393,
                        "text": "(Warner and Hirschberg, 2012)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 505,
                        "end": 528,
                        "text": "(Waseem and Hovy, 2016)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 902,
                        "end": 921,
                        "text": "(Magdy et al., 2015",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1061,
                        "end": 1083,
                        "text": "(Mubarak et al., 2017)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 1227,
                        "end": 1247,
                        "text": "(Haidar et al., 2017",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1654,
                        "end": 1675,
                        "text": "(Albadi et al., 2018)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 2117,
                        "end": 2143,
                        "text": "(Mohaouchane et al., 2019)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 2413,
                        "end": 2437,
                        "text": "(Chowdhury et al., 2019)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 2617,
                        "end": 2638,
                        "text": "(Albadi et al., 2018)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 2728,
                        "end": 2750,
                        "text": "(Mubarak et al., 2020)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2."
            },
            {
                "text": "Starting from pre-processing, we now discuss the overall methodology (classification pipeline) followed for both subtasks in OCAST4 2020.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3."
            },
            {
                "text": "One pre-processing step was already done over the original tweets by the competition's organizers, i.e., mentions of a specific user were replaced with @USER, URLs were replaced with URL, and empty lines with <LF>. We removed all these replaced tokens along with emoticons, emojis, punctuation marks (both Arabic and English), English characters, digits (both Arabic and English) and Arabic diacritics. We then normalized a few Arabic characters like Hamza, Ya, Ha, and Qaf, and finally removed a repeating character in the string if it is repeated more than 3 times consecutively. An additional pre-processing step is taken for out-of-word-embeddings-vocabulary (OOWEV) words with the models that use pre-trained word embeddings, which is to split an OOWEV word into 2 tokens (i.e., the first character and the rest of the word) if the first character is Wa, Fa, or Sa. The intuition behind this additional step is that Wa, Fa, or Sa appearing at the beginning of an Arabic word function like a grammatical particle as Wa gives added meaning of (\"and\" or \"vow\" or \"oath\"), Fa gives added meaning of (result to a previous statement) and Sa gives added meaning of (in very near future). This way a few more words are covered from the pre-trained word embeddings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-processing",
                "sec_num": "3.1."
            },
            {
                "text": "A number of pre-trained word vectors are available for Arabic language processing like FastText (Grave et al., 2018) , Word2Vec 1 (Continuous Skip gram trained over Arabic 1 http://vectors.nlpl.eu/repository/20/31. zip CoNLL17 corpus), AraVec (Soliman et al., 2017) , N-Gram and Uni-Gram models, and recent BERT 2 multilingual vectors. We empirically evaluated these available word embeddings based on the given evaluation metric and concatenated the two best among them which were FastText (300 dimensional vectors) and Word2Vec (100 dimensional vectors) resulting in a 400 dimensional vector representation for words in the corpus. The resulting concatenation of word embeddings yields 4 types of words: type 1) words which exist in both embeddings; type 2) words which exist in the first embedding but do not exist in the second; type 3) words which exist in the second embedding but do not exist in the first; type 4) words which neither exist in the first nor in the second embedding.",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 116,
                        "text": "(Grave et al., 2018)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 243,
                        "end": 265,
                        "text": "(Soliman et al., 2017)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-trained Word Vectors",
                "sec_num": "3.2."
            },
            {
                "text": "E 1 E 1 N (\u00b5 1 , \u03c3 1 ) N (\u00b5 1 , \u03c3 1 ) E 2 N (\u00b5 2 , \u03c3 2 ) E 2 N (\u00b5 2 , \u03c3 2 ) W type_1 W type_2 W type_3 W type_4",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-trained Word Vectors",
                "sec_num": "3.2."
            },
            {
                "text": "FastText 300 D W2V 100 D Figure 1 : Assigning vectors to the respective types of words yielded from the concatenation of FastText and Word2Vec word embeddings.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 25,
                        "end": 33,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Pre-trained Word Vectors",
                "sec_num": "3.2."
            },
            {
                "text": "The strategy adopted for assigning vectors to all four types of words is shown in Figure 1 and is explained as: Let E 1 be vector components from the FastText embedding, E 2 be vector components from the Word2Vec embedding, \u03bc 1 be the mean of all vectors in FastText, \u03bc 2 be the mean of vectors in Word2Vec, \u03c3 1 be the standard deviation of the vectors in FastText, \u03c3 2 be the standard deviation of the vectors in Word2Vec, then the vectors assigned to the types of words are: type 1) get E 1 and E 2 ; type 2) get E 1 and initialize last 100 components with Gaussian distribution using \u03bc 2 & \u03c3 2 ; type 3) get E 2 and initialize first 300 components with Gaussian distribution using \u03bc 1 & \u03c3 1 ; type 4) initialize first 300 components with Gaussian distribution using \u03bc 1 , \u03c3 1 and last 100 components with Gaussian distribution using \u03bc 2 , \u03c3 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 82,
                        "end": 90,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Pre-trained Word Vectors",
                "sec_num": "3.2."
            },
            {
                "text": "We used four different types of neural architectures for both tasks of offensive language and hate speech detection, namely: 1) Convolutional Neural Networks (CNN) ; 2) Nets based on Bidirectional Long Short-Term Memory (BLSTM); 3) Nets based on Bidirectional Gated Recurrent Units (BGRU); and 4) Nets based on Bidirectional LSTMs with CNN (BLSTM+CNN). We briefly explain these architectures. (Kim, 2014) . The input layer in this architecture is an embedding layer, attached to a 1D spatial dropout layer that is then reshaped to a 2D matrix of M \u00d7 V , where M is maximum length of tweets in the corpus and V is the size of embedding vectors. After reshaping the input, 5 convolutional layers are attached in parallel having 128 kernels in each layer with kernel dimensions ranging from 1 \u00d7 V , to 5 \u00d7 V . All these parallel layers are then attached to a global max-pooling layer and concatenated to make a single feature vector, connected then to a dropout layer, followed by fully connected layers of 100, 50 and 1 units respectively. The activation function in the last layer is a sigmoid whereas for the rest of the network we use the exponential linear unit (ELU) function.",
                "cite_spans": [
                    {
                        "start": 393,
                        "end": 404,
                        "text": "(Kim, 2014)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 158,
                        "end": 163,
                        "text": "(CNN)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Models Used",
                "sec_num": "3.3."
            },
            {
                "text": "This architecture is taken from (Saeed et al., 2018) . The input to this architecture is an embedding layer followed by a 1D spatial dropout layer, which is then attached to two parallel blocks of Bidirectional Long-Short Term Memory (BLSTM) where the first block has 128 units and the second block 64 units. Global max-pooling and global averagepooling layers are attached to both parallel blocks and are concatenated to make one feature vector, which is then attached to fully connected layers of 100, 50, and 1 units respectively. The activation function in the last layer is a sigmoid whereas the BLSTM layers use the tanh activation function and for the rest of the network we use the exponential linear unit (ELU) function.",
                "cite_spans": [
                    {
                        "start": 32,
                        "end": 52,
                        "text": "(Saeed et al., 2018)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BLSTM",
                "sec_num": "3.3.2."
            },
            {
                "text": "This architecture is also taken from (Saeed et al., 2018) and is similar to the BLSTM architecture. The only difference between this architecture and BLSTM is that we use GRU instead of LSTM. The rest of the architecture is same as that of BLSTM.",
                "cite_spans": [
                    {
                        "start": 37,
                        "end": 57,
                        "text": "(Saeed et al., 2018)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BGRU",
                "sec_num": "3.3.3."
            },
            {
                "text": "This architecture has an input embedding layer connected to a 1D spatial dropout layer. The output from the 1D spatial dropout layer is given as input to a bidirectional LSTM layer with 128 units and then a 1D convolutional layer is attached with 64 kernels of size 4, connected on its turn with a global max-pooling layer, followed by a dropout layer, and again 3 fully connected layers having 100, 50 and 1 units respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BLSTM+CNN",
                "sec_num": "3.3.4."
            },
            {
                "text": "The overall classification pipeline is shown in Figure 2 . We train all four models: CNN, BLSTM, BGRU, and BLSTM+CNN, for 250, 200, 70 and 30 times respectively. The decision threshold is optimized for F1 as part of the training phase. We hence get 550 predictions for each sample in the validation set. Using these 550 predictions as a new training set, we built a stacking classifier that is an ensemble of a Na\u00efve Bayes classifier, a Logistic Regression model, a Support Vector Machine, a Nearest Neighbours classifier and a Random Forest. We fine-tune this new Ensembled Stacking Classifier as well. We named our approach \"ESOTP\", which stands for Ensembled Stacking classifier over Optimized Thresholded Predictions of multiple deep models.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 48,
                        "end": 56,
                        "text": "Figure 2",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Ensembled Stacking Classifier",
                "sec_num": "3.4."
            },
            {
                "text": "We used Keras deep learning framework with Tensorflow backend to build our deep classification pipeline. The evaluation metric used to test the classification system is macro averaged f1 score. We report cross-validation scores as our results in this paper, as there was a limit of 10 submissions at maximum per team during the OCAST4 testing phase.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimentation & Results",
                "sec_num": "4."
            },
            {
                "text": "We tune hyper-parameters of the deep models used in this study by mixing grid search with manual tuning. The hyper-parameters include batch size, optimizers, learning rate, the number of kernels in CNN, the number of units in recurrent layers, and the dropout rates. The hyperparameters in ensembled stacking classifier include penalty, solver and regularization parameter for Logistic Regression; penalty, kernel function, regularization parameter and gamma for Support Vector Machine; values of K in Nearest Neighbours; and number of estimators, splitting criterion and max. depth of trees in Random Forest.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hyper-parameter Tuning",
                "sec_num": "4.1."
            },
            {
                "text": "We compared pre-trained word embeddings with CNN architecture over 20 runs only due to time limitations. The average of 20 runs for both subtasks is shown in Table  1 , which shows that Word2Vec and FastText achieved the",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 158,
                        "end": 166,
                        "text": "Table  1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Pre-trained Word Vectors",
                "sec_num": "4.2."
            },
            {
                "text": "https://github.com/google-research/bert/ blob/master/multilingual.md",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "highest f1 scores on our cross-validation when used as pretrained word vectors, and therefore we selected both these embeddings to concatenate them for the representation of words from both embeddings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "annex",
                "sec_num": null
            },
            {
                "text": "The main results are shown in Table 2 . Na\u00efve Bayes (NB), Logistic Regression (LR), Random Forest (RF) and Support Vector Machines (SVM) give lower F1 scores as compared to deep models in our cross-validation. Besides the deep models described in section 3.3., we trained two additional deep models: 1) BLSTM with Attention; 2) BLSTM with some statistical features like number of punctuation marks, number of characters, number of words, number of rare words, number of out-of-vocabulary words, etc. The cross-validation scores showed deterioration instead of improvement, therefore, we ignored them from being into our ensembled stacking classification. The scores in Table 2 87.37% f1 for subtask A (ranked 6/35) and 79.85% for subtask B (ranked 5/30).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 30,
                        "end": 37,
                        "text": "Table 2",
                        "ref_id": null
                    },
                    {
                        "start": 669,
                        "end": 676,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Main Results",
                "sec_num": "4.3."
            },
            {
                "text": "We present our submission to the shared tasks of offensive language and hate speech detection in OCAST4 2020. To develop a good classification pipeline for both tasks, we select the empirically best word representations using available pre-trained word embeddings with some languagespecific pre-processing, and afterwards compare a number of deep learning approaches. Our final submission is based on fine-tuning a stacking classifier where we use an ensemble of multiple models as the stacking classifier, built over different deep models trained for several times. Our classification pipeline (ESTOP) results in better generalization as compared to individual deep models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "We thank Louis Bruyns Foundation, Belgium, for their support in this research study.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": "6."
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Are they our brothers? analysis and detection of religious hate speech in the arabic twittersphere",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Albadi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Kurdi",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Mishra",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)",
                "volume": "",
                "issue": "",
                "pages": "69--76",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Albadi, N., Kurdi, M., and Mishra, S. (2018). Are they our brothers? analysis and detection of religious hate speech in the arabic twittersphere. In 2018 IEEE/ACM Interna- tional Conference on Advances in Social Networks Anal- ysis and Mining (ASONAM), pages 69-76. IEEE.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Arhnet -leveraging community interaction for detection of religious hate speech in arabic",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "G"
                        ],
                        "last": "Chowdhury",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Didolkar",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Sawhney",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "R"
                        ],
                        "last": "Shah",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019",
                "volume": "2",
                "issue": "",
                "pages": "273--280",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chowdhury, A. G., Didolkar, A., Sawhney, R., and Shah, R. R. (2019). Arhnet -leveraging community interaction for detection of religious hate speech in arabic. In Fer- nando Alva-Manchego, et al., editors, Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28 -August 2, 2019, Volume 2: Student Research Workshop, pages 273-280. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Using convolutional neural networks to classify hate-speech",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Gamb\u00e4ck",
                        "suffix": ""
                    },
                    {
                        "first": "U",
                        "middle": [
                            "K"
                        ],
                        "last": "Sikdar",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the First Workshop on Abusive Language Online, ALW@ACL 2017",
                "volume": "",
                "issue": "",
                "pages": "85--90",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gamb\u00e4ck, B. and Sikdar, U. K. (2017). Using convolu- tional neural networks to classify hate-speech. In Pro- ceedings of the First Workshop on Abusive Language On- line, ALW@ACL 2017, Vancouver, BC, Canada, August 4, 2017, pages 85-90.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Learning word vectors for 157 languages",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and Mikolov, T. (2018). Learning word vectors for 157 lan- guages. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, May 7-12, 2018.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Multilingual cyberbullying detection system: Detecting cyberbullying in arabic content",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Haidar",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Chamoun",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Serhrouchni",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "2017 1st Cyber Security in Networking Conference (CSNet)",
                "volume": "",
                "issue": "",
                "pages": "1--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Haidar, B., Chamoun, M., and Serhrouchni, A. (2017). Multilingual cyberbullying detection system: Detecting cyberbullying in arabic content. In 2017 1st Cyber Se- curity in Networking Conference (CSNet), pages 1-8. IEEE.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Convolutional neural networks for sentence classification",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1746--1751",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kim, Y. (2014). Convolutional neural networks for sen- tence classification. In Proceedings of the 2014 Confer- ence on Empirical Methods in Natural Language Pro- cessing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1746-1751.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Why people post benevolent and malicious comments online",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Commun. ACM",
                "volume": "58",
                "issue": "11",
                "pages": "74--79",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee, S. and Kim, H. (2015). Why people post benevo- lent and malicious comments online. Commun. ACM, 58(11):74-79.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "# failedrevolutions: Using twitter to study the antecedents of isis support",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Magdy",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Darwish",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Weber",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1503.02401"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Magdy, W., Darwish, K., and Weber, I. (2015). # faile- drevolutions: Using twitter to study the antecedents of isis support. arXiv preprint arXiv:1503.02401.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Detecting offensive language on arabic social media using deep learning",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Mohaouchane",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mourhir",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [
                            "S"
                        ],
                        "last": "Nikolov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Sixth International Conference on Social Networks Analysis",
                "volume": "",
                "issue": "",
                "pages": "466--471",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohaouchane, H., Mourhir, A., and Nikolov, N. S. (2019). Detecting offensive language on arabic social media us- ing deep learning. In Mohammad A. Alsmirat et al., editors, Sixth International Conference on Social Net- works Analysis, Management and Security, SNAMS 2019, Granada, Spain, October 22-25, 2019, pages 466- 471. IEEE.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Abusive language detection on arabic social media",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Mubarak",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Darwish",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Magdy",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the First Workshop on Abusive Language Online",
                "volume": "",
                "issue": "",
                "pages": "52--56",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mubarak, H., Darwish, K., and Magdy, W. (2017). Abu- sive language detection on arabic social media. In Pro- ceedings of the First Workshop on Abusive Language On- line, pages 52-56.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Overview of osact4 arabic offensive language detection shared task",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Mubarak",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Darwish",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Magdy",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Elsayed",
                        "suffix": ""
                    },
                    {
                        "first": "Al-Khalifa",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT)",
                "volume": "4",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mubarak, H., Darwish, K., Magdy, W., Elsayed, T., and Al-Khalifa, H. (2020). Overview of osact4 arabic offen- sive language detection shared task. In Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT), volume 4.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Overlapping toxic sentiment classification using deep neural architectures",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "H"
                        ],
                        "last": "Saeed",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Shahzad",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Kamiran",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "IEEE International Conference on Data Mining Workshops, ICDM Workshops",
                "volume": "",
                "issue": "",
                "pages": "1361--1366",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saeed, H. H., Shahzad, K., and Kamiran, F. (2018). Over- lapping toxic sentiment classification using deep neural architectures. In 2018 IEEE International Conference on Data Mining Workshops, ICDM Workshops, Singapore, Singapore, November 17-20, 2018, pages 1361-1366. IEEE.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Hate speech detection in hindi-english code-mixed social media text",
                "authors": [
                    {
                        "first": "T",
                        "middle": [
                            "Y S S"
                        ],
                        "last": "Santosh",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "V S"
                        ],
                        "last": "Aravind",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, COMAD/CODS 2019",
                "volume": "",
                "issue": "",
                "pages": "310--313",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Santosh, T. Y. S. S. and Aravind, K. V. S. (2019). Hate speech detection in hindi-english code-mixed social me- dia text. In Proceedings of the ACM India Joint Inter- national Conference on Data Science and Management of Data, COMAD/CODS 2019, Kolkata, India, January 3-5, 2019, pages 310-313.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Aravec: A set of arabic word embedding models for use in arabic NLP",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "B"
                        ],
                        "last": "Soliman",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Eissa",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "R"
                        ],
                        "last": "El-Beltagy",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Third International Conference On Arabic Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "256--265",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Soliman, A. B., Eissa, K., and El-Beltagy, S. R. (2017). Aravec: A set of arabic word embedding models for use in arabic NLP. In Third International Conference On Arabic Computational Linguistics, ACLING 2017, November 5-6, 2017, Dubai, United Arab Emirates, pages 256-265.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Detecting hate speech on the world wide web",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Warner",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hirschberg",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Second Workshop on Language in Social Media",
                "volume": "",
                "issue": "",
                "pages": "19--26",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Warner, W. and Hirschberg, J. (2012). Detecting hate speech on the world wide web. In Proceedings of the Second Workshop on Language in Social Media, pages 19-26, Montr\u00e9al, Canada, June. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Hateful symbols or hateful people? predictive features for hate speech detection on twitter",
                "authors": [
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Waseem",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the NAACL student research workshop",
                "volume": "",
                "issue": "",
                "pages": "88--93",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Waseem, Z. and Hovy, D. (2016). Hateful symbols or hate- ful people? predictive features for hate speech detec- tion on twitter. In Proceedings of the NAACL student research workshop, pages 88-93.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Detection of harassment on web 2.0",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Hong",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "D"
                        ],
                        "last": "Davison",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Kontostathis",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Edwards",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the Content Analysis in the WEB",
                "volume": "2",
                "issue": "",
                "pages": "1--7",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yin, D., Xue, Z., Hong, L., Davison, B. D., Kontostathis, A., and Edwards, L. (2009). Detection of harassment on web 2.0. Proceedings of the Content Analysis in the WEB, 2:1-7.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "Classification pipeline followed to detect offensive language and hate speech in Arabic language 3.3.1. CNN This architecture is based on the one presented by"
            }
        }
    }
}