|
{ |
|
"paper_id": "O08-2006", |
|
"header": { |
|
"generated_with": "S2ORC 1.0.0", |
|
"date_generated": "2023-01-19T08:02:29.689303Z" |
|
}, |
|
"title": "", |
|
"authors": [], |
|
"year": "", |
|
"venue": null, |
|
"identifiers": {}, |
|
"abstract": "", |
|
"pdf_parse": { |
|
"paper_id": "O08-2006", |
|
"_pdf_hash": "", |
|
"abstract": [], |
|
"body_text": [ |
|
{ |
|
"text": "n \u2208 N \uff0c n \u6709 \u4e09 \u500b \u53c3 \u6578 \u5206 \u5225 \u662f n[STREE//] \u3001 n[/STC/] \u548c n[//ORDER] \uff1b \u6211 \u5011 \u4ee5 n[STREE/STC/ORDER]\u4f86\u8868\u793a\u3002\u70ba\u4e86\u65b9\u4fbf\u8aaa\u660e\uff0c\u82e5\u7bc0\u9ede n \u53ea\u6709 n[STREE//]\u548c n[/STC/]\uff0c \u5247\u4ee5 n[STREE/STC/]\u8868\u793a\u3002\u518d\u5047\u8a2d n C(n) \u70ba\u7bc0\u9ede n \u6709 1 \u5230 C(n)\u500b\u5b50\u7bc0\u9ede\u3002n[STREE//]\u70ba \u7bc0\u9ede n \u6240\u6db5\u84cb\u4f86\u6e90\u53e5\u7684\u7bc4\u570d\uff0c\u5c64\u6578\u6700\u5927\u7bc0\u9ede\u7684 n[STREE//]\u5fc5\u5b9a\u5c0d\u61c9\u5230\u4e00\u500b\u4f86\u6e90\u53e5\u55ae\u5b57\uff0c \u6b64\u53c3\u6578\u7684\u529f\u7528\u70ba\u7576\u4f5c\u6bcf\u500b\u7bc0\u9ede\u7684\u9375\u503c(primary key)\uff0c\u6545\u5728\u540c\u4e00\u68f5\u5256\u6790\u6a39\u4e2d n[STREE//]\u4e0d \u6703\u91cd\u8907\u3002n[/STC/]\u8868\u793a\u4ee5 n \u70ba\u6a39\u6839\u7684\u5b50\u6a39\uff0c\u6240\u6db5\u84cb\u4f86\u6e90\u53e5\u5b57\u4e32\u7684\u7bc4\u570d\u5c0d\u61c9\u5230\u76ee\u6a19\u53e5\u5b57\u4e32 \u7684\u7bc4\u570d\uff1bn[/STC/]\u4e5f\u53ef\u4ee5\u662f\u4e00\u500b\u6578\u5b57\uff0c\u8868\u793a\u6b64\u5b50\u6a39\u5305\u542b\u7684\u76ee\u6a19\u53e5\u5b57\u4e32\u70ba\u76ee\u6a19\u53e5\u5b57\u4e32\u4e2d\u7684 \u4e00\u500b\u5b57\uff1bn[/STC/]\u4e5f\u53ef\u80fd\u662f 0\uff0c\u4ee3\u8868\u4f86\u6e90\u53e5\u7121\u6cd5\u5c0d\u61c9\u5230\u76ee\u6a19\u53e5\u3002n[//ORDER]\u662f\u7531 n[/STC/] \u8a08\u7b97\u51fa\u4f86\uff0cn[//ORDER]\u662f\u7528\u4f86\u8868\u793a\u4f86\u6e90\u53e5\u8ddf\u76ee\u6a19\u53e5\u8a5e\u5e8f\u5c0d\u61c9\u7684\u95dc\u4fc2\uff0c\u82e5\u4f86\u6e90\u53e5\u8ddf\u76ee\u6a19 \u53e5\u6709\u8a5e\u5e8f\u4e0d\u540c\u7684\u60c5\u5f62\uff0c\u5c31\u53ef\u7531 n \u8207\u6240\u6709\u5144\u5f1f\u7bc0\u9ede\u7684 n[//ORDER]\u4f86\u5224\u65b7\u3002ORDER \u7684\u7bc4 \u570d\u7531 1 \u5230 C(n)\uff0c\u7576 ORDER \u8d8a\u5c0f\uff0c\u4ee3\u8868 n \u6240\u5c0d\u61c9\u76ee\u6a19\u53e5\u7bc4\u570d\uff0c\u6bd4\u5176\u4ed6\u5144\u5f1f\u7bc0\u9ede\u7684\u76ee\u6a19 \u53e5\u7bc4\u570d\u66f4\u9760\u8fd1\u53e5\u5b50\u7684\u524d\u6bb5\u3002", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "\u5716\u4e09\u662f\u4e00\u500b BSSTC \u7d50\u69cb\u7684\u4f8b\u5b50\uff0c\u4f86\u6e90\u53e5\u70ba\u82f1\u6587\uff1a\"Our experiments were simple in concept\"\uff1b\u76ee\u6a19\u53e5\u70ba\u4e2d\u6587\uff1a\"\u6211\u5011\u7684\u5be6\u9a57\u6982\u5ff5\u5f88\u7c21\u55ae\"\u3002\u9996\u5148\u82f1\u6587\u53e5\u5fc5\u9807\u5148\u5efa\u6210\u5256\u6790\u6a39\uff0c \u6bcf\u500b\u8449\u5b50\u7bc0\u9ede\u70ba\u4e00\u500b\u82f1\u6587\u55ae\u5b57\uff0c\u4e26\u4ee5\u82f1\u6587\u55ae\u5b57\u70ba\u55ae\u4f4d\u505a\u6a19\u865f\uff0c\u4f8b\u5982\uff1a\"Our(1)\", \"experiments(2)\", \"were(3)\", \"simple(4)\", \"in(5)\",\"concept(6)\"\u3002\u53e6\u5916\u4e2d\u6587\u53e5\u7d93\u904e\u65b7\u8a5e\u7684\u8655\uf9e4\u5f8c\uff0c \u4ee5\u65b7\u8a5e\u5f8c\u7684\u55ae\u4f4d\u505a\u6a19\u865f\uff0c\u4f8b\u5982\uff1a\"\u6211\u5011(1)\", \"\u7684(2)\", \"\u5be6\u9a57(3)\", \"\u6982\u5ff5(4)\", \"\u5f88(5)\", \"\u7c21\u55ae (1) ", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "\u4e2d\u6587\u7ffb\u8b6f\uff0c\u5c0d\u61c9\u7387\u70ba 0\uff0c\u6240\u4ee5\u5c0d\u61c9\u7387\u6703\u843d\u5728 0 \u5230 1 \u4e4b\u9593\uff0c\u503c\u8d8a\u5927\u4ee3\u8868\u5c0d\u61c9\u7387\u8d8a\u9ad8\u3002\u6211\u5011 \u9700\u8981\u5920\u5927\u7684\u5c0d\u61c9\u7387\uff0c\u624d\u80fd\u8a8d\u5b9a\u70ba\u7bc4\u4f8b\u6a39\u3002\u56e0\u6b64\uff0c\u9700\u8981\u5b9a\u4e00\u500b\u9580\u6abb\u503c\u4f86\u7be9\u9078\uff0c\u6839\u64da\u5be6\u9a57\u7d50 \u679c\u7576\u9580\u6abb\u503c\u8d8a\u9ad8\u7559\u4e0b\u4f86\u7684\u7bc4\u4f8b\u6a39\u8d8a\u5c11\uff0c\u800c\u9580\u6abb\u503c\u8d8a\u4f4e\u6703\u4f7f\u7ffb\u8b6f\u7684\u54c1\u8cea\u4e0b\u964d\u3002 \u5716\u56db\u3001\u50c5\u6a19\u8a18\u6700\u5e95\u5c64 \u5716\u4e94\u3001\u50c5\u6a19\u8a18 STREE \u53ca STC \u76ee\u524d\u7bc4\u4f8b\u6a39\u53ea\u5c07\u6700\u5e95\u5c64\u7684 n[STREE/STC/]\u6a19\u8a18\u5b8c\u6210\uff0c\u5982\u5716\u56db\uff0c\u73fe\u5728\u8981\u9010\u5c64\u5c07\u672a\u6a19\u8a18 n[STREE/STC/]\u7684\u7bc0\u9ede\u6a19\u8a18\u4e0a\u53bb\u3002n[STREE//]\u6a19\u8a18\u7684\u65b9\u5f0f\uff0c\u662f\u5c07 n 1 \u5230 n C(n) \u7684 STREE \u90fd \u52a0\u5165 ES \u4e2d\u3002ES \u70ba\u7528\u4f86\u5132\u5b58 n C(n) [STREE//]\u4e2d STREE \u7684\u96c6\u5408\u3002\u7576\u5c64\u6578\u8d8a\u5c0f\uff0c\u5247 n[STREE//] \u5c07\u6703\u6db5\u84cb 1 \u500b\u4ee5\u4e0a\u7684\u4f86\u6e90\u53e5\u7684\u8a5e\u5f59\u3002\u82e5 n C(n) [STREE//]\u70ba\u4e00\u500b\u7bc4\u570d\uff0c\u5247\u5c07\u6b64\u7bc4\u570d\u6700\u5927\u548c \u6700\u5c0f\u7684\u503c\u52a0\u5165 ES\uff0c\u6700\u5f8c ES \u5167\u53ef\u80fd\u70ba\u4e00\u500b\u6578\u5b57\u6216\u5169\u500b\u4ee5\u4e0a\u7684\u6578\u5b57\u9019\u5169\u7a2e\u60c5\u6cc1\uff0c\u5982\u53ea\u6709\u4e00 \u500b\u6578\u5b57\u5247 n[STREE//]\u53ea\u6a19\u8a18\u8a72\u6578\u5b57\uff0c\u5982\u6709\u5169\u500b\u4ee5\u4e0a\u7684\u6578\u5b57\u5247 ES \u4e2d\u6700\u5c0f\u548c\u6700\u5927\u7684\u6578\u503c\u6a19 \u8a18\u5728 n[STREE//]\u4e0a\uff0c\u683c\u5f0f\u70ba n[\u6700\u5c0f-\u6700\u5927//] \uff1bn[/STC/]\u6a19\u8a18\u7684\u65b9\u5f0f\uff0c\u662f\u5c07 n 1 \u5230 n C(n) \u7684 STC \u90fd\u52a0\u5165 CS \u4e2d\u3002CS \u70ba\u7528\u4f86\u5132\u5b58 n C(n) [/STC/]\u4e2d STC \u7684\u96c6\u5408\u3002\u7576\u5c64\u6578\u8d8a\u5c0f\uff0c\u5247 n[/STC/] \u5c07\u6703\u6db5\u84cb 1 \u500b\u4ee5\u4e0a\u76ee\u6a19\u53e5\u7684\u8a5e\u5f59\u3002\u5982 n C(n) [/STC/]\u70ba\u4e00\u500b\u7bc4\u570d\uff0c\u5247\u5c07\u6b64\u7bc4\u570d\u6700\u5927\u548c\u6700\u5c0f \u7684\u503c\u52a0\u5165 CS\u3002\u82e5 n C(n) [/STC/]\u51fa\u73fe 0 \u5247\u4e0d\u52a0\u5165 CS\u3002\u6700\u5f8c CS \u53ef\u80fd\u70ba\u7a7a\u3001\u4e00\u500b\u6578\u5b57\u6216\u5169\u500b \u4ee5\u4e0a\u7684\u6578\u5b57\u9019\u4e09\u7a2e\u60c5\u6cc1\uff0c\u5982\u70ba\u7a7a\u5247\u5c07 n[/STC/]\u6a19\u8a18\u70ba 0\uff0c\u82e5\u53ea\u6709\u4e00\u500b\u6578\u5b57\u5247 n[/STC/]\u53ea \u6a19\u8a18\u8a72\u6578\u5b57\uff0c\u5047\u5982\u6709\u5169\u500b\u4ee5\u4e0a\u7684\u6578\u5b57\u5c07 CS \u4e2d\u6700\u5c0f\u548c\u6700\u5927\u7684 STC \u6a19\u8a18\u5728 n[/STC/]\u4e0a\uff0c\u683c \u5f0f\u70ba n[/\u6700\u5c0f-\u6700\u5927/]\u3002 \u5047\u5982\u6211\u5011\u73fe\u5728\u8981\u6a19\u8a18\u5716\u4e94\u7b2c\u4e00\u5c64\u7684\u7bc0\u9ede VP\uff0c\u5247\u5fc5\u9700\u5c07\u7bc0\u9ede VP \u7684\u5b50\u7bc0\u9ede VBD \u548c ADJP \u7684 VBD[3//]\u53ca ADJP[4-6//]\u4e2d\u7684 STREE \u52a0\u5165 ES \u4e2d\uff0c\u56e0\u6b64 ES \u5305\u542b\u4e86 3\u30014 \u548c 6 \u4e09 \u500b\u6578\u5b57\uff0c\u6240\u4ee5 VP[STREE//]\u4e2d\u7684 STREE \u6a19\u8a18\u70ba 3-6\u3002\u63a5\u8457\u6a19\u8a18 STC\uff0c\u5c07\u7bc0\u9ede VP \u7684\u5b50\u7bc0 \u9ede VBD \u548c ADJP \u7684 VBD[3/0/]\u53ca ADJP[4-6/4-6/]\u4e2d\u7684 STC \u52a0\u5165 CS \u4e2d\uff0c\u56e0\u70ba 0 \u4e0d\u6703\u88ab\u52a0 \u5165 CS \u4e2d\uff0c\u56e0\u6b64 CS \u53ea\u6709 4 \u548c 6 \u5169\u500b\u6578\u5b57\uff0c\u6240\u4ee5 VP[3-6/STC/]\u4e2d\u7684 STC \u6a19\u8a18\u70ba 4-6\u3002 \u6700\u5f8c\uff0c\u6574\u68f5\u5256\u6790\u6a39\u7684 STREE \u8ddf STC \u90fd\u5df2\u7d93\u6a19\u8a18\u5b8c\u6210\uff0c\u5982\u5716\u4e94\uff0c\u53ea\u5269\u4e0b ORDER \u9084 \u6c92\u6a19\u8a18\u4e0a\u3002ORDER \u8655\uf9e4\u65b9\u5f0f\u5206\u70ba\u5169\u90e8\u5206\uff0c\u7b2c\u4e00\u90e8\u4efd\uff1aSTC \u70ba 0 \u4e4b\u5144\u5f1f\u7bc0\u9ede\u6309\u7167\u7531\u5de6\u81f3 \u53f3\u7684\u9806\u5e8f\u7de8\u865f\uff1b\u7b2c\u4e8c\u90e8\u5206\uff1a\u6bd4\u8f03 n \u8207 STC \u975e 0", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "\u7bc4\u4f8b\u6a39\u8cc7\u6599\u5eab D={D 1 , D 2 , ..., D m }\uff0cD i \u2208D D i \u5305\u542b T i \u8207 O i \uff0ci \u70ba 1 \u5230 m T i \u662f\u7b2c i \u68f5\u7bc4\u4f8b\u6a39\uff0cO i \u662f T i \u6240\u6a19\u8a18\u7684\u8a5e\u5e8f \u958b\u59cb \u8a2d\u4f47\uf99c Q \u7528\u4f86\u5132\u5b58\u5256\u6790\u6a39\uff0c\u521d\u59cb\u70ba NULL S \u52a0\u5165 Q \u7576 Q\u2260NULL \u5f9e Q \u4e2d pop \u4e00\u68f5\u7bc4\u4f8b\u6a39 \u5982\u679c\u5728 D \u4e2d\u641c\u5c0b\u5230\u76f8\u540c\u7684\u7bc4\u4f8b\u6a39 T i \u5247\u5c07 O i \u6a19\u8a18\u5728 S", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "\u516c\u5f0f(1)\u4e2d\u5b9a\u7fa9 C \u70ba\u4e2d\u6587\u7ffb\u8b6f\u8a5e\u5f59\uff0cE \u70ba\u82f1\u6587\u8a5e\u5f59\uff0c 1, \u70ba\u82f1\u6587\u53e5\u6709 1 \u5230 n \u500b\u82f1\u6587 \u8a5e\u5f59\uff0c\u4e2d\u6587\u7ffb\u8b6f\u8a5e\u5f59\u4e5f\u6703\u6709 1 \u5230 n \u500b\uff0c\u5373 1, \u3002\u5f9e\u516c\u5f0f\u4e2d\u53ef\u767c\u73fe\u4e2d\u6587\u8a5e\u5f59\u7ffb\u8b6f\u6210\u82f1\u6587\u8a5e \u5f59\u7684\u6a5f\u7387\uff0c\u7a31\u70ba\u4e2d\u82f1\u8a5e\u5f59\u5c0d\uf99c\uff0c\u5373Pr( | )\uff1b\u4ee5\u53ca\uf9dd\u7528\u524d\u4e00\u500b\u4e2d\u6587\u7ffb\u8b6f\u9078\u8a5e\u7684\u7d50\u679c \u22121 \uff0c \u627e\u51fa\u76ee\u524d\u4e2d\u6587\u7ffb\u8b6f\u8a5e\u5f59 \u5171\u540c\u51fa\u73fe\u7684\u6a5f\u7387\uff0c\u7a31\u70ba bi-gram \u8a9e\u8a00\u6a21\u578b\uff0c\u5373Pr( | \u22121 )\uff0c\u5c07 \u5169\u8005\u76f8\u4e58\u53d6\u8a08\u7b97\u5f8c\u6700\u5927\u7684\u6a5f\u7387\u503c\uff0c\u4ee5\u8fd1\u4f3cPr( 1, | 1, )\u7684\u6a5f\u7387\u503c\uff0c\u4f5c\u70ba\u6240\u9078\u64c7\u7684\u4e2d\u6587\u7ffb \u8b6f\u8a5e\u5f59\u3002\u5728\u9078\u8a5e\u7684\u904e\u7a0b\u4e2d\uff0cPr( | )\u8207Pr( | \u22121 )\u7684\u6a5f\u7387\u503c\u7686\u6709\u53ef\u80fd\u70ba 0\uff0c\u6211\u5011\u5c07\u4e58 0 \u63db\u6210\u4e58\u4e0a\u4e00\u500b\u6975\u5c0f\u6578(\u6211\u5011\u9810\u8a2d\u70ba 10 -6 ) \uff0c\u70ba\u4e86\u907f\u514d\u6a5f\u7387\u503c\u70ba 0 \u7684\u60c5\u5f62\uff0c\u6703\u5f71\u97ff\u9078\u8a5e\u7684\u7d50 \u679c\u3002\u4ee5\u4e0b\u5c07\u91dd\u5c0d\u4e2d\u82f1\u8a5e\u5f59\u5c0d\uf99c\u548c bi-", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
} |
|
], |
|
"back_matter": [], |
|
"bib_entries": { |
|
"BIBREF0": { |
|
"ref_id": "b0", |
|
"title": "\u4e2d\u7814\u9662\u4e2d\u6587\u5256\u6790\u5668\u6aa2\u7d22\u7cfb\u7d71", |
|
"authors": [], |
|
"year": 2008, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "\u4e2d\u7814\u9662\u4e2d\u6587\u5256\u6790\u5668\u6aa2\u7d22\u7cfb\u7d71, http://parser.iis.sinica.edu.tw/ [Accessed: Jun. 30, 2008].", |
|
"links": null |
|
}, |
|
"BIBREF1": { |
|
"ref_id": "b1", |
|
"title": "\u81ea\u7531\u6642\u5831\u4e2d\u82f1\u5c0d\u7167\u8b80\u65b0\u805e", |
|
"authors": [], |
|
"year": 2008, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "\u81ea\u7531\u6642\u5831\u4e2d\u82f1\u5c0d\u7167\u8b80\u65b0\u805e, http://www.libertytimes.com.tw/2008/new/jan/15/english.htm [Accessed: Jun. 30, 2008].", |
|
"links": null |
|
}, |
|
"BIBREF4": { |
|
"ref_id": "b4", |
|
"title": "A synchronization structure of SSTC and its applications in machine translation", |
|
"authors": [ |
|
{ |
|
"first": "M", |
|
"middle": [ |
|
"H" |
|
], |
|
"last": "Al-Adhaileh", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "T", |
|
"middle": [ |
|
"E" |
|
], |
|
"last": "Kong", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Zaharin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2002, |
|
"venue": "Proceedings of the International Conference on Computational Linguistics -2002 Post-Conference Workshop on Machine Translation in Asia", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1--8", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "M. H. Al-Adhaileh, T. E. Kong and Y. Zaharin, \"A synchronization structure of SSTC and its applications in machine translation\", Proceedings of the International Confer- ence on Computational Linguistics -2002 Post-Conference Workshop on Machine Translation in Asia, 1-8, 2002.", |
|
"links": null |
|
}, |
|
"BIBREF5": { |
|
"ref_id": "b5", |
|
"title": "A Statistical Approach to Machine Translation", |
|
"authors": [ |
|
{ |
|
"first": "P", |
|
"middle": [ |
|
"F" |
|
], |
|
"last": "Brown", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J", |
|
"middle": [], |
|
"last": "Cocke", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"A D" |
|
], |
|
"last": "Pietra", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "V", |
|
"middle": [ |
|
"J D" |
|
], |
|
"last": "Pietra", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "F", |
|
"middle": [], |
|
"last": "Jelinek", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J", |
|
"middle": [ |
|
"D" |
|
], |
|
"last": "Lafferty", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "R", |
|
"middle": [ |
|
"L" |
|
], |
|
"last": "Mercer", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "P", |
|
"middle": [ |
|
"S" |
|
], |
|
"last": "Roossin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1990, |
|
"venue": "Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "79--85", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "P. F. Brown, J. Cocke, S. A. D. Pietra, V. J. D. Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer and P. S. Roossin, \"A Statistical Approach to Machine Translation\", Computa- tional Linguistics, 79-85, 1990.", |
|
"links": null |
|
}, |
|
"BIBREF6": { |
|
"ref_id": "b6", |
|
"title": "Representation trees and string-tree correspondences", |
|
"authors": [ |
|
{ |
|
"first": "C", |
|
"middle": [], |
|
"last": "Boitet", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Zaharin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1998, |
|
"venue": "Proceedings of the Twelfth International Conference on Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "59--64", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "C. Boitet and Y. Zaharin, \"Representation trees and string-tree correspondences\", Pro- ceedings of the Twelfth International Conference on Computational Linguistics, 59-64, 1998.", |
|
"links": null |
|
}, |
|
"BIBREF7": { |
|
"ref_id": "b7", |
|
"title": "A Survey of Current Paradigms in Machine Translation", |
|
"authors": [ |
|
{ |
|
"first": "B", |
|
"middle": [ |
|
"J" |
|
], |
|
"last": "Dorr", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "P", |
|
"middle": [ |
|
"W" |
|
], |
|
"last": "Jordan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J", |
|
"middle": [ |
|
"W" |
|
], |
|
"last": "Benoit", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1999, |
|
"venue": "Advances in Computers", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1--68", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "B. J. Dorr, P. W. Jordan and J. W. Benoit, \"A Survey of Current Paradigms in Machine Translation\" Advances in Computers, London: Academic Press, 1-68, 1999.", |
|
"links": null |
|
}, |
|
"BIBREF8": { |
|
"ref_id": "b8", |
|
"title": "Google Translate", |
|
"authors": [], |
|
"year": 2008, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Google Translate http://www.google.com/translate_t [Accessed: Jun. 30, 2008].", |
|
"links": null |
|
}, |
|
"BIBREF9": { |
|
"ref_id": "b9", |
|
"title": "Building a large-scale knowledge base for machine translation", |
|
"authors": [ |
|
{ |
|
"first": "K", |
|
"middle": [], |
|
"last": "Knight", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"K" |
|
], |
|
"last": "Luk", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1994, |
|
"venue": "Proceedings of the Twelfth National Conference on Artificial intelligence", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "773--778", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "K. Knight and S. K. Luk, \"Building a large-scale knowledge base for machine transla- tion\", Proceedings of the Twelfth National Conference on Artificial intelligence, 773-778, 1994.", |
|
"links": null |
|
}, |
|
"BIBREF10": { |
|
"ref_id": "b10", |
|
"title": "Statistical phrase-based translation", |
|
"authors": [ |
|
{ |
|
"first": "P", |
|
"middle": [], |
|
"last": "Koehn", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "F", |
|
"middle": [ |
|
"J" |
|
], |
|
"last": "Och", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "D", |
|
"middle": [], |
|
"last": "Marcu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2003, |
|
"venue": "Proceedings of the Human Language Technology Conference", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "127--133", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "P. Koehn, F. J. Och and D. Marcu, \"Statistical phrase-based translation\", Proceedings of the Human Language Technology Conference, 127-133, 2003.", |
|
"links": null |
|
}, |
|
"BIBREF11": { |
|
"ref_id": "b11", |
|
"title": "Example-based Machine Translation Based on TSC and Statistical Generation", |
|
"authors": [ |
|
{ |
|
"first": "Z", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H", |
|
"middle": [], |
|
"last": "Wu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2005, |
|
"venue": "Proceedings of the Tenth Machine Translation Summit", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "25--32", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Z. Liu, H. Wang and H. Wu, \"Example-based Machine Translation Based on TSC and Statistical Generation\", Proceedings of the Tenth Machine Translation Summit, 25-32, 2005.", |
|
"links": null |
|
}, |
|
"BIBREF12": { |
|
"ref_id": "b12", |
|
"title": "MXPOST", |
|
"authors": [], |
|
"year": 2008, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "MXPOST, http://www.inf.ed.ac.uk/resources/nlp/local_doc/MXPOST.html [Accessed: Jun. 30, 2008].", |
|
"links": null |
|
}, |
|
"BIBREF13": { |
|
"ref_id": "b13", |
|
"title": "An Efficient Method for Determining Bilingual Word Classes", |
|
"authors": [ |
|
{ |
|
"first": "F", |
|
"middle": [ |
|
"J" |
|
], |
|
"last": "Och", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1999, |
|
"venue": "Proceedings of European Chapter of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "71--76", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "F. J. Och, \"An Efficient Method for Determining Bilingual Word Classes\", Proceedings of European Chapter of the Association for Computational Linguistics, 71-76, 1999.", |
|
"links": null |
|
}, |
|
"BIBREF14": { |
|
"ref_id": "b14", |
|
"title": "Improved Statistical Alignment Models", |
|
"authors": [ |
|
{ |
|
"first": "F", |
|
"middle": [ |
|
"J" |
|
], |
|
"last": "Och", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H", |
|
"middle": [], |
|
"last": "Ney", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2000, |
|
"venue": "Proceedings of the Thirty-eighth Annual Meeting of the Association for Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "440--447", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "F. J. Och and H. Ney, \"Improved Statistical Alignment Models\", Proceedings of the Thirty-eighth Annual Meeting of the Association for Computational Linguistics, 440-447, 2000.", |
|
"links": null |
|
}, |
|
"BIBREF15": { |
|
"ref_id": "b15", |
|
"title": "The Stanford Parser: A statistical parser", |
|
"authors": [], |
|
"year": 2008, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "The Stanford Parser: A statistical parser, http://nlp.stanford.edu/software/ [Accessed: Jun. 30, 2008].", |
|
"links": null |
|
}, |
|
"BIBREF16": { |
|
"ref_id": "b16", |
|
"title": "SRILM -an extensible language modeling toolkit", |
|
"authors": [ |
|
{ |
|
"first": "A", |
|
"middle": [], |
|
"last": "Stolcke", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2002, |
|
"venue": "Proceedings of the intelligence Conference on Spoken Language Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "901--904", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "A. Stolcke. SRILM -an extensible language modeling toolkit. Proceedings of the intel- ligence Conference on Spoken Language Processing, 901-904, 2002. http://www.speech.sri.com/projects/srilm/ [Accessed: Jun. 30, 2008].", |
|
"links": null |
|
}, |
|
"BIBREF17": { |
|
"ref_id": "b17", |
|
"title": "Toward Memory-Based Translation", |
|
"authors": [ |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Sato", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Nagao", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1990, |
|
"venue": "Proceedings of International Conference on Computational Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "247--252", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "S. Sato and M. Nagao, Toward Memory-Based Translation\", Proceedings of Interna- tional Conference on Computational Linguistics, 247-252, 1990.", |
|
"links": null |
|
}, |
|
"BIBREF18": { |
|
"ref_id": "b18", |
|
"title": "The International Association for the Evaluation of Education Achievement", |
|
"authors": [], |
|
"year": 2008, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "The International Association for the Evaluation of Education Achievement, http://www.iea.nl/ [Accessed: Jun. 30, 2008].", |
|
"links": null |
|
}, |
|
"BIBREF20": { |
|
"ref_id": "b20", |
|
"title": "The Porter Stemming Algorithm", |
|
"authors": [], |
|
"year": 2008, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "The Porter Stemming Algorithm, http://www.tartarus.org/martin/PorterStemmer/ [Ac- cessed: Jun. 30, 2008].", |
|
"links": null |
|
}, |
|
"BIBREF22": { |
|
"ref_id": "b22", |
|
"title": "Machine Translation Based on Translation Corresponding Tree Structure", |
|
"authors": [ |
|
{ |
|
"first": "F", |
|
"middle": [], |
|
"last": "Wong", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Dong", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "D", |
|
"middle": [], |
|
"last": "Hu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2006, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "25--31", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "F. Wong, M. Dong and D. Hu, Machine Translation Based on Translation Corresponding Tree Structure, Tsinghua Science & Technology, 25-31, 2006.", |
|
"links": null |
|
} |
|
}, |
|
"ref_entries": { |
|
"FIGREF0": { |
|
"uris": null, |
|
"text": "\u4e4b\u5144\u5f1f\u7bc0\u9ede\u7684\u5927\u5c0f\uff0c\u4e26\u63a5\u5728\u7b2c\u4e00\u90e8\u4efd\u7684 \u7de8\u865f\u5f8c\uff0c\u7531\u5c0f\u5230\u5927\u7e7c\u7e8c\u6a19\u8a18\u7de8\u865f\u3002\u4f8b\u5982\u5716\u4e94\u82e5\u8981\u6a19\u8a18 JJ[4/6/ORDER]\u548c PP[5-6/4/ORDER] \u7684 ORDER\uff0c\u5247\u5c07 JJ[4/STC/]\u4e2d\u7684 STC=6 \u548c PP[5-6/STC/]\u4e2d\u7684 STC=4 \u7531\u5c0f\u6392\u5230\u5927\uff0c\u6240\u4ee5 PP[5-6/4/ORDER]\u4e2d\u7684 ORDER \u6a19\u8a18\u70ba 1\uff0cJJ[4/6/ ORDER] \u4e2d\u7684 ORDER \u6a19\u8a18\u70ba 2\u3002 \uf9dd\u7528\u4e0a\u8ff0\u7684\u65b9\u6cd5\u5f97\u5230\u7bc4\u4f8b\u6a39\uff0c\u5982\u5716\u4e09\u3002\u5982\u76f4\u63a5\u7528\u6574\u500b\u53e5\u5b50\u7684\u7bc4\u4f8b\u6a39\u5230\u8cc7\u6599\u5eab\u4e2d\u4f5c\u641c \u5c0b\uff0c\u5c07\u5f88\u96e3\u641c\u5c0b\u5230\u76f8\u540c\u7684\u7bc4\u4f8b\u6a39\uff0c\u56e0\u70ba\u53e5\u5b50\u8d8a\u9577\u53e5\u5b50\u7684\u7d50\u69cb\u6703\u8d8a\u8907\u96dc\uff0c\u6240\u4ee5\u76f8\u540c\u7d50\u69cb\u7684 \u53e5\u5b50\u91cd\u8907\u51fa\u73fe\u7684\u53ef\u80fd\u5f88\u4f4e\u3002\u56e0\u6b64\uff0c\u6211\u5011\u5c07\u7bc4\u4f8b\u6a39\u7684\u6240\u6709\u5b50\u6a39\u5206\u5225\u53d6\u51fa\u4f86\uff0c\u6bcf\u4e00\u500b\u5b50\u6a39\u6240 \u5305\u542b\u7684\u7bc4\u570d\u7684\u90fd\u662f\u82f1\u6587\u53e5\u7684\u5b50\u53e5\uff0c\u5728\u4e0d\u540c\u7684\u53e5\u5b50\u88e1\u53ef\u80fd\u6703\u6709\u76f8\u540c\u7d50\u69cb\u7684\u5b50\u53e5\uff0c\u4e0d\u4f46\u53ef\u4ee5 \u589e\u52a0\u6bd4\u5c0d\u5230\u7684\u6a5f\u7387\uff0c\u4e5f\u80fd\u589e\u52a0\u7bc4\u4f8b\u6a39\u7684\u6578\u91cf\u3002\u6700\u5f8c\u8a18\u9304\u5728\u7bc4\u4f8b\u6a39\u8cc7\u6599\u5eab\u7684\u5167\u5bb9\uff0c\u53ea\u6709\u7bc4 \u4f8b\u6a39\u548c ORDER \u53c3\u6578\u3002STREE \u548c STC \u4e0d\u9700\u8a18\u9304\u7684\u539f\u56e0\u662f\u6bcf\u4e00\u500b\u53e5\u5b50\u7684\u6bcf\u500b\u8a5e\u5f59\u90fd\u5728\u4e0d \u540c\u7684\u4f4d\u7f6e\u4e0a\uff0c\u5247\u5728\u8cc7\u6599\u5eab\u4e2d\u4e0d\u9700\u8981\u8a18\u9304 STREE \u548c STC\u3002 \u7bc4\u4f8b\u6a39\u7684\u7d50\u69cb\u6709\u53ef\u80fd\u76f8\u540c\uff0c\u800c\u8a5e\u5e8f\u4e0d\u540c\u3002\u4f8b\u5982\"NP(NP(NN fork))(PP(IN of)(NP(DT the)(NN road)))\"\uff0c\u4e2d\u6587\u7ffb\u8b6f\u70ba\"\u5c94\u8def\"\uff0c\u800c\"NP(NP(NN leader))(PP(IN of)(NP(DT a)(NN company)))\"\uff0c \u4e2d\u6587\u7ffb\u8b6f\u70ba\"\u4e00\u9593\u516c\u53f8\u7684\u9818\u5c0e\u8005\"NP(NP(DT)(NNS))(PP(IN)(NP(CD)(NNS))))\"\uff0c\u65b9\u5f62\u6846\u70ba\u7bc4\u4f8b\u6a39\u8cc7\u6599\u5eab\u4e2d\u5176\u4e2d\u4e00 \u68f5 \u7bc4 \u4f8b \u6a39 \u7d50 \u69cb \u70ba \"(NP(NP[//2](DT[//1]) (NNS[//2])) (PP[//1](IN[//1]) (NP[//2](CD[//1]) (NNS[//2]))))\"\uff0c\u6211\u5011\u53ef\u4ee5\u767c\u73fe\u7bc4\u4f8b\u6a39\u53bb\u9664 ORDER \u5f8c\u7684\u7d50\u69cb\uff0c\u6703\u8ddf\u5b50\u6a39\u7684\u7d50\u69cb\u5b8c\u5168\u76f8\u540c\uff0c \u6545\u5c07\u6b64\u7bc4\u4f8b\u6a39\u8a8d\u5b9a\u70ba\u5339\u914d\u5b50\u6a39\u3002 \u6839\u64da\u641c\u5c0b\u7bc4\u4f8b\u6a39\u6f14\u7b97\u6cd5\u7684\u6d41\u7a0b\uff0c\u5982\u5716\u4e03\u3002\u9996\u5148\u5c07\u4f86\u6e90\u53e5\u7684\u5256\u6790\u6a39\u52a0\u5230\u4f47\uf99c(queue)", |
|
"num": null, |
|
"type_str": "figure" |
|
}, |
|
"FIGREF1": { |
|
"uris": null, |
|
"text": "graph shows the heights of four girls\"\uff0c \u5256\u6790\u6a39\u70ba\"(S(NP(DT The)(NN graph))(VP(VBZ shows)(NP(NP(DT the)(NNS \u5716\u516d\u3001\u5256\u6790\u6a39\u8207\u7bc4\u4f8b\u6a39\u7684\u5c0d\u61c9\u95dc\u4fc2 heights))(PP(IN of)(NP(CD four)(NNS girls)))))\"\u3002\u900f\u904e\u641c\u5c0b\u7bc4\u4f8b\u6a39\u6f14\u7b97\u6cd5\u627e\u51fa\u5339\u914d\u5b50\u6a39\uff0c \u9996\u5148\u4ee5\u7bc0\u9ede S \u70ba\u6a39\u6839\u7684\u5256\u6790\u6a39\u5230\u8cc7\u6599\u5eab\u4f5c\u641c\u5c0b\uff0c\u641c\u5c0b\u6642\u4e0d\u5305\u542b\u8449\u5b50\u7bc0\u9ede\uff0c\u6b64\u4f8b\u5b50\u6c92\u641c\u5c0b \u5230\u5339\u914d\u5b50\u6a39\uff0c\u5247\u5c07\u7bc0\u9ede S \u7684\u5b50\u6a39 NP \u548c VP \u52a0\u5165\u4f47\uf99c\u4e2d\u3002\u63a5\u4e0b\u4f86\u5c07\u5f9e\u4f47\uf99c\u4e2d\u53d6\u51fa\u7684\u5b50\u6a39 \u70ba NP\uff0c\u5230\u7bc4\u4f8b\u6a39\u8cc7\u6599\u5eab\u641c\u5c0b\u5339\u914d\u5b50\u6a39\uff0c\u4f46\u8cc7\u6599\u5eab\u4e2d\u6c92\u6709\u76f8\u540c\u7684\u7bc4\u4f8b\u6a39\uff0c\u6b64\u6642 NP \u7684\u5b50 \u6a39\u7686\u70ba\u8449\u5b50\u7bc0\u9ede\uff0c\u6240\u4ee5\u4e26\u7121\u5b50\u6a39\u5728\u52a0\u5165\u4f47\uf99c\u4e2d\u3002\u4f9d\u7167\u5148\u9032\u5148\u51fa\u7684\u539f\u5247\u4e0b\u4e00\u500b\u5f9e\u4f47\uf99c\u53d6\u51fa \u7684\u662f S \u7684\u53f3\u5b50\u6a39 VP\uff0c\u5728\u7bc4\u4f8b\u6a39\u8cc7\u6599\u5eab\u4e2d\u9084\u662f\u641c\u5c0b\u4e0d\u5230\uff0c\u56e0\u6b64\u8981\u5c07 VP \u7684\u5b50\u6a39 VBZ \u548c NP \u52a0\u5165\u4f47\uf99c\u4e2d\uff0c\u4f46 VBZ \u70ba\u8449\u5b50\u7bc0\u9ede\uff0c\u6545\u53ea\u6709 NP \u52a0\u5165\u4f47\uf99c\u4e2d\u3002\u63a5\u4e0b\u4f86\u662f\u5b50\u6a39 NP \u5f9e\u4f47 \uf99c\u4e2d\u88ab\u53d6\u51fa\u4f86\uff0c\u5b50\u6a39 NP \u5728\u8cc7\u6599\u5eab\u4e2d\u641c\u5c0b\u5230\u76f8\u540c\u7684\u7bc4\u4f8b\u6a39\uff0c\u5982\u5716\u516d\u7684\u7bc4\u4f8b\u6a39\u5c31\u662f\u6240\u641c\u5c0b \u5230\u7684\u5339\u914d\u5b50\u6a39\uff0c\u56e0\u6b64\u5c07\u7bc4\u4f8b\u6a39\u7684 ORDER \u6a19\u8a18\u4e0a\u53bb\uff0c\u6a19\u8a18\u5f8c\u7684\u5256\u6790\u6a39\u5c07\u5982\u5716\u516b\u6240\u793a\u3002\u6b64 \u6642\u4f47\uf99c\u4e2d\u5df2\u7d93\u70ba\u7a7a\uff0c\u641c\u5c0b\u7bc4\u4f8b\u6a39\u7684\u6d41\u7a0b\u5230\u6b64\u70ba\u6b62\u3002 \u6a19\u8a18\u5b8c ORDER \u4e4b\u5f8c\uff0c\u5c07\u6c92\u6709\u6a19\u8a18\u7684\u5b50\u6a39\u4f5c\u4fee\u526a\uff0c\u4e5f\u5c31\u662f\u5c07\u4e0d\u7528\u4f5c\u8a5e\u5e8f\u4ea4\u63db\u7684\u5b50\u6a39 \u4fee\u526a\u5230\u6700\u5c0f\u5c64\u6a39\u3002\u5982\u5716\u516b\u7bc0\u9ede S \u7684\u53f3\u5b50\u6a39\u3001NP[2]\u548c NP[1]\u7684\u5b50\u6a39\u7686\u4e0d\u9700\u8981\u4f5c\u8a5e\u5e8f\u4ea4\u63db\uff0c \u56e0\u6b64\u4fee\u526a\u7684\u7d50\u679c\u70ba\"(S(NP The graph)(VP(VBZ shows)(NP(NP[2] the heights)(PP[1](IN[2] of)(NP[1] four girls))))) \"\uff0c\u5982\u5716\u4e5d\u6240\u793a\u3002\u6700\u5f8c\u5f9e\u5c64\u6578\u6700\u5927\u7684\u6bcf\u500b\u5144\u5f1f\u7bc0\u9ede\u958b\u59cb\u9010\u5c64\u5f80\u4e0a \u4f9d\u7167\u512a\u5148\u6b0a\u9806\u5e8f\u8abf\u6574\u5256\u6790\u6a39\u7684\u7d50\u69cb\uff1b\u8abf\u6574\u5f8c\u7684\u7d50\u679c\u5c07\u6703\u8f38\u5165\u5230\u7ffb\u8b6f\u6a21\u7d44\u7522\u751f\u7ffb\u8b6f\u3002\u82e5\u6211 \u5011\u76f4\u63a5\u53d6\u4f86\u6e90\u53e5\u5256\u6790\u6a39\u7684\u8449\u5b50\u7bc0\u9ede\u4f5c\u7ffb\u8b6f\uff0c\u5c07\u6703\u6210\u70ba\u55ae\u5b57\u5f0f\u7684\u7ffb\u8b6f\uff0c\u6211\u5011\u5c07\u7121\u6cd5\u5c0d\u8a5e\u7d44 \u6216\u7247\u8a9e\u4f5c\u7ffb\u8b6f\u3002\u7ffb\u8b6f\u7684\u90e8\u5206\u6703\u5728\u4e0b\u4e00\u7bc0\u6703\u4f5c\u8a73\u7d30\u8aaa\u660e\u3002 \u5716\u4e5d\u7684\u5256\u6790\u6a39\u6709\u56db\u5c64\uff0c\u9996\u5148\u5c07\u7b2c\u56db\u5c64\u7684\u5144\u5f1f\u7bc0\u9ede\"(IN[2] of)(NP[1] four girls)\"\uff0c\u4f9d\u7167 ORDER \u7684\u9806\u5e8f\u8abf\u6574\u5f8c\u7684\u9806\u5e8f\u70ba\"(NP[1] four girls) (IN[2] of) \"\uff0c\u63a5\u4e0b\u4f86\u7b2c\u4e09\u5c64\u7684\u5144\u5f1f\u7bc0\u9ede \"(NP [2] the heights)(PP[1] (NP[1] four girls)(IN[2] of))\"\u4ea4\u63db\u5f8c\u7684\u9806\u5e8f\u70ba\"(PP[1] (NP[1] four girls)(IN[2] of)) (NP [2] the heights)\uff0c\u6b64\u4f8b\u5b50\u63a5\u4e0b\u4f86\u8a5e\u5e8f\u6c92\u6709\u518d\u8abf\u52d5\uff0c\u5982\u5716\u5341\u6240\u793a\uff1b \u6700\u5f8c\u8f38\u5165\u7ffb\u8b6f\u6a21\u7d44\u7684\u9806\u5e8f\u70ba\"The graph\"\u3001\"shows\"\u3001\"four girls\"\u3001\"of\"\u3001\"the heights\"\uff0c\u7531 \u6b64\u9806\u5e8f\u5206\u5225\u4f5c\u7ffb\u8b6f\u8655\uf9e4\u3002 \u5716\u516b\u3001\u5b8c\u6210 ORDER \u6a19\u8a18 \u5716\u4e5d\u3001\u5256\u6790\u6a39\u4fee\u526a\u5f8c\u7684\u7d50\u679c \u5716\u5341\u3001\u8abf\u6574\u8a5e\u5e8f\u5f8c\u7684\u7d50\u679c 3.4 \u7ffb\u8b6f\u8655\uf9e4 \u7d93\u904e\u4e0a\u4e00\u7bc0\u8655\uf9e4\u6700\u5f8c\u5f97\u5230\u4fee\u526a\u6a39\uff0c\u4fee\u526a\u6a39\u7684\u8449\u5b50\u7bc0\u9ede\u53ef\u80fd\u70ba\u82f1\u6587\u55ae\u5b57(word)\u3001\u8a5e\u7d44(term)\u3002\u8a5e\u7d44\u5373\u70ba\u6578\u500b\u55ae\u5b57\u7d50\u5408\u7684\u5b57\u4e32\uff0c\u4e0d\u4e00\u5b9a\u70ba\u5b8c\u6574\u7684\u53e5\u5b50\uff0c\u5982 \"would be left on the floor\"\u6216\u7247 \u8a9e(phrase\uff0c\u5982\u540d\u8a5e\u7247\u8a9e\u3001\u52d5\u8a5e\u7247\u8a9e\u3001\u5f62\u5bb9\u8a5e\u7247\u8a9e\u7b49) \uff0c\u5982\"in order to\"\u3002\u5728\u7ffb\u8b6f\u8655\uf9e4\u4e0a\u6703 shown in diagram\u2026\"\uff0c\u540c\u6642\u6eff \u8db3\u898f\u5247\u8a5e\u5178\u6a94\u5167\u7684\"as shown in diagram\"\u548c\"in diagram\"\u7247\u8a9e\u53e5\u578b\uff0c\u5247\u6211\u5011\u6703\u9078\u64c7\u9577\u5ea6\u8f03 \u9577\u7684\"as shown in diagram\"\u800c\u4e0d\u662f\u9078\u64c7\"in diagram\"\u52a0\u4e0a\"as show\"\u4f5c\u70ba\u65b7\u8a5e\u7684\u7d50\u679c\u3002", |
|
"num": null, |
|
"type_str": "figure" |
|
}, |
|
"TABREF0": { |
|
"html": null, |
|
"num": null, |
|
"text": "The International Association for the Evaluation of Education Achievement, \u4ee5\u4e0b\u7c21\u7a31 IEA)[20]\u4e3b\u8981\u76ee\u7684\u5728\u65bc\u4e86\u89e3\u5404\u570b\u5b78\u751f\u6578\u5b78\u53ca\u79d1\u5b78(\u542b\u7269\uf9e4\u3001\u5316 \u5b78\u3001\u751f\u7269\u3001\u53ca\u5730\u7403\u79d1\u5b78)\u65b9\u9762\u5b78\u7fd2\u6210\u5c31\u3001\u6559\u80b2\u74b0\u5883\u7b49\uff0c\u5f71\u97ff\u5b78\u751f\u7684\u56e0\u7d20\uff0c\u627e\u51fa\u95dc\u806f\u6027\uff0c \u4e26\u5728\u570b\u969b\u9593\u76f8\u4e92\u4f5c\u6bd4\u8f03\u3002\u81ea 1970 \u5e74\u8d77\u958b\u59cb\u7b2c\u4e00\u6b21\u570b\u969b\u6578\u5b78\u8207\u79d1\u5b78\u6559\u80b2\u6210\u5c31\u8abf\u67e5\u5f8c\uff0c\u4e16 \u754c\u5404\u570b\u9010\u6f38\u5c0d\u570b\u969b\u6578\u5b78\u8207\u79d1\u5b78\u6559\u80b2\u6210\u5c31\u7814\u7a76\u611f\u5230\u8208\u8da3\uff0cIEA \u4fbf\u5728 1995 \u5e74\u958b\u59cb\u6bcf\u56db\u5e74\u8fa6 \uf9e4\u570b\u969b\u6578\u5b78\u8207\u79d1\u5b78\u6559\u80b2\u6210\u5c31\u7814\u7a76\u4e00\u6b21\uff0c\u7a31\u70ba\u570b\u969b\u6578\u5b78\u8207\u79d1\u5b78\u6559\u80b2\u6210\u5c31\u8da8\u52e2\u8abf\u67e5(Trends in International Mathematics and Science Study\uff0c\u4ee5\u4e0b\u7c21\u7a31 TIMSS )\uff0c\u81f3\u4eca\u5df2\u8fa6\uf9e4\u904e 1995\u3001 1999\u30012003 \u548c 2007 \u5171\u56db\u5c46\uff0c\u5171\u6709 38 \u500b\u570b\u5bb6\u53c3\u52a0\u3002 \u6211\u570b\u65bc 1999 \u5e74\u958b\u59cb\u52a0\u5165 TIMSS \u5f8c\uff0c\u7531\u570b\u79d1\u6703\u59d4\u8a17\u570b\u7acb\u53f0\u7063\u5e2b\u7bc4\u5927\u5b78\u79d1\u5b78\u6559\u80b2\u4e2d\u5fc3 (\u4ee5\u4e0b\u7c21\u7a31\u5e2b\u5927\u79d1\u6559\u4e2d\u5fc3)\u8ca0\u8cac\u8a74\u984c\u7ffb\u8b6f\u53ca\u6e2c\u9a57\u5de5\u4f5c\u30021999 \u5e74\u7684\u8abf\u67e5\u5c0d\u8c61\u53ea\u6709\u570b\u4e2d\u4e8c\u5e74\u7d1a \u5b78\u751f\uff0c 2003 \u5e74\u7684\u8abf\u67e5\u5c0d\u8c61\u5305\u62ec\u56db\u5e74\u7d1a\u53ca\u516b\u5e74\u7d1a\u5b78\u751f\u3002\u7ffb\u8b6f\u8a74\u984c\u4e3b\u8981\u7684\u6d41\u7a0b\u5305\u542b\uff1a\u5f9e IEA \u53d6\u5f97\u8a74\u984c\u5167\u5bb9\uff0c\u7531\u5e2b\u5927\u79d1\u6559\u4e2d\u5fc3\u6c7a\u8b70\u9032\u884c\u7ffb\u8b6f\u5de5\u4f5c\u5206\u914d\u3001\u4e2d\u6587\u8a74\u984c\u4ea4\u63db\u5be9\u7a3f\u6821\u6b63\u53ca\u7ffb\u8b6f \u554f\u984c\u8a0e\u8ad6\uff0c\u6700\u5f8c\u5c07\u4e2d\u6587\u7ffb\u8b6f\u8a74\u984c\u5b9a\u7a3f\u3002\u81f3\u76ee\u524d\u70ba\u6b62\uff0c\u5e2b\u5927\u79d1\u6559\u4e2d\u5fc3\u5df2\u5c07 1999 \u548c 2003 \u5e74\u8a74\u984c\u5167\u5bb9\u548c\u8a55\u91cf\u7d50\u679c\uff0c\u516c\u5e03\u65bc\u53f0\u7063 TIMSS \u5b98\u65b9\u7db2\u7ad9[21] \uff0c\u4ee5\u63d0\u4f9b\u7814\u7a76\u4e4b\u53c3\u8003\u3002\u5728 TIMSS", |
|
"content": "<table><tr><td>\u5f59\uff0c\u7ffb\u8b6f\u7684\u7d50\u679c\u53ef\u80fd\u6703\u4e0d\u7b26\u5408\u4e00\u822c\u4eba\u7684\u7528\u8a5e\u9806\u5e8f\u3002\u53e6\u5916\u4e2d\u6587\u7684\u81ea\u7531\u5ea6\u8f03\u9ad8\uff0c\u5f88\u5bb9\u6613\u9020\u6210 \u6a19\u53e5\u7684\u8868\u793a\u5f0f\uff1b\u5408\u6210\u968e\u6bb5\u5c07\u76ee\u6a19\u53e5\u7684\u8868\u793a\u5f0f\u5c55\u958b\u70ba\u76ee\u6a19\u53e5\u7684 word-dependency tree\uff0c\u4e26 \u672c\u7cfb\u7d71\u7684\u67b6\u69cb\u5982\u5716\u4e00\u6240\u793a\u3002\u6211\u5011\u91dd\u5c0d\u7bc4\u4f8b\u6a39\u7522\u751f\u7cfb\u7d71\u548c\u82f1\u6587\u53e5\u7ffb\u8b6f\u7cfb\u7d71\u9019\u5169\u90e8\u4efd\u5206\u5225\u7c21 3.1 \u96d9\u8a9e\u6a39\u5c0d\u61c9\u5b57\u4e32\u7684\u7d50\u69cb(BSSTC)</td></tr><tr><td>\u7ffb\u8b6f\u4e0a\u7528\u8a5e\u9806\u5e8f\u7684\u4e0d\u540c\u3002\u4f8b\u5982\uff1a\"\u4e0b\u5716\u986f\u793a\u67d0\u4e00\u500b\u570b\u5bb6\u6240\u7a2e\u7a40\u7269\u7684\u5206\u5e03\u5716\"\uff0c\u4e5f\u53ef\u7ffb\u8b6f\u70ba \u4e14\u8f38\u51fa\u7ffb\u8b6f\u7d50\u679c\u3002Al-Adhaileh \u7b49\u5b78\u8005[5]\u5c07 structured string tree correspondence(SSTC) [7] \u4ecb\u5982\u4e0b\u3002</td></tr><tr><td>\"\u67d0\u4e00\u500b\u570b\u5bb6\u6240\u7a2e\u7a40\u7269\u7684\u5206\u5e03\u5716\uff0c\u5982\u4e0b\u5716\u986f\u793a\"\u3002\u53ef\u80fd\u6703\u5f71\u97ff\u5230\u53d7\u6e2c\u8005\u7684\u601d\u7dd2\uff0c\u4f7f\u4f5c\u7b54\u6642 \u904b\u7528\u5728\u82f1\u6587\u7ffb\u8b6f\u6210\u99ac\u4f86\u897f\u4e9e\u6587\u4e0a\uff0cSSTC \u662f\u4e00\u7a2e\u80fd\u5c07\u82f1\u6587\u5c0d\u61c9\u99ac\u4f86\u897f\u4e9e\u6587\u7684\u7d50\u69cb\uff0c\u4f46\u6b64 \uf06c \u7bc4\u4f8b\u6a39\u7522\u751f\u7cfb\u7d71\uff1a \u9019\u500b\u7cfb\u7d71\uf9dd\u7528\u4e2d\u82f1\u5e73\u884c\u8a9e\u6599\uff0c\u9019\u88e1\u7684\u4e2d\u82f1\u5e73\u884c\u8a9e\u6599\u5fc5\u9700\u8981\u4e00\u53e5</td></tr><tr><td>\u7c97\u5fc3\u7684\u60c5\u5f62\u6703\u589e\u52a0\u3002\u56e0\u6b64\uff0c\u82e5\u80fd\uf9dd\u7528\u6a5f\u5668\u7ffb\u8b6f(machine translation)\u7684\u6280\u8853\u4f86\u8f14\u52a9\u7ffb\u8b6f\u4ee5 \u7d50\u69cb\u4e26\u6c92\u6709\u89e3\u6c7a\u8a5e\u5e8f\u4ea4\u63db\u7684\u554f\u984c\u3002\u76ee\u524d\u8f03\u5b8c\u6574\u7684 EBMT \u7cfb\u7d71\u6709 Liu \u7b49\u5b78\u8005\u6240\u63d0\u51fa \u82f1\u6587\u53e5\u5c0d\u61c9\u4e00\u53e5\u4e2d\u6587\u53e5\uff0c\u4e14\u6bcf\u4e00\u7d44\u4e2d\u82f1\u6587\u53e5\u90fd\u8981\u662f\u4e92\u70ba\u7ffb\u8b6f\u7684\u53e5\u5b50\u3002\u4e2d\u6587\u53e5\u7d93\u904e\u65b7</td></tr><tr><td>\u53ca\u8abf\u6574\u8a5e\u5e8f\uff0c\u4ee5\u671f\u63d0\u9ad8\u7ffb\u8b6f\u7684\u54c1\u8cea\u548c\u6548\u7387\u3002 tree-string correspondence (TSC)\u7d50\u69cb\u548c\u7d71\u8a08\u5f0f\u6a21\u578b\u6240\u7d44\u6210\u7684 EBMT \u7cfb\u7d71[13] \uff0c\u5728\u6bd4\u5c0d TSC \u8a5e\u8655\uf9e4\u5f8c\uff0c\u88ab\u65b7\u6210\u6578\u500b\u4e2d\u6587\u8a5e\u5f59\uff0c\u4ee5\u7a7a\u767d\u9694\u958b\uff1b\u82f1\u6587\u53e5\u7d93\u904e\u82f1\u6587\u5256\u6790\u5668\u5efa\u6210\u82f1\u6587\u5256</td></tr><tr><td>\u5728\u4eba\u5de5\u667a\u6167\u9818\u57df\uff0c\u6a5f\u5668\u7ffb\u8b6f\u662f\u4e00\u500b\u5f88\u56f0\u96e3\u7684\u554f\u984c\u3002\u6a5f\u5668\u7ffb\u8b6f\u662f\u6307\u5c07\u4e00\u7a2e\u81ea\u7136\u8a9e\u8a00\u7d93 \u7d50\u69cb\u7684\u6a5f\u5236\u662f\u8a08\u7b97\u4f86\u6e90\u53e5\u5256\u6790\u6a39\u548c TSC \u6bd4\u5c0d\u7684\u5206\u6578\uff0c\u7522\u751f\u7ffb\u8b6f\u7684\u662f\u7531\u4f86\u6e90\u8a5e\u5f59\u7ffb\u8b6f\u6210 \u6790\u6a39\u3002\u5c07\u65b7\u8a5e\u5f8c\u7684\u7d50\u679c\u548c\u82f1\u6587\u5256\u6790\u6a39\u7d93\u904e\u5256\u6790\u6a39\u5c0d\u61c9\u5b57\u4e32\u6a21\u7d44\u8655\uf9e4\uff0c\u5efa\u6210\u82f1\u6587\u5256\u6790</td></tr><tr><td>\u6458\u8981 \u904e\u96fb\u8166\u904b\u7b97\u7ffb\u8b6f\u6210\u53e6\u4e00\u7a2e\u8a9e\u8a00\uff0c\u56f0\u96e3\u7a0b\u5ea6\u4e5f\u8ddf\u4f86\u6e90\u53e5\u548c\u76ee\u6a19\u53e5\u6709\u95dc\uff0c\u50cf\u662f\u82f1\u6587\u548c\u8461\u8404\u7259 \u76ee\u6a19\u8a5e\u5f59\u7684\u6a5f\u7387\u548c\u76ee\u6a19\u53e5\u7684\u8a9e\u8a00\u6a21\u578b\u6240\u7d44\u6210\u3002 \u6a39\u5c0d\u61c9\u5b57\u4e32\u7684\u7d50\u69cb\u6a39\uff0c\u6b64\u7d50\u69cb\u6a39\u7a31\u70ba\u7bc4\u4f8b\u6a39\u3002\u518d\u5c07\u6bcf\u500b\u7bc4\u4f8b\u6a39\u53d6\u51fa\u5b50\u6a39\uff0c\u4e26\u4e14\u5224\u65b7</td></tr><tr><td>\u6587\u8a9e\u8a00\u7684\u7279\u6027\u8f03\u76f8\u8fd1\uff0c\u8f03\u5bb9\u6613\u7ffb\u8b6f\u3002\u800c\u4e2d\u6587\u8ddf\u82f1\u6587\u8a5e\u5e8f\u5dee\u7570\u5f88\u5927\uff0c\u4e14\u4e2d\u6587\u6bd4\u8f03\u6c92\u6709\u7279\u5b9a \u662f\u5426\u6709\u8a5e\u5e8f\u4ea4\u63db\uff0c\u5c07\u9700\u8981\u8a5e\u5e8f\u4ea4\u63db\u7684\u7bc4\u4f8b\u6a39\u5168\u90e8\u5b58\u5165\u7bc4\u4f8b\u6a39\u8cc7\u6599\u5eab\u4e2d\u65b9\u4fbf\u641c\u5c0b\u3002 \u9ec3\u8f1d\u7b49\u5b78\u8005\u6240\u63d0\u51fa\u7684 translation corresponding tree (TCT) [24]\uff0cTCT \u662f\u91dd\u5c0d\u82f1\u6587\u7ffb\u8b6f \u672c\u8ad6\u6587\u61c9\u7528\u4ee5\u7bc4\u4f8b\u70ba\u57fa\u790e\u7684\u6a5f\u5668\u7ffb\u8b6f\u6280\u8853\uff0c\u61c9\u7528\u82f1\u6f22\u96d9\u8a9e\u5c0d\u61c9\u7684\u7d50\u69cb\u8f14\u52a9\u82f1\u6f22\u55ae\u53e5\u8a9e\u6599 \u7684\u8a9e\u6cd5\uff0c\u5beb\u6cd5\u8f03\u81ea\u7531\uff0c\u5c0d\u7ffb\u8b6f\u4f86\u8aaa\u8f03\u70ba\u56f0\u96e3\u3002\u6a5f\u5668\u7ffb\u8b6f\u767c\u5c55\u81f3\u4eca\u5df2\u7d93\u8d85\u904e 50 \u5e74\u3002Dorr \u6210\u8461\u8404\u7259\u6587\u7684\u7cfb\u7d71\uff0c\u5728 TCT \u7d50\u69cb\u4e0a\u53ef\u4ee5\u8a18\u9304\u4f86\u6e90\u53e5\u8a5e\u5f59\u548c\u76ee\u6a19\u53e5\u8a5e\u5f59\u5c0d\u61c9\u7684\u95dc\u4fc2\u3001\u4f86 \uf06c \u82f1\u6587\u53e5\u7ffb\u8b6f\u7cfb\u7d71\uff1a\u7576\u8f38\u5165\u82f1\u6587\u53e5\u5f8c\uff0c\u5148\u5c07\u53e5\u5b50\u900f\u904e\u82f1\u6587\u5256\u6790\u5668\uff0c\u5efa\u6210\u82f1\u6587\u5256\u6790\u6a39\u3002 \u7684\u7ffb\u8b6f\u3002\u7ffb\u8b6f\u7bc4\u4f8b\u662f\u904b\u7528\u4e00\u7a2e\u7279\u6b8a\u7684\u7d50\u69cb\uff0c\u6b64\u7d50\u69cb\u5305\u542b\u4f86\u6e90\u53e5\u7684\u5256\u6790\u6a39\u3001\u76ee\u6a19\u53e5\u7684\u5b57\u4e32\u3001 \u7b49\u5b78\u8005[9] \u5c07\u73fe \u5728\u6a5f \u5668 \u7ffb\u8b6f\u4f9d \u64da\u7cfb \u7d71\u8655 \uf9e4\u7684 \u65b9\u5f0f\u4f86 \u5206 \u985e \uff0c\u5206 \u6210 \u4ee5 \u8a9e\u8a00\u5b78 \u70ba\u57fa \u7ffb\u8b6f \u6e90\u53e5\u8a5e\u5f59\u548c\u76ee\u6a19\u53e5\u8a5e\u5f59\u5c0d\u61c9\u7684\u7ffb\u8b6f\u7d50\u679c\u548c\u8a5e\u5e8f\uff0c\u4f46\u662f TCT \u662f\u4e8c\u5143\u7684\u5256\u6790\u6a39\uff0c\u4e5f\u5c31\u662f\u6bcf \u6709\u4e86\u82f1\u6587\u5256\u6790\u6a39\u5c31\u53ef\u4ee5\u900f\u904e\u641c\u5c0b\u7bc4\u4f8b\u6a39\u6a21\u7d44\uff0c\u6a19\u8a18\u82f1\u6587\u5256\u6790\u6a39\u4e0a\u9700\u8981\u8abf\u52d5\u8a5e\u5e8f\u7684\u7d50 \u4ee5\u53ca\u76ee\u6a19\u53e5\u548c\u4f86\u6e90\u53e5\u8a5e\u5f59\u5c0d\u61c9\u95dc\u4fc2\u3002\u5c07\u7ffb\u8b6f\u7bc4\u4f8b\u5efa\u7acb\u8cc7\u6599\u5eab\uff0c\u4ee5\u63d0\u4f9b\u4f86\u6e90\u53e5\u4f5c\u8a5e\u5e8f\u4ea4\u63db (linguistic-based paradigms)\uff0c\u4f8b\u5982\u57fa\u65bc\u77e5\u8b58(knowledge-based)\u548c\u57fa\u65bc\u898f\u5247(rule-based)\u7b49\uff1b \u500b\u7bc0\u9ede\u90fd\u53ea\u6709\u5169\u9846\u5b50\u6a39\uff0c\u5728 TCT \u4e0a\u8a5e\u5e8f\u53ea\u7528\u5e03\u6797\u503c(boolean value)\u4f86\u8a18\u9304\uff0c\u6240\u4ee5 TCT \u53ea \u69cb\uff0c\u4e26\u4f9d\u7167\u6240\u6a19\u8a18\u7684\u8a5e\u5e8f\u4f5c\u8abf\u6574\u3002\u8a5e\u5e8f\u8abf\u6574\u5b8c\u6210\u5f8c\u518d\u5c07\u82f1\u6587\u7d50\u69cb\u6a39\u4e2d\u7684\u82f1\u6587\u55ae\u5b57\u6216 \u7684\u4f9d\u64da\uff0c\u6700\u5f8c\u900f\u904e\u5b57\u5178\u7ffb\u8b6f\uff0c\u4ee5\u53ca\uf9dd\u7528\u7d71\u8a08\u5f0f\u4e2d\u82f1\u8a5e\u5f59\u5c0d\uf99c\u548c\u8a9e\u8a00\u6a21\u578b\u4f86\u9078\u8a5e\uff0c\u7522\u751f\u5efa \u4ee5\u53ca\u975e\u8a9e\u8a00\u5b78\u70ba\u57fa\u7ffb\u8b6f(non-linguistic-based paradigms) \uff0c\u4f8b\u5982\u57fa\u65bc\u7d71\u8a08(statistical-based) \u80fd\u904b\u7528\u5728\u4e8c\u5143\u5256\u6790\u6a39\u4e0a\u3002\u4f46\u662f\u6709\u4e9b\u5256\u6790\u5668\u6240\u7522\u751f\u5256\u6790\u6a39\u662f\u591a\u5143\u6a39\uff0c\u56e0\u6b64\u6211\u5011\u63d0\u51fa\u96d9\u8a9e\u6a39 \u7247\u8a9e\u900f\u904e\u7ffb\u8b6f\u6a21\u7d44\u505a\u7ffb\u8b6f\u3002\u5176\u4e2d\u7ffb\u8b6f\u6a21\u7d44\u5305\u542b\u4e86\u5927\u5c0f\u5beb\u8f49\u63db\u3001\u65b7\u8a5e\u8655\uf9e4\u3001stop word \u8b70\u7684\u7ffb\u8b6f\u3002\u6211\u5011\u662f\u4ee5 2003 \u5e74\u570b\u969b\u6578\u5b78\u8207\u79d1\u5b78\u6559\u80b2\u6210\u5c31\u8da8\u52e2\u8abf\u67e5\u6e2c\u9a57\u8a74\u984c\u70ba\u4e3b\u8981\u7ffb\u8b6f\u7684 \u548c\u57fa\u65bc\u7bc4\u4f8b(example-based)\u7b49\u3002 \u5c0d\u61c9\u5b57\u4e32\u7684\u7d50\u69cb(bilingual structured string tree correspondence\uff0c\u7c21\u7a31\u70ba BSSTC)\u53ef\u4ee5\u904b\u7528 filtering\u53castemming\uff0c\u4e4b\u5f8c\u5c07\u8655\uf9e4\u904e\u7684\u8a5e\u5f59\u900f\u904e\u5b57\u5178\u6a94\u505a\u7ffb\u8b6f[3]\u3002\u6bcf\u500b\u82f1\u6587\u55ae\u5b57\u6216\u7247 \u5c0d\u8c61\uff0c\u4ee5\u671f\u63d0\u5347\u7ffb\u8b6f\u7684\u4e00\u81f4\u6027\u548c\u6548\u7387\u3002\u4ee5 NIST \u548c BLEU \u7684\u8a55\u6bd4\u65b9\u5f0f\uff0c\u4f86\u8a55\u4f30\u548c\u6bd4\u8f03 \u4ee5\u77e5\u8b58\u70ba\u57fa\u790e\u7684\u6a5f\u5668\u7ffb\u8b6f(knowledge-based machine translation)\u7cfb\u7d71\u662f\u904b\u7528\u5b57\u5178\u3001\u6587 \u5728\u591a\u5143\u5256\u6790\u6a39\u4e0a\uff0c\u4e26\u4e14 BSSTC \u53ef\u5728\u7ffb\u8b6f\u904e\u7a0b\u4e2d\u7576\u4f5c\u8a5e\u5e8f\u4ea4\u63db\u7684\u53c3\u8003\uff0c\u6839\u64da\u6211\u5011\u5be6\u9a57\u7d50 \u8a9e\u90fd\u53ef\u80fd\u6709\u4e00\u500b\u4ee5\u4e0a\u7684\u4e2d\u6587\u7ffb\u8b6f\uff0c\u56e0\u6b64\u9700\u8981\u9078\u8a5e\u7684\u6a5f\u5236\u4f86\u7522\u751f\u521d\u6b65\u7ffb\u8b6f\u7d50\u679c\uff0c\u6b64\u7ffb \u7dda\u4e0a\u7ffb\u8b6f\u7cfb\u7d71\u548c\u672c\u7cfb\u7d71\u6240\u9054\u6210\u7684\u7ffb\u8b6f\u54c1\u8cea\u3002 \u6cd5\u898f\u5247\u6216\u662f\u8a9e\u8a00\u5b78\u5bb6\u7684\u77e5\u8b58\u4f86\u5e6b\u52a9\u7ffb\u8b6f\u3002Knight \u7b49\u5b78\u8005[11]\u7d50\u5408 Longman \u5b57\u5178\u3001WordNet \u679c\uff0c\u6211\u5011\u80fd\u6709\u6548\u7684\u8abf\u52d5\u8a5e\u5e8f\uff0c\u4ee5\u63d0\u5347\u7ffb\u8b6f\u7684\u54c1\u8cea\u3002\u5b8c\u6210\u8a5e\u5e8f\u4ea4\u63db\u5f8c\uff0c\u518d\u900f\u904e\u5b57\u5178\u7ffb\u8b6f\u6210 \u8b6f\u7d50\u679c\u5c1a\u9700\u8981\u4eba\u5de5\u4f5c\u5f8c\u7e8c\u7684\u7de8\u4fee\u3002</td></tr><tr><td>\u95dc\u9375\u8a5e\uff1a\u81ea\u7136\u8a9e\u8a00\u8655\uf9e4\uff0c\u8a74\u984c\u7ffb\u8b6f\uff0c\u6a5f\u5668\u7ffb\u8b6f\uff0cTIMSS \u548c Collins \u96d9\u8a9e\u5b57\u5178\u5efa\u7acb\u4e00\u500b\u77e5\u8b58\u5eab\uff0c\u904b\u7528\u5728\u897f\u73ed\u7259\u6587\u7ffb\u8b6f\u6210\u82f1\u6587\u3002\u9019\u7a2e\uf9dd\u7528\u5b57\u5178\u4f86\u5e6b \u52a9\u7ffb\u8b6f\u7684\u7cfb\u7d71\uff0c\u6703\u6709\u4e00\u5b57\u591a\u7fa9\u7684\u60c5\u5f62\u767c\u751f\uff0c\u4e00\u500b\u8a5e\u5f59\u5728\u5b57\u5178\u4e2d\u901a\u5e38\u6709\u4e00\u500b\u4ee5\u4e0a\u7684\u7ffb\u8b6f\u3002 \u4e2d\u6587\uff0c\u6700\u5f8c\u904b\u7528\u7d71\u8a08\u5f0f\u9078\u8a5e\u6a21\u578b\uff0c\u7522\u751f\u4e86\u521d\u6b65\u7ffb\u8b6f\u7d50\u679c\uff0c\u4f46\u672c\u7cfb\u7d71\u5c1a\u5c6c\u65bc\u534a\u81ea\u52d5\u7ffb\u8b6f\u7cfb 3. \u7cfb\u7d71\u76f8\u95dc\u6280\u8853 \u7d71\uff0c\u6545\u9700\u8981\u4eba\u5de5\u52a0\u4ee5\u4fee\u98fe\u7de8\u8f2f\u3002 \u6839\u64da\u4e0a\u4e00\u7bc0\u7cfb\u7d71\u67b6\u69cb\u7684\u63cf\u8ff0\u5206\u70ba\u7bc4\u4f8b\u6a39\u7522\u751f\u7cfb\u7d71\u548c\u82f1\u6587\u53e5\u7ffb\u8b6f\u7cfb\u7d71\u5169\u5927\u7cfb\u7d71\u3002\u7bc4\u4f8b\u7522\u751f 1. \u7dd2\u8ad6 \u4ee5\u82f1\u7ffb\u4e2d\u70ba\u4f8b\"current\"\u9019\u500b\u5b57\u5728\u5b57\u5178\u88e1\u5c31\u6709\u5341\u591a\u7a2e\u4e0d\u540c\u7684\u7ffb\u8b6f\uff0c\u5373\u4f7f\u5c08\u5bb6\u4e5f\u7121\u6cd5\u627e\u51fa\u4e00 \u500b\u7d71\u4e00\u7684\u898f\u5247\uff0c\u5728\u4f55\u7a2e\u60c5\u6cc1\u4e0b\u8981\u7528\u4f55\u7a2e\u7ffb\u8b6f\uff0c\u6240\u4ee5\u5728\u7ffb\u8b6f\u7684\u54c1\u8cea\u548c\u6b63\u78ba\u6027\u4e0a\u5f88\u96e3\u6eff\u8db3\u4f7f \u7528\u8005\u3002\u56e0\u6b64\uff0c\u7ffb\u8b6f\u7cfb\u7d71\u901a\u5e38\u90fd\u6703\u9650\u5b9a\u9818\u57df\u4f86\u6e1b\u5c11\u4e00\u5b57\u591a\u7fa9\uff0c\u4f8b\u5982 current \u5728\u96fb\u5b50\u96fb\u6a5f\u985e \u7684\u6587\u7ae0\u4e2d\u51fa\u73fe\uff0c\u6700\u5e38\u88ab\u7ffb\u8b6f\u70ba\u96fb\u6d41\uff0c\u5728\u6587\u5b78\u985e\u7684\u6587\u7ae0\u4e2d\uff0c\u6700\u5e38\u88ab\u7ffb\u8b6f\u70ba\u73fe\u4ee3\u3002 \u7d71\u8a08\u5f0f\u6a5f\u5668\u7ffb\u8b6f(statistical machine translation\uff0c\u4ee5\u4e0b\u7c21\u7a31 SMT)\u662f\u5c07\u8a9e\u6599\u5728\u7ffb\u8b6f\u4e4b\u524d \u80fd\u3002Brown \u7b49\u5b78\u8005[6]\u65bc 1990 \u5e74\u4ee5\u82f1\u6587\u53ca\u6cd5\u6587\u7684\u96d9\u8a9e\u8a9e\u6599\u70ba\u4f86\u6e90\uff0c\u63d0\u51fa\u7d71\u8a08\u5f0f\u96d9\u8a9e\u7ffb \u8b6f\u67b6\u69cb\u3002\u5047\u8a2d\u76ee\u6a19\u8a9e\u8a00\u70ba T \u53ca\u4f86\u6e90\u8a9e\u8a00\u70ba S\uff0cP(T)\u70ba\u76ee\u6a19\u8a9e\u8a00 T \u5728\u8a9e\u6599\u5eab\u4e2d\u51fa\u73fe\u7684\u6a5f\u7387\uff0c \u7a31\u70ba\u8a9e\u8a00\u6a21\u578b(language model)\uff0cP(S|T)\u70ba\u76ee\u6a19\u8a9e\u8a00 T \u7ffb\u8b6f\u6210\u4f86\u6e90\u8a9e\u8a00 S \u7684\u6a5f\u7387\uff0c\u7a31\u70ba\u7ffb \u8b6f\u6a21\u578b(translation model)\u3002SMT \u7cfb\u7d71\u9700\u8981\u5927\u91cf\u7684\u8a9e\u6599\u5eab\u8f14\u52a9\uff0c\u5927\u591a\u90fd\u9700\u8981\u5177\u5099\u96d9\u8a9e\u5c0d\u61c9 \u7684\u8a9e\u6599\u5eab(parallel corpora \u6216\u7a31 bilingual corpora)\uff0c\u518d\u900f\u904e\u6a5f\u7387\u516c\u5f0f\u8a08\u7b97\u51fa\u6a5f\u7387\u6a21\u578b\u3002\u5176 \u4e2d SMT \u56f0\u96e3\u7684\u5730\u65b9\u5728\u65bc\u9700\u8981\u6536\u96c6\u5927\u91cf\u53ef\u7528\u7684\u96d9\u8a9e\u8a9e\u6599\uff0c\u7576\u8a9e\u6599\u8d8a\u591a\u5efa\u7acb\u6a21\u578b\u6240\u82b1\u8cbb\u7684 \u6642\u9593\u8d8a\u591a\u3002Oct \u7b49\u5b78\u8005[16]\u63d0\u51fa\u55ae\u5b57\u5f0f(word-based)\u7ffb\u8b6f\u6a21\u578b\u904b\u7528\u5728\u8a5e\u5f59\u5c0d\u6e96 (word alignment)\uff0c\u4e26\u4e14\u767c\u5c55\u51fa GIZA++\u9019\u5957\u7cfb\u7d71\u3002Koehn \u7b49\u5b78\u8005[12]\u9032\u4e00\u6b65\u5c07\u55ae\u5b57\u5f0f\u8f49\u8b8a\u6210\u7247 \u8a9e\u5f0f(phrase-based)\u7ffb\u8b6f\u6a21\u578b\uff0c\u904b\u7528\u7247\u8a9e\u5f0f\u7ffb\u8b6f\u6a21\u578b\u7ffb\u8b6f\u7684\u7d50\u679c\u6703\u6bd4\u55ae\u5b57\u5f0f\u7ffb\u8b6f\u7684\u7d50\u679c\u8981 \u6b63\u78ba\u3002 \u9664\u4e86\u672c\u7bc0\u7c21\u55ae\u4ecb\u7d39\u672c\u7814\u7a76\u4ee5\u5916\uff0c\u6211\u5011\u5c07\u5728\u7b2c\u4e8c\u7bc0\u63cf\u8ff0\u6574\u500b\u7cfb\u7d71\u7684\u67b6\u69cb\uff0c\u7b2c\u4e09\u7bc0\u8aaa\u660e \u672c\u7bc7\u8ad6\u6587\u6240\u904b\u7528\u7684\u6280\u8853\uff0c\u7b2c\u56db\u7bc0\u5247\u5448\u73fe\u51fa\u6211\u5011\u7684\u5be6\u9a57\u7d50\u679c\uff0c\u7b2c\u4e94\u7bc0\u5247\u662f\u7d50\u8ad6\u3002 2. \u7cfb\u7d71\u67b6\u69cb \u7531\u65bc\u6211\u5011\u7684\u76ee\u7684\u5728\u65bc\uf9dd\u7528\u4e2d\u82f1\u4e92\u70ba\u7ffb\u8b6f\u7684\u53e5\u5b50\u627e\u51fa\u8a5e\u5e8f\u95dc\u4fc2\uff0c\u4e26\u4e14\u5c07\u82f1\u6587\u53e5\u548c\u4e2d\u6587\u53e5\u8a5e \u4e2d\uff0c\u6b64\u7d50\u69cb\u5c07\u6210\u70ba\u4e4b\u5f8c\u82f1\u6587\u53e5\u7684\u7d50\u69cb\u8abf\u6574\u70ba\u9069\u5408\u4e2d\u6587\u7684\u7d50\u69cb\u7684\u53c3\u8003\u3002\u6700\u5f8c\u518d\u5c07\u82f1\u6587\u8a5e\u5f59 \u7ffb\u8b6f\u6210\u4e2d\u6587\u8a5e\u5f59\uff0c\u4e26\uf9dd\u7528\u7d71\u8a08\u5f0f\u9078\u8a5e\u9078\u51fa\u6700\u6709\u53ef\u80fd\u7ffb\u8b6f\u6210\u7684\u4e2d\u6587\u8a5e\u5f59\uff0c\u8b93\u7ffb\u8b6f\u7684\u7d50\u679c\u66f4 \u7b26\u5408\u4e00\u822c\u4eba\u7684\u7528\u8a5e\u548c\u9806\u5e8f\u3002 \u7522\u751f\u7bc4\u4f8b\u6a39\u7cfb\u7d71 \u4e2d\u82f1\u5e73\u884c\u8a9e\u6599 \u4e2d\u6587\u53e5 \u82f1\u6587\u53e5 \u65b7\u8a5e \u82f1\u6587\u5256\u6790\u5668 \u8655\u7406 \u5256\u6790\u6a39\u5c0d\u61c9\u5b57\u4e32 \u6a21\u7d44 \u7bc4\u4f8b\u6a39\u8cc7\u6599 \u5eab \u67e5\u8a62 \u6a39\u7cfb\u7d71\u7684\u57f7\u884c\u6d41\u7a0b\u70ba\u5148\u5c07\u4e2d\u6587\u53e5\u65b7\u8a5e\u548c\u5256\u6790\u82f1\u6587\u53e5\uff0c\u518d\u5c07\u65b7\u8a5e\u548c\u5256\u6790\u5f8c\u7684\u7d50\u679c\u8f38\u5165\u81f3\u5256 \u6790\u6a39\u5c0d\u61c9\u5b57\u4e32\u6a21\u7d44\uff0c\u4e26\u5c07\u8655\uf9e4\u5f8c\u7684\u7bc4\u4f8b\u6a39\u5b58\u5165\u8cc7\u6599\u5eab\u4e2d\u3002\u82f1\u6587\u53e5\u7ffb\u8b6f\u7cfb\u7d71\u7684\u57f7\u884c\u6d41\u7a0b\u5340 \u5206\u70ba\u4e09\u5927\u90e8\u5206\uff0c\u7b2c\u4e00\u90e8\u5206\u662f\u7531\u641c\u5c0b\u7bc4\u4f8b\u6a39\u6a21\u7d44\uff0c\u5c07\u82f1\u6587\u5256\u6790\u6a39\u8ddf\u7bc4\u4f8b\u6a39\u8cc7\u6599\u5eab\u4f5c\u6bd4\u5c0d\uff0c \u4e26\u4e14\u5c07\u672a\u6bd4\u5c0d\u5230\u7684\u5b50\u6a39\u505a\u4fee\u526a\uff1b\u7b2c\u4e8c\u90e8\u5206\u5c07\u4fee\u526a\u5f8c\u7684\u5256\u6790\u6a39\u8f38\u5165\u5230\u7ffb\u8b6f\u6a21\u7d44\u7ffb\u6210\u4e2d\u6587\uff1b \u7b2c\u4e09\u90e8\u5206\u4ee5\u4e2d\u82f1\u8a5e\u5f59\u5c0d\uf99c\u5de5\u5177\u53ca bi-gram \u8a9e\u8a00\u6a21\u578b\uff0c\u8a08\u7b97\u51fa\u4e2d\u82f1\u8a5e\u5f59\u9593\u6700\u6709\u53ef\u80fd\u4e4b\u7ffb\u8b6f \u570b\u969b\u6559\u80b2\u5b78\u7fd2\u6210\u5c31\u8abf\u67e5\u59d4\u54e1\u6703(\u7684\u8a74\u984c\u5167\u5bb9\u4e0a\uff0c\u4e3b\u8981\u7684\u984c\u578b\u7a2e\u985e\u6709\u9078\u64c7\u984c\u548c\u554f\u7b54\u984c\uff0c\u8a74\u984c\u53e5\u578b\u5927\u591a\u70ba\u76f4\u8ff0\u53e5\u548c\u554f\u53e5\u7d50\u69cb \u5c31\u5df2\u7d93\u904e\u8a08\u7b97\u8f49\u63db\u6210\u7d71\u8a08\u6578\u64da\uff0c\u4e0d\u9700\u8981\u5728\u7ffb\u8b6f\u904e\u7a0b\u4e2d\u4f5c\u9f90\u5927\u7684\u6578\u5b78\u904b\u7b97\uff0c\u80fd\u6709\u8f03\u9ad8\u7684\u6548 \u5e8f\u7684\u8cc7\u8a0a\u5132\u5b58\u5728\u96fb\u8166\u4e2d\uff0c\u5132\u5b58\u7684\u683c\u5f0f\u662f\u5c07\u4e2d\u82f1\u6587\u53e5\u7684\u8a5e\u5e8f\u95dc\u4fc2\u8a18\u9304\u5728\u82f1\u6587\u5256\u6790\u6a39\u7684\u7d50\u69cb \u7d44\u5408\u3002</td></tr><tr><td>\u6240\u7d44\u6210\uff0c\u9078\u64c7\u984c\u5247\u591a\u4e86\u8a98\u7b54\u9078\u9805\u3002 \u4ee5\u7bc4\u4f8b\u70ba\u57fa\u790e\u7684\u6a5f\u5668\u7ffb\u8b6f(example-based machine translation\uff0c\u4ee5\u4e0b\u7c21\u7a31\u70ba EBMT) \u82f1\u6587\u53e5\u7ffb\u8b6f\u7cfb\u7d71</td></tr><tr><td>\u4ee5\u5f80\u4f7f\u7528\u4eba\u5de5\u7ffb\u8b6f\u96d6\u7136\u53ef\u4ee5\u9054\u5230\u5f88\u9ad8\u7684\u7ffb\u8b6f\u54c1\u8cea\uff0c\u4f46\u662f\u9700\u8981\u8017\u8cbb\u76f8\u7576\u591a\u7684\u4eba\u529b\u8cc7\u6e90 \u548c\u6642\u9593\uff0c\u800c\u4e14\u5728\u7ffb\u8b6f\u904e\u7a0b\u4e2d\u4e0d\u540c\u7684\u7ffb\u8b6f\u8005\u6703\u6709\u4e0d\u540c\u7684\u7ffb\u8b6f\u6a19\u6e96(\u4f8b\u5982\uff1a\u76f8\u540c\u7684\u53e5\u5b50\uff0c\u7ffb \u8b6f\u5f8c\u7684\u7d50\u679c\u4e0d\u540c)\uff1b\u76f8\u540c\u7684\u7ffb\u8b6f\u8005\u4e5f\u53ef\u80fd\u5728\u6587\u7ae0\u524d\u5f8c\u7ffb\u8b6f\u65b9\u5f0f\u4e0d\u4e00\u81f4\u800c\u7522\u751f\u8a9e\u610f\u4e0a\u7684\u6df7 \u7684\u76f8\u95dc\u7814\u7a76\u5df2\u6709\u76f8\u7576\u591a\u5e74\u6b77\u53f2\uff0c\u5728 1990 \u5e74\u65e5\u672c\u5b78\u8005 Sato \u548c Nagao[19]\u6240\u63d0\u51fa\u7684 EBMT \u82f1\u6587\u53e5\u8f38\u5165 \u641c\u5c0b\u7bc4\u4f8b\u6a39 \u6a21\u7d44 \u82f1\u6587\u5256\u6790\u5668 \u8655\u7406 \u7ffb\u8b6f\u6a21 \u7d44 \u7d71\u8a08\u5f0f \u4e2d\u6587\u53e5\u8f38\u51fa \u9078\u8a5e \u662f\u5c07\u7ffb\u8b6f\u904e\u7a0b\u5206\u70ba\u5206\u89e3(decomposition)\u3001\u8f49\u63db(transfer)\u548c\u5408\u6210(composition)\u4e09\u6b65\u9a5f\u3002\u5206\u89e3 \u968e\u6bb5\u662f\u5c07\u4f86\u6e90\u53e5\u5230\u7bc4\u4f8b\u5eab\u4e2d\u641c\u5c0b\uff0c\u4e26\u5c07\u6240\u641c\u5c0b\u5230 word-dependency tree \u7576\u4f5c\u4f86\u6e90\u53e5\u7684 \u5716\u4e8c\u3001\u82f1\u6587\u5256\u6790\u6a39 \u5716\u4e09\u3001BSSTC \u7d50\u69cb\u7684\u8868\u793a\u6cd5</td></tr><tr><td>\u6dc6\u3002\u56e0\u6b64\u9593\u63a5\u5f71\u97ff\u8a74\u984c\u96e3\u6613\u7a0b\u5ea6\u3002\u82e5\u76f4\u63a5\u5c07\u82f1\u6587\u8a5e\u5f59\u900f\u904e\u82f1\u6f22\u5b57\u5178\u7ffb\u8b6f\u6210\u76f8\u5c0d\u7684\u4e2d\u6587\u8a5e word-dependency tree\uff0c\u4e26\u4e14\u5f62\u6210\u4f86\u6e90\u53e5\u7684\u8868\u793a\u5f0f\uff1b\u8f49\u63db\u968e\u6bb5\u5c07\u4f86\u6e90\u53e5\u7684\u8868\u793a\u5f0f\u8f49\u63db\u6210\u76ee \u5716\u4e00\u3001\u7cfb\u7d71\u67b6\u69cb\u5716</td></tr></table>", |
|
"type_str": "table" |
|
}, |
|
"TABREF1": { |
|
"html": null, |
|
"num": null, |
|
"text": "\uff0c\u5247 STREE \u4ee3\u8868\u7bc0\u9ede VP \u5c0d\u61c9\u4f86\u6e90\u53e5\u7b2c\u4e09\u5230 \u7b2c\u516d\u500b\u5b57 \"were simple in concept\"\uff1bSTC \u4ee3\u8868\"were simple in concept\"\u5c0d\u61c9\u76ee\u6a19\u53e5\u7684\u7b2c\u56db \u6240\u5c0d\u61c9\u8449\u5b50\u7bc0\u9ede\u7684\u7de8\u865f\u6a19\u8a18\u5728 n[STREE//]\u3002\u5982\u5716\u4e09\u7bc0\u9ede NNS \u6240\u5c0d\u61c9\u4f86\u6e90\u53e5\u7684\"experiments\"\u7684\u7de8\u865f\u70ba 2\uff0c\u6545 NNS[STREE//]\u4e2d\u7684 STREE \u6a19\u8a18\u70ba 2\u3002 \u63a5\u8457\u6a19\u8a18\u6700\u5e95\u5c64 n[/STC/]\u7684\u65b9\u6cd5\u662f\u5c0b\u627e\u4e2d\u82f1\u5c0d\u61c9\u53e5\u4e2d\u4e92\u70ba\u7ffb\u8b6f\u7684\u4e2d\u6587\u8a5e\u5f59\u548c\u82f1\u6587\u8a5e\u5f59\uff0c", |
|
"content": "<table><tr><td>\u4e5f\u5c31\u662f\u8a5e\u5f59\u5c0d\u6e96\u3002\u8a5e\u5f59\u5c0d\u6e96\u82e5\u63a1\u7528\u4eba\u5de5\u65b9\u5f0f\uff0c\u5247\u76f8\u7576\u8017\u6642\u8cbb\u529b\uff0c\u5176\u672c\u8eab\u4e5f\u662f\u4e00\u9805\u56f0\u96e3\u7684</td></tr><tr><td>\u7814\u7a76\u3002\u56e0\u6b64\uff0c\u6211\u5011\u5728\u6b64\u7528\u4e00\u500b\u7c21\u55ae\u7684\u65b9\u6cd5\uff0c\u9996\u5148\u5148\u5c07\u4e2d\u6587\u53e5\u7d93\u904e\u65b7\u8a5e\u8655\uf9e4\uff0c\u9019\u88e1\u6211\u5011\u4f7f</td></tr><tr><td>\u7528\u4e2d\u7814\u9662 CKIP \u65b7\u8a5e\u7cfb\u7d71[1]\uff1b\u5c07\u82f1\u6587\u53e5\u6bcf\u500b\u82f1\u6587\u5b57\u67e5\u5c0b\u5b57\u5178\u6a94\uff0c\u67e5\u5c0b\u5f8c\u53ef\u80fd\u6703\u6709\u8d85\u904e\u4e00</td></tr><tr><td>\u500b\u7684\u4e2d\u6587\u7ffb\u8b6f\uff0c\u5c07\u9019\u4e9b\u4e2d\u6587\u7ffb\u8b6f\u8ddf\u65b7\u8a5e\u5f8c\u7684\u4e2d\u6587\u8a5e\u5f59\u4e00\u500b\u4e00\u500b\u4f5c\u6bd4\u5c0d\uff0c\u5982\u6709\u6bd4\u5c0d\u5230\u5247\u8a8d</td></tr><tr><td>\u5b9a\u4e92\u70ba\u7ffb\u8b6f\uff0c\u4e26\u4e14\u6a19\u8a18 n[/STC/]\u5728\u5256\u6790\u6a39\u4e0a\u3002\u5982\u5716\u4e09\u4f86\u6e90\u53e5\u7684\"experiments\"\u5728\u5b57\u5178\u4e2d\u7684</td></tr><tr><td>\u7ffb\u8b6f\u6709\"\u5be6\u9a57\"\u3001\"\u7d93\u9a57\"\u548c\"\u8a74\u9a57\"\uff0c\u5c07\u9019\u4e09\u500b\u4e2d\u6587\u7ffb\u8b6f\u5230\u76ee\u6a19\u53e5\u53bb\u6bd4\u5c0d\uff0c\u6b64\u4f8b\u5b50\u5c07\u6703\u6bd4\u5c0d</td></tr><tr><td>\u5230\u76ee\u6a19\u53e5\u7b2c\u4e09\u500b\u8a5e\u5f59\"\u5be6\u9a57\"\uff0c\u63a5\u8457\u5c07\u76ee\u6a19\u53e5\"\u5be6\u9a57\"\u7684\u7de8\u865f\u6a19\u8a18\u5728 NNS[2/STC/]\u4e2d\u7684 STC</td></tr><tr><td>\u4e0a\u3002\u6700\u5f8c\u5c07\u6bd4\u5c0d\u5230\u7684\u500b\u6578\u9664\u4ee5\u82f1\u6587\u53e5\u55ae\u5b57\u7684\u500b\u6578\uff0c\u7a31\u70ba\u5c0d\u61c9\u7387\u3002\u6700\u4f73\u60c5\u6cc1\u4e0b\u662f\u6bcf\u500b\u82f1\u6587</td></tr><tr><td>\u55ae\u5b57\u90fd\u6709\u76f8\u5c0d\u61c9\u7684\u4e2d\u6587\u7ffb\u8b6f\uff0c\u5c0d\u61c9\u7387\u70ba 1\uff1b\u6700\u5dee\u7684\u60c5\u6cc1\u4e0b\u6bcf\u500b\u82f1\u6587\u55ae\u5b57\u90fd\u6c92\u6709\u76f8\u5c0d\u61c9\u7684</td></tr><tr><td>(6)\"\u3002\u4e2d\u82f1\u5c0d\u61c9\u53e5\u90fd\u6a19\u865f\u5f8c\uff0c\u4ee5\u6a19\u865f\u70ba\u55ae\u4f4d\u958b\u59cb\u505a\u8a5e\u5f59\u5c0d\u6e96(word alignment)\uff0c\u4e26\u6a19\u8a18\u5728</td></tr><tr><td>\u5256\u6790\u6a39\u7684\u7bc0\u9ede\u4e0a\u3002\u5256\u6790\u6a39\u662f\u7528\u6587\u6cd5\u7d50\u69cb\u4f86\u5206\u5c64\uff0c\u4e0d\u540c\u5c64\u7bc0\u9ede\u80fd\u5c0d\u61c9\u5230\u4e0d\u540c\u7684\u7bc4\u570d\u7684\u76ee\u6a19</td></tr><tr><td>\u53e5\u5b57\u4e32\u3002n[STREE/STC/]\u82e5\u70ba VP[3-6/4-6/]\u5230\u7b2c\u516d\u500b\u5b57\"\u6982\u5ff5\u5f88\u7c21\u55ae\"\u3002n C(n) [STREE/STC/ORDER]\u7684\u5144\u5f1f\u7bc0\u9ede(sibling node)\u82e5\u70ba</td></tr><tr><td>JJ[4/6/2]\u548c PP[5-6/4/1] \uff0c\u6211\u5011\u53ef\u4ee5\u89c0\u5bdf\u5230 JJ \u7684 ORDER \u5927\u65bc PP \u7684 ORDER\uff0c\u6545 PP[5-6/4/1]</td></tr><tr><td>\u7684\u4e2d\u6587\u5c0d\u61c9\u300c\u6982\u5ff5\u300d\u5728 JJ[4/6/2] \u7684\u4e2d\u6587\u5c0d\u61c9\u300c\u7c21\u55ae\u300d\u4e4b\u524d\u3002</td></tr><tr><td>3.2 \u5efa\u7acb BSSTC \u7d50\u69cb\u548c\u7522\u751f\u7bc4\u4f8b\u6a39</td></tr><tr><td>\u5efa\u7acb BSSTC \u7d50\u69cb\u5fc5\u9700\u8981\u6709\u82f1\u6587\u8ddf\u4e2d\u6587\u4e92\u70ba\u7ffb\u8b6f\u7684\u53e5\u5b50\uff0c\u5efa\u69cb\u7684\u9806\u5e8f\u662f\u5f9e\u6700\u5e95\u5c64\u4e5f\u5c31\u662f</td></tr><tr><td>\u5c64\u6578\u6700\u5927\u7684\u958b\u59cb\u6a19\u8a18\uff0c\u518d\u4e00\u5c64\u4e00\u5c64\u5f80\u4e0a\u5efa\u7f6e\u5230\u7b2c 0 \u5c64\u70ba\u6b62\uff0c\u6a19\u8a18\u53c3\u6578\u9806\u5e8f\u662f\u5148\u5c07\u6240\u6709\u7bc0</td></tr></table>", |
|
"type_str": "table" |
|
}, |
|
"TABREF3": { |
|
"html": null, |
|
"num": null, |
|
"text": "(\u4ee5\u4e0b\u7c21\u7a31\u570b\u4e2d\u88dc\u5145\u8cc7\u6599\u984c\u5eab)\u53ca\u79d1\u5b78\u4eba\u96dc\u8a8c\u3002\u570b\u4e2d\u88dc\u5145\u8cc7\u6599\u984c\u5eab\u4ee5\u4eba\u5de5\u65b9\u5f0f\u5b8c\u6210\u4e2d \u82f1\u8a9e\u53e5\u5c0d\uf99c(sentence alignment) \uff0c\u518d\u7d93\u904e\u7bc4\u4f8b\u6a39\u7684\u7be9\u9078\u9580\u6abb\u503c\u70ba 0.6 \u7684\u60c5\u6cc1\u4e0b\u6709 565 \u53e5\u3002 \u7528\u4f86\u8a13\u7df4\u9078\u8a5e\u6a5f\u7387\u6a21\u578b\u7684\u4f86\u6e90\u6709\u81ea\u7531\u6642\u5831\u4e2d\u82f1\u5c0d\u7167\u8b80\u65b0\u805e\u53ca\u79d1\u5b78\u4eba\u96dc\u8a8c\u3002\u81ea\u7531\u6642\u5831 \u4e2d\u82f1\u5c0d\u7167\u8b80\u65b0\u805e\u5f9e 2005 \u5e74 2 \u6708 14 \u65e5\u81f3 2007 \u5e74 10 \u6708 31 \u65e5\uff0c\u800c\u81ea\u7531\u6642\u5831\u4e2d\u82f1\u5c0d\u7167\u8b80\u65b0 \u805e\u672c\u8eab\u5c31\u5df2\u7d93\u4f5c\u597d\u4e2d\u82f1\u8a9e\u53e5\u5c0d\uf99c\u3002\u79d1\u5b78\u4eba\u96dc\u8a8c\u662f\u5f9e 2002 \u5e74 3 \u6708\u5275\u520a\u865f\u81f3 2006 \u5e74 12 \u6708 NIST \u6a19\u6e96\u7684 mteval-10\uff0c\u4e26\u4e14\u6211\u5011\u5c07\u53c3\u8003 \u7684\u4e2d\u6587\u6a19\u6e96\u7ffb\u8b6f\u548c\u7cfb\u7d71\u5efa\u8b70\u7ffb\u8b6f\uff0c\u6bcf\u500b\u4e2d\u6587\u5b57\u8ddf\u4e2d\u6587\u5b57\u4e4b\u9593\u7528\u7a7a\u767d\u4f5c\u5206\u9694\uff0c\u8a08\u7b97\u51fa\u5404\u5225 n-gram \u53ca\u7d2f\u52a0\u5404\u500b n-gram \u7684 BLEU \u53ca NIST \u503c\u3002\u4e3b\u8981\u8a55\u4f30\u7684\u5c0d\u8c61\u6709 Google \u7dda\u4e0a\u7ffb\u8b6f\u3001 \u70ba\u4ee3\u865f\uff1b\u79d1\u5b78\u9818\u57df\u4ee5 S \u70ba\u4ee3\u865f\uff0c\u7576 \u2020 \u672c\u7bc7\u8ad6\u6587 TIMSS \u8a74\u984c\u5be6\u9a57\u7d44\uff0c\u50c5\u5305\u542b 2003 \u5e74\u8a74\u984c\uff0c\u8207\u5442\u660e\u6b23\u5b78\u8005\u7684\u5be6\u9a57\u7d44\u4e26\u4e0d\u76f8\u540c\u3002 \u4f5c\u5be6\u9a57\u7d44\u5225\u7684\u540d\u7a31\u3002\u53ef\u4ee5 TIMSS2003 \u5206\u70ba\u516b\u5e74\u7d1a 2003 M \u7d44\u3001\u516b\u5e74\u7d1a 2003 S \u7d44\u3001\u56db\u5e74 \u7d1a 2003 M \u7d44\u53ca\u4ee5\u56db\u5e74\u7d1a 2003 S \u7d44\u56db\u7d44\uff1b\u5728\u52a0\u4e0a TIMSS 2003 \u6578\u5b78\u53ca\u79d1\u5b78\u9818\u57df\u4e4b\u516b\u5e74\u7d1a \u8a74\u984c\uff0c\u548c TIMSS 2003 \u6578\u5b78\u53ca\u79d1\u5b78\u9818\u57df\u4e4b\u56db\u5e74\u7d1a\u8a74\u984c\uff0c\u5206\u5225\u70ba\u516b\u5e74\u7d1a 2003 MS \u7d44\u53ca\u56db\u5e74 \u7d1a 2003 MS \u7d44\uff0c\u7e3d\u5171\u516d\u7d44\uff0c\u5982\u8868\u4e8c\u6240\u793a\u3002 4.3 \u5be6\u9a57\u7d50\u679c \u4f9d\u7167\u4e0a\u4e00\u7bc0\u7684\u5be6\u9a57\u8a2d\u8a08\uff0c\u6211\u5011\u91dd\u5c0d TIMSS2003 \u8a74\u984c\u9a57\u8b49\u672c\u7cfb\u7d71\u3001Lu \u7cfb\u7d71\u53ca\u7dda\u4e0a\u7ffb\u8b6f\u7cfb \u7d71\u5728 BLEU \u548c NIST \u6bd4\u8f03\u6578\u64da\u3002\u5f9e\u8868\u4e09\u662f\u4ee5 cumulative n-gram scoring \u4e4b 4-gram \u70ba\u5e73\u5747 \u503c\uff0c\u6574\uf9e4\u4e4b\u5404\u7d44 NIST \u53ca BLEU \u503c\u4e4b\u6bd4\u8f03\u8868\u3002NIST \u8ddf BLEU \u6700\u5927\u7684\u4e0d\u540c\u5728\u65bc\uff0cNIST \u5c07 \u5f9e\u8868\u4e09\u53ef\u89c0\u5bdf\u5230\uff0c\u516b\u5e74\u7d1a 2003 M \u7d44 NIST \u5206\u6578\u4ee5 Yahoo!\u6700\u9ad8\u5206\uff0c\u4f46 BLEU \u5206\u6578\u8207 \u672c\u7cfb\u7d71\u5dee\u4e0d\u591a\uff0c\u53ef\u77e5 Yahoo!\u5c0d\u516b\u5e74\u7d1a 2003 M \u7d44\u6240\u7ffb\u8b6f\u7684\u8a5e\u5f59\u8ddf\u53c3\u8003\u7ffb\u8b6f\u8f03\u76f8\u540c\uff0c\u4f46 Yahoo!\u548c\u672c\u7cfb\u7d71\u7ffb\u8b6f\u5f8c\u8a5e\u5e8f\u7684\u6b63\u78ba\u6027\u662f\u5dee\u4e0d\u591a\u7684\u3002\u56db\u5e74\u7d1a 2003 M \u7d44\u8a74\u984c\u4e2d\u6709\u8f03\u591a\u7279\u6b8a \u7b26\u865f\uff0c\u4f8b\u5982\u25cb\u548c\u2022\u7b49\uff0cYahoo!\u53ca Google \u7dda\u4e0a\u7ffb\u8b6f\u7cfb\u7d71\u6703\u5c07\u9019\u4e9b\u7279\u6b8a\u7b26\u865f\u8655\uf9e4\u6210\u4e82\u78bc\uff0c \u4f46\u672c\u7cfb\u7d71\u53ef\u4ee5\u5c07\u7279\u6b8a\u7b26\u865f\u4fdd\u7559\u4e0b\u4f86\uff0c\u6545\u56db\u5e74\u7d1a\u548c\u516b\u5e74\u7d1a 2003 M \u7d44\u8207\u6700\u9ad8\u5206\u7cfb\u7d71\u7684\u5dee\u8ddd \u8f03\u5c0f\u3002\u5148\u524d\u6211\u5011\u5047\u8a2d\u7ffb\u8b6f\u54c1\u8cea\u662f\u5426\u6703\u6309\u7167\u8d8a\u4f4e\u5e74\u7d1a\u5176\u7ffb\u8b6f\u54c1\u8cea\u8d8a\u597d\u7684\u8da8\u52e2\uff0c\u89c0\u5bdf\u516b\u5e74\u7d1a 2003MS \u7d44\u53ca\u5c0f\u56db MS \u7d44\uff0c\u53ef\u767c\u73fe\u8207\u5047\u8a2d\u76f8\u53cd\uff0c\u5404\u7cfb\u7d71\u5728\u516b\u5e74\u7d1a 2003 MS \u7d44\u7684\u8868\u73fe\u90fd\u6bd4 \u56db\u5e74\u7d1a 2003 MS \u7d44\u8981\u597d\u3002\u53ef\u63a8\u6e2c\u51fa\u672c\u7cfb\u7d71\u5176\u4e2d\u4e00\u7a2e\u8a9e\u6599\u70ba\u570b\u4e2d\u88dc\u5145\u8cc7\u6599\u984c\u5eab\u8f03\u7b26\u5408 TIMSS \u516b\u5e74\u7d1a 2003 \u7684\u8a74\u984c\u3002 \u6211\u5011\u5c07\u516b\u5e74\u7d1a 2003M \u7d44\u548c\u516b\u5e74\u7d1a 2003S \u7d44\u4f5c\u6bd4\u8f03\uff0c\u56db\u5e74\u7d1a 2003 M \u7d44\u548c\u56db\u5e74\u7d1a 2003 S \u7d44\u4f5c\u6bd4\u8f03\uff0c\u53ef\u4ee5\u767c\u73fe\u5404\u7cfb\u7d71\u9664\u4e86 Google \u4e4b\u5916\uff0c\u5728 M \u7d44\u4e0a\u8868\u73fe\u90fd\u6bd4 S \u7d44\u597d\uff0c\u56e0\u70ba M \u7d44 \u7684\u8a74\u984c\u5167\u5bb9\u5305\u542b\u8f03\u591a\u7684\u6578\u5b57\uff0c\u5c0d\u65bc\u7ffb\u8b6f\u7cfb\u7d71\u8f03\u5bb9\u6613\u8655\uf9e4\uff0c\u800c S \u7d44\u5247\u5305\u542b\u8f03\u591a\u5c08\u6709\u540d\u8a5e\uff0c", |
|
"content": "<table><tr><td>\u6240\u6709\u5be6\u9a57\u8a9e\u6599\u53e5\u5c0d\u6578\u3001\u4e2d\u82f1\u8a5e\u5f59\u6578\u3001\u4e2d\u82f1\u7e3d\u8a5e\u5f59\u500b\u6578\u53ca\u5e73\u5747\u53e5\u9577\uff0c\u7686\u5982\u8868\u4e00\u6240\u793a\u3002 5. \u7d50\u8ad6</td></tr><tr><td>\u7528\u4f86\u5efa\u7acb\u7bc4\u4f8b\u6a39\u7684\u4f86\u6e90\u6709\u6559\u80b2\u90e8\u59d4\u8a17\u5b9c\u862d\u7e23\u5efa\u7f6e\u8a9e\u6587\u5b78\u7fd2\u9818\u57df\u570b\u4e2d\u6559\u79d1\u66f8\u88dc\u5145\u8cc7\u6599\u984c \u672c\u8ad6\u6587\u63d0\u51fa BSSTC \u7d50\u69cb\uff0c\u6b64\u7d50\u69cb\u80fd\u5920\u8a18\u9304\u4f86\u6e90\u53e5\u8a5e\u5f59\u7684\u4f4d\u7f6e\u3001\u76ee\u6a19\u53e5\u8a5e\u5f59\u7684\u4f4d\u7f6e\u53ca\u4f86</td></tr><tr><td>\u6e90\u53e5\u8207\u76ee\u6a19\u53e5\u8a5e\u5f59\u5c0d\u61c9\u7684\u95dc\u4fc2\uff1b\u4e26\u4e14\u5c07 BSSTC \u7d50\u69cb\u904b\u7528\u5728\u6211\u5011\u5be6\u4f5c\u7684\u7ffb\u8b6f\u7cfb\u7d71\u4e0a\u3002\u672c \u7cfb\u7d71\u662f\uf9dd\u7528 BSSTC \u7d50\u69cb\u5efa\u7acb\u7bc4\u4f8b\u6a39\uff0c\u5c07\u4f86\u6e90\u53e5\u7d93\u904e\u641c\u5c0b\u7bc4\u4f8b\u6a39\u6f14\u7b97\u6cd5\uff0c\u4f86\u9054\u5230\u4fee\u6b63\u8a5e \u5e8f\u7684\u76ee\u7684\u3002\u6700\u5f8c\uff0c\u5728\u4f9d\u64da\u4fee\u6b63\u5f8c\u7684\u8a5e\u5e8f\u9032\u884c\u7ffb\u8b6f\uff0c\u7ffb\u8b6f\u6642\u518d\uf9dd\u7528\u4e2d\u82f1\u8a5e\u5f59\u5c0d\uf99c\u5de5\u5177\u53ca bi-gram \u8a9e\u8a00\u6a21\u578b\uff0c\u9078\u51fa\u6700\u9069\u5408\u7684\u4e2d\u6587\u7ffb\u8b6f\uff0c\u7522\u751f\u5efa\u8b70\u7684\u7ffb\u8b6f\uff0c\u6b64 \u7ffb\u8b6f\u9084\u9700\u8981\u4eba\u5de5\u7de8\u4fee\u3002 TIMSS \u7684\u8a74\u984c\u70ba\u6578\u5b78\u53ca\u79d1\u5b78\u985e\uff0c\u61c9\u8a72\u8981\u7528\u5927\u91cf\u6578\u5b78\u53ca\u79d1\u5b78\u985e\u7684\u8a9e\u6599\uff0c\u4f46\u5be6\u969b\u4e0a\u6211 \u5eab[4] \u5171 110 \u7bc7\u70ba\u8a9e\u6599\u4f86\u6e90\u3002 \u5011\u4e26\u7121\u6cd5\u627e\u5230\u5920\u591a\u7684\u6578\u5b78\u53ca\u79d1\u5b78\u985e\u8a9e\u6599\uff0c\u5c24\u5176\u4ee5\u4e2d\u82f1\u5c0d\u61c9\u7684\u8a9e\u6599\u6700\u5c11\uff0c\u6240\u4ee5\u6211\u5011\u9078\u7528\u65b0</td></tr><tr><td>gram \u6a21\u578b\u8a73\u7d30\u4ecb\u7d39\u3002 \u4e2d\u82f1\u8a5e\u5f59\u5c0d\uf99c\uff1a\u5c07\u4e2d\u82f1\u8a9e\u6599\u96d9\u8a9e\u8a9e\u6599\uff0c\u7d93\u904e\u4eba\u5de5\u7684\u4e2d\u82f1\u8a9e\u53e5\u5c0d\uf99c(sentence alignment)\u6280 \u8853\uff0c\u63a5\u8457\u5c07\u4e2d\u6587\u8a9e\u6599\uf9dd\u7528\u4e2d\u7814\u9662 CKIP \u65b7\u8a5e\u7cfb\u7d71[1]\u52a0\u4ee5\u65b7\u8a5e\uff1b\u82f1\u6587\u8a9e\u6599\u5247\u662f\u7d93\u904e\u5927\u5c0f\u5beb \u8f49\u63db\u53ca\uf9dd\u7528\u5b57\u548c\u5b57\u4e4b\u9593\u7a7a\u767d\u65b7\u8a5e\uff0c\u6700\u5f8c\u8f38\u5165\u81f3 GIZA++[16]\u53ca mkcls[15]\u7b49\u5de5\u5177\uff0c\u7522\u751f\u4e2d \u82f1\u8a5e\u5f59\u5c0d\uf99c\u7d50\u679c\u4ee5\u53ca\u4e2d\u82f1\u8a5e\u5f59\u5c0d\u7167\u6a5f\u7387\u8868\u3002 bi-gram \u8a9e\u8a00\u6a21\u578b\uff1a\u5c07\u4e2d\u6587\u8a9e\u6599\u7d71\u8a08\u5404\u4e2d\u6587\u8a5e\u5f59\u548c\u4e0b\u4e00\u500b\u4e2d\u6587\u8a5e\u5f59\u51fa\u73fe\u7684\u6b21\u6578\uff0c\u8a08\u7b97\u5176 \u51fa\u73fe\u6a5f\u7387\u3002\u6211\u5011\u662f\uf9dd\u7528 SRI Speech Technology and Research Laboratory \u6240\u958b\u767c\u7684\u81ea\u7136\u8a9e \u8a00\u5de5\u5177 SRILM[18]\u4f86\u5efa\u7acb bi-gram \u8a9e\u8a00\u6a21\u578b\u3002 4. \u7cfb\u7d71\u7ffb\u8b6f\u6548\u679c\u8a55\u4f30 \u672c\u7bc0\u4e3b\u8981\u4ecb\u7d39\uf9dd\u7528\u672c\u7cfb\u7d71\u7ffb\u8b6f\u570b\u969b\u6578\u5b78\u8207\u79d1\u5b78\u6559\u80b2\u6210\u5c31\u8da8\u52e2\u8abf\u67e5 2003 \u5e74\u8003\u984c\uff0c\u7c21\u7a31 TIMSS2003\uff0c\u4e26\u5c07\u8a74\u984c\u4f9d\u7167\u5e74\u9f61\u5225\u548c\u79d1\u76ee\u5225\uff0c\u5206\u5225\u6bd4\u8f03\u7ffb\u8b6f\u7684\u54c1\u8cea\u3002\u6700\u5f8c\u5c07\u8207\u7dda\u4e0a\u7ffb\u8b6f \u4ee5\u53ca\u5442\u660e\u6b23\u7b49\u5b78\u8005\u7814\u767c\u7684\u7ffb\u8b6f\u7cfb\u7d71\u4f5c\u6bd4\u8f03\u3002\u8a55\u4f30\u65b9\u5f0f\u70ba\uf9dd\u7528 BLEU \u53ca NIST \u6307\u6a19\u3002 4.1 \u5be6\u9a57\u4f86\u6e90 \u6211\u5011\u4e3b\u8981\u7528\u4f86\u7ffb\u8b6f\u7684\u4f86\u6e90\u70ba TIMSS2003 \u8a74\u984c\uff0c\u5340\u5206\u6578\u5b78\u53ca\u79d1\u5b78\u985e\u5225\uff0c\u4e26\u4e14\u4ee5\u56db\u5e74\u7d1a\u53ca \u516b\u5e74\u7d1a\u70ba\u8003\u8a74\u5c0d\u8c61\uff0c\u5171\u6709\u56db\u7a2e\u8a74\u984c\u5206\u5225\u70ba\u56db\u5e74\u7d1a\u6578\u5b78\u9818\u57df 31 \u984c\uff1b\u56db\u5e74\u7d1a\u79d1\u5b78\u9818\u57df 70 \u8868\u4e00\u3001\u5be6\u9a57\u8a9e\u6599\u4f86\u6e90\u7d71\u8a08 \u8a9e\u6599 \u8a9e\u8a00 \u53e5\u5c0d\u6578 \u8fad\u5f59\u6578 \u7e3d\u8a5e\u5f59\u500b\u6578(tokens) \u5e73\u5747\u53e5\u9577 \u570b\u4e2d\u88dc\u5145\u8cc7\u6599\u984c\u5eab \u4e2d\u6587 2059 \u53e5 2333 12460 6.1 \u82f1\u6587 2887 13170 6.4 \u79d1\u5b78\u4eba \u4e2d\u6587 4247 \u53e5 9279 70411 16.6 \u82f1\u6587 10504 68434 16.1 \u81ea\u7531\u6642\u5831\u4e2d\u82f1\u5c0d \u7167\u8b80\u65b0\u805e \u4e2d\u6587 4248 \u53e5 19188 145336 34.2 \u82f1\u6587 25782 133123 31.3 4.2 \u5be6\u9a57\u8a2d\u8a08 \u9996\u5148\uff0c\u5c07 TIMSS2003 \u8a74\u984c\u554f\u53e5\u4ee5\u9017\u865f\u3001\u554f\u865f\u6216\u9a5a\u5606\u865f\u505a\u70ba\u65b7\u53e5\u7684\u55ae\u4f4d\uff0c\u6bcf\u500b\u8a98\u7b54\u9078\u9805 \u505a\u70ba\u65b7\u53e5\u7684\u55ae\u4f4d\uff0c\u82e5\u4e00\u9053\u984c\u76ee\u70ba\u4e00\u53e5\u8a74\u984c\u554f\u53e5\u53ca\u56db\u9805\u8a98\u7b54\u9078\u9805\u6240\u7d44\u6210\uff0c\u5247\u4e00\u9053\u984c\u76ee\u53ef\u65b7 \u51fa\u4e94\u53e5\u3002\u7d93\u904e\u4eba\u5de5\u65b7\u53e5\u8655\uf9e4 TIMSS2003 \u8a74\u984c\uff0c\u56db\u5e74\u7d1a\u6578\u5b78\u9818\u57df\u6709 165 \u53e5\uff1b\u56db\u5e74\u7d1a\u79d1\u5b78 \u9818\u57df\u6709 262 \u53e5\uff1b\u516b\u5e74\u7d1a\u6578\u5b78\u9818\u57df\u6709 439 \u53e5\uff1b\u516b\u5e74\u7d1a\u79d1\u5b78\u9818\u57df\u6709 236 \u53e5\uff0c\u4e26\u6574\uf9e4\u70ba\u6587\u5b57\u6a94\u3002 \u7ffb\u8b6f\u6642\u4e2d\u6587\u8a74\u984c\u6240\u904b\u7528\u7684\u4e2d\u6587\u65b7\u8a5e\u70ba\u4e2d\u7814\u9662 CKIP \u65b7\u8a5e\u7cfb\u7d71[1]\uff0c\u82f1\u6587\u8a74\u984c\u6240\u904b\u7528\u7684\u5256\u6790 \u5668\u70ba StanfordLexParser-1.6[17]\uff0c\u5efa\u7acb\u7bc4\u4f8b\u6a39\u8cc7\u6599\u5eab\u6240\u4f7f\u7528\u7684\u8a9e\u6599\u70ba\u570b\u4e2d\u88dc\u5145\u8cc7\u6599\u984c\u5eab\uff0c \u8a13\u7df4\u6a5f\u7387\u6a21\u578b\u6240\u4f7f\u7528\u7684\u8a9e\u6599\u81ea\u7531\u6642\u5831\u4e2d\u82f1\u5c0d\u7167\u8b80\u65b0\u805e\u52a0\u4e0a\u79d1\u5b78\u4eba\u96dc\u8a8c\uff0c\u5176\u4e2d\u8a13\u7df4\u8a9e\u8a00\u6a21 \u578b\u5f97\u5230\u7684 bi-gram \u5171\u6709 134435 \u500b\uff1bGIZA++\u7522\u751f\u4e2d\u82f1\u8a5e\u5f59\u5c0d\uf99c\u7d50\u679c\u6709 128551 \u7d44\u3002 \u8868\u4e8c\u3001TIMSS \u8a74\u984c\u5be6\u9a57\u7d44\u5225\u8868 \u2020 \u516b\u5e74\u7d1a 2003 M \u7d44 \u516b\u5e74\u7d1a 2003 S \u7d44 \u56db\u5e74\u7d1a 2003 M \u7d44 \u56db\u5e74\u7d1a 2003 S \u7d44 \u516b\u5e74\u7d1a 2003 MS \u7d44 \u56db\u5e74\u7d1a 2003 MS \u7d44 TIMSS2003 \u570b\u4e2d \u6578\u5b78\u9818\u57df\u8a74\u984c TIMSS2003 \u570b\u4e2d \u79d1\u5b78\u9818\u57df\u8a74\u984c TIMSS2003 \u570b\u5c0f \u6578\u5b78\u9818\u57df\u8a74\u984c TIMSS2003 \u570b\u5c0f \u79d1\u5b78\u9818\u57df\u8a74\u984c TIMSS2003 \u570b\u4e2d \u6578\u5b78\u53ca\u79d1\u5b78\u9818\u57df \u8a74\u984c TIMSS200 \u570b\u5c0f \u6578\u5b78\u53ca\u79d1\u5b78\u9818\u57df \u8a74\u984c \u6211\u5011\u8a55\u4f30\u6240\u4f7f\u7528\u7684\u5de5\u5177\u70ba\u4f9d\u7167 BLEU \u53ca Yahoo!\u7dda\u4e0a\u7ffb\u8b6f\u3001\u5442\u660e\u6b23\u5b78\u8005\u7684\u7cfb\u7d71(Lu)\u53ca\u672c\u7cfb\u7d71\u4e92\u76f8\u505a\u6bd4\u8f03\uff0c\u4e26\u4e14\u8a55\u4f30\u7ffb\u8b6f\u7cfb\u7d71\u5728\u4e0d \u540c\u5e74\u7d1a\u7684\u8a74\u984c\u5167\u5bb9\u4e0a\uff0c\u7ffb\u8b6f\u54c1\u8cea\u662f\u5426\u6703\u6309\u7167\u8d8a\u4f4e\u5e74\u7d1a\u5176\u7ffb\u8b6f\u54c1\u8cea\u8d8a\u597d\u7684\u8da8\u52e2\u3002\u56e0\u6b64\uff0c\u6211 \u7684\u5927\u5c0f\uff0c\u800c BLEU \u91dd\u5c0d\u5404 n-gram \u5339\u914d\u6b63\u78ba\u7387\u53ca\u76f8\u4f3c\u5ea6\u9032\u884c\u8a08\u5206\u3002\u7531\u6b64\u53ef\u77e5\u7576\u53c3\u8003\u7ffb\u8b6f \u53e5\u5b50\u548c\u7cfb\u7d71\u7ffb\u8b6f\u53e5\u5b50\u7528\u7684\u8a5e\u5f59\u76f8\u540c\u6642\uff0cNIST \u5206\u6578\u6703\u6bd4\u8f03\u9ad8\uff1b\u7576\u53c3\u8003\u7ffb\u8b6f\u53e5\u5b50\u548c\u7cfb\u7d71\u7ffb \u8b6f\u53e5\u5b50\u7528\u7684\u8a5e\u5f59\u9806\u5e8f\u8f03\u76f8\u8fd1\u6642\uff0cBLEU \u5206\u6578\u6703\u6bd4\u8f03\u9ad8\u3002 \u8868\u4e09\u3001\u672c\u7cfb\u7d71\u3001Lu \u7cfb\u7d71\u53ca\u7dda\u4e0a\u7ffb\u8b6f\u7cfb\u7d71\u4e4b NIST \u53ca BLEU \u503c\u6bd4\u8f03\u8868 \u7d44\u5225 \u516b\u5e74\u7d1a 2003 M \u7d44 \u516b\u5e74\u7d1a 2003 S \u7d44 \u56db\u5e74\u7d1a 2003 M \u7d44 \u6307\u6a19 NIST BLEU NIST BLEU NIST BLEU \u672c\u7cfb\u7d71 4.7002 0.1440 4.4089 0.1254 3.9819 0.1304 Lu 3.6185 0.1007 3.5831 0.0890 3.3319 0.0983 Google 4.5268 0.1467 4.8587 0.1848 3.7573 0.1016 Yahoo! 4.8793 0.1455 4.6136 0.1396 4.0457 0.1419 \u7d44\u5225 \u56db\u5e74\u7d1a 2003 S \u7d44 \u516b\u5e74\u7d1a 2003 MS \u7d44 \u56db\u5e74\u7d1a 2003 MS \u7d44 \u6307\u6a19 NIST BLEU NIST BLEU NIST BLEU \u672c\u7cfb\u7d71 4.2228 0.1018 4.8613 0.1309 4.4400 0.1138 Lu 3.2495 0.0682 3.8031 0.0966 3.4970 0.0803 Google 4.4445 0.1527 4.9343 0.1611 4.4720 0.1344 Yahoo! 4.4361 0.1442 5.0755 0.1435 4.6070 0.1436 \u5c0d\u65bc\u7ffb\u8b6f\u7cfb\u7d71\u8f03\u70ba\u56f0\u96e3\u3002\u63a5\u8457\u5c07\u672c\u7cfb\u7d71\u8207 Lu \u7cfb\u7d71\u4f5c\u6bd4\u8f03\uff0cLu \u7cfb\u7d71\u548c\u672c\u7cfb\u7d71\u7684\u5dee\u5225\u70ba\u6c92 \u6709\u4f5c\u8a5e\u5e8f\u7684\u4ea4\u63db\u3002\u7d93\u904e\u8a5e\u5e8f\u4ea4\u63db\u5f8c\uff0c\u5f97\u5230\u6b63\u78ba\u7684\u4e2d\u6587\u8a5e\u5e8f\uff0c\u56e0\u6b64\u9078\u8a5e\u7684\u6b63\u78ba\u6027\u76f8\u5c0d\u6703\u63d0 \u805e\u53ca\u570b\u4e2d\u88dc\u5145\u8cc7\u6599\u984c\u5eab\u4f86\u64ec\u88dc\u8a9e\u6599\u7684\u4e0d\u8db3\u3002\u4e0d\u904e\u8a13\u7df4\u91cf\u9084\u7b97\u662f\u4e0d\u8db3\u5920\uff0c\u5728\u9078\u8a5e\u4e0a\u6703\u6709\u8a31 \u591a\u6a5f\u7387\u70ba 0 \u7684\u60c5\u6cc1\uff0c\u9020\u6210\u9078\u8a5e\u932f\u8aa4\u3002\u672a\u4f86\u5c07\u76e1\u91cf\u627e\u5c0b\u76f8\u95dc\u9818\u57df\u7684\u8a9e\u6599\uff0c\u4f86\u5efa\u7acb\u7bc4\u4f8b\u6a39\u548c \u8a13\u7df4\u8a9e\u8a00\u6a21\u578b\uff0c\u5c31\u80fd\u91dd\u5c0d\u4e0d\u540c\u9818\u57df\u7684\u4f86\u5ba2\u88fd\u5316\u7ffb\u8b6f\uff0c\u4f7f\u7ffb\u8b6f\u7684\u7d50\u679c\u66f4\u70ba\u7cbe\u78ba\u3002 \u8a13\u7df4\u8a9e\u6599\u4e2d\u7684\u65b7\u8a5e\u662f\u4f7f\u7528\u4e2d\u7814\u9662 CKIP \u7cfb\u7d71\uff0c\u800c\u6211\u5011\u7ffb\u8b6f\u4f7f\u7528\u7684\u5b57\u5178\u70ba\u725b\u6d25\u5b57\u5178\uff0c \u5169\u8005\u6240\u4f7f\u7528\u7684\u5b57\u5178\u4e26\u4e0d\u76f8\u540c\uff0c\u6703\u4f7f\u65b7\u8a5e\u5f8c\u7684\u8a5e\u5f59\u53ef\u80fd\u7121\u6cd5\u5728\u725b\u6d25\u5b57\u5178\u4e2d\u627e\u5230\uff0c\u9020\u6210\u9078\u8a5e \u932f\u8aa4\u3002\u672a\u4f86\u53ef\u5c07\u7ffb\u8b6f\u5f8c\u7684\u8a5e\u5f59\uff0c\u627e\u51fa\u540c\u7fa9\u8a5e\u4f86\u64f4\u5145\u8a5e\u5f59\u6578\uff0c\u4fbf\u80fd\u589e\u52a0\u88ab\u627e\u5230\u7684\u53ef\u80fd\u6027\u3002 \u82f1\u6587\u7684\u8a9e\u8a00\u7279\u6027\u4e0a\u4e26\u6c92\u6709\u91cf\u8a5e\uff0c\u800c\u4e2d\u6587\u53e5\u4e2d\u904b\u7528\u4e86\u5f88\u591a\u7684\u91cf\u8a5e\uff0c\u5982\u7f3a\u5c11\u91cf\u8a5e\u4e5f\u6703\u4f7f \u4e2d\u6587\u7684\u6d41\u66a2\u5ea6\u4e0b\u5c07\u3002\u672c\u7cfb\u7d71\u7684\u7ffb\u8b6f\u7d50\u679c\u4e5f\u7f3a\u5c11\u4e2d\u6587\u7684\u91cf\u8a5e\u3002\u672a\u4f86\u82e5\u80fd\u5c07\u7ffb\u8b6f\u7d50\u679c\u586b\u88dc\u4e0a \u7f3a\u5c11\u7684\u91cf\u8a5e\uff0c\u4fbf\u53ef\u9054\u5230\u66f4\u597d\u7684\u54c1\u8cea\u3002 \u81f4\u8b1d \u672c\u7814\u7a76\u627f\u8499\u570b\u79d1\u6703\u7814\u7a76\u8a08\u756b NSC-95-2221-E-004-013-MY2 \u7684\u90e8\u5206\u88dc\u52a9\u8b39\u6b64\u81f4\u8b1d\u3002\u6211\u5011 \u611f\u8b1d\u533f\u540d\u8a55\u5be9\u5c0d\u65bc\u672c\u6587\u521d\u7a3f\u7684\u5404\u9805\u6307\u6b63\u8207\u6307\u5c0e\uff0c\u96d6\u7136\u6211\u5011\u5df2\u7d93\u5728\u5f9e\u4e8b\u76f8\u95dc\u7684\u90e8\u5206\u7814\u7a76\u8b70 \u984c\uff0c\u4e0d\u904e\u9650\u65bc\u7bc7\u5e45\u56e0\u6b64\u4e0d\u80fd\u5728\u672c\u6587\u4e2d\u5168\u9762\u4ea4\u4ee3\u76f8\u95dc\u7d30\u7bc0\u3002 \u5011\u5c07\u5be6\u9a57\u7d44\u5225\u5206\u70ba\u516b\u5e74\u7d1a\u548c\u56db\u5e74\u7d1a\uff1b\u6578\u5b78\u9818\u57df\u4ee5 M \u5404 n-gram \u8a5e\u5f59\u4e2d\u5171\u73fe(co-occurrence)\u7684\u6b21\u6578\u6bd4\u7684\u7d2f\u52a0\u503c\uff0c\u7576\u4f5c\u5404 n-gram \u5e73\u5747\u8cc7\u8a0a\u91cf \u53c3\u8003\u6587\u737b</td></tr><tr><td>\u984c\uff1b\u516b\u5e74\u7d1a\u6578\u5b78\u9818\u57df 41 \u984c\uff1b\u516b\u5e74\u7d1a\u79d1\u5b78\u9818\u57df 38 \u984c\u3002\u6240\u6709\u8a74\u984c\u90fd\u6709\u82f1\u6587\u539f\u6587\u8a74\u984c\u548c\u5e2b\u5927 \u5347\uff0c\u6240\u4ee5\u672c\u7cfb\u7d71\u5728\u5404\u7d44\u7684\u8868\u73fe\u90fd\u6bd4 Lu \u7cfb\u7d71\u8981\u597d\uff0c\u986f\u793a\u8a5e\u5e8f\u4ea4\u63db\u5f8c\u6703\u5f97\u5230\u54c1\u8cea\u8f03\u597d\u7684\u4e2d</td></tr><tr><td>\u79d1\u6559\u4e2d\u5fc3\u6240\u7ffb\u8b6f\u7684\u4e2d\u6587\u8a74\u984c\u3002 \u6587\u7ffb\u8b6f\u3002</td></tr></table>", |
|
"type_str": "table" |
|
} |
|
} |
|
} |
|
} |