|
{ |
|
"paper_id": "O12-1002", |
|
"header": { |
|
"generated_with": "S2ORC 1.0.0", |
|
"date_generated": "2023-01-19T08:02:49.030300Z" |
|
}, |
|
"title": "A Voice Conversion Method Mapping Segmented Frames with Linear Multivariate Regression", |
|
"authors": [ |
|
{ |
|
"first": "Hung-Yan", |
|
"middle": [], |
|
"last": "Gu", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "National Taiwan University of Science and Technology", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Jia-Wei", |
|
"middle": [], |
|
"last": "Chang", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "National Taiwan University of Science and Technology", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Zan-Wei", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "National Taiwan University of Science and Technology", |
|
"location": {} |
|
}, |
|
"email": "" |
|
} |
|
], |
|
"year": "", |
|
"venue": null, |
|
"identifiers": {}, |
|
"abstract": "", |
|
"pdf_parse": { |
|
"paper_id": "O12-1002", |
|
"_pdf_hash": "", |
|
"abstract": [], |
|
"body_text": [ |
|
{ |
|
"text": "(voice conversion) (source speaker) (target speaker) : (VQ) (mapping) [1] (formant) [2, 3 ] (Gaussian mixture model, GMM) [4, 5] (artificial neural network, ANN) [6] (hidden Markov model, HMM) [7, 8] GMM Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012) GMM [4] (spectral envelope) ( cepstrum coefficients, DCC) [11, 12] c 0 , c 1 , c 2 , \u2026, c 40 41 c 1 , c 2 , \u2026, c 40 DCC DCC [11, 12] (harmonic plus noise model, HNM) [12, 13] ", |
|
"cite_spans": [ |
|
{ |
|
"start": 70, |
|
"end": 73, |
|
"text": "[1]", |
|
"ref_id": "BIBREF0" |
|
}, |
|
{ |
|
"start": 84, |
|
"end": 87, |
|
"text": "[2,", |
|
"ref_id": "BIBREF1" |
|
}, |
|
{ |
|
"start": 88, |
|
"end": 89, |
|
"text": "3", |
|
"ref_id": null |
|
}, |
|
{ |
|
"start": 122, |
|
"end": 125, |
|
"text": "[4,", |
|
"ref_id": "BIBREF2" |
|
}, |
|
{ |
|
"start": 126, |
|
"end": 128, |
|
"text": "5]", |
|
"ref_id": "BIBREF3" |
|
}, |
|
{ |
|
"start": 162, |
|
"end": 165, |
|
"text": "[6]", |
|
"ref_id": "BIBREF4" |
|
}, |
|
{ |
|
"start": 193, |
|
"end": 196, |
|
"text": "[7,", |
|
"ref_id": "BIBREF5" |
|
}, |
|
{ |
|
"start": 197, |
|
"end": 199, |
|
"text": "8]", |
|
"ref_id": "BIBREF6" |
|
}, |
|
{ |
|
"start": 318, |
|
"end": 321, |
|
"text": "[4]", |
|
"ref_id": "BIBREF2" |
|
}, |
|
{ |
|
"start": 342, |
|
"end": 343, |
|
"text": "(", |
|
"ref_id": null |
|
}, |
|
{ |
|
"start": 372, |
|
"end": 376, |
|
"text": "[11,", |
|
"ref_id": "BIBREF9" |
|
}, |
|
{ |
|
"start": 377, |
|
"end": 380, |
|
"text": "12]", |
|
"ref_id": "BIBREF10" |
|
}, |
|
{ |
|
"start": 438, |
|
"end": 442, |
|
"text": "[11,", |
|
"ref_id": "BIBREF9" |
|
}, |
|
{ |
|
"start": 443, |
|
"end": 446, |
|
"text": "12]", |
|
"ref_id": "BIBREF10" |
|
}, |
|
{ |
|
"start": 480, |
|
"end": 484, |
|
"text": "[12,", |
|
"ref_id": "BIBREF10" |
|
}, |
|
{ |
|
"start": 485, |
|
"end": 488, |
|
"text": "13]", |
|
"ref_id": "BIBREF11" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "EQUATION", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [ |
|
{ |
|
"start": 0, |
|
"end": 8, |
|
"text": "EQUATION", |
|
"ref_id": "EQREF", |
|
"raw_str": "[12, 13] LMR DCC (DTW) ( ) ( ) N : S 1 , S 2 , , S N N : T 1 , T 2 , , T N d\u00d71 DCC T k DTW DCC S k S = [S 1 , S 2 , , S N ] T = [T 1 , T 2 , , T N ] S T d\u00d7N d\u00d7d LMR M M S = T . (1) N d M E d\u00d7N E = M S T . (2) M E E d\u00d7N M d\u00d7d LMS \u03b5 : t t = ( )( ) , t: transpose. E E M S T M S T \u03b5 \u22c5 = \u22c5 \u2212 \u22c5 \u2212 (3) \u03b5 (trace) 1,1 2,2 , tr( ) ... d d \u03b5 \u03b5 \u03b5 \u03b5 = + + + M 0 [11, 12] ( ) t tr( ) 2( ) 0 , M S T S M \u03b5 \u2202 = \u22c5 \u2212 \u22c5 = \u2202 (4) ( ) tr( ) / M \u03b5 \u2202 \u2202 ( ) , tr( ) / i j M \u03b5 \u2202 \u2202 j=1, 2, \u2026, d i=1, 2, \u2026, d M i j , i j M tr( ) \u03b5 (4) M t t = , M S S T S \u22c5 \u22c5 \u22c5 (5) t t 1 ( ) . M T S S S \u2212 = \u22c5 \u22c5 \u22c5 (6) (6) LMS M (a)", |
|
"eq_num": "(1)" |
|
} |
|
], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "(b) (c) (a) (b) (6) S 1 , S 2 , , S N S m S k S m S k T 1 , T 2 , , T N T m S m T m x y y=mx x y y=mx (a) y = m \u2022 x (b) y = m \u2022 x x y y=mx+c (c) y = m \u2022 x + c (a) (c) (1) M S T 1, 1 2, 1 , 1 1 2 1, 1, 1 : 1 2 1, 1, 1 0, 0, ..., 0, 1 ... , ... , ... , ... d d d d M N M M N S S S T T T S T M M + + + \u00aa \u00ba \u00aa \u00ba = \u00ab \u00bb \u00ab \u00bb \u00ac \u00bc \u00ab \u00bb \u00ab \u00bb = \u00ab \u00bb \u00aa \u00ba \u00ab \u00bb = \u00ab \u00bb \u00ab \u00bb \u00ac \u00bc \u00ac \u00bc (7) M (d+1)\u00d7(d+1) M M (d+1) (d+1) (7) S (d+1) 1 S (d+1)\u00d7N T T M S T (6) M M (1) -- M_1 M_2 F_1 F_2 375 ( 2,926 ) 22,050Hz (a)M_1 M_2 (b)M_1 F_1 (c)F_1 M_1 (d)F_1", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "EQUATION", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [ |
|
{ |
|
"start": 0, |
|
"end": 8, |
|
"text": "EQUATION", |
|
"ref_id": "EQREF", |
|
"raw_str": "DTW (S k , T w(k) ) k=1, 2, , K n K n n LMR (1) S T (6) LMR M (7) S T S T", |
|
"eq_num": "(6)" |
|
} |
|
], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "EQUATION", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [ |
|
{ |
|
"start": 0, |
|
"end": 8, |
|
"text": "EQUATION", |
|
"ref_id": "EQREF", |
|
"raw_str": "R = R 1 , R 2 , , R N DCC T = T 1 , T 2 , , T N R DCC , 1 1 ( , ) , avg k k N k N D d i s tR T \u2264 \u2264 = \u00a6", |
|
"eq_num": "(9)" |
|
} |
|
], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
} |
|
], |
|
"back_matter": [ |
|
{ |
|
"text": " A B A B B A Y1 Z1 A B X2 Y2 A B Y2 Z2 A B 15 2 ", |
|
"cite_spans": [], |
|
"ref_spans": [ |
|
{ |
|
"start": 1, |
|
"end": 62, |
|
"text": "A B A B B A Y1 Z1 A B X2 Y2 A B Y2 Z2 A B 15 2", |
|
"ref_id": null |
|
} |
|
], |
|
"eq_spans": [], |
|
"section": "X1 Y1", |
|
"sec_num": "6" |
|
} |
|
], |
|
"bib_entries": { |
|
"BIBREF0": { |
|
"ref_id": "b0", |
|
"title": "Voice Conversion through Vector Quantization", |
|
"authors": [ |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Abe", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Nakamura", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "K", |
|
"middle": [], |
|
"last": "Shikano", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H", |
|
"middle": [], |
|
"last": "Kuwabara", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1988, |
|
"venue": "Int. Conf. Acoustics, Speech, and Signal Processing", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "655--658", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, \"Voice Conversion through Vector Quantization,\" Int. Conf. Acoustics, Speech, and Signal Processing, New York, Vol. 1, pp. 655-658, 1988.", |
|
"links": null |
|
}, |
|
"BIBREF1": { |
|
"ref_id": "b1", |
|
"title": "Voice Conversion Algorithm Based on Piecewise Linear Conversion Rules of Formant Frequency and Spectrum Tilt", |
|
"authors": [ |
|
{ |
|
"first": "H", |
|
"middle": [], |
|
"last": "Mizuno", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Abe", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1995, |
|
"venue": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing", |
|
"volume": "16", |
|
"issue": "", |
|
"pages": "153--164", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "H. Mizuno and M. Abe, \"Voice Conversion Algorithm Based on Piecewise Linear Conversion Rules of Formant Frequency and Spectrum Tilt,\" Speech Communication, Vol. 16, No. 2, pp. 153-164, 1995. Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)", |
|
"links": null |
|
}, |
|
"BIBREF2": { |
|
"ref_id": "b2", |
|
"title": "Continuous Probabilistic Transform for Voice Conversion", |
|
"authors": [ |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Stylianou", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "O", |
|
"middle": [], |
|
"last": "Cappe", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "E", |
|
"middle": [], |
|
"last": "Moulines", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1998, |
|
"venue": "IEEE Trans. Speech and Audio Processing", |
|
"volume": "6", |
|
"issue": "2", |
|
"pages": "131--142", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Y. Stylianou, O. Cappe, and E. Moulines, \"Continuous Probabilistic Transform for Voice Conversion,\" IEEE Trans. Speech and Audio Processing, Vol. 6, No. 2, pp.131-142, 1998.", |
|
"links": null |
|
}, |
|
"BIBREF3": { |
|
"ref_id": "b3", |
|
"title": "An Improved Voice Conversion Method Using Segmental GMMs and Automatic GMM Selection", |
|
"authors": [ |
|
{ |
|
"first": "H", |
|
"middle": [ |
|
"Y" |
|
], |
|
"last": "Gu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"F" |
|
], |
|
"last": "Tsai", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2011, |
|
"venue": "Int. Congress on Image and Signal Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "2395--2399", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "H. Y. Gu and S. F. Tsai, \"An Improved Voice Conversion Method Using Segmental GMMs and Automatic GMM Selection\", Int. Congress on Image and Signal Processing, pp. 2395-2399, Shanghai, China, 2011.", |
|
"links": null |
|
}, |
|
"BIBREF4": { |
|
"ref_id": "b4", |
|
"title": "Voice Conversion Using Artificial Neural Networks", |
|
"authors": [ |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Desaiy", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "E", |
|
"middle": [ |
|
"V" |
|
], |
|
"last": "Raghavendray", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "B", |
|
"middle": [], |
|
"last": "Yegnanarayanay", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "A", |
|
"middle": [], |
|
"last": "Blackz", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "K", |
|
"middle": [], |
|
"last": "Prahallad", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2009, |
|
"venue": "Int. Conf. Acoustics, Speech, and Signal Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "3893--3896", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "S. Desaiy, E. V. Raghavendray, B. Yegnanarayanay, A. W Blackz, and K. Prahallad, \"Voice Conversion Using Artificial Neural Networks,\" Int. Conf. Acoustics, Speech, and Signal Processing, Taipei, Taiwan, pp. 3893-3896, 2009.", |
|
"links": null |
|
}, |
|
"BIBREF5": { |
|
"ref_id": "b5", |
|
"title": "Hidden Markov Model Based Voice Conversion Using Dynamic Characteristics of Speaker", |
|
"authors": [ |
|
{ |
|
"first": "E", |
|
"middle": [ |
|
"K" |
|
], |
|
"last": "Kim", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Lee", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Y", |
|
"middle": [ |
|
"H" |
|
], |
|
"last": "Oh", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1997, |
|
"venue": "Proc. EuroSpeech", |
|
"volume": "5", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "E. K. Kim, S. Lee, and Y. H. Oh, \"Hidden Markov Model Based Voice Conversion Using Dynamic Characteristics of Speaker,\" Proc. EuroSpeech, Rhodes, Greece, Vol. 5, 1997.", |
|
"links": null |
|
}, |
|
"BIBREF6": { |
|
"ref_id": "b6", |
|
"title": "Voice Conversion Using Duration-Embedded Bi-HMMs for Expressive Speech Synthesis", |
|
"authors": [ |
|
{ |
|
"first": "C", |
|
"middle": [ |
|
"H" |
|
], |
|
"last": "Wu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "C", |
|
"middle": [ |
|
"C" |
|
], |
|
"last": "Hsia", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "T", |
|
"middle": [ |
|
"H" |
|
], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J", |
|
"middle": [ |
|
"F" |
|
], |
|
"last": "Wang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2006, |
|
"venue": "IEEE Trans. Audio, Speech, and Language Processing", |
|
"volume": "14", |
|
"issue": "4", |
|
"pages": "1109--1116", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "C. H. Wu, C. C. Hsia, T. H. Liu, and J. F. Wang, \"Voice Conversion Using Duration-Embedded Bi-HMMs for Expressive Speech Synthesis,\" IEEE Trans. Audio, Speech, and Language Processing, Vol. 14, No. 4, pp. 1109-1116, 2006.", |
|
"links": null |
|
}, |
|
"BIBREF7": { |
|
"ref_id": "b7", |
|
"title": "Voice Transformation Using PSOLA Technique", |
|
"authors": [ |
|
{ |
|
"first": "H", |
|
"middle": [], |
|
"last": "Valbret", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "E", |
|
"middle": [], |
|
"last": "Moulines", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J", |
|
"middle": [ |
|
"P" |
|
], |
|
"last": "Tubach", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1992, |
|
"venue": "Speech Communication", |
|
"volume": "11", |
|
"issue": "2-3", |
|
"pages": "175--187", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "H. Valbret, E. Moulines, J. P. Tubach, \"Voice Transformation Using PSOLA Technique,\" Speech Communication, Vol. 11, No. 2-3, pp. 175-187, 1992.", |
|
"links": null |
|
}, |
|
"BIBREF8": { |
|
"ref_id": "b8", |
|
"title": "Alleviating the One-to-many Mapping Problem in Voice Conversion with Context-dependent Modeling", |
|
"authors": [ |
|
{ |
|
"first": "E", |
|
"middle": [], |
|
"last": "Godoy", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "O", |
|
"middle": [], |
|
"last": "Rosec", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "T", |
|
"middle": [], |
|
"last": "Chonavel", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2009, |
|
"venue": "Proc. INTERSPEECH", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1627--1630", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "E. Godoy, O. Rosec, and T. Chonavel, \"Alleviating the One-to-many Mapping Problem in Voice Conversion with Context-dependent Modeling\", Proc. INTERSPEECH, pp. 1627-1630, Brighton, UK, 2009.", |
|
"links": null |
|
}, |
|
"BIBREF9": { |
|
"ref_id": "b9", |
|
"title": "Regularization Techniques for Discrete Cepstrum Estimation", |
|
"authors": [ |
|
{ |
|
"first": "O", |
|
"middle": [], |
|
"last": "Capp\u00e9", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "E", |
|
"middle": [], |
|
"last": "Moulines", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1996, |
|
"venue": "IEEE Signal Processing Letters", |
|
"volume": "3", |
|
"issue": "4", |
|
"pages": "100--102", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "O. Capp\u00e9 and E. Moulines, \"Regularization Techniques for Discrete Cepstrum Estimation,\" IEEE Signal Processing Letters, Vol. 3, No. 4, pp. 100-102, 1996.", |
|
"links": null |
|
}, |
|
"BIBREF10": { |
|
"ref_id": "b10", |
|
"title": "A Discrete-cepstrum Based Spectrum-envelope Estimation Scheme and Its Example Application of Voice Transformation", |
|
"authors": [ |
|
{ |
|
"first": "H", |
|
"middle": [ |
|
"Y" |
|
], |
|
"last": "Gu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"F" |
|
], |
|
"last": "Tsai", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2009, |
|
"venue": "International Journal of Computational Linguistics and Chinese Language Processing", |
|
"volume": "14", |
|
"issue": "4", |
|
"pages": "363--382", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "H. Y. Gu and S. F. Tsai, \"A Discrete-cepstrum Based Spectrum-envelope Estimation Scheme and Its Example Application of Voice Transformation,\" International Journal of Computational Linguistics and Chinese Language Processing, Vol. 14, No. 4, pp. 363-382, 2009.", |
|
"links": null |
|
}, |
|
"BIBREF11": { |
|
"ref_id": "b11", |
|
"title": "Harmonic plus noise models for speech, combined with statistical methods, for speech and speaker modification", |
|
"authors": [ |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Stylianou", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1996, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Y. Stylianou, Harmonic plus noise models for speech, combined with statistical methods, for speech and speaker modification, Ph.D. thesis, Ecole Nationale Sup\u00e8rieure des T\u00e9l\u00e9communications, Paris, France, 1996.", |
|
"links": null |
|
}, |
|
"BIBREF12": { |
|
"ref_id": "b12", |
|
"title": "Pitch detection with average magnitude difference function using adaptive threshold algorithm for estimating shimmer and jitter", |
|
"authors": [ |
|
{ |
|
"first": "H", |
|
"middle": [ |
|
"Y" |
|
], |
|
"last": "Kim", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1998, |
|
"venue": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "H. Y. Kim, et al., \"Pitch detection with average magnitude difference function using adaptive threshold algorithm for estimating shimmer and jitter,\" 20-th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China, 1998. Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)", |
|
"links": null |
|
} |
|
}, |
|
"ref_entries": { |
|
"TABREF4": { |
|
"num": null, |
|
"html": null, |
|
"text": "//guhy.csie.ntust.edu.tw/VCLMR/LMR.html Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)", |
|
"type_str": "table", |
|
"content": "<table><tr><td colspan=\"5\">Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)</td></tr><tr><td>LMR [3]</td><td>(LMR_F)</td><td>\"</td><td/><td>LMR_F</td></tr><tr><td/><td>\"</td><td/><td/><td>LMR_F</td><td>(ROCLING 2009)</td><td>319-332</td></tr><tr><td>7.1%(</td><td colspan=\"2\">GMM ) 2009</td><td>4.5%(</td><td>GMM )</td></tr><tr><td/><td>1.5%</td><td>0.7%</td><td/><td>LMR</td></tr><tr><td/><td/><td/><td/><td>LMR</td></tr><tr><td/><td/><td/><td/><td>LMR_B</td><td>LMR_F</td><td>LMR_FC</td></tr><tr><td/><td colspan=\"3\">M_1=> M_2</td><td>0.4890</td><td>0.4794</td><td>0.4475</td></tr><tr><td/><td colspan=\"2\">M_1=> F_1</td><td/><td>0.4782</td><td>0.4705</td><td>0.4451</td></tr><tr><td colspan=\"5\">(9) dist( ) (LMR_B) LMR_FC 0.5038 0.5 GMM (Segmental GMM) [5] 1.6% 1.7%) 5.7% 2.1% (LMR_FC) (LMR_F) ( 0.4672 LMR_B GMM DCC GMM GMM 8 GMM GMM GMM VQ 0.5382 LMR LMR 0.4956 0.5493 0.4672 0.5 LMR_B [4] 128 F_1 => M_1 0.4967 0.4881 0.4612 F_1 => F_2 0.5514 0.5443 0.5149 0.5038 0.4956 0.4672 M_1=> M_2 0.5467 0.5331 0.5398 M_1=> F_1 0.5174 0.5106 0.5188 F_1 => M_1 0.5388 0.5307 0.5413 F_1 => F_2 0.5867 0.5782 0.5973 0.5474 0.5382 0.5493 GMM GMM (128 mix.) Segmental GMM (8 mix.) M_1=> M_2 0.5058 0.5096 M_1=> F_1 0.5012 0.4910 F_1 => M_1 0.5412 0.5095 F_1 => F_2 0.5853 0.5673 0.5334 0.5194 M_1=> M_2 0.5346 0.5403 M_1=> F_1 0.5147 0.5146 F_1 => M_1 0.5551 0.5361 F_1 => F_2 0.5806 0.5766 0.5463 0.5419 5.2 6 X1 X2 Y1 Y2 Z1 Z2 X1 X2 GMM [4] Y1 Y2 LMR_F Z1 Z2 LMR_FC X1 Y1 Z1 1 M_1 M_2 X2 Y2 Z2 2 M_1 F_1 6 /jie-3 jyei-2 fang-1 an-4/(\" \") (LMR) LMR DCC LMR_F GMM GMM 7.1% GMM 1.5% LMR_F GMM LMR_F GMM LMR_FC LMR_FC LMR_FC LMR_FC LMR_F LMR_F : http:(b) LMR_FC LMR_FC</td></tr><tr><td/><td/><td/><td/><td>GMM</td></tr></table>" |
|
} |
|
} |
|
} |
|
} |