|
{ |
|
"paper_id": "2020", |
|
"header": { |
|
"generated_with": "S2ORC 1.0.0", |
|
"date_generated": "2023-01-19T07:27:58.701590Z" |
|
}, |
|
"title": "ReviewRobot: Explainable Paper Review Generation based on Knowledge Synthesis", |
|
"authors": [ |
|
{ |
|
"first": "Qingyun", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "University of Illinois at Urbana-Champaign", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Qi", |
|
"middle": [], |
|
"last": "Zeng", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "University of Illinois at Urbana-Champaign", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Lifu", |
|
"middle": [], |
|
"last": "Huang", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "University of Illinois at Urbana-Champaign", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Kevin", |
|
"middle": [], |
|
"last": "Knight", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "kevinknight@didiglobal.com" |
|
}, |
|
{ |
|
"first": "Heng", |
|
"middle": [], |
|
"last": "Ji", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "University of Illinois at Urbana-Champaign", |
|
"location": {} |
|
}, |
|
"email": "hengji@illinois.edu" |
|
}, |
|
{ |
|
"first": "Nazneen", |
|
"middle": [ |
|
"Fatema" |
|
], |
|
"last": "Rajani", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "Salesforce Research {qingyun4", |
|
"institution": "", |
|
"location": { |
|
"addrLine": "qizeng2,lifuh2" |
|
} |
|
}, |
|
"email": "nazneen.rajani@salesforce.com" |
|
} |
|
], |
|
"year": "", |
|
"venue": null, |
|
"identifiers": {}, |
|
"abstract": "To assist human review process, we build a novel ReviewRobot to automatically assign a review score and write comments for multiple categories such as novelty and meaningful comparison. A good review needs to be knowledgeable, namely that the comments should be constructive and informative to help improve the paper; and explainable by providing detailed evidence. ReviewRobot achieves these goals via three steps: (1) We perform domainspecific Information Extraction to construct a knowledge graph (KG) from the target paper under review, a related work KG from the papers cited by the target paper, and a background KG from a large collection of previous papers in the domain. (2) By comparing these three KGs, we predict a review score and detailed structured knowledge as evidence for each review category. (3) We carefully select and generalize human review sentences into templates, and apply these templates to transform the review scores and evidence into natural language comments. Experimental results show that our review score predictor reaches 71.4%-100% accuracy. Human assessment by domain experts shows that 41.7%-70.5% of the comments generated by ReviewRobot are valid and constructive, and better than humanwritten ones for 20% of the time. Thus, Re-viewRobot can serve as an assistant for paper reviewers, program chairs and authors. 1", |
|
"pdf_parse": { |
|
"paper_id": "2020", |
|
"_pdf_hash": "", |
|
"abstract": [ |
|
{ |
|
"text": "To assist human review process, we build a novel ReviewRobot to automatically assign a review score and write comments for multiple categories such as novelty and meaningful comparison. A good review needs to be knowledgeable, namely that the comments should be constructive and informative to help improve the paper; and explainable by providing detailed evidence. ReviewRobot achieves these goals via three steps: (1) We perform domainspecific Information Extraction to construct a knowledge graph (KG) from the target paper under review, a related work KG from the papers cited by the target paper, and a background KG from a large collection of previous papers in the domain. (2) By comparing these three KGs, we predict a review score and detailed structured knowledge as evidence for each review category. (3) We carefully select and generalize human review sentences into templates, and apply these templates to transform the review scores and evidence into natural language comments. Experimental results show that our review score predictor reaches 71.4%-100% accuracy. Human assessment by domain experts shows that 41.7%-70.5% of the comments generated by ReviewRobot are valid and constructive, and better than humanwritten ones for 20% of the time. Thus, Re-viewRobot can serve as an assistant for paper reviewers, program chairs and authors. 1", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Abstract", |
|
"sec_num": null |
|
} |
|
], |
|
"body_text": [ |
|
{ |
|
"text": "As the number of papers in our field increases exponentially, the reviewing practices today are more challenging than ever. The quality of peer paper reviews is well-debated across the academic community (Bornmann et al., 2010; Mani, 2011; Sculley et al., 2018; Lipton and Steinhardt, 2019) . How Figure 1 : ReviewRobot Architecture Overview many times do we complain about a bad, random, dismissive, unfair, biased or inconsistent peer review? Authors even created various social groups at social media to release their frustrations and anger, such as the \"Reviewer #2 must be stopped\" group at Facebook 2 . How many times are our papers rejected by a conference and then accepted by a better venue with only few changes? As the number of paper submissions continues to double or even triple every year, so does the need for highquality peer reviews.", |
|
"cite_spans": [ |
|
{ |
|
"start": 204, |
|
"end": 227, |
|
"text": "(Bornmann et al., 2010;", |
|
"ref_id": "BIBREF4" |
|
}, |
|
{ |
|
"start": 228, |
|
"end": 239, |
|
"text": "Mani, 2011;", |
|
"ref_id": "BIBREF48" |
|
}, |
|
{ |
|
"start": 240, |
|
"end": 261, |
|
"text": "Sculley et al., 2018;", |
|
"ref_id": "BIBREF60" |
|
}, |
|
{ |
|
"start": 262, |
|
"end": 290, |
|
"text": "Lipton and Steinhardt, 2019)", |
|
"ref_id": "BIBREF40" |
|
} |
|
], |
|
"ref_spans": [ |
|
{ |
|
"start": 297, |
|
"end": 305, |
|
"text": "Figure 1", |
|
"ref_id": null |
|
} |
|
], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": "1" |
|
}, |
|
{ |
|
"text": "The following are two different reviews for the same paper rejected by ACL2019 and accepted by EMNLP2019 without any change on content:", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": "1" |
|
}, |
|
{ |
|
"text": "\u2022 ACL 2019: Idea is too simple and tricky.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": "1" |
|
}, |
|
{ |
|
"text": "\u2022 EMNLP 2019: The main strengths of the paper lie in the interesting, relatively underresearched problem it covers, the novel and valid method and the experimental results.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": "1" |
|
}, |
|
{ |
|
"text": "These reviews, including the positive ones, are too vague and generic to be helpful. We often see review comments stating a paper is missing references without pointing to any specific references, or criticizing an idea is not novel without showing These findings highlight the subjectivity in human reviews and call for ReviewRobot, an automatic review assistant to help human reviewers generate knowledgeable and explainable review scores and comments, along with detailed evidence. We start by installing a brain for ReviewRobot with a large-scale background knowledge graph (KG) constructed from previous papers in the target domain using domain-specific Information Extraction (IE) techniques. For each current paper under review, we apply the same IE method to construct two KGs, from its related work section and its other sections. By comparing the differences among these KGs, we extract pieces of evidence (e.g., novel knowledge subgraphs which are in the current paper but not in background KGs) for each review category and use them to predict review scores. We manually select constructive human review sentences and generalize them into templates for each category. Then we apply these templates to convert structured evidence to natural language comments for each category, using the predicted scores as a controlling factor.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": "1" |
|
}, |
|
{ |
|
"text": "Experimental results show that our review score predictor reaches 71.4% overall accuracy on overall recommendation, which is very close to interhuman agreement (72.2%). The score predictor achieves 100% accuracy for both appropriateness and impact categories. Human assessment by domain experts shows that up to 70.5% of the comments generated by ReviewRobot are valid, and better than human-written ones 20% of the time.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": "1" |
|
}, |
|
{ |
|
"text": "In summary, the major contributions of this paper are as follows:", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": "1" |
|
}, |
|
{ |
|
"text": "\u2022 We propose a new research problem of generating paper reviews and present the first complete end-to-end framework to generate scores and comments for each review category.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": "1" |
|
}, |
|
{ |
|
"text": "\u2022 Our framework is knowledge-driven, based on fine-grained knowledge element comparison among papers, and thus the comments are highly explainable and constructive, supported by detailed evidence.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": "1" |
|
}, |
|
{ |
|
"text": "\u2022 We create a new benchmark that includes 8K paper and review pairs, 473 manually selected pairs of paper sentences and constructive human review sentences, and a background KG constructed from 174K papers. ", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": "1" |
|
}, |
|
{ |
|
"text": "\u2022 The number of knowledge elements that appear in the contribution claims in the introduction section and that are verified in the experiment section \u2022 Abstract", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Soundness", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "\u2022 attention-over-attention reader, n-best re-ranking strategy is verified in the related work section", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Soundness", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "\u2022 The number of papers about relevant knowledge elements which are missed in the related work section: In this paper, we present a simple but novel model called attention-over-attention reader for better solving cloze-style reading comprehension task. (Cui et al., 2017) The paper describes a new method called attention-over-attention for reading comprehension.", |
|
"cite_spans": [ |
|
{ |
|
"start": 252, |
|
"end": 270, |
|
"text": "(Cui et al., 2017)", |
|
"ref_id": "BIBREF13" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Meaningful Comparison", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "(GB \u2229 GP \u03c4 ) \u2212\u1e20P \u03c4 \u2022", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Meaningful Comparison", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "The paper presents a new framework to solve the SR problem -amortized MAP inference and adopts a pre-learned affine projection layer to ensure the output is consistent with LR. (S\u00f8nderby et al., 2017) It introduces a novel neural network architecture that performs a projection to the affine subspace of valid SR solutions ensuring that the high resolution output of the network is always consistent with the low resolution input.", |
|
"cite_spans": [ |
|
{ |
|
"start": 177, |
|
"end": 200, |
|
"text": "(S\u00f8nderby et al., 2017)", |
|
"ref_id": "BIBREF66" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Novelty 33", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "In high dimensions we empirically found that the GAN based approach, AffGAN produced the most visually appealing results. (S\u00f8nderby et al., 2017) Combined with GAN, this framework can obtain plausible and good results.", |
|
"cite_spans": [ |
|
{ |
|
"start": 122, |
|
"end": 145, |
|
"text": "(S\u00f8nderby et al., 2017)", |
|
"ref_id": "BIBREF66" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Soundness 174", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "As a concrete instantiation, we show in this paper that we can enable recursive neural programs in the NPI model, and thus enable perfectly generalizable neural programs for tasks such as sorting where the original, non-recursive NPI program fails. (Cai et al., 2017) This paper improves significantly upon the original NPI work, showing that the model generalizes far better when trained on traces in recursive form.", |
|
"cite_spans": [ |
|
{ |
|
"start": 249, |
|
"end": 267, |
|
"text": "(Cai et al., 2017)", |
|
"ref_id": "BIBREF7" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Meaningful Comparison 16", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "Potential Impact", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Meaningful Comparison 16", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "Since there may be several rounds of questioning and reasoning, these requirements bring the problem closer to task-oriented dialog and represent a significant increase in the difficulty of the challenge over the original bAbI (supporting fact) problems. (Guo et al., 2017) I am a bit worried that the tasks may be too easy (as the bAbI tasks have been), but still, I think locally these will be useful. ", |
|
"cite_spans": [ |
|
{ |
|
"start": 255, |
|
"end": 273, |
|
"text": "(Guo et al., 2017)", |
|
"ref_id": "BIBREF20" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "14", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "Generating meaningful and explainable reviews requires ReviewRobot to understand the knowledge elements of each paper. We apply a state-of-theart Information Extraction (IE) system for Natural Language Processing (NLP) and Machine Learning (ML) domains (Luan et al., 2018) to construct the following knowledge graphs (KGs):", |
|
"cite_spans": [ |
|
{ |
|
"start": 253, |
|
"end": 272, |
|
"text": "(Luan et al., 2018)", |
|
"ref_id": "BIBREF45" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Knowledge Graph Construction", |
|
"sec_num": "2.2" |
|
}, |
|
{ |
|
"text": "\u2022 G P\u03c4 : A KG constructed from the abstract and conclusion sections of a target paper under review P \u03c4 , which describes the main techniques. \u2022\u1e20 P\u03c4 : A KG constructed from the related work section of P \u03c4 , which describes related techniques. \u2022 G B : A background KG constructed from all of the old NLP/ML papers published before the publication year of P \u03c4 , in order to teach ReviewRobot what's happening in the field.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Knowledge Graph Construction", |
|
"sec_num": "2.2" |
|
}, |
|
{ |
|
"text": "Each node v \u2208 V in a KG represents an entity, namely a cluster of co-referential entity mentions, assigned one of six types: Task, Method, Evaluation Metric, Material, Other Scientific Terms, and Generic Terms. Following the previous work on entity coreference for scientific domains (Koncel-Kedziorski et al., 2019), we choose the longest informative entity mention in each cluster to represent the entity. We consider two entity clusters from different papers as coreferential if one's representative mention appears in the other. Each edge represents a relation between two entities. There are seven relation types: Used-for, Featureof, Evaluate-for, Hyponym-of, Part-of, Compare, and Conjunction. Figure 2 shows an example KG constructed from (Bahdanau et al., 2015) .", |
|
"cite_spans": [ |
|
{ |
|
"start": 747, |
|
"end": 770, |
|
"text": "(Bahdanau et al., 2015)", |
|
"ref_id": "BIBREF2" |
|
} |
|
], |
|
"ref_spans": [ |
|
{ |
|
"start": 701, |
|
"end": 709, |
|
"text": "Figure 2", |
|
"ref_id": null |
|
} |
|
], |
|
"eq_spans": [], |
|
"section": "Knowledge Graph Construction", |
|
"sec_num": "2.2" |
|
}, |
|
{ |
|
"text": "We compare the differences among the constructed KGs to extract evidence for each review category. Table 1 shows the methods to extract evidence and some examples for each category.", |
|
"cite_spans": [], |
|
"ref_spans": [ |
|
{ |
|
"start": 99, |
|
"end": 106, |
|
"text": "Table 1", |
|
"ref_id": "TABREF2" |
|
} |
|
], |
|
"eq_spans": [], |
|
"section": "Evidence Extraction", |
|
"sec_num": "2.3" |
|
}, |
|
{ |
|
"text": "Following (Kang et al., 2018) , we consider review score prediction as a multi-label classification task. For a target paper, we first encode its category related sentences with an attentional Gated Recurrent Unit (GRU) (Cho et al., 2014; Bahdanau et al., 2015) to obtain attentional contextual sentence em-bedding. We also encode the extracted evidence for each review category with an embedding layer. Then we concatenate the context embedding and evidence embedding to predict the quality score r in the range of 1 to 5 with a linear output layer. We use the prediction probability as the confidence score.", |
|
"cite_spans": [ |
|
{ |
|
"start": 10, |
|
"end": 29, |
|
"text": "(Kang et al., 2018)", |
|
"ref_id": "BIBREF31" |
|
}, |
|
{ |
|
"start": 220, |
|
"end": 238, |
|
"text": "(Cho et al., 2014;", |
|
"ref_id": "BIBREF12" |
|
}, |
|
{ |
|
"start": 239, |
|
"end": 261, |
|
"text": "Bahdanau et al., 2015)", |
|
"ref_id": "BIBREF2" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Score Prediction", |
|
"sec_num": "2.4" |
|
}, |
|
{ |
|
"text": "Given the evidence graphs and predicted scores as input, we perform template-based comment generation for each category. We aim to learn good templates from human reviews. Unfortunately as we have discussed earlier, not all human written review sentences are of high quality, even for those accepted papers. Therefore in order to generalize templates, we need to carefully select those constructive and informative human review sentences that are supported by certain evidence in the papers. To avoid expensive manual selection, we design a semi-automatic bootstrapping approach. We manually annotate 200 paper-review pairs from ACL2017 and ICIR2017 datasets, and then use them as seed annotations to train an attentional GRU (Cho et al., 2014) based binary (select/not select) classifier to process the remaining human review sentences and keep high-quality reviews with high confidence. Our attentional GRU achieves binary classification accuracy 85.25%. Table 2 shows the annotation statistics and some examples.", |
|
"cite_spans": [ |
|
{ |
|
"start": 726, |
|
"end": 744, |
|
"text": "(Cho et al., 2014)", |
|
"ref_id": "BIBREF12" |
|
} |
|
], |
|
"ref_spans": [ |
|
{ |
|
"start": 957, |
|
"end": 964, |
|
"text": "Table 2", |
|
"ref_id": "TABREF3" |
|
} |
|
], |
|
"eq_spans": [], |
|
"section": "Comment Generation", |
|
"sec_num": "2.5" |
|
}, |
|
{ |
|
"text": "For appropriateness, soundness, and potential impact categories, we generate generic positive or negative comments based on the predicted scores. For summary, novelty, and meaningful comparison categories, we consider review generation as a template-based graph-to-text generation task. Specifically, for summary and novelty, we generate reviews by describing the Used-for, Feature-of, Compare and Evaluate-for relations in evidence graphs. We choose positive or negative templates depending on whether the predicted scores are above 3. We use the predicted overall recommendation score to control summary generation. For related work, we keep the knowledge elements in the evidence graph with a TF-IDF score (Jones, 1972) higher than 0.5. For each knowledge element, we recommend the most recent 5 papers that are not cited as related papers.", |
|
"cite_spans": [ |
|
{ |
|
"start": 709, |
|
"end": 722, |
|
"text": "(Jones, 1972)", |
|
"ref_id": "BIBREF27" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Comment Generation", |
|
"sec_num": "2.5" |
|
}, |
|
{ |
|
"text": "We choose papers in NLP and ML domains in our experiments because it's easy for us to analyze results, and we are not the most harsh community in Computer Science: the average review score in our corpus is 3.3 out of 5 while it is 2.5/5 in the computer system area (Anderson, 2009) . In addition to the review corpus constructed by (Kang et al., 2018) , we have collected additional paperreview pairs from openreview 4 and NeurIPS 5 . In total, we have collected 8,110 paper and review pairs as shown in Table 3 . We construct the background KG from 174,165 papers from the open research corpus . Table 4 shows the data statistics of background KGs. ", |
|
"cite_spans": [ |
|
{ |
|
"start": 265, |
|
"end": 281, |
|
"text": "(Anderson, 2009)", |
|
"ref_id": "BIBREF1" |
|
}, |
|
{ |
|
"start": 332, |
|
"end": 351, |
|
"text": "(Kang et al., 2018)", |
|
"ref_id": "BIBREF31" |
|
} |
|
], |
|
"ref_spans": [ |
|
{ |
|
"start": 504, |
|
"end": 511, |
|
"text": "Table 3", |
|
"ref_id": "TABREF4" |
|
}, |
|
{ |
|
"start": 597, |
|
"end": 604, |
|
"text": "Table 4", |
|
"ref_id": "TABREF5" |
|
} |
|
], |
|
"eq_spans": [], |
|
"section": "Data", |
|
"sec_num": "3.1" |
|
}, |
|
{ |
|
"text": "We use the ACL2017 dataset in the score prediction task because it has complete score annotations for each review category. We follow the data split of PeerRead (Kang et al., 2018) 6 . Unlike PeerRead which uses multiple review scores for the same input paper, we use the rounded average score of each category as the target score. Table 5 shows that our model trained from carefully selected constructed reviews has already reached a prediction accuracy of 71.43% for overall recommendation, which is very close to the human inter-annotator agreement Conference Year 2013 2014 2015 2016 2017 2018 2019 2020 ICLR ----404 874 1,342 2,067 NeurIPS 342 399 389 545 655 963 --ACL ----130 --- (72.2%) and dramatically advances state-of-the-art approaches in most categories. Our model also produces the lowest mean square errors for all categories.", |
|
"cite_spans": [ |
|
{ |
|
"start": 161, |
|
"end": 182, |
|
"text": "(Kang et al., 2018) 6", |
|
"ref_id": null |
|
} |
|
], |
|
"ref_spans": [ |
|
{ |
|
"start": 332, |
|
"end": 339, |
|
"text": "Table 5", |
|
"ref_id": "TABREF6" |
|
}, |
|
{ |
|
"start": 552, |
|
"end": 706, |
|
"text": "Conference Year 2013 2014 2015 2016 2017 2018 2019 2020 ICLR ----404 874 1,342 2,067 NeurIPS 342 399 389 545 655 963 --ACL ----130", |
|
"ref_id": "TABREF2" |
|
} |
|
], |
|
"eq_spans": [], |
|
"section": "Score Prediction Performance", |
|
"sec_num": "3.2" |
|
}, |
|
{ |
|
"text": "Our knowledge graph synthesis based approach is particularly effective at predicting Novelty score and achieves the accuracy of 71.43%, which is much higher than the accuracy (28.57%) of all other automatic prediction methods using paper abstracts only as input. In Figure 3 we show the average number of new knowledge elements of our test set consisting of ACL2017 papers, when it's reviewed during different years. When the background KG includes newer work, the novelty of these papers decreases, especially after 2017. This indicates that our approach provides a reliable measure for computing novelty.", |
|
"cite_spans": [], |
|
"ref_spans": [ |
|
{ |
|
"start": 266, |
|
"end": 274, |
|
"text": "Figure 3", |
|
"ref_id": "FIGREF0" |
|
} |
|
], |
|
"eq_spans": [], |
|
"section": "Score Prediction Performance", |
|
"sec_num": "3.2" |
|
}, |
|
{ |
|
"text": "As a fun experiment, we also run ReviewRobot on this paper submission itself. The predicted review scores are 5, 3, 4, 3, 4, 4, and 4 for Appropriateness, Meaningful Comparison, Soundness, Novelty, Clarity, Potential Impact and Overall Recommendation, respectively, which means this paper is likely to be accepted.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Score Prediction Performance", |
|
"sec_num": "3.2" |
|
}, |
|
{ |
|
"text": "For the system generated review comments for 50 ACL2017 papers, we ask domain experts to check whether each comment is constructive and valid. Two researchers independently annotate the reviews and reach the inter-annotator agreement of 92%, 92%, and 82% for Novelty, Summary and Related Work, respectively. One expert annotator performs data adjudication. The percentages of constructive and valid comments are 70.5%, 44.6% and 41.7% for Summary, Novelty and Meaningful Comparison, respectively. Human assessors also find that for 20% of these papers, human reviewers do not suggest missing related work for Meaningful Comparison, while ReviewRobot generates constructive and informative comments. For example, the human reviewer states \"The paper would be stronger with the inclusion of more baselines based on related work 7 \", but fails to provide any useful references. In the following we compare the human and system generated reviews for an example paper (Niu et al., 2017) ", |
|
"cite_spans": [ |
|
{ |
|
"start": 963, |
|
"end": 981, |
|
"text": "(Niu et al., 2017)", |
|
"ref_id": "BIBREF55" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Comment Generation Performance", |
|
"sec_num": "3.3" |
|
}, |
|
{ |
|
"text": "The quality of ReviewRobot is mainly limited by state-of-the-art Information Extraction performance for the scientific literature domain. In the future we plan to annotate more data to cover more dimensions for paper profiling (such as goal and main contribution), and more fine-grained knowledge types to improve the extraction quality. For example, for the NLP domain we can extract finergrained subtypes: a model can include parameters, components and features. The goal of an NLP paper could belong to: \"New methods for specific NLP problems\", \"End-user applications\", \"Corpora and evaluations\", \"New machine learning methods for NLP\", \"Linguistic theories \", \"Cognitive modeling and psycholinguistic research\" or \"Applications to social sciences and humanities\". Our current evidence extraction framework also lacks of a salience measure to assign different weights to different types of knowledge elements.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Remaining Challenges and Limitations", |
|
"sec_num": "3.4" |
|
}, |
|
{ |
|
"text": "Paper review generation requires background knowledge acquisition and comparison with the target paper content. Our novel approach on constructing background KG has helped improve the quality of review comments on novelty but the KG is still too flat to generate comments on soundness. For example, from the following two sentences in a paper: \"Third, at least 93% of time expressions contain at least one time token.\", and \"For the relaxed match on all three datasets , SynTime-I and SynTime-E achieve recalls above 92%.\", a knowledgeable human reviewer can infer 93% as the upper bound of performance and write a comment: \"Section 5.2 : given this approach is close to the ceiling of performance since 93 % expressions contain time token , and the system has achieved 92 % recall , how do you plan to improve further?\". Similarly, ReviewRobot cannot generalize knowledge elements into high-level comments such as \"deter-ministic\" as in \"The tasks 1-5 are also completely deterministic\".", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Remaining Challenges and Limitations", |
|
"sec_num": "3.4" |
|
}, |
|
{ |
|
"text": "ReviewRobot still lacks of deep knowledge reasoning ability to judge the soundness of algorithm design details, such as whether the split of data set makes sense, whether a model is able to generalize. ReviewRobot is not able to comment on missing hypotheses, the problems on experimental setting and future work. ReviewRobot currently focuses on text only and cannot comment on mathematical formulas, tables and figures.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Remaining Challenges and Limitations", |
|
"sec_num": "3.4" |
|
}, |
|
{ |
|
"text": "Good machine learning models rely on good data. We need massive amounts of good human reviews to fuel ReviewRobot. In our current approach, we manually select a subset of good human review sentences that are also supported by corresponding sentences in the target papers. This process is very time-consuming and expensive. We need to build a better review infrastructure in our community, e.g., asking authors to provide feedback and rating to select constructive reviews as in NAACL2018 8 .", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Remaining Challenges and Limitations", |
|
"sec_num": "3.4" |
|
}, |
|
{ |
|
"text": "Paper Acceptance Prediction. Kang et al. (2018) has constructed a paper review corpus, PeerRead, and trained paper acceptance classifiers. Huang (2018) applies an interesting visual feature to compare the pdf layouts and proves its effectiveness to make paper acceptance decision. Ghosal et al. (2019) applies sentiment analysis features to improve acceptance prediction. The KDD2014 PC chairs exploit author status and review comments for predicting paper acceptance (Leskovec and Wang, 2014) . We extend these methods to score prediction and comment generation with detailed knowledge element level evidence for each specific review category. Paper Review Generation. Bartoli et al. (2016) proposes the first deep neural network framework to generate paper review comments. The generator is trained with 48 papers from their own lab. In comparison, we perform more concrete and explainable review generation by predicting scores and generating comments for each review category following a rich set of evidence, and use a much larger data set. Nagata (2019) generates comment sentences to explain grammatical errors as feedback to improve paper writing. (Xing et al., 2020; Luu et al., 2020) extract paper-paper relations and Review Generation in other Domains. Automatic review generation techniques have been applied to many other domains including music (Tata and Di Eugenio, 2010) , restaurants (Oraby et al., 2017; Juuti et al., 2018; Li et al., 2019a; Bra\u017einskas et al., 2020) , and products (Catherine and Cohen, 2018; Li et al., 2019a; Li and Tuzhilin, 2019; Dong et al., 2017; Ni and McAuley, 2018; Bra\u017einskas et al., 2020) . These methods generally apply a sequence-to-sequence model with attention to aspects and attributes (e.g. food type). Compared to these domains, paper review generation is much more challenging because it requires the model to perform deep understanding on paper content, construct knowledge graphs to compare knowledge elements across sections and papers, and synthesize information as input evidence for comment generation.", |
|
"cite_spans": [ |
|
{ |
|
"start": 29, |
|
"end": 47, |
|
"text": "Kang et al. (2018)", |
|
"ref_id": "BIBREF31" |
|
}, |
|
{ |
|
"start": 281, |
|
"end": 301, |
|
"text": "Ghosal et al. (2019)", |
|
"ref_id": "BIBREF17" |
|
}, |
|
{ |
|
"start": 468, |
|
"end": 493, |
|
"text": "(Leskovec and Wang, 2014)", |
|
"ref_id": "BIBREF36" |
|
}, |
|
{ |
|
"start": 670, |
|
"end": 691, |
|
"text": "Bartoli et al. (2016)", |
|
"ref_id": "BIBREF3" |
|
}, |
|
{ |
|
"start": 1156, |
|
"end": 1175, |
|
"text": "(Xing et al., 2020;", |
|
"ref_id": "BIBREF82" |
|
}, |
|
{ |
|
"start": 1176, |
|
"end": 1193, |
|
"text": "Luu et al., 2020)", |
|
"ref_id": null |
|
}, |
|
{ |
|
"start": 1359, |
|
"end": 1386, |
|
"text": "(Tata and Di Eugenio, 2010)", |
|
"ref_id": "BIBREF70" |
|
}, |
|
{ |
|
"start": 1401, |
|
"end": 1421, |
|
"text": "(Oraby et al., 2017;", |
|
"ref_id": "BIBREF56" |
|
}, |
|
{ |
|
"start": 1422, |
|
"end": 1441, |
|
"text": "Juuti et al., 2018;", |
|
"ref_id": "BIBREF28" |
|
}, |
|
{ |
|
"start": 1442, |
|
"end": 1459, |
|
"text": "Li et al., 2019a;", |
|
"ref_id": "BIBREF37" |
|
}, |
|
{ |
|
"start": 1460, |
|
"end": 1484, |
|
"text": "Bra\u017einskas et al., 2020)", |
|
"ref_id": "BIBREF5" |
|
}, |
|
{ |
|
"start": 1500, |
|
"end": 1527, |
|
"text": "(Catherine and Cohen, 2018;", |
|
"ref_id": "BIBREF9" |
|
}, |
|
{ |
|
"start": 1528, |
|
"end": 1545, |
|
"text": "Li et al., 2019a;", |
|
"ref_id": "BIBREF37" |
|
}, |
|
{ |
|
"start": 1546, |
|
"end": 1568, |
|
"text": "Li and Tuzhilin, 2019;", |
|
"ref_id": "BIBREF38" |
|
}, |
|
{ |
|
"start": 1569, |
|
"end": 1587, |
|
"text": "Dong et al., 2017;", |
|
"ref_id": "BIBREF14" |
|
}, |
|
{ |
|
"start": 1588, |
|
"end": 1609, |
|
"text": "Ni and McAuley, 2018;", |
|
"ref_id": "BIBREF53" |
|
}, |
|
{ |
|
"start": 1610, |
|
"end": 1634, |
|
"text": "Bra\u017einskas et al., 2020)", |
|
"ref_id": "BIBREF5" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Related Work", |
|
"sec_num": "4" |
|
}, |
|
{ |
|
"text": "Controlled Knowledge-Driven Generation. There have been some other studies on text generation controlled by sentiment , topic (Krishna and Srinivasan, 2018 ), text style (Shen et al., 2017; Liu et al., 2019a; Tikhonov et al., 2019) , and facts . The usage of external supportive knowledge in text generation can be roughly divided into the following three levels: (1) Knowledge Description, which transforms structured data into unstructured text, such as Table- to-Text Generation (Mei et al., 2016; Lebret et al., 2016; Chisholm et al., 2017; Sha et al., 2018; Liu et al., 2018b; Nema et al., 2018; Wang et al., 2018a; Moryossef et al., 2019; Nie et al., 2019; Castro Ferreira et al., 2019; Shahidi et al., 2020) and its variants in low-resource (Ma et al., 2019) and multi-lingual setting (Kaffee et al., 2018a,b) , Data-to-Document (Wiseman et al., 2017; Puduppully et al., 2019; Gong et al., 2019; Iso et al., 2019) , Graph-to-Text (Flanigan et al., 2016; Song et al., 2018; Zhu et al., 2019; Koncel-Kedziorski et al., 2019) , and Topic-to-text (Tang et al., 2019) , and Knowledge Base Description (Kiddon et al., 2016; Gardent et al., 2017; Koncel-Kedziorski et al., 2019) ; (2) Knowledge Synthesis, which retrieves knowledge base and organizes text answers, such as Video Caption Generation (Whitehead et al., 2018) , KB-supported Dialogue Generation (Han et al., 2015; Parthasarathi and Pineau, 2018; Liu et al., 2018a; Wen et al., 2018; Chen et al., 2019; Liu et al., 2019b) , Knowledge-guided comment Generation (Li et al., 2019b) , paper generation Cachola et al., 2020) , and abstractive summarization (Gu et al., 2016; Sharma et al., 2019; Huang et al., 2020) .", |
|
"cite_spans": [ |
|
{ |
|
"start": 126, |
|
"end": 155, |
|
"text": "(Krishna and Srinivasan, 2018", |
|
"ref_id": "BIBREF34" |
|
}, |
|
{ |
|
"start": 170, |
|
"end": 189, |
|
"text": "(Shen et al., 2017;", |
|
"ref_id": "BIBREF65" |
|
}, |
|
{ |
|
"start": 190, |
|
"end": 208, |
|
"text": "Liu et al., 2019a;", |
|
"ref_id": "BIBREF42" |
|
}, |
|
{ |
|
"start": 209, |
|
"end": 231, |
|
"text": "Tikhonov et al., 2019)", |
|
"ref_id": "BIBREF71" |
|
}, |
|
{ |
|
"start": 482, |
|
"end": 500, |
|
"text": "(Mei et al., 2016;", |
|
"ref_id": "BIBREF49" |
|
}, |
|
{ |
|
"start": 501, |
|
"end": 521, |
|
"text": "Lebret et al., 2016;", |
|
"ref_id": "BIBREF35" |
|
}, |
|
{ |
|
"start": 522, |
|
"end": 544, |
|
"text": "Chisholm et al., 2017;", |
|
"ref_id": "BIBREF11" |
|
}, |
|
{ |
|
"start": 545, |
|
"end": 562, |
|
"text": "Sha et al., 2018;", |
|
"ref_id": "BIBREF61" |
|
}, |
|
{ |
|
"start": 563, |
|
"end": 581, |
|
"text": "Liu et al., 2018b;", |
|
"ref_id": "BIBREF43" |
|
}, |
|
{ |
|
"start": 582, |
|
"end": 600, |
|
"text": "Nema et al., 2018;", |
|
"ref_id": "BIBREF52" |
|
}, |
|
{ |
|
"start": 601, |
|
"end": 620, |
|
"text": "Wang et al., 2018a;", |
|
"ref_id": null |
|
}, |
|
{ |
|
"start": 621, |
|
"end": 644, |
|
"text": "Moryossef et al., 2019;", |
|
"ref_id": "BIBREF50" |
|
}, |
|
{ |
|
"start": 645, |
|
"end": 662, |
|
"text": "Nie et al., 2019;", |
|
"ref_id": "BIBREF54" |
|
}, |
|
{ |
|
"start": 663, |
|
"end": 692, |
|
"text": "Castro Ferreira et al., 2019;", |
|
"ref_id": "BIBREF8" |
|
}, |
|
{ |
|
"start": 693, |
|
"end": 714, |
|
"text": "Shahidi et al., 2020)", |
|
"ref_id": "BIBREF63" |
|
}, |
|
{ |
|
"start": 748, |
|
"end": 765, |
|
"text": "(Ma et al., 2019)", |
|
"ref_id": "BIBREF47" |
|
}, |
|
{ |
|
"start": 792, |
|
"end": 816, |
|
"text": "(Kaffee et al., 2018a,b)", |
|
"ref_id": null |
|
}, |
|
{ |
|
"start": 836, |
|
"end": 858, |
|
"text": "(Wiseman et al., 2017;", |
|
"ref_id": "BIBREF80" |
|
}, |
|
{ |
|
"start": 859, |
|
"end": 883, |
|
"text": "Puduppully et al., 2019;", |
|
"ref_id": "BIBREF59" |
|
}, |
|
{ |
|
"start": 884, |
|
"end": 902, |
|
"text": "Gong et al., 2019;", |
|
"ref_id": "BIBREF18" |
|
}, |
|
{ |
|
"start": 903, |
|
"end": 920, |
|
"text": "Iso et al., 2019)", |
|
"ref_id": "BIBREF26" |
|
}, |
|
{ |
|
"start": 937, |
|
"end": 960, |
|
"text": "(Flanigan et al., 2016;", |
|
"ref_id": "BIBREF15" |
|
}, |
|
{ |
|
"start": 961, |
|
"end": 979, |
|
"text": "Song et al., 2018;", |
|
"ref_id": "BIBREF67" |
|
}, |
|
{ |
|
"start": 980, |
|
"end": 997, |
|
"text": "Zhu et al., 2019;", |
|
"ref_id": "BIBREF86" |
|
}, |
|
{ |
|
"start": 998, |
|
"end": 1029, |
|
"text": "Koncel-Kedziorski et al., 2019)", |
|
"ref_id": "BIBREF33" |
|
}, |
|
{ |
|
"start": 1050, |
|
"end": 1069, |
|
"text": "(Tang et al., 2019)", |
|
"ref_id": "BIBREF69" |
|
}, |
|
{ |
|
"start": 1103, |
|
"end": 1124, |
|
"text": "(Kiddon et al., 2016;", |
|
"ref_id": "BIBREF32" |
|
}, |
|
{ |
|
"start": 1125, |
|
"end": 1146, |
|
"text": "Gardent et al., 2017;", |
|
"ref_id": "BIBREF16" |
|
}, |
|
{ |
|
"start": 1147, |
|
"end": 1178, |
|
"text": "Koncel-Kedziorski et al., 2019)", |
|
"ref_id": "BIBREF33" |
|
}, |
|
{ |
|
"start": 1298, |
|
"end": 1322, |
|
"text": "(Whitehead et al., 2018)", |
|
"ref_id": "BIBREF79" |
|
}, |
|
{ |
|
"start": 1358, |
|
"end": 1376, |
|
"text": "(Han et al., 2015;", |
|
"ref_id": "BIBREF21" |
|
}, |
|
{ |
|
"start": 1377, |
|
"end": 1408, |
|
"text": "Parthasarathi and Pineau, 2018;", |
|
"ref_id": "BIBREF57" |
|
}, |
|
{ |
|
"start": 1409, |
|
"end": 1427, |
|
"text": "Liu et al., 2018a;", |
|
"ref_id": "BIBREF41" |
|
}, |
|
{ |
|
"start": 1428, |
|
"end": 1445, |
|
"text": "Wen et al., 2018;", |
|
"ref_id": "BIBREF78" |
|
}, |
|
{ |
|
"start": 1446, |
|
"end": 1464, |
|
"text": "Chen et al., 2019;", |
|
"ref_id": "BIBREF10" |
|
}, |
|
{ |
|
"start": 1465, |
|
"end": 1483, |
|
"text": "Liu et al., 2019b)", |
|
"ref_id": "BIBREF44" |
|
}, |
|
{ |
|
"start": 1522, |
|
"end": 1540, |
|
"text": "(Li et al., 2019b)", |
|
"ref_id": "BIBREF39" |
|
}, |
|
{ |
|
"start": 1560, |
|
"end": 1581, |
|
"text": "Cachola et al., 2020)", |
|
"ref_id": "BIBREF6" |
|
}, |
|
{ |
|
"start": 1614, |
|
"end": 1631, |
|
"text": "(Gu et al., 2016;", |
|
"ref_id": "BIBREF19" |
|
}, |
|
{ |
|
"start": 1632, |
|
"end": 1652, |
|
"text": "Sharma et al., 2019;", |
|
"ref_id": "BIBREF64" |
|
}, |
|
{ |
|
"start": 1653, |
|
"end": 1672, |
|
"text": "Huang et al., 2020)", |
|
"ref_id": "BIBREF25" |
|
} |
|
], |
|
"ref_spans": [ |
|
{ |
|
"start": 456, |
|
"end": 462, |
|
"text": "Table-", |
|
"ref_id": null |
|
} |
|
], |
|
"eq_spans": [], |
|
"section": "Related Work", |
|
"sec_num": "4" |
|
}, |
|
{ |
|
"text": "The types of evidence we have designed in this paper are limited to NLP, ML or related areas, and thus they are not applicable to other scientific domains such as biomedical science and chemistry. Whether ReviewRobot is essentially beneficial to the scientific community also depends on who uses it. Here are some example scenarios where Re-viewRobot should and should not be used:", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Application Limitations and Ethical Statement", |
|
"sec_num": "5" |
|
}, |
|
{ |
|
"text": "\u2022 Should-Do: Reviewers use ReviewRobot merely as an assistant to write more constructive comments and compare notes.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Application Limitations and Ethical Statement", |
|
"sec_num": "5" |
|
}, |
|
{ |
|
"text": "\u2022 Should-Do: Editors use ReviewRobot to assist filtering very bad papers during screening.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Application Limitations and Ethical Statement", |
|
"sec_num": "5" |
|
}, |
|
{ |
|
"text": "\u2022 Should-Do: Authors use ReviewRobot to get initial feedback to improve paper writing such as adding missing references and highlighting the recommended novel points.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Application Limitations and Ethical Statement", |
|
"sec_num": "5" |
|
}, |
|
{ |
|
"text": "\u2022 Should-Do: Researchers use ReviewRobot to perform literature survey, find more good papers and validate the novelty of their papers.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Application Limitations and Ethical Statement", |
|
"sec_num": "5" |
|
}, |
|
{ |
|
"text": "\u2022 Should-Not-Do: Reviewers submit Re-viewRobot's output without reading the paper carefully.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Application Limitations and Ethical Statement", |
|
"sec_num": "5" |
|
}, |
|
{ |
|
"text": "\u2022 Should-Not-Do: Editors send ReviewRobot's output and make decisions based on it.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Application Limitations and Ethical Statement", |
|
"sec_num": "5" |
|
}, |
|
{ |
|
"text": "\u2022 Should-Not-Do: Authors revise their papers to fit into ReviewRobot's features to boost review scores. For example, authors should not deliberately cite all related papers or add irrelevant new terms to boost their review scores.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Application Limitations and Ethical Statement", |
|
"sec_num": "5" |
|
}, |
|
{ |
|
"text": "We build a ReviewRobot for predicting review scores and generating detailed comments for each review category, which can serve as an effective assistant for human reviewers and authors who want to polish their papers. The key innovation of our approach is to construct knowledge graphs from the target paper and a large collection of in-domain background papers, and summarize the pros and cons of each paper on knowledge element level with detailed evidence. We plan to enhance Re-viewRobot's knowledge reasoning capability by building a taxonomy on top of the background KG, and incorporating multi-modal analysis of formulas, tables, figures, and citation networks.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Conclusions and Future Work", |
|
"sec_num": "6" |
|
}, |
|
{ |
|
"text": "https://www.facebook.com/groups/reviewer2/", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "We collect ICLR paper using open review API https: //openreview-py.readthedocs.io/ 5 https://papers.nips.cc/6 We exclude the training pairs that we fail to run IE system on. The test set remains the same as(Kang et al., 2018).", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "Review for(Niu et al., 2017) https://github. com/allenai/PeerRead/blob/master/data/ acl_2017/train/reviews/318.json", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "https://naacl2018.wordpress.com/2018/02/26/acceptanceand-author-feedback/ use them to guide citation text generation.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
} |
|
], |
|
"back_matter": [ |
|
{ |
|
"text": "The knowledge extraction and prediction components were supported by the U.S. NSF No. 1741634 and Air Force No. FA8650-17-C-7715. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Acknowledgments", |
|
"sec_num": null |
|
} |
|
], |
|
"bib_entries": { |
|
"BIBREF0": { |
|
"ref_id": "b0", |
|
"title": "Construction of the literature graph in semantic scholar", |
|
"authors": [ |
|
{ |
|
"first": "Waleed", |
|
"middle": [], |
|
"last": "Ammar", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Dirk", |
|
"middle": [], |
|
"last": "Groeneveld", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Chandra", |
|
"middle": [], |
|
"last": "Bhagavatula", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Iz", |
|
"middle": [], |
|
"last": "Beltagy", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Miles", |
|
"middle": [], |
|
"last": "Crawford", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Doug", |
|
"middle": [], |
|
"last": "Downey", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jason", |
|
"middle": [], |
|
"last": "Dunkelberger", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ahmed", |
|
"middle": [], |
|
"last": "Elgohary", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Sergey", |
|
"middle": [], |
|
"last": "Feldman", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Vu", |
|
"middle": [], |
|
"last": "Ha", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Rodney", |
|
"middle": [], |
|
"last": "Kinney", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Sebastian", |
|
"middle": [], |
|
"last": "Kohlmeier", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Kyle", |
|
"middle": [], |
|
"last": "Lo", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Tyler", |
|
"middle": [], |
|
"last": "Murray", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Hsu-Han", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Matthew", |
|
"middle": [], |
|
"last": "Ooi", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Joanna", |
|
"middle": [], |
|
"last": "Peters", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Sam", |
|
"middle": [], |
|
"last": "Power", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Lucy", |
|
"middle": [], |
|
"last": "Skjonsberg", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Chris", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zheng", |
|
"middle": [], |
|
"last": "Wilhelm", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Madeleine", |
|
"middle": [], |
|
"last": "Yuan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Oren", |
|
"middle": [], |
|
"last": "Van Zuylen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Etzioni", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
"volume": "3", |
|
"issue": "", |
|
"pages": "84--91", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/N18-3011" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Waleed Ammar, Dirk Groeneveld, Chandra Bhagavat- ula, Iz Beltagy, Miles Crawford, Doug Downey, Ja- son Dunkelberger, Ahmed Elgohary, Sergey Feld- man, Vu Ha, Rodney Kinney, Sebastian Kohlmeier, Kyle Lo, Tyler Murray, Hsu-Han Ooi, Matthew Pe- ters, Joanna Power, Sam Skjonsberg, Lucy Wang, Chris Wilhelm, Zheng Yuan, Madeleine van Zuylen, and Oren Etzioni. 2018. Construction of the litera- ture graph in semantic scholar. In Proceedings of the 2018 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers), pages 84-91, New Orleans -Louisiana. As- sociation for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF1": { |
|
"ref_id": "b1", |
|
"title": "Conference reviewing considered harmful", |
|
"authors": [ |
|
{ |
|
"first": "Thomas", |
|
"middle": [], |
|
"last": "Anderson", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2009, |
|
"venue": "ACM SIGOPS Operating Systems Review", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Thomas Anderson. 2009. Conference reviewing con- sidered harmful. ACM SIGOPS Operating Systems Review.", |
|
"links": null |
|
}, |
|
"BIBREF2": { |
|
"ref_id": "b2", |
|
"title": "Neural machine translation by jointly learning to align and translate", |
|
"authors": [ |
|
{ |
|
"first": "Dzmitry", |
|
"middle": [], |
|
"last": "Bahdanau", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Kyunghyun", |
|
"middle": [], |
|
"last": "Cho", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yoshua", |
|
"middle": [], |
|
"last": "Bengio", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2015, |
|
"venue": "Proceedings of the 5th International Conference on Learning Representations", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben- gio. 2015. Neural machine translation by jointly learning to align and translate. In Proceedings of the 5th International Conference on Learning Rep- resentations.", |
|
"links": null |
|
}, |
|
"BIBREF3": { |
|
"ref_id": "b3", |
|
"title": "Your paper has been accepted, rejected, or whatever: Automatic generation of scientific paper reviews", |
|
"authors": [ |
|
{ |
|
"first": "Alberto", |
|
"middle": [], |
|
"last": "Bartoli", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Andrea", |
|
"middle": [ |
|
"De" |
|
], |
|
"last": "Lorenzo", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Eric", |
|
"middle": [], |
|
"last": "Medvet", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Fabiano", |
|
"middle": [], |
|
"last": "Tarlao", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2016, |
|
"venue": "Proceedings of Availability, Reliability, and Security in Information Systems", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "19--28", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2016. Your paper has been accepted, rejected, or whatever: Automatic generation of sci- entific paper reviews. In Proceedings of Availabil- ity, Reliability, and Security in Information Systems, pages 19-28. Springer International Publishing.", |
|
"links": null |
|
}, |
|
"BIBREF4": { |
|
"ref_id": "b4", |
|
"title": "A reliability-generalization study of journal peer reviews: A multilevel meta-analysis of inter-rater reliability and its determinants", |
|
"authors": [ |
|
{ |
|
"first": "Lutz", |
|
"middle": [], |
|
"last": "Bornmann", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "R\u00fcdiger", |
|
"middle": [], |
|
"last": "Mutz", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Hans-Dieter", |
|
"middle": [], |
|
"last": "Daniel", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2010, |
|
"venue": "PloS one", |
|
"volume": "", |
|
"issue": "12", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Lutz Bornmann, R\u00fcdiger Mutz, and Hans-Dieter Daniel. 2010. A reliability-generalization study of journal peer reviews: A multilevel meta-analysis of inter-rater reliability and its determinants. PloS one, 5(12).", |
|
"links": null |
|
}, |
|
"BIBREF5": { |
|
"ref_id": "b5", |
|
"title": "Unsupervised opinion summarization as copycat-review generation", |
|
"authors": [ |
|
{ |
|
"first": "Arthur", |
|
"middle": [], |
|
"last": "Bra\u017einskas", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Mirella", |
|
"middle": [], |
|
"last": "Lapata", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ivan", |
|
"middle": [], |
|
"last": "Titov", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2020, |
|
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "5151--5169", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/2020.acl-main.461" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Arthur Bra\u017einskas, Mirella Lapata, and Ivan Titov. 2020. Unsupervised opinion summarization as copycat-review generation. In Proceedings of the 58th Annual Meeting of the Association for Compu- tational Linguistics, pages 5151-5169, Online. As- sociation for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF6": { |
|
"ref_id": "b6", |
|
"title": "Tldr: Extreme summarization of scientific documents", |
|
"authors": [ |
|
{ |
|
"first": "Isabel", |
|
"middle": [], |
|
"last": "Cachola", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Kyle", |
|
"middle": [], |
|
"last": "Lo", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Arman", |
|
"middle": [], |
|
"last": "Cohan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Daniel", |
|
"middle": [ |
|
"S" |
|
], |
|
"last": "Weld", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2020, |
|
"venue": "Computation and Language", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": { |
|
"arXiv": [ |
|
"arXiv:2004.15011" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Isabel Cachola, Kyle Lo, Arman Cohan, and Daniel S. Weld. 2020. Tldr: Extreme summarization of sci- entific documents. Computation and Language, arXiv:2004.15011.", |
|
"links": null |
|
}, |
|
"BIBREF7": { |
|
"ref_id": "b7", |
|
"title": "Making neural programming architectures generalize via recursion", |
|
"authors": [ |
|
{ |
|
"first": "Jonathon", |
|
"middle": [], |
|
"last": "Cai", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Richard", |
|
"middle": [], |
|
"last": "Shin", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Dawn", |
|
"middle": [], |
|
"last": "Song", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Proceedings of the 7th International Conference on Learning Representations", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Jonathon Cai, Richard Shin, and Dawn Song. 2017. Making neural programming architectures general- ize via recursion. In Proceedings of the 7th Interna- tional Conference on Learning Representations.", |
|
"links": null |
|
}, |
|
"BIBREF8": { |
|
"ref_id": "b8", |
|
"title": "Neural data-to-text generation: A comparison between pipeline and end-to-end architectures", |
|
"authors": [ |
|
{ |
|
"first": "Chris", |
|
"middle": [], |
|
"last": "Thiago Castro Ferreira", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Van Der Lee", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Emiel", |
|
"middle": [], |
|
"last": "Emiel Van Miltenburg", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Krahmer", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "552--562", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D19-1052" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Thiago Castro Ferreira, Chris van der Lee, Emiel van Miltenburg, and Emiel Krahmer. 2019. Neu- ral data-to-text generation: A comparison between pipeline and end-to-end architectures. In Proceed- ings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Interna- tional Joint Conference on Natural Language Pro- cessing (EMNLP-IJCNLP), pages 552-562, Hong Kong, China. Association for Computational Lin- guistics.", |
|
"links": null |
|
}, |
|
"BIBREF9": { |
|
"ref_id": "b9", |
|
"title": "Transnets for review generation", |
|
"authors": [ |
|
{ |
|
"first": "Rose", |
|
"middle": [], |
|
"last": "Catherine", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "William", |
|
"middle": [], |
|
"last": "Cohen", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of 6th International Conference on Learning Representations Workshop", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Rose Catherine and William Cohen. 2018. Transnets for review generation. In Proceedings of 6th Inter- national Conference on Learning Representations Workshop.", |
|
"links": null |
|
}, |
|
"BIBREF10": { |
|
"ref_id": "b10", |
|
"title": "Enhancing neural data-to-text generation models with external background knowledge", |
|
"authors": [ |
|
{ |
|
"first": "Shuang", |
|
"middle": [], |
|
"last": "Chen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jinpeng", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Xiaocheng", |
|
"middle": [], |
|
"last": "Feng", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Feng", |
|
"middle": [], |
|
"last": "Jiang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Bing", |
|
"middle": [], |
|
"last": "Qin", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Chin-Yew", |
|
"middle": [], |
|
"last": "Lin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "3022--3032", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D19-1299" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Shuang Chen, Jinpeng Wang, Xiaocheng Feng, Feng Jiang, Bing Qin, and Chin-Yew Lin. 2019. Enhanc- ing neural data-to-text generation models with ex- ternal background knowledge. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3022-3032, Hong Kong, China. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF11": { |
|
"ref_id": "b11", |
|
"title": "Learning to generate one-sentence biographies from Wikidata", |
|
"authors": [ |
|
{ |
|
"first": "Andrew", |
|
"middle": [], |
|
"last": "Chisholm", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Will", |
|
"middle": [], |
|
"last": "Radford", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ben", |
|
"middle": [], |
|
"last": "Hachey", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "633--642", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Andrew Chisholm, Will Radford, and Ben Hachey. 2017. Learning to generate one-sentence biogra- phies from Wikidata. In Proceedings of the 15th Conference of the European Chapter of the Associa- tion for Computational Linguistics: Volume 1, Long Papers, pages 633-642, Valencia, Spain. Associa- tion for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF12": { |
|
"ref_id": "b12", |
|
"title": "Learning phrase representations using RNN encoder-decoder for statistical machine translation", |
|
"authors": [ |
|
{ |
|
"first": "Kyunghyun", |
|
"middle": [], |
|
"last": "Cho", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Bart", |
|
"middle": [], |
|
"last": "Van Merri\u00ebnboer", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Caglar", |
|
"middle": [], |
|
"last": "Gulcehre", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Dzmitry", |
|
"middle": [], |
|
"last": "Bahdanau", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Fethi", |
|
"middle": [], |
|
"last": "Bougares", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Holger", |
|
"middle": [], |
|
"last": "Schwenk", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yoshua", |
|
"middle": [], |
|
"last": "Bengio", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2014, |
|
"venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1724--1734", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.3115/v1/D14-1179" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Kyunghyun Cho, Bart van Merri\u00ebnboer, Caglar Gul- cehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Nat- ural Language Processing (EMNLP), pages 1724- 1734, Doha, Qatar. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF13": { |
|
"ref_id": "b13", |
|
"title": "Attention-overattention neural networks for reading comprehension", |
|
"authors": [ |
|
{ |
|
"first": "Yiming", |
|
"middle": [], |
|
"last": "Cui", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zhipeng", |
|
"middle": [], |
|
"last": "Chen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Si", |
|
"middle": [], |
|
"last": "Wei", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Shijin", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ting", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Guoping", |
|
"middle": [], |
|
"last": "Hu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "593--602", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P17-1055" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. 2017. Attention-over- attention neural networks for reading comprehen- sion. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), pages 593-602, Vancouver, Canada. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF14": { |
|
"ref_id": "b14", |
|
"title": "Learning to generate product reviews from attributes", |
|
"authors": [ |
|
{ |
|
"first": "Li", |
|
"middle": [], |
|
"last": "Dong", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Shaohan", |
|
"middle": [], |
|
"last": "Huang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Furu", |
|
"middle": [], |
|
"last": "Wei", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Mirella", |
|
"middle": [], |
|
"last": "Lapata", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ming", |
|
"middle": [], |
|
"last": "Zhou", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ke", |
|
"middle": [], |
|
"last": "Xu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Proceedings of the 15th Conference of the European Chapter", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "623--632", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata, Ming Zhou, and Ke Xu. 2017. Learning to generate product reviews from attributes. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 623-632, Valencia, Spain. As- sociation for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF15": { |
|
"ref_id": "b15", |
|
"title": "Generation from Abstract Meaning Representation using tree transducers", |
|
"authors": [ |
|
{ |
|
"first": "Jeffrey", |
|
"middle": [], |
|
"last": "Flanigan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Chris", |
|
"middle": [], |
|
"last": "Dyer", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Noah", |
|
"middle": [ |
|
"A" |
|
], |
|
"last": "Smith", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jaime", |
|
"middle": [], |
|
"last": "Carbonell", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2016, |
|
"venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "731--739", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/N16-1087" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime Carbonell. 2016. Generation from Abstract Meaning Representation using tree transducers. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, pages 731-739, San Diego, California. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF16": { |
|
"ref_id": "b16", |
|
"title": "Creating training corpora for NLG micro-planners", |
|
"authors": [ |
|
{ |
|
"first": "Claire", |
|
"middle": [], |
|
"last": "Gardent", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Anastasia", |
|
"middle": [], |
|
"last": "Shimorina", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Shashi", |
|
"middle": [], |
|
"last": "Narayan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Laura", |
|
"middle": [], |
|
"last": "Perez-Beltrachini", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "179--188", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P17-1017" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017. Creating train- ing corpora for NLG micro-planners. In Proceed- ings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 179-188, Vancouver, Canada. Associa- tion for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF17": { |
|
"ref_id": "b17", |
|
"title": "DeepSentiPeer: Harnessing sentiment in review texts to recommend peer review decisions", |
|
"authors": [ |
|
{ |
|
"first": "Tirthankar", |
|
"middle": [], |
|
"last": "Ghosal", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Rajeev", |
|
"middle": [], |
|
"last": "Verma", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Asif", |
|
"middle": [], |
|
"last": "Ekbal", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Pushpak", |
|
"middle": [], |
|
"last": "Bhattacharyya", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1120--1130", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P19-1106" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Tirthankar Ghosal, Rajeev Verma, Asif Ekbal, and Pushpak Bhattacharyya. 2019. DeepSentiPeer: Har- nessing sentiment in review texts to recommend peer review decisions. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin- guistics, pages 1120-1130, Florence, Italy. Associa- tion for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF18": { |
|
"ref_id": "b18", |
|
"title": "Enhanced transformer model for data-to-text generation", |
|
"authors": [ |
|
{ |
|
"first": "Li", |
|
"middle": [], |
|
"last": "Gong", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Josep", |
|
"middle": [], |
|
"last": "Crego", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jean", |
|
"middle": [], |
|
"last": "Senellart", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 3rd Workshop on Neural Generation and Translation", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "148--156", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D19-5615" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Li Gong, Josep Crego, and Jean Senellart. 2019. En- hanced transformer model for data-to-text genera- tion. In Proceedings of the 3rd Workshop on Neural Generation and Translation, pages 148-156, Hong Kong. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF19": { |
|
"ref_id": "b19", |
|
"title": "Incorporating copying mechanism in sequence-to-sequence learning", |
|
"authors": [ |
|
{ |
|
"first": "Jiatao", |
|
"middle": [], |
|
"last": "Gu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zhengdong", |
|
"middle": [], |
|
"last": "Lu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Hang", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "O", |
|
"middle": [ |
|
"K" |
|
], |
|
"last": "Victor", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2016, |
|
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "1631--1640", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P16-1154" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. 2016. Incorporating copying mechanism in sequence-to-sequence learning. In Proceedings of the 54th Annual Meeting of the Association for Com- putational Linguistics (Volume 1: Long Papers), pages 1631-1640, Berlin, Germany. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF20": { |
|
"ref_id": "b20", |
|
"title": "Learning to query, reason, and answer questions on ambiguous texts", |
|
"authors": [ |
|
{ |
|
"first": "Xiaoxiao", |
|
"middle": [], |
|
"last": "Guo", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Tim", |
|
"middle": [], |
|
"last": "Klinger", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Clemens", |
|
"middle": [], |
|
"last": "Rosenbaum", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "P", |
|
"middle": [], |
|
"last": "Joseph", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Murray", |
|
"middle": [], |
|
"last": "Bigus", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ban", |
|
"middle": [], |
|
"last": "Campbell", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Kartik", |
|
"middle": [], |
|
"last": "Kawas", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Gerry", |
|
"middle": [], |
|
"last": "Talamadupula", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Satinder", |
|
"middle": [], |
|
"last": "Tesauro", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Singh", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Proceedings of the 7th International Conference on Learning Representations", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Xiaoxiao Guo, Tim Klinger, Clemens Rosenbaum, Joseph P Bigus, Murray Campbell, Ban Kawas, Kartik Talamadupula, Gerry Tesauro, and Satinder Singh. 2017. Learning to query, reason, and answer questions on ambiguous texts. In Proceedings of the 7th International Conference on Learning Represen- tations.", |
|
"links": null |
|
}, |
|
"BIBREF21": { |
|
"ref_id": "b21", |
|
"title": "Exploiting knowledge base to generate responses for natural language dialog listening agents", |
|
"authors": [ |
|
{ |
|
"first": "Sangdo", |
|
"middle": [], |
|
"last": "Han", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jeesoo", |
|
"middle": [], |
|
"last": "Bang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Seonghan", |
|
"middle": [], |
|
"last": "Ryu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Gary Geunbae", |
|
"middle": [], |
|
"last": "Lee", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2015, |
|
"venue": "Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "129--133", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/W15-4616" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Sangdo Han, Jeesoo Bang, Seonghan Ryu, and Gary Geunbae Lee. 2015. Exploiting knowledge base to generate responses for natural language di- alog listening agents. In Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 129-133, Prague, Czech Republic. Association for Computational Lin- guistics.", |
|
"links": null |
|
}, |
|
"BIBREF22": { |
|
"ref_id": "b22", |
|
"title": "Teaching machines to read and comprehend", |
|
"authors": [ |
|
{ |
|
"first": "Karl", |
|
"middle": [], |
|
"last": "Moritz Hermann", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Tomas", |
|
"middle": [], |
|
"last": "Kocisky", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Edward", |
|
"middle": [], |
|
"last": "Grefenstette", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Lasse", |
|
"middle": [], |
|
"last": "Espeholt", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Will", |
|
"middle": [], |
|
"last": "Kay", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Mustafa", |
|
"middle": [], |
|
"last": "Suleyman", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Phil", |
|
"middle": [], |
|
"last": "Blunsom", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2015, |
|
"venue": "Advances in neural information processing systems28", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1693--1701", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Karl Moritz Hermann, Tomas Kocisky, Edward Grefen- stette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching machines to read and comprehend. In Advances in neural information processing systems28, pages 1693-1701.", |
|
"links": null |
|
}, |
|
"BIBREF23": { |
|
"ref_id": "b23", |
|
"title": "Toward controlled generation of text", |
|
"authors": [ |
|
{ |
|
"first": "Zhiting", |
|
"middle": [], |
|
"last": "Hu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zichao", |
|
"middle": [], |
|
"last": "Yang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Xiaodan", |
|
"middle": [], |
|
"last": "Liang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ruslan", |
|
"middle": [], |
|
"last": "Salakhutdinov", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Eric", |
|
"middle": [ |
|
"P" |
|
], |
|
"last": "Xing", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Proceedings of the 34th International Conference on Machine Learning", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1587--1596", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. 2017. Toward con- trolled generation of text. In Proceedings of the 34th International Conference on Machine Learning, pages 1587-1596.", |
|
"links": null |
|
}, |
|
"BIBREF24": { |
|
"ref_id": "b24", |
|
"title": "Deep paper gestalt. Computer Vision and Pattern Recognition Repository", |
|
"authors": [ |
|
{ |
|
"first": "Jia-Bin", |
|
"middle": [], |
|
"last": "Huang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": { |
|
"arXiv": [ |
|
"arXiv:1812.08775" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Jia-Bin Huang. 2018. Deep paper gestalt. Com- puter Vision and Pattern Recognition Repository, arXiv:1812.08775.", |
|
"links": null |
|
}, |
|
"BIBREF25": { |
|
"ref_id": "b25", |
|
"title": "Knowledge graph-augmented abstractive summarization with semantic-driven cloze reward", |
|
"authors": [ |
|
{ |
|
"first": "Luyang", |
|
"middle": [], |
|
"last": "Huang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Lingfei", |
|
"middle": [], |
|
"last": "Wu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Lu", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2020, |
|
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "5094--5107", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/2020.acl-main.457" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Luyang Huang, Lingfei Wu, and Lu Wang. 2020. Knowledge graph-augmented abstractive summa- rization with semantic-driven cloze reward. In Pro- ceedings of the 58th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 5094- 5107, Online. Association for Computational Lin- guistics.", |
|
"links": null |
|
}, |
|
"BIBREF26": { |
|
"ref_id": "b26", |
|
"title": "Learning to select, track, and generate for data-to-text", |
|
"authors": [ |
|
{ |
|
"first": "Hayate", |
|
"middle": [], |
|
"last": "Iso", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yui", |
|
"middle": [], |
|
"last": "Uehara", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Tatsuya", |
|
"middle": [], |
|
"last": "Ishigaki", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Hiroshi", |
|
"middle": [], |
|
"last": "Noji", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Eiji", |
|
"middle": [], |
|
"last": "Aramaki", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ichiro", |
|
"middle": [], |
|
"last": "Kobayashi", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yusuke", |
|
"middle": [], |
|
"last": "Miyao", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Naoaki", |
|
"middle": [], |
|
"last": "Okazaki", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Hiroya", |
|
"middle": [], |
|
"last": "Takamura", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "2102--2113", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P19-1202" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi Noji, Eiji Aramaki, Ichiro Kobayashi, Yusuke Miyao, Naoaki Okazaki, and Hiroya Takamura. 2019. Learning to select, track, and generate for data-to-text. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin- guistics, pages 2102-2113, Florence, Italy. Associa- tion for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF27": { |
|
"ref_id": "b27", |
|
"title": "A statistical interpretation of term specificity and its application in retrieval", |
|
"authors": [ |
|
{ |
|
"first": "Karen Sparck", |
|
"middle": [], |
|
"last": "Jones", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1972, |
|
"venue": "Journal of documentation", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Karen Sparck Jones. 1972. A statistical interpretation of term specificity and its application in retrieval. Journal of documentation.", |
|
"links": null |
|
}, |
|
"BIBREF28": { |
|
"ref_id": "b28", |
|
"title": "Stay on-topic: Generating context-specific fake restaurant reviews", |
|
"authors": [ |
|
{ |
|
"first": "Mika", |
|
"middle": [], |
|
"last": "Juuti", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Bo", |
|
"middle": [], |
|
"last": "Sun", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Tatsuya", |
|
"middle": [], |
|
"last": "Mori", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "N", |
|
"middle": [], |
|
"last": "Asokan", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of European Symposium on Research in Computer Security", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "132--151", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Mika Juuti, Bo Sun, Tatsuya Mori, and N Asokan. 2018. Stay on-topic: Generating context-specific fake restaurant reviews. In Proceedings of Euro- pean Symposium on Research in Computer Security, pages 132-151.", |
|
"links": null |
|
}, |
|
"BIBREF29": { |
|
"ref_id": "b29", |
|
"title": "Learning to generate Wikipedia summaries for underserved languages from Wikidata", |
|
"authors": [ |
|
{ |
|
"first": "Lucie-Aim\u00e9e", |
|
"middle": [], |
|
"last": "Kaffee", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Hady", |
|
"middle": [], |
|
"last": "Elsahar", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Pavlos", |
|
"middle": [], |
|
"last": "Vougiouklis", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Christophe", |
|
"middle": [], |
|
"last": "Gravier", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Fr\u00e9d\u00e9rique", |
|
"middle": [], |
|
"last": "Laforest", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jonathon", |
|
"middle": [], |
|
"last": "Hare", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Elena", |
|
"middle": [], |
|
"last": "Simperl", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "640--645", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/N18-2101" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Lucie-Aim\u00e9e Kaffee, Hady Elsahar, Pavlos Vou- giouklis, Christophe Gravier, Fr\u00e9d\u00e9rique Laforest, Jonathon Hare, and Elena Simperl. 2018a. Learning to generate Wikipedia summaries for underserved languages from Wikidata. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, Volume 2 (Short Pa- pers), pages 640-645, New Orleans, Louisiana. As- sociation for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF30": { |
|
"ref_id": "b30", |
|
"title": "Mind the (language) gap: Generation of multilingual wikipedia summaries from wikidata for articleplaceholders", |
|
"authors": [ |
|
{ |
|
"first": "Lucie-Aim\u00e9e", |
|
"middle": [], |
|
"last": "Kaffee", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Hady", |
|
"middle": [], |
|
"last": "Elsahar", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Pavlos", |
|
"middle": [], |
|
"last": "Vougiouklis", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Christophe", |
|
"middle": [], |
|
"last": "Gravier", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Fr\u00e9d\u00e9rique", |
|
"middle": [], |
|
"last": "Laforest", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jonathon", |
|
"middle": [], |
|
"last": "Hare", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Elena", |
|
"middle": [], |
|
"last": "Simperl", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 15th European Semantic Web Conference", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Lucie-Aim\u00e9e Kaffee, Hady Elsahar, Pavlos Vou- giouklis, Christophe Gravier, Fr\u00e9d\u00e9rique Laforest, Jonathon Hare, and Elena Simperl. 2018b. Mind the (language) gap: Generation of multilingual wikipedia summaries from wikidata for articleplace- holders. In Proceedings of the 15th European Se- mantic Web Conference.", |
|
"links": null |
|
}, |
|
"BIBREF31": { |
|
"ref_id": "b31", |
|
"title": "A dataset of peer reviews (PeerRead): Collection, insights and NLP applications", |
|
"authors": [ |
|
{ |
|
"first": "Dongyeop", |
|
"middle": [], |
|
"last": "Kang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Waleed", |
|
"middle": [], |
|
"last": "Ammar", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Bhavana", |
|
"middle": [], |
|
"last": "Dalvi", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Madeleine", |
|
"middle": [], |
|
"last": "Van Zuylen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Sebastian", |
|
"middle": [], |
|
"last": "Kohlmeier", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Eduard", |
|
"middle": [], |
|
"last": "Hovy", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Roy", |
|
"middle": [], |
|
"last": "Schwartz", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "1647--1661", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/N18-1149" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Dongyeop Kang, Waleed Ammar, Bhavana Dalvi, Madeleine van Zuylen, Sebastian Kohlmeier, Ed- uard Hovy, and Roy Schwartz. 2018. A dataset of peer reviews (PeerRead): Collection, insights and NLP applications. In Proceedings of the 2018 Con- ference of the North American Chapter of the Asso- ciation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 1647-1661, New Orleans, Louisiana. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF32": { |
|
"ref_id": "b32", |
|
"title": "Globally coherent text generation with neural checklist models", |
|
"authors": [ |
|
{ |
|
"first": "Chlo\u00e9", |
|
"middle": [], |
|
"last": "Kiddon", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Luke", |
|
"middle": [], |
|
"last": "Zettlemoyer", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yejin", |
|
"middle": [], |
|
"last": "Choi", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2016, |
|
"venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "329--339", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D16-1032" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Chlo\u00e9 Kiddon, Luke Zettlemoyer, and Yejin Choi. 2016. Globally coherent text generation with neural checklist models. In Proceedings of the 2016 Con- ference on Empirical Methods in Natural Language Processing, pages 329-339, Austin, Texas. Associa- tion for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF33": { |
|
"ref_id": "b33", |
|
"title": "Text Generation from Knowledge Graphs with Graph Transformers", |
|
"authors": [ |
|
{ |
|
"first": "Rik", |
|
"middle": [], |
|
"last": "Koncel-Kedziorski", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Dhanush", |
|
"middle": [], |
|
"last": "Bekal", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yi", |
|
"middle": [], |
|
"last": "Luan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Mirella", |
|
"middle": [], |
|
"last": "Lapata", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Hannaneh", |
|
"middle": [], |
|
"last": "Hajishirzi", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "2284--2293", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/N19-1238" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text Generation from Knowledge Graphs with Graph Transformers. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2284-2293, Minneapolis, Minnesota. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF34": { |
|
"ref_id": "b34", |
|
"title": "Generating topic-oriented summaries using neural attention", |
|
"authors": [ |
|
{ |
|
"first": "Kundan", |
|
"middle": [], |
|
"last": "Krishna", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Balaji Vasan Srinivasan", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "1697--1705", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/N18-1153" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Kundan Krishna and Balaji Vasan Srinivasan. 2018. Generating topic-oriented summaries using neural attention. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1697- 1705, New Orleans, Louisiana. Association for Com- putational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF35": { |
|
"ref_id": "b35", |
|
"title": "Neural text generation from structured data with application to the biography domain", |
|
"authors": [ |
|
{ |
|
"first": "R\u00e9mi", |
|
"middle": [], |
|
"last": "Lebret", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "David", |
|
"middle": [], |
|
"last": "Grangier", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Michael", |
|
"middle": [], |
|
"last": "Auli", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2016, |
|
"venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1203--1213", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D16-1128" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "R\u00e9mi Lebret, David Grangier, and Michael Auli. 2016. Neural text generation from structured data with application to the biography domain. In Proceed- ings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1203-1213, Austin, Texas. Association for Computational Lin- guistics.", |
|
"links": null |
|
}, |
|
"BIBREF36": { |
|
"ref_id": "b36", |
|
"title": "Data science view of the kdd", |
|
"authors": [ |
|
{ |
|
"first": "Jure", |
|
"middle": [], |
|
"last": "Leskovec", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Wei", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2014, |
|
"venue": "KDD2014 PC Chair Report", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Jure Leskovec and Wei Wang. 2014. Data science view of the kdd 2014. In KDD2014 PC Chair Report.", |
|
"links": null |
|
}, |
|
"BIBREF37": { |
|
"ref_id": "b37", |
|
"title": "Generating long and informative reviews with aspect-aware coarse-to-fine decoding", |
|
"authors": [ |
|
{ |
|
"first": "Junyi", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Wayne", |
|
"middle": [ |
|
"Xin" |
|
], |
|
"last": "Zhao", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ji-Rong", |
|
"middle": [], |
|
"last": "Wen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yang", |
|
"middle": [], |
|
"last": "Song", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1969--1979", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P19-1190" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Junyi Li, Wayne Xin Zhao, Ji-Rong Wen, and Yang Song. 2019a. Generating long and informative re- views with aspect-aware coarse-to-fine decoding. In Proceedings of the 57th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 1969- 1979, Florence, Italy. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF38": { |
|
"ref_id": "b38", |
|
"title": "Towards controllable and personalized review generation", |
|
"authors": [ |
|
{ |
|
"first": "Pan", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Alexander", |
|
"middle": [], |
|
"last": "Tuzhilin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "3237--3245", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D19-1319" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Pan Li and Alexander Tuzhilin. 2019. Towards con- trollable and personalized review generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 3237- 3245, Hong Kong, China. Association for Computa- tional Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF39": { |
|
"ref_id": "b39", |
|
"title": "Coherent comments generation for Chinese articles with a graphto-sequence model", |
|
"authors": [ |
|
{ |
|
"first": "Wei", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jingjing", |
|
"middle": [], |
|
"last": "Xu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yancheng", |
|
"middle": [], |
|
"last": "He", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Shengli", |
|
"middle": [], |
|
"last": "Yan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yunfang", |
|
"middle": [], |
|
"last": "Wu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Xu", |
|
"middle": [], |
|
"last": "Sun", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "4843--4852", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P19-1479" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Wei Li, Jingjing Xu, Yancheng He, ShengLi Yan, Yun- fang Wu, and Xu Sun. 2019b. Coherent com- ments generation for Chinese articles with a graph- to-sequence model. In Proceedings of the 57th An- nual Meeting of the Association for Computational Linguistics, pages 4843-4852, Florence, Italy. Asso- ciation for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF40": { |
|
"ref_id": "b40", |
|
"title": "Troubling trends in machine learning scholarship", |
|
"authors": [ |
|
{ |
|
"first": "C", |
|
"middle": [], |
|
"last": "Zachary", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jacob", |
|
"middle": [], |
|
"last": "Lipton", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Steinhardt", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Queue", |
|
"volume": "17", |
|
"issue": "1", |
|
"pages": "45--77", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Zachary C Lipton and Jacob Steinhardt. 2019. Trou- bling trends in machine learning scholarship. Queue, 17(1):45-77.", |
|
"links": null |
|
}, |
|
"BIBREF41": { |
|
"ref_id": "b41", |
|
"title": "Knowledge diffusion for neural dialogue generation", |
|
"authors": [ |
|
{ |
|
"first": "Shuman", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Hongshen", |
|
"middle": [], |
|
"last": "Chen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zhaochun", |
|
"middle": [], |
|
"last": "Ren", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yang", |
|
"middle": [], |
|
"last": "Feng", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Qun", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Dawei", |
|
"middle": [], |
|
"last": "Yin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "1489--1498", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P18-1138" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Shuman Liu, Hongshen Chen, Zhaochun Ren, Yang Feng, Qun Liu, and Dawei Yin. 2018a. Knowledge diffusion for neural dialogue generation. In Proceed- ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 1489-1498, Melbourne, Australia. As- sociation for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF42": { |
|
"ref_id": "b42", |
|
"title": "Towards comprehensive description generation from factual attribute-value tables", |
|
"authors": [ |
|
{ |
|
"first": "Tianyu", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Fuli", |
|
"middle": [], |
|
"last": "Luo", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Pengcheng", |
|
"middle": [], |
|
"last": "Yang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Wei", |
|
"middle": [], |
|
"last": "Wu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Baobao", |
|
"middle": [], |
|
"last": "Chang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zhifang", |
|
"middle": [], |
|
"last": "Sui", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "5985--5996", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P19-1600" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Tianyu Liu, Fuli Luo, Pengcheng Yang, Wei Wu, Baobao Chang, and Zhifang Sui. 2019a. Towards comprehensive description generation from factual attribute-value tables. In Proceedings of the 57th An- nual Meeting of the Association for Computational Linguistics, pages 5985-5996, Florence, Italy. Asso- ciation for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF43": { |
|
"ref_id": "b43", |
|
"title": "Table-to-text generation by structure-aware seq2seq learning", |
|
"authors": [ |
|
{ |
|
"first": "Tianyu", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Kexiang", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Lei", |
|
"middle": [], |
|
"last": "Sha", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Baobao", |
|
"middle": [], |
|
"last": "Chang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zhifang", |
|
"middle": [], |
|
"last": "Sui", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 32nd AAAI Conference on Artificial Intelligence", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui. 2018b. Table-to-text generation by structure-aware seq2seq learning. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence.", |
|
"links": null |
|
}, |
|
"BIBREF44": { |
|
"ref_id": "b44", |
|
"title": "Knowledge aware conversation generation with explainable reasoning over augmented graphs", |
|
"authors": [ |
|
{ |
|
"first": "Zhibin", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zheng-Yu", |
|
"middle": [], |
|
"last": "Niu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Hua", |
|
"middle": [], |
|
"last": "Wu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Haifeng", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1782--1792", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D19-1187" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Zhibin Liu, Zheng-Yu Niu, Hua Wu, and Haifeng Wang. 2019b. Knowledge aware conversation gen- eration with explainable reasoning over augmented graphs. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natu- ral Language Processing (EMNLP-IJCNLP), pages 1782-1792, Hong Kong, China. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF45": { |
|
"ref_id": "b45", |
|
"title": "Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction", |
|
"authors": [ |
|
{ |
|
"first": "Yi", |
|
"middle": [], |
|
"last": "Luan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Luheng", |
|
"middle": [], |
|
"last": "He", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Mari", |
|
"middle": [], |
|
"last": "Ostendorf", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Hannaneh", |
|
"middle": [], |
|
"last": "Hajishirzi", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "3219--3232", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D18-1360" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. 2018. Multi-task identification of enti- ties, relations, and coreference for scientific knowl- edge graph construction. In Proceedings of the 2018 Conference on Empirical Methods in Natural Lan- guage Processing, pages 3219-3232, Brussels, Bel- gium. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF46": { |
|
"ref_id": "b46", |
|
"title": "Isabel Cachola, and Noah A. Smith. 2020. Citation text generation", |
|
"authors": [ |
|
{ |
|
"first": "Kelvin", |
|
"middle": [], |
|
"last": "Luu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Rik", |
|
"middle": [], |
|
"last": "Koncel-Kedziorski", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Kyle", |
|
"middle": [], |
|
"last": "Lo", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "Computation and Language", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": { |
|
"arXiv": [ |
|
"arXiv:2002.00317" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Kelvin Luu, Rik Koncel-Kedziorski, Kyle Lo, Is- abel Cachola, and Noah A. Smith. 2020. Cita- tion text generation. Computation and Language, arXiv:2002.00317.", |
|
"links": null |
|
}, |
|
"BIBREF47": { |
|
"ref_id": "b47", |
|
"title": "Key fact as pivot: A two-stage model for low resource table-to-text generation", |
|
"authors": [ |
|
{ |
|
"first": "Shuming", |
|
"middle": [], |
|
"last": "Ma", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Pengcheng", |
|
"middle": [], |
|
"last": "Yang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Tianyu", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Peng", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jie", |
|
"middle": [], |
|
"last": "Zhou", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Xu", |
|
"middle": [], |
|
"last": "Sun", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "2047--2057", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P19-1197" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Shuming Ma, Pengcheng Yang, Tianyu Liu, Peng Li, Jie Zhou, and Xu Sun. 2019. Key fact as pivot: A two-stage model for low resource table-to-text gen- eration. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 2047-2057, Florence, Italy. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF48": { |
|
"ref_id": "b48", |
|
"title": "Improving our reviewing processes", |
|
"authors": [ |
|
{ |
|
"first": "Inderjeet", |
|
"middle": [], |
|
"last": "Mani", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2011, |
|
"venue": "Computational Linguistics", |
|
"volume": "37", |
|
"issue": "1", |
|
"pages": "261--265", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Inderjeet Mani. 2011. Improving our reviewing pro- cesses. Computational Linguistics, 37(1):261-265.", |
|
"links": null |
|
}, |
|
"BIBREF49": { |
|
"ref_id": "b49", |
|
"title": "What to talk about and how? selective generation using LSTMs with coarse-to-fine alignment", |
|
"authors": [ |
|
{ |
|
"first": "Hongyuan", |
|
"middle": [], |
|
"last": "Mei", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Mohit", |
|
"middle": [], |
|
"last": "Bansal", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Matthew", |
|
"middle": [ |
|
"R" |
|
], |
|
"last": "Walter", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2016, |
|
"venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "720--730", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/N16-1086" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. 2016. What to talk about and how? selective gen- eration using LSTMs with coarse-to-fine alignment. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, pages 720-730, San Diego, California. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF50": { |
|
"ref_id": "b50", |
|
"title": "Step-by-step: Separating planning from realization in neural data-to-text generation", |
|
"authors": [ |
|
{ |
|
"first": "Amit", |
|
"middle": [], |
|
"last": "Moryossef", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yoav", |
|
"middle": [], |
|
"last": "Goldberg", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ido", |
|
"middle": [], |
|
"last": "Dagan", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "2267--2277", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/N19-1236" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019. Step-by-step: Separating planning from realization in neural data-to-text generation. In Proceedings of the 2019 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2267-2277, Minneapolis, Minnesota. Association for Computational Linguis- tics.", |
|
"links": null |
|
}, |
|
"BIBREF51": { |
|
"ref_id": "b51", |
|
"title": "Toward a task of feedback comment generation for writing learning", |
|
"authors": [ |
|
{ |
|
"first": "Ryo", |
|
"middle": [], |
|
"last": "Nagata", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "3206--3215", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D19-1316" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Ryo Nagata. 2019. Toward a task of feedback comment generation for writing learning. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3206-3215, Hong Kong, China. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF52": { |
|
"ref_id": "b52", |
|
"title": "Generating descriptions from structured data using a bifocal attention mechanism and gated orthogonalization", |
|
"authors": [ |
|
{ |
|
"first": "Preksha", |
|
"middle": [], |
|
"last": "Nema", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Shreyas", |
|
"middle": [], |
|
"last": "Shetty", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Parag", |
|
"middle": [], |
|
"last": "Jain", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Anirban", |
|
"middle": [], |
|
"last": "Laha", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Karthik", |
|
"middle": [], |
|
"last": "Sankaranarayanan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Mitesh", |
|
"middle": [ |
|
"M" |
|
], |
|
"last": "Khapra", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "1539--1550", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/N18-1139" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Preksha Nema, Shreyas Shetty, Parag Jain, Anirban Laha, Karthik Sankaranarayanan, and Mitesh M. Khapra. 2018. Generating descriptions from struc- tured data using a bifocal attention mechanism and gated orthogonalization. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1539-1550, New Orleans, Louisiana. Associ- ation for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF53": { |
|
"ref_id": "b53", |
|
"title": "Personalized review generation by expanding phrases and attending on aspect-aware representations", |
|
"authors": [ |
|
{ |
|
"first": "Jianmo", |
|
"middle": [], |
|
"last": "Ni", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Julian", |
|
"middle": [], |
|
"last": "Mcauley", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "706--711", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P18-2112" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Jianmo Ni and Julian McAuley. 2018. Personalized re- view generation by expanding phrases and attend- ing on aspect-aware representations. In Proceed- ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Pa- pers), pages 706-711, Melbourne, Australia. Asso- ciation for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF54": { |
|
"ref_id": "b54", |
|
"title": "An encoder with non-sequential dependency for neural data-to-text generation", |
|
"authors": [ |
|
{ |
|
"first": "Feng", |
|
"middle": [], |
|
"last": "Nie", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jinpeng", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Rong", |
|
"middle": [], |
|
"last": "Pan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Chin-Yew", |
|
"middle": [], |
|
"last": "Lin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 12th International Conference on Natural Language Generation", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "141--146", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/W19-8619" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Feng Nie, Jinpeng Wang, Rong Pan, and Chin-Yew Lin. 2019. An encoder with non-sequential dependency for neural data-to-text generation. In Proceedings of the 12th International Conference on Natural Lan- guage Generation, pages 141-146, Tokyo, Japan. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF55": { |
|
"ref_id": "b55", |
|
"title": "Improved word representation learning with sememes", |
|
"authors": [ |
|
{ |
|
"first": "Yilin", |
|
"middle": [], |
|
"last": "Niu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ruobing", |
|
"middle": [], |
|
"last": "Xie", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zhiyuan", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Maosong", |
|
"middle": [], |
|
"last": "Sun", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "2049--2058", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P17-1187" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Yilin Niu, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2017. Improved word representation learning with sememes. In Proceedings of the 55th Annual Meeting of the Association for Computational Lin- guistics (Volume 1: Long Papers), pages 2049-2058, Vancouver, Canada. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF56": { |
|
"ref_id": "b56", |
|
"title": "Harvesting creative templates for generating stylistically varied restaurant reviews", |
|
"authors": [ |
|
{ |
|
"first": "Shereen", |
|
"middle": [], |
|
"last": "Oraby", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Sheideh", |
|
"middle": [], |
|
"last": "Homayon", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Marilyn", |
|
"middle": [], |
|
"last": "Walker", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Proceedings of the Workshop on Stylistic Variation", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "28--36", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/W17-4904" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Shereen Oraby, Sheideh Homayon, and Marilyn Walker. 2017. Harvesting creative templates for gen- erating stylistically varied restaurant reviews. In Proceedings of the Workshop on Stylistic Variation, pages 28-36, Copenhagen, Denmark. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF57": { |
|
"ref_id": "b57", |
|
"title": "Extending neural generative conversational model using external knowledge sources", |
|
"authors": [ |
|
{ |
|
"first": "Prasanna", |
|
"middle": [], |
|
"last": "Parthasarathi", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Joelle", |
|
"middle": [], |
|
"last": "Pineau", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "690--695", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D18-1073" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Prasanna Parthasarathi and Joelle Pineau. 2018. Ex- tending neural generative conversational model us- ing external knowledge sources. In Proceedings of the 2018 Conference on Empirical Methods in Nat- ural Language Processing, pages 690-695, Brus- sels, Belgium. Association for Computational Lin- guistics.", |
|
"links": null |
|
}, |
|
"BIBREF58": { |
|
"ref_id": "b58", |
|
"title": "Low agreement among reviewers evaluating the same nih grant applications", |
|
"authors": [ |
|
{ |
|
"first": "L", |
|
"middle": [], |
|
"last": "Elizabeth", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Markus", |
|
"middle": [], |
|
"last": "Pier", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Amarette", |
|
"middle": [], |
|
"last": "Brauer", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Anna", |
|
"middle": [], |
|
"last": "Filut", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Joshua", |
|
"middle": [], |
|
"last": "Kaatz", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Raclaw", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J", |
|
"middle": [], |
|
"last": "Mitchell", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Cecilia", |
|
"middle": [ |
|
"E" |
|
], |
|
"last": "Nathan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Molly", |
|
"middle": [], |
|
"last": "Ford", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Carnes", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the National Academy of Sciences", |
|
"volume": "115", |
|
"issue": "12", |
|
"pages": "2952--2957", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Elizabeth L Pier, Markus Brauer, Amarette Filut, Anna Kaatz, Joshua Raclaw, Mitchell J Nathan, Cecilia E Ford, and Molly Carnes. 2018. Low agreement among reviewers evaluating the same nih grant ap- plications. Proceedings of the National Academy of Sciences, 115(12):2952-2957.", |
|
"links": null |
|
}, |
|
"BIBREF59": { |
|
"ref_id": "b59", |
|
"title": "Data-to-text generation with entity modeling", |
|
"authors": [ |
|
{ |
|
"first": "Ratish", |
|
"middle": [], |
|
"last": "Puduppully", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Li", |
|
"middle": [], |
|
"last": "Dong", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Mirella", |
|
"middle": [], |
|
"last": "Lapata", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "2023--2035", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P19-1195" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Ratish Puduppully, Li Dong, and Mirella Lapata. 2019. Data-to-text generation with entity modeling. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2023-2035, Florence, Italy. Association for Compu- tational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF60": { |
|
"ref_id": "b60", |
|
"title": "Avoiding a tragedy of the commons in the peer review process", |
|
"authors": [ |
|
{ |
|
"first": "D", |
|
"middle": [], |
|
"last": "Sculley", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jasper", |
|
"middle": [], |
|
"last": "Snoek", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Alex", |
|
"middle": [], |
|
"last": "Wiltschko", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Computers and Society Repository", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": { |
|
"arXiv": [ |
|
"arXiv:1901.06246" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "D Sculley, Jasper Snoek, and Alex Wiltschko. 2018. Avoiding a tragedy of the commons in the peer re- view process. Computers and Society Repository, arXiv:1901.06246.", |
|
"links": null |
|
}, |
|
"BIBREF61": { |
|
"ref_id": "b61", |
|
"title": "Orderplanning neural text generation from structured data", |
|
"authors": [ |
|
{ |
|
"first": "Lei", |
|
"middle": [], |
|
"last": "Sha", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Lili", |
|
"middle": [], |
|
"last": "Mou", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Tianyu", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Pascal", |
|
"middle": [], |
|
"last": "Poupart", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Sujian", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Baobao", |
|
"middle": [], |
|
"last": "Chang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zhifang", |
|
"middle": [], |
|
"last": "Sui", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 32nd AAAI Conference on Artificial Intelligence", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian Li, Baobao Chang, and Zhifang Sui. 2018. Order- planning neural text generation from structured data. In Proceedings of the 32nd AAAI Conference on Ar- tificial Intelligence.", |
|
"links": null |
|
}, |
|
"BIBREF62": { |
|
"ref_id": "b62", |
|
"title": "Design and analysis of the nips 2016 review process", |
|
"authors": [ |
|
{ |
|
"first": "B", |
|
"middle": [], |
|
"last": "Nihar", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Behzad", |
|
"middle": [], |
|
"last": "Shah", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Krikamol", |
|
"middle": [], |
|
"last": "Tabibian", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Isabelle", |
|
"middle": [], |
|
"last": "Muandet", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ulrike", |
|
"middle": [ |
|
"Von" |
|
], |
|
"last": "Guyon", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Luxburg", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Computer Science Repository", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": { |
|
"arXiv": [ |
|
"arXiv:1708.09794" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Nihar B. Shah, Behzad Tabibian, Krikamol Muandet, Isabelle Guyon, and Ulrike von Luxburg. 2017. De- sign and analysis of the nips 2016 review process. Computer Science Repository, arXiv:1708.09794.", |
|
"links": null |
|
}, |
|
"BIBREF63": { |
|
"ref_id": "b63", |
|
"title": "Two birds, one stone: A simple, unified model for text generation from structured and unstructured data", |
|
"authors": [ |
|
{ |
|
"first": "Hamidreza", |
|
"middle": [], |
|
"last": "Shahidi", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ming", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jimmy", |
|
"middle": [], |
|
"last": "Lin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2020, |
|
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "3864--3870", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/2020.acl-main.355" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Hamidreza Shahidi, Ming Li, and Jimmy Lin. 2020. Two birds, one stone: A simple, unified model for text generation from structured and unstructured data. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3864-3870, Online. Association for Compu- tational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF64": { |
|
"ref_id": "b64", |
|
"title": "An entity-driven framework for abstractive summarization", |
|
"authors": [ |
|
{ |
|
"first": "Eva", |
|
"middle": [], |
|
"last": "Sharma", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Luyang", |
|
"middle": [], |
|
"last": "Huang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zhe", |
|
"middle": [], |
|
"last": "Hu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Lu", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "3280--3291", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D19-1323" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Eva Sharma, Luyang Huang, Zhe Hu, and Lu Wang. 2019. An entity-driven framework for abstractive summarization. In Proceedings of the 2019 Con- ference on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 3280-3291, Hong Kong, China. As- sociation for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF65": { |
|
"ref_id": "b65", |
|
"title": "Style transfer from non-parallel text by cross-alignment", |
|
"authors": [ |
|
{ |
|
"first": "Tianxiao", |
|
"middle": [], |
|
"last": "Shen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Tao", |
|
"middle": [], |
|
"last": "Lei", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Regina", |
|
"middle": [], |
|
"last": "Barzilay", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Tommi", |
|
"middle": [], |
|
"last": "Jaakkola", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Advances in neural information processing systems 30", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "6830--6841", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2017. Style transfer from non-parallel text by cross-alignment. In Advances in neural informa- tion processing systems 30, pages 6830-6841.", |
|
"links": null |
|
}, |
|
"BIBREF66": { |
|
"ref_id": "b66", |
|
"title": "Amortised map inference for image super-resolution", |
|
"authors": [ |
|
{ |
|
"first": "Jose", |
|
"middle": [], |
|
"last": "Casper Kaae S\u00f8nderby", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Lucas", |
|
"middle": [], |
|
"last": "Caballero", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Wenzhe", |
|
"middle": [], |
|
"last": "Theis", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ferenc", |
|
"middle": [], |
|
"last": "Shi", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Husz\u00e1r", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Proceedings of the 7th International Conference on Learning Representations", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Casper Kaae S\u00f8nderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Husz\u00e1r. 2017. Amortised map inference for image super-resolution. In Pro- ceedings of the 7th International Conference on Learning Representations.", |
|
"links": null |
|
}, |
|
"BIBREF67": { |
|
"ref_id": "b67", |
|
"title": "A graph-to-sequence model for AMRto-text generation", |
|
"authors": [ |
|
{ |
|
"first": "Linfeng", |
|
"middle": [], |
|
"last": "Song", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yue", |
|
"middle": [], |
|
"last": "Zhang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zhiguo", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Daniel", |
|
"middle": [], |
|
"last": "Gildea", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "1616--1626", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P18-1150" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea. 2018. A graph-to-sequence model for AMR- to-text generation. In Proceedings of the 56th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1616- 1626, Melbourne, Australia. Association for Compu- tational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF68": { |
|
"ref_id": "b68", |
|
"title": "Open IE as an intermediate structure for semantic tasks", |
|
"authors": [ |
|
{ |
|
"first": "Gabriel", |
|
"middle": [], |
|
"last": "Stanovsky", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ido", |
|
"middle": [], |
|
"last": "Dagan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Mausam", |
|
"middle": [], |
|
"last": "", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2015, |
|
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "303--308", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.3115/v1/P15-2050" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Gabriel Stanovsky, Ido Dagan, and Mausam. 2015. Open IE as an intermediate structure for semantic tasks. In Proceedings of the 53rd Annual Meet- ing of the Association for Computational Linguis- tics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Pa- pers), pages 303-308, Beijing, China. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF69": { |
|
"ref_id": "b69", |
|
"title": "A topic augmented text generation model: Joint learning of semantics and structural features", |
|
"authors": [ |
|
{ |
|
"first": "Hongyin", |
|
"middle": [], |
|
"last": "Tang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Miao", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Beihong", |
|
"middle": [], |
|
"last": "Jin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "5090--5099", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D19-1513" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Hongyin Tang, Miao Li, and Beihong Jin. 2019. A topic augmented text generation model: Joint learn- ing of semantics and structural features. In Proceed- ings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter- national Joint Conference on Natural Language Pro- cessing (EMNLP-IJCNLP), pages 5090-5099, Hong Kong, China. Association for Computational Lin- guistics.", |
|
"links": null |
|
}, |
|
"BIBREF70": { |
|
"ref_id": "b70", |
|
"title": "Generating fine-grained reviews of songs from album reviews", |
|
"authors": [ |
|
{ |
|
"first": "Swati", |
|
"middle": [], |
|
"last": "Tata", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Barbara", |
|
"middle": [ |
|
"Di" |
|
], |
|
"last": "Eugenio", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2010, |
|
"venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1376--1385", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Swati Tata and Barbara Di Eugenio. 2010. Generat- ing fine-grained reviews of songs from album re- views. In Proceedings of the 48th Annual Meet- ing of the Association for Computational Linguis- tics, pages 1376-1385, Uppsala, Sweden. Associa- tion for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF71": { |
|
"ref_id": "b71", |
|
"title": "Style transfer for texts: Retrain, report errors, compare with rewrites", |
|
"authors": [ |
|
{ |
|
"first": "Alexey", |
|
"middle": [], |
|
"last": "Tikhonov", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Viacheslav", |
|
"middle": [], |
|
"last": "Shibaev", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Aleksander", |
|
"middle": [], |
|
"last": "Nagaev", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Aigul", |
|
"middle": [], |
|
"last": "Nugmanova", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ivan", |
|
"middle": [ |
|
"P" |
|
], |
|
"last": "Yamshchikov", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "3936--3945", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D19-1406" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Alexey Tikhonov, Viacheslav Shibaev, Aleksander Na- gaev, Aigul Nugmanova, and Ivan P. Yamshchikov. 2019. Style transfer for texts: Retrain, report er- rors, compare with rewrites. In Proceedings of the 2019 Conference on Empirical Methods in Natu- ral Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3936-3945, Hong Kong, China. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF72": { |
|
"ref_id": "b72", |
|
"title": "Chinese word sense disambiguation with PageRank and HowNet", |
|
"authors": [ |
|
{ |
|
"first": "Jinghua", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jianyi", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ping", |
|
"middle": [], |
|
"last": "Zhang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2008, |
|
"venue": "Proceedings of the Sixth SIGHAN Workshop on Chinese Language Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Jinghua Wang, Jianyi Liu, and Ping Zhang. 2008. Chi- nese word sense disambiguation with PageRank and HowNet. In Proceedings of the Sixth SIGHAN Work- shop on Chinese Language Processing.", |
|
"links": null |
|
}, |
|
"BIBREF73": { |
|
"ref_id": "b73", |
|
"title": "PaperRobot: Incremental draft generation of scientific ideas", |
|
"authors": [ |
|
{ |
|
"first": "Qingyun", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Lifu", |
|
"middle": [], |
|
"last": "Huang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zhiying", |
|
"middle": [], |
|
"last": "Jiang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Kevin", |
|
"middle": [], |
|
"last": "Knight", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Heng", |
|
"middle": [], |
|
"last": "Ji", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Mohit", |
|
"middle": [], |
|
"last": "Bansal", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yi", |
|
"middle": [], |
|
"last": "Luan", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1980, |
|
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P19-1191" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Qingyun Wang, Lifu Huang, Zhiying Jiang, Kevin Knight, Heng Ji, Mohit Bansal, and Yi Luan. 2019. PaperRobot: Incremental draft generation of scien- tific ideas. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguistics, pages 1980-1991, Florence, Italy. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF75": { |
|
"ref_id": "b75", |
|
"title": "Describing a knowledge base", |
|
"authors": [], |
|
"year": 2018, |
|
"venue": "Proceedings of the 11th International Conference on Natural Language Generation", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "10--21", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/W18-6502" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "2018a. Describing a knowledge base. In Proceed- ings of the 11th International Conference on Natu- ral Language Generation, pages 10-21, Tilburg Uni- versity, The Netherlands. Association for Computa- tional Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF76": { |
|
"ref_id": "b76", |
|
"title": "Paper abstract writing through editing mechanism", |
|
"authors": [ |
|
{ |
|
"first": "Qingyun", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Zhihao", |
|
"middle": [], |
|
"last": "Zhou", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Lifu", |
|
"middle": [], |
|
"last": "Huang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Spencer", |
|
"middle": [], |
|
"last": "Whitehead", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Boliang", |
|
"middle": [], |
|
"last": "Zhang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ji", |
|
"middle": [], |
|
"last": "Heng", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Kevin", |
|
"middle": [], |
|
"last": "Knight", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "260--265", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/P18-2042" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Qingyun Wang, Zhihao Zhou, Lifu Huang, Spencer Whitehead, Boliang Zhang, Heng Ji, and Kevin Knight. 2018b. Paper abstract writing through edit- ing mechanism. In Proceedings of the 56th An- nual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 260- 265, Melbourne, Australia. Association for Compu- tational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF77": { |
|
"ref_id": "b77", |
|
"title": "Towards faithful neural table-to-text generation with content-matching constraints", |
|
"authors": [ |
|
{ |
|
"first": "Zhenyi", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Xiaoyang", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Bang", |
|
"middle": [], |
|
"last": "An", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Dong", |
|
"middle": [], |
|
"last": "Yu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Changyou", |
|
"middle": [], |
|
"last": "Chen", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2020, |
|
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1072--1086", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/2020.acl-main.101" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu, and Changyou Chen. 2020. Towards faithful neural table-to-text generation with content-matching con- straints. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 1072-1086, Online. Association for Computa- tional Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF78": { |
|
"ref_id": "b78", |
|
"title": "Sequence-to-sequence learning for task-oriented dialogue with dialogue state representation", |
|
"authors": [ |
|
{ |
|
"first": "Haoyang", |
|
"middle": [], |
|
"last": "Wen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yijia", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Wanxiang", |
|
"middle": [], |
|
"last": "Che", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Libo", |
|
"middle": [], |
|
"last": "Qin", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ting", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 27th International Conference on Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "3781--3792", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Haoyang Wen, Yijia Liu, Wanxiang Che, Libo Qin, and Ting Liu. 2018. Sequence-to-sequence learning for task-oriented dialogue with dialogue state represen- tation. In Proceedings of the 27th International Con- ference on Computational Linguistics, pages 3781- 3792, Santa Fe, New Mexico, USA. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF79": { |
|
"ref_id": "b79", |
|
"title": "Incorporating background knowledge into video description generation", |
|
"authors": [ |
|
{ |
|
"first": "Spencer", |
|
"middle": [], |
|
"last": "Whitehead", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Heng", |
|
"middle": [], |
|
"last": "Ji", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Mohit", |
|
"middle": [], |
|
"last": "Bansal", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Shih-Fu", |
|
"middle": [], |
|
"last": "Chang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Clare", |
|
"middle": [], |
|
"last": "Voss", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "3992--4001", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D18-1433" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Spencer Whitehead, Heng Ji, Mohit Bansal, Shih-Fu Chang, and Clare Voss. 2018. Incorporating back- ground knowledge into video description genera- tion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3992-4001, Brussels, Belgium. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF80": { |
|
"ref_id": "b80", |
|
"title": "Challenges in data-to-document generation", |
|
"authors": [ |
|
{ |
|
"first": "Sam", |
|
"middle": [], |
|
"last": "Wiseman", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Stuart", |
|
"middle": [], |
|
"last": "Shieber", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Alexander", |
|
"middle": [], |
|
"last": "Rush", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2017, |
|
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "2253--2263", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D17-1239" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Sam Wiseman, Stuart Shieber, and Alexander Rush. 2017. Challenges in data-to-document generation. In Proceedings of the 2017 Conference on Empiri- cal Methods in Natural Language Processing, pages 2253-2263, Copenhagen, Denmark. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF81": { |
|
"ref_id": "b81", |
|
"title": "A maximum entropy approach to HowNet-based Chinese word sense disambiguation", |
|
"authors": [ |
|
{ |
|
"first": "Ping", |
|
"middle": [ |
|
"Wai" |
|
], |
|
"last": "Wong", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yongsheng", |
|
"middle": [], |
|
"last": "Yang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2002, |
|
"venue": "COLING-02: SE-MANET: Building and Using Semantic Networks", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Ping Wai Wong and Yongsheng Yang. 2002. A max- imum entropy approach to HowNet-based Chinese word sense disambiguation. In COLING-02: SE- MANET: Building and Using Semantic Networks.", |
|
"links": null |
|
}, |
|
"BIBREF82": { |
|
"ref_id": "b82", |
|
"title": "Automatic generation of citation texts in scholarly papers: A pilot study", |
|
"authors": [ |
|
{ |
|
"first": "Xinyu", |
|
"middle": [], |
|
"last": "Xing", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Xiaosheng", |
|
"middle": [], |
|
"last": "Fan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Xiaojun", |
|
"middle": [], |
|
"last": "Wan", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2020, |
|
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "6181--6190", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/2020.acl-main.550" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Xinyu Xing, Xiaosheng Fan, and Xiaojun Wan. 2020. Automatic generation of citation texts in scholarly papers: A pilot study. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics, pages 6181-6190, Online. Association for Computational Linguistics.", |
|
"links": null |
|
}, |
|
"BIBREF83": { |
|
"ref_id": "b83", |
|
"title": "Augmenting end-to-end dialogue systems with commonsense knowledge", |
|
"authors": [ |
|
{ |
|
"first": "Tom", |
|
"middle": [], |
|
"last": "Young", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Erik", |
|
"middle": [], |
|
"last": "Cambria", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Iti", |
|
"middle": [], |
|
"last": "Chaturvedi", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Hao", |
|
"middle": [], |
|
"last": "Zhou", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Subham", |
|
"middle": [], |
|
"last": "Biswas", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Minlie", |
|
"middle": [], |
|
"last": "Huang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 32nd AAAI Conference on Artificial Intelligence", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou, Subham Biswas, and Minlie Huang. 2018. Aug- menting end-to-end dialogue systems with common- sense knowledge. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence.", |
|
"links": null |
|
}, |
|
"BIBREF84": { |
|
"ref_id": "b84", |
|
"title": "Unsupervised approximate-semantic vocabulary learning for human action and video classification", |
|
"authors": [ |
|
{ |
|
"first": "Qiong", |
|
"middle": [], |
|
"last": "Zhao", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H", |
|
"middle": [ |
|
"S" |
|
], |
|
"last": "Horace", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Ip", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2013, |
|
"venue": "Pattern Recognition Letters", |
|
"volume": "34", |
|
"issue": "15", |
|
"pages": "1870--1878", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Qiong Zhao and Horace HS Ip. 2013. Unsupervised approximate-semantic vocabulary learning for hu- man action and video classification. Pattern Recog- nition Letters, 34(15):1870-1878.", |
|
"links": null |
|
}, |
|
"BIBREF85": { |
|
"ref_id": "b85", |
|
"title": "Commonsense knowledge aware conversation generation with graph attention", |
|
"authors": [ |
|
{ |
|
"first": "Hao", |
|
"middle": [], |
|
"last": "Zhou", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Tom", |
|
"middle": [], |
|
"last": "Young", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Minlie", |
|
"middle": [], |
|
"last": "Huang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Haizhou", |
|
"middle": [], |
|
"last": "Zhao", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jingfang", |
|
"middle": [], |
|
"last": "Xu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Xiaoyan", |
|
"middle": [], |
|
"last": "Zhu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2018, |
|
"venue": "Proceedings of the 27th International Joint Conference on Artificial Intelligence", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "4623--4629", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao, Jingfang Xu, and Xiaoyan Zhu. 2018. Com- monsense knowledge aware conversation generation with graph attention. In Proceedings of the 27th International Joint Conference on Artificial Intelli- gence, pages 4623-4629.", |
|
"links": null |
|
}, |
|
"BIBREF86": { |
|
"ref_id": "b86", |
|
"title": "Modeling graph structure in transformer for better AMR-to-text generation", |
|
"authors": [ |
|
{ |
|
"first": "Jie", |
|
"middle": [], |
|
"last": "Zhu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Junhui", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Muhua", |
|
"middle": [], |
|
"last": "Zhu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Longhua", |
|
"middle": [], |
|
"last": "Qian", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Min", |
|
"middle": [], |
|
"last": "Zhang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Guodong", |
|
"middle": [], |
|
"last": "Zhou", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2019, |
|
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "5459--5468", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.18653/v1/D19-1548" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min Zhang, and Guodong Zhou. 2019. Modeling graph structure in transformer for better AMR-to-text gen- eration. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natu- ral Language Processing (EMNLP-IJCNLP), pages 5459-5468, Hong Kong, China. Association for Computational Linguistics.", |
|
"links": null |
|
} |
|
}, |
|
"ref_entries": { |
|
"FIGREF0": { |
|
"type_str": "figure", |
|
"num": null, |
|
"uris": null, |
|
"text": "The average number of new knowledge elements in ACL2017 test papers given the background KG constructed from (1965\u223ccutoff year)" |
|
}, |
|
"TABREF1": { |
|
"content": "<table><tr><td/><td/><td/><td>Neural architecture</td></tr><tr><td/><td/><td/><td>Used for</td></tr><tr><td/><td/><td/><td>Cloze-style reading</td></tr><tr><td/><td/><td/><td>comprehension problem</td></tr><tr><td/><td/><td>Used for</td></tr><tr><td/><td/><td>Large-scale training data</td><td>Attention mechanism</td></tr><tr><td/><td/><td colspan=\"2\">(Bahdanau et al., 2015; Hermann</td></tr><tr><td/><td/><td>et al., 2015)</td></tr><tr><td>Potential</td><td>\u2022 The number of new knowledge elements in the</td><td colspan=\"2\">\u2022 5 new knowledge elements</td></tr><tr><td>Impact</td><td>future work section</td><td colspan=\"2\">\u2022 1 new architecture</td></tr><tr><td/><td>\u2022 The number of new software, systems, data sets,</td><td/></tr><tr><td/><td>and other resources</td><td/></tr><tr><td>Overall Recom-</td><td>\u2022 All features mentioned in the above categories</td><td/></tr><tr><td>mendations</td><td>\u2022 Abstract</td><td/></tr></table>", |
|
"text": "The number of papers about relevant knowledge elements which are claimed new in the related work section: GB \u2229 GP \u03c4 \u2229\u1e20P \u03c4 \u2022 The description sentences about comparison with related work \u2022 If the related work section is not available, we use the difference between GP \u03c4 and GB instead", |
|
"type_str": "table", |
|
"html": null, |
|
"num": null |
|
}, |
|
"TABREF2": { |
|
"content": "<table><tr><td colspan=\"2\">: Evidence Extraction for the example paper Attention-over-Attention Neural Networks for Reading Com-</td></tr><tr><td>prehension (Cui et al., 2017)</td><td/></tr><tr><td>2 Approach</td><td>2018):</td></tr><tr><td>2.1 Overview</td><td>\u2022 Summary: What is this paper about?</td></tr><tr><td>Figure 1 illustrates the overall architecture of Re-viewRobot. ReviewRobot first constructs knowl-edge graphs (KGs) for each target paper and a large collection of background papers, then it extracts evidence by comparing knowledge elements across multiple sections and papers, and uses the evidence to predict scores and generate comments for each review category. We adopt the following most common categories from NeurIPS2019 3 and PeerRead (Kang et al.,</td><td>\u2022 Appropriateness: Does the paper fit in the venue? \u2022 Clarity: Is it clear what was done and why? Is the paper well-written and well-structured? \u2022 Novelty: Does this paper break new ground in topic, methodology, or content? How exciting and innovative is the research it describes? \u2022 Soundness: Can one trust the empirical claims of the paper -are they supported by proper experiments and are the results of the experiments correctly interpreted?</td></tr><tr><td>3 https://nips.cc/Conferences/2019/</td><td>\u2022 Meaningful Comparison: Do the authors</td></tr><tr><td>PaperInformation/ReviewerGuidelines</td><td>make clear where the problems and methods</td></tr></table>", |
|
"text": "", |
|
"type_str": "table", |
|
"html": null, |
|
"num": null |
|
}, |
|
"TABREF3": { |
|
"content": "<table/>", |
|
"text": "", |
|
"type_str": "table", |
|
"html": null, |
|
"num": null |
|
}, |
|
"TABREF4": { |
|
"content": "<table><tr><td>Years (1965\u223c)</td><td>2011</td><td>2012</td><td>2013</td><td>2014</td><td>2015</td><td>2016</td><td>2017</td><td/><td>2019</td></tr><tr><td># of Entities</td><td>535,075</td><td>585,321</td><td>628,713</td><td>683,686</td><td>737,878</td><td>801,740</td><td>870,992</td><td colspan=\"2\">950,457 1,008,955</td></tr><tr><td># of Relations</td><td>160,123</td><td>175,780</td><td>188,876</td><td>205,898</td><td>222,592</td><td>242,312</td><td>263,827</td><td>288,805</td><td>307,636</td></tr></table>", |
|
"text": "Data Statistics for Paper Review Corpus (# of papers)", |
|
"type_str": "table", |
|
"html": null, |
|
"num": null |
|
}, |
|
"TABREF5": { |
|
"content": "<table><tr><td>Category</td><td>Human Kappa Score</td><td>Human Average Inter Annotator Agreement</td><td colspan=\"2\">CNN (Kang et al., 2018) Score Acc. Decision Acc. MSE</td><td colspan=\"2\">GRU with Abstract Score Acc. Decision Acc. MSE</td><td colspan=\"2\">GRU with Evidence Score Acc. Decision Acc. MSE</td></tr><tr><td colspan=\"2\">Recommendation 33.63</td><td>72.2</td><td>71.43 57.14</td><td>0.714</td><td>71.43 57.14</td><td colspan=\"2\">0.714 85.71 71.43</td><td>0.571</td></tr><tr><td colspan=\"2\">Appropriateness 100</td><td>100</td><td>85.71 100</td><td>0.143</td><td>85.71 100</td><td colspan=\"2\">0.143 85.71 100</td><td>0.143</td></tr><tr><td>Meaningful Comparison</td><td>100</td><td>100</td><td>57.14 57.14</td><td>0.857</td><td>57.14 71.42</td><td colspan=\"2\">0.857 71.43 71.43</td><td>0.714</td></tr><tr><td>Soundness</td><td>100</td><td>100</td><td>42.86 42.86</td><td>1.86</td><td>14.28 85.71</td><td colspan=\"2\">0.857 71.43 85.71</td><td>0.714</td></tr><tr><td>Novelty</td><td>100</td><td>100</td><td>42.86 42.86</td><td>2.29</td><td>28.57 28.57</td><td colspan=\"2\">2.43 71.43 71.43</td><td>0.714</td></tr><tr><td>Clarity</td><td>70.20</td><td>86.11</td><td>42.86 71.43</td><td>1.00</td><td>42.86 71.43</td><td colspan=\"2\">1.00 42.86 71.43</td><td>1.00</td></tr><tr><td>Potential Impact</td><td>100</td><td>100</td><td>85.71 100</td><td>0.143</td><td>85.71 100</td><td colspan=\"2\">0.571 85.71 100</td><td>0.143</td></tr></table>", |
|
"text": "Data Statistics for Background Knowledge Graphs since 1965", |
|
"type_str": "table", |
|
"html": null, |
|
"num": null |
|
}, |
|
"TABREF6": { |
|
"content": "<table/>", |
|
"text": "", |
|
"type_str": "table", |
|
"html": null, |
|
"num": null |
|
}, |
|
"TABREF7": { |
|
"content": "<table><tr><td>* [SYSTEM] Novelty</td><td>Gabriel Stanovsky, Ido Dagan, et al. 2015. Open IE as an Intermediate Struc-ture for Semantic Tasks. In Proceedings of the 53rd Annual Meeting of the Associ-ation for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 303-308.</td></tr><tr><td>* [SYSTEM] The paper proposes novel attention</td><td/></tr><tr><td>scheme and sememe-encoded models.</td><td>* [HUMAN] The paper would be stronger with</td></tr><tr><td>* [HUMAN] I see the main contribution of the</td><td>the inclusion of more baselines based on related</td></tr><tr><td>work to be the results which show that we can</td><td>work.</td></tr><tr><td>learn better word representations (unsure about</td><td/></tr><tr><td>wsi) by modeling sememe information than other</td><td/></tr><tr><td>competitive baselines.</td><td/></tr><tr><td>Meaningful Comparison</td><td/></tr><tr><td>* [SYSTEM] The following related papers are</td><td/></tr><tr><td>missing:</td><td/></tr><tr><td>1. About low-dimensional semantic space:</td><td/></tr><tr><td>(a) Unsupervised approximate-semantic vo-</td><td/></tr><tr><td>cabulary learning for human action and</td><td/></tr><tr><td>video classification (Zhao and Ip, 2013)</td><td/></tr><tr><td>Qiong Zhao and Horace HS Ip. 2013.</td><td/></tr><tr><td>Unsupervised Approximate-semantic Vo-</td><td/></tr><tr><td>cabulary Learning for Human Action</td><td/></tr><tr><td>and Video Classification. Pattern Recog-</td><td/></tr><tr><td>nition Letters, 34(15):1870-1878.</td><td/></tr><tr><td>2. About sememes:</td><td/></tr><tr><td>(a) Chinese Word Sense Disambiguation</td><td/></tr><tr><td>with PageRank and HowNet (Wang et al.,</td><td/></tr><tr><td>2008): Jinghua Wang, Jianyi Liu, and</td><td/></tr><tr><td>Ping Zhang. 2008. Chinese Word</td><td/></tr><tr><td>Sense Disambiguation with PageRank</td><td/></tr><tr><td>and HowNet. In Proceedings of the</td><td/></tr><tr><td>Sixth SIGHAN Workshop on Chinese</td><td/></tr><tr><td>Language Processing.</td><td/></tr><tr><td>(b) A maximum entropy approach to</td><td/></tr><tr><td>HowNet-based Chinese word sense</td><td/></tr><tr><td>disambiguation (Wong and Yang, 2002):</td><td/></tr><tr><td>Ping Wai Wong and Yongsheng Yang.</td><td/></tr><tr><td>2002. A Maximum Entropy Approach</td><td/></tr><tr><td>to HowNet-based Chinese Word Sense</td><td/></tr><tr><td>Disambiguation. In COLING-02: SE-</td><td/></tr><tr><td>MANET: Building and Using Semantic</td><td/></tr><tr><td>Networks.</td><td>:</td></tr><tr><td>3. About word similarity and word analogy:</td><td>Summary</td></tr><tr><td>(a) Open IE as an Intermediate Structure for</td><td/></tr><tr><td>Semantic Tasks (Stanovsky et al., 2015):</td><td/></tr></table>", |
|
"text": "The paper proposes novel skipgram, attention scheme, sememe-encoded models and word representation learning for NLP tasks. The authors uses linguistic common-sense knowledge bases.*[HUMAN] This paper proposes the use of HowNet to enrich embeddings.", |
|
"type_str": "table", |
|
"html": null, |
|
"num": null |
|
} |
|
} |
|
} |
|
} |